JP4750197B2 - Endoscope device - Google Patents
Endoscope device Download PDFInfo
- Publication number
- JP4750197B2 JP4750197B2 JP2009102371A JP2009102371A JP4750197B2 JP 4750197 B2 JP4750197 B2 JP 4750197B2 JP 2009102371 A JP2009102371 A JP 2009102371A JP 2009102371 A JP2009102371 A JP 2009102371A JP 4750197 B2 JP4750197 B2 JP 4750197B2
- Authority
- JP
- Japan
- Prior art keywords
- point
- cross
- image
- section information
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
- Studio Devices (AREA)
Description
本発明は、複数の視点から得られる画像信号を基に、所望する切断位置における断面形状の客観的な判断を可能にする内視鏡装置に関する。 The present invention relates to an endoscope apparatus that enables objective determination of a cross-sectional shape at a desired cutting position based on image signals obtained from a plurality of viewpoints.
近年、医療分野及び工業分野において、内視鏡が広く用いられるようになった。通常の内視鏡による観察像では、一般に対象物は平面的なものとなり、凹凸等を認識しにくい。 In recent years, endoscopes have been widely used in the medical field and the industrial field. In an observation image with a normal endoscope, the object is generally planar, and it is difficult to recognize irregularities and the like.
このため、特許文献1には複数の視点からの画像を得て3次元計測を行う計測内視鏡装置が示されている。また、特許文献2には、基準平面と計測点を指定することで基準平面から計測点までの距離を表示し、対象物の凹凸の高さ又は深さを客観的に認識できる計測用内視鏡装置が示されている。
For this reason,
これまでの計測用内視鏡装置では基準画像上で指定した点の3次元座標や2点間の距離或いは設定した平面からの深さ等の計測を行うことができた。 Conventional measuring endoscope apparatuses can measure three-dimensional coordinates of a point designated on a reference image, a distance between two points, or a depth from a set plane.
しかしながら、観察対象における3次元形状を知るために、多数の点を指定し、その各点から得られる3次元座標を元に形状を推測していたため、観察対象の3次元形状を直感的に把握することが難しいという問題があった。 However, in order to know the three-dimensional shape of the observation target, a large number of points are specified, and the shape is estimated based on the three-dimensional coordinates obtained from each point. There was a problem that it was difficult to do.
また、画像情報から撮像範囲全体の3次元情報を得て3次元モデルを作成する方法もあるが、3次元モデルを作成するためにはコンピュータによる演算処理に多大な時間がかかり、実用的ではないという問題があった。 There is also a method of creating a 3D model by obtaining 3D information of the entire imaging range from image information. However, in order to create a 3D model, it takes a lot of time for computation processing by a computer, which is not practical. There was a problem.
したがって、例えばパイプ内部の腐食部の深さ測定を行う際、最も深い場所を特定するまでに多くの検査時間を要していた。 Therefore, for example, when measuring the depth of the corroded portion inside the pipe, it takes a lot of inspection time to identify the deepest place.
本発明は上記事情に鑑みてなされたものであり、測定を希望する切断面の指定を容易に行え、かつその指定した切断面における観察対象の断面形状の把握を簡便に行える内視鏡装置を提供することを目的にしている。 The present invention has been made in view of the above circumstances, and provides an endoscope apparatus capable of easily specifying a cut surface desired to be measured and easily grasping a cross-sectional shape of an observation target on the specified cut surface. The purpose is to provide.
本発明の第1の態様の内視鏡装置は、観察対象を複数の視点から撮像する撮像部と、この撮像部によって得られる複数の視点における画像の1つを基準画像、残りの画像を参照画像としてステレオ計測を行うための演算処理部とを有する内視鏡装置であって、
前記演算処理部は、前記基準画像を画面上に表示させる画像表示手段と、前記画面に表示された画像上で、前記観察対象の切断位置を特定する切断基準線を指定する切断基準線指定手段と、この切断基準線上の点に対応する前記基準画像上の点を注目点とし、この注目点に対応する前記参照画像上の対応点を探索する対応点探索手段と、前記基準画像上における注目点の位置と、前記対応点探索手段で求めた前記参照画像上の対応点の位置とから、前記切断基準線上の各注目点に写像される空間上の点の3次元座標である、前記切断位置における前記観察対象の断面情報を得る断面情報演算手段と、この断面情報演算手段で得られた値を基に断面情報を出力する断面情報出力手段と、を具備し、前記断面情報出力手段は、前記画面の前記基準画像上に表示される前記切断基準線に基づく前記断面情報を、前記画面上に断面形状外形線図として前記画像表示手段に表示させ、前記画像表示手段は、前記基準画像及び前記切断基準線分を前記画面上で二分割された一方に表示し、前記断面形状外形線図を二分割された前記画面上の他方に表示することを特徴とする。
本発明の第2の態様の内視鏡装置は、観察対象を複数の視点から撮像する撮像部と、この撮像部によって得られる複数の視点における画像の1つを基準画像、残りの画像を参照画像としてステレオ計測を行うための演算処理部とを有する内視鏡装置であって、
前記演算処理部は、前記基準画像を画面上に表示させる画像表示手段と、前記画面に表示された画像上で、前記観察対象の切断位置を特定する切断基準線を指定する切断基準線指定手段と、この切断基準線上の点に対応する前記基準画像上の点を注目点とし、この注目点に対応する前記参照画像上の対応点を探索する対応点探索手段と、前記基準画像上における注目点の位置と、前記対応点探索手段で求めた前記参照画像上の対応点の位置とから、前記切断基準線上の各注目点に写像される空間上の点の3次元座標である、前記切断位置における前記観察対象の断面情報を得る断面情報演算手段と、この断面情報演算手段で得られた値を基に断面情報を出力する断面情報出力手段と、を具備し、前記断面情報出力手段は、前記画面の前記基準画像上に表示される前記切断基準線に基づく前記断面情報を、前記画面上に断面形状外形線図として前記画像表示手段に表示させ、前記画像表示手段は、前記断面形状外形線図を前記画面上に表示させたウィンドウに表示することを特徴とする。
本発明の第3の態様の内視鏡装置は、観察対象を複数の視点から撮像する撮像部と、この撮像部によって得られる複数の視点における画像の1つを基準画像、残りの画像を参照画像としてステレオ計測を行うための演算処理部とを有する内視鏡装置であって、
前記演算処理部は、前記基準画像を画面上に表示させる画像表示手段と、前記画面に表示された画像上で、前記観察対象の切断位置を特定する切断基準線を指定する切断基準線指定手段と、この切断基準線上の点に対応する前記基準画像上の点を注目点とし、この注目点に対応する前記参照画像上の対応点を探索する対応点探索手段と、前記基準画像上における注目点の位置と、前記対応点探索手段で求めた前記参照画像上の対応点の位置とから、前記切断基準線上の各注目点に写像される空間上の点の3次元座標である、前記切断位置における前記観察対象の断面情報を得る断面情報演算手段と、この断面情報演算手段で得られた値を基に断面情報を出力し、前記画面の前記基準画像上に表示される前記切断基準線に基づく前記断面情報を、前記画面上に断面形状外形線図として前記画像表示手段に表示させる断面情報出力手段と、を具備し、前記画像表示手段は、前記切断基準線指定手段による前記切断基準線を指定可能とする状態から、前記断面形状外形線図を表示する状態に移行することを特徴とする。
An endoscope apparatus according to a first aspect of the present invention is an imaging unit that images an observation target from a plurality of viewpoints, and refers to one of the images at the plurality of viewpoints obtained by the imaging unit as a reference image and the remaining images. An endoscope apparatus having an arithmetic processing unit for performing stereo measurement as an image,
The arithmetic processing unit includes an image display unit that displays the reference image on a screen, and a cutting reference line designation unit that designates a cutting reference line that specifies a cutting position of the observation target on the image displayed on the screen. A point on the reference image corresponding to the point on the cutting reference line as a point of interest, a corresponding point search means for searching for a corresponding point on the reference image corresponding to the point of interest, and a point of interest on the reference image The cutting point, which is a three-dimensional coordinate of a point on a space mapped to each point of interest on the cutting reference line from the position of the point and the position of the corresponding point on the reference image obtained by the corresponding point searching means Cross-section information calculation means for obtaining cross-section information of the observation object at a position, and cross-section information output means for outputting cross-section information based on a value obtained by the cross-section information calculation means, the cross-section information output means , The standard of the screen The cross-section information based on the cutting reference line displayed on the image, to be displayed on said image display means as a cross-sectional shape outline view on the screen, the image display means, the reference image and the cutting reference line displays one that is divided into two parts in the previous SL screen and characterized by displaying the cross-sectional shape outline view to the other on the two split the screen.
The endoscope apparatus according to the second aspect of the present invention has an imaging unit that images an observation target from a plurality of viewpoints, and refers to one of the images at the plurality of viewpoints obtained by the imaging unit as a reference image and the remaining images. An endoscope apparatus having an arithmetic processing unit for performing stereo measurement as an image,
The arithmetic processing unit includes an image display unit that displays the reference image on a screen, and a cutting reference line designation unit that designates a cutting reference line that specifies a cutting position of the observation target on the image displayed on the screen. A point on the reference image corresponding to the point on the cutting reference line as a point of interest, a corresponding point search means for searching for a corresponding point on the reference image corresponding to the point of interest, and a point of interest on the reference image The cutting point, which is a three-dimensional coordinate of a point on a space mapped to each point of interest on the cutting reference line from the position of the point and the position of the corresponding point on the reference image obtained by the corresponding point searching means Cross-section information calculation means for obtaining cross-section information of the observation object at a position, and cross-section information output means for outputting cross-section information based on a value obtained by the cross-section information calculation means, the cross-section information output means , The standard of the screen The cross-sectional information based on the cutting reference line displayed on the image is displayed on the screen as a cross-sectional shape outline on the screen, and the image display means displays the cross-sectional shape outline on the screen. It is displayed in the window displayed above.
An endoscope apparatus according to a third aspect of the present invention refers to an imaging unit that images an observation target from a plurality of viewpoints, one of the images at the plurality of viewpoints obtained by the imaging unit, and a reference to the remaining images An endoscope apparatus having an arithmetic processing unit for performing stereo measurement as an image,
The arithmetic processing unit includes an image display unit that displays the reference image on a screen, and a cutting reference line designation unit that designates a cutting reference line that specifies a cutting position of the observation target on the image displayed on the screen. A point on the reference image corresponding to the point on the cutting reference line as a point of interest, a corresponding point search means for searching for a corresponding point on the reference image corresponding to the point of interest, and a point of interest on the reference image The cutting point, which is a three-dimensional coordinate of a point on a space mapped to each point of interest on the cutting reference line from the position of the point and the position of the corresponding point on the reference image obtained by the corresponding point searching means Cross-section information calculation means for obtaining cross-section information of the observation object at the position, and the cutting reference line displayed on the reference image on the screen, which outputs cross-section information based on the value obtained by the cross-section information calculation means The cross-sectional information based on State anda section information output means for displaying on the image display means as a cross-sectional shape outline view on the screen, the image display means, which can be designated the cutting reference line by the cutting reference line specifying means from the transition to features and Turkey in a state of displaying the cross-sectional shape outline view.
この構成によれば、表示されている基準画像に所望する切断面を指定することによって、観察者の所望する切断面の断面情報が画面上に表示される。 According to this configuration, by specifying a desired cut surface in the displayed reference image, the cross-section information of the desired cut surface of the observer is displayed on the screen.
本発明によれば、測定を希望する切断面の指定を容易に行え、かつその指定した切断面における観察対象の断面形状の把握を簡便に行える内視鏡装置を実現できる。 ADVANTAGE OF THE INVENTION According to this invention, the endoscopic apparatus which can perform designation | designated of the cut surface which desires a measurement easily, and can grasp | ascertain easily the cross-sectional shape of the observation object in the designated cut surface is realizable.
以下、図面を参照して本発明の実施の形態を説明する。
図1に示すように本実施形態の計測を行うための内視鏡装置1は、観察対象部位の観察像を後述する撮像素子上に結像させる撮像部を内視鏡に備えた電子内視鏡2(以下内視鏡と記載する)と、この内視鏡2によって得られた観察像の画像信号に画像処理を施し、この画像処理した画像データを基に各種計測を行うための演算処理部を有する計測装置3とで主に構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, an
なお、前記計測装置3には観察対象に照明光を供給するための光源装置(不図示)が内蔵されており、観察対象部位の内視鏡画像はモニタ30の画面上に表示されるようになっている。
The
前記内視鏡2は、細長な挿入部20を有し、この挿入部20の基端部には把持部を兼ねる操作部21が配設されている。そして、この操作部21の側部からは前記計測装置3に着脱自在なコネクタ22を基端部に配設したユニバーサルコード23が延出している。
The
前記挿入部20は、先端側から順に後述する撮像光学系を内蔵した先端部24と、複数の湾曲駒を回動自在に連接して湾曲自在に形成された湾曲部25と、細長な柔軟部材で形成した可撓管部26とで構成されている。なお、符号27は前記湾曲部25を湾曲操作する操作ノブ27である。
The
図2に示すように前記先端部24には一対の対物レンズ系41,42と、この対物レンズ系41,42を通して撮像面に結像した光学像を画像信号に光電変換する撮像素子43とから構成される撮像部40が配置されている。
As shown in FIG. 2, the
前記対物レンズ系41,42は、観察対象部位を複数の視点で撮像できるように構成したものであり、撮像素子43の撮像面上には前記対物レンズ系41,42を通過したそれぞれの光学像が結像する。つまり、本実施形態の内視鏡2はいわゆる視差を有するステレオ画像を得る立体視内視鏡である。
The
図1及び図2に示すように計測装置3は、前記撮像素子43で光電変換された画像信号を前記モニタ30に表示するためのビデオ信号に変換するカメラコントロールユニット(以下CCUと略記する)31と、このCCU31で生成されたビデオ信号をデジタル画像信号に変換するビデオキャプチャ回路32と、このビデオキャプチャ回路32で変換されたデジタル画像信号を基に計測のための演算を行う演算処理部であるホストコンピュータ33と、このホストコンピュータ33を介して計測装置3を操作するコンソール34とで主に構成されている。
As shown in FIGS. 1 and 2, the
図3に示すように計測装置3の光源装置で発生された照明光は、前記コネクタ22、前記ユニバーサルケーブル23、挿入部20内を挿通するライトガイドファイバ(不図示)を伝送されて照明窓44から観察対象部位4に向かって出射される。このことにより、前記計測装置3のモニタ30に観察対象部位4の内視鏡画像が表示される。
As shown in FIG. 3, the illumination light generated by the light source device of the
なお、本実施形態においては前記コンソール34を計測装置本体35に対して別体とし、前記モニタ30を計測装置本体35に対して一体としているが、用途によってそれぞれ計測装置本体35に対して一体又は別体で構成される。
In the present embodiment, the
図4ないし図24を参照して、上述のように構成した内視鏡装置1を用いてステレオ計測を行う際の動作及び作用を説明する。
例えば内視鏡2の挿入部20をパイプ管内に挿入し腐食部や傷の観察を開始する。
With reference to FIG. 4 thru | or FIG. 24, the operation | movement and effect | action at the time of performing a stereo measurement using the
For example, the
すると、まず図4のフローチャートのステップS101に示すように照明光によって照らされた観察対象部位4の観察像が前記対物レンズ系41,42を通して撮像素子43の撮像面にそれぞれ結像する。この撮像素子43に結像して光電変換されたそれぞれの観察像の画像信号は、前記挿入部20、操作部21、ユニバーサルケーブル23内を挿通する図示しない信号線及びコネクタ22を介して計測装置3のCCU31に伝送される。
Then, first, as shown in step S101 of the flowchart of FIG. 4, an observation image of the observation target portion 4 illuminated by the illumination light is formed on the imaging surface of the
そして、CCU31に伝送された画像信号は、このCCU31でビデオ信号に生成された後、ビデオキャプチャ回路32に伝送されてデジタル画像信号に変換され、ステップS102に示すようにこのデジタル映像信号をホストコンピュータ33に転送する一方、ステップS103に示すようにモニタ30にビデオ信号を伝送して内視鏡観察画像をモニタ30の画面上に表示させる。
The image signal transmitted to the
モニタ観察中に腐食部などを発見した場合には腐食部の計測を行う。このとき、まず観察者は前記コンソール34を操作してステレオ計測モードに切り換える。すると、ホストコンピュータ33内の画像表示手段によってモニタ30の画面上には図5に示すように前記対物レンズ系41,42でそれぞれとらえた観察像の内視鏡画像のうち例えば、一方の対物レンズ系41でとらえた画像を基準画像とし、他方の対物レンズ系42でとらえた画像を参照画像として、それぞれの計測用補正画像である補正基準画像50と補正参照画像51が、モニタ30上に分割して表示される。
If a corroded part is found during monitor observation, the corroded part is measured. At this time, first, the observer operates the
なお、前記画像50,51は、ステップS104に示すように補正画像生成手段によって、前記ホストコンピュータ33に取り込まれたデジタル画像信号を予め得られている前記撮像部40の歪補正係数等を元に歪補正を施した計測用補正画像として生成されている。そして、この計測用補正画像である補正基準画像50及び補正参照画像51で以下に述べる対応点探索等のステレオ計測が行われる。
It should be noted that the
計測を行うためまず、ステップS105に示すように図5に示す基準画像50上に計測のための断面情報を得たい部分の切断位置を特定するための切断基準線を得るための2点A,Bを切断基準線指定手段を介して指定する。この作業は、観察者が前記コンソール34等を用いて、画面上に表示される矢印やカーソル等のポインターを移動操作して行う。
In order to perform the measurement, first, as shown in step S105, two points A for obtaining a cutting reference line for specifying a cutting position of a portion for which section information for measurement is to be obtained on the
そして、観察者が点A,Bを指定することにより、この点Aと点Bとを結ぶ点線に示す直線が切断基準線(以下基準線と略記する)53、或いは点A,B間を結ぶ実線で示す線分が切断基準線分(以下基準線分と略記する)54になる。この切断基準線53によって決まる切断面を図6を用いて説明する。観察対象4の像は本来、倒立像として光学中心を挟んだ観察対象の反対側に結ぶが、図中では理解しやすいように補正基準画像50を正立像で観察対象4と光学中心Lとの間に置いている。
Then, when the observer designates the points A and B, a straight line shown by a dotted line connecting the points A and B connects the cutting reference line (hereinafter abbreviated as a reference line) 53 or the points A and B. A line segment indicated by a solid line becomes a cutting reference line segment (hereinafter abbreviated as a reference line segment) 54. A cut surface determined by the cutting
なお、上述のように指定した基準線53とは別に、図7に示すように点Aと点Bとの間にある点(本図においては中点)においてある角度(本図においては直交する直線)で交わる一点鎖線に示す直線をもうひとつの基準線である補助線55として設定するようにしてもよい。
In addition to the
観察者の意図する切断面56は、図中の前記補正基準画像50に対して直交する二点鎖線に示す平面となる。この切断面56は、基準線53と基準画像を撮像する光学系の光学中心Lとを含む平面として定義される。
The cutting
そして、図中に示す点A1 、B1 が、前記補正基準画像50上の点A、Bの観察対象部位4の表面上への写像点になる。つまり、本実施形態における表示対象である断面外形線57は、観察対象部位4を視線方向から見たときの表面と、切断面56との共有線として定義される。
The points A1 and B1 shown in the figure are the mapping points of the points A and B on the
したがって、補正基準画像50には基準画像用光学系の光軸が点として投影され、その点が補正基準画像50の画像中心Oである。なお、符号58は光軸であり、図6中で画像中心Oと光学中心Lとを結ぶ一点鎖線として表している。
Accordingly, the optical axis of the reference image optical system is projected as a point on the
ステップS106に示すように、前記切断面56に対する断面情報を得るため計測用補正画像である補正基準画像50上の基準線53(或いは基準線分54)上のすべての画素を注目点として設定することにより、ステップS107では対応点探索手段によって前記注目点に対応する補正参照画像51上での画素である対応点の探索を行い、後述する対応点群59を描出する。この対応点探索のアルゴリズムについては後述する図14のフローチャート及び図15で説明する。
As shown in step S106, all pixels on the reference line 53 (or reference line segment 54) on the
前記ステップS107の対応点探索において対応点が見つかったならステップS108に移行して、前記注目点の補正基準画像50上での位置と、前記対応点の補正参照画像51上での位置の差、つまり各注目点毎の視差を求め、ステップS109に移行して、得られた視差と、事前に得られている各光学系の光学中心間の距離である基線長や各光学系の焦点距離、各光学系の光軸の計測用補正画像への写像点の座標等の光学データを基に、断面情報演算手段によって注目点の写像されている空間上の点の3次元座標を計算する。
If a corresponding point is found in the corresponding point search in step S107, the process proceeds to step S108, and the difference between the position of the target point on the
このステップS109で前記基準線53上のすべての画素に対応する点の3次元座標を求めたなら、ステップS110に移行して各点の3次元座標を基に切断面56の断面情報を以下に示す4通りの中から観察者の所望するように構成し、ステップS111に移行し、断面情報出力手段によって観察対象の切断面の形状を容易に把握できる断面情報を断面形状外形線図としてモニタ30の画面上に表示させる。なお、前記断面形状外形線図をモニタ30の画面上への表示方法としては、断面形状外形線図だけを画面内の補正参照画像51の代わりに表示させる、或いは画面上にさらに別ウィンドウを表示させてこのウィンドウに表示させる場合等又は、補正基準画像50に重ね合わせて表示する方法等がある。
If the three-dimensional coordinates of the points corresponding to all the pixels on the
ここで、前記断面情報及び対応点探索のアルゴリズムについて説明する。
まず、断面情報について説明する。この断面情報については以下の4通りの表示方法がある。
Here, the cross-section information and the corresponding point search algorithm will be described.
First, cross-sectional information will be described. There are the following four display methods for the cross-section information.
(1)切断面上での断面情報を直接に表示:
断面情報を図8に示す断面形状外形線57aとして表示するものであり、図中縦軸は基準線分54或いは基準線53の切断面56への正射影、横軸は光軸58の切断面56への正射影であり、この場合に断面形状外形線図が直線的に得られる。
(1) Display the section information directly on the cut surface:
The cross-sectional information is displayed as the
この断面形状外形線57aを、計測中にモニタ30の画面上に表示させるためには、モニタ上に別ウィンドウを開いてそのウィンドウに前記断面形状外形線57aを表示させる場合と、図9に示すようにモニタ30に表示されている基準画像50に対して断面形状外形線57a重ね合わせて表示させる場合とがある。なお、重ね合わせて表示させる場合には、凹凸を知る手がかりとして、視線方向を示すマークとなる矢印C等を表示させる。
In order to display the
(2)断面情報を空間上の平面へ投影して表示:
図10に示すように前記基準画像50を撮像する光学系の前記光学中心Lを原点とし、前記観察対象表面52に向かって水平方向右向きをx軸、垂直方向上向きをy軸、奥行き方向をz軸に取ったカメラ座標系を形成し、図11(a)に示す(x−z)平面又は図11(b)に示す(y−z)平面に投影して断面形状外形線57b,57cを表示する。この表示においては、通常の図面で用いられているものと同じ投影方法を選択できるので、図面における投影方法に慣れ親しんだ観察者にとっては形状把握を容易に行えるという利点がある。なお、用途によって任意の座標軸、任意の投影面を設定するようにしてもよい。
(2) Projecting and displaying cross-sectional information on a plane in space:
As shown in FIG. 10, the optical center L of the optical system that captures the
(3)断面情報を擬似3次元にて表示:
図12に示すように実空間内に内視鏡2からの視点とは別の視点を新たに設定し、その設定した別視点から見た断面形状外形線57dを表示する。図中に示す円筒形状図は内視鏡2の空間上配置位置を参考として示すものである。また、視点の位置を3次元的に示す画像を別画面で同時に表示させることもできる。この表示方法では、視点を順次移動させて見え方の変化を追うことで、観察対象の3次元形状を直感的に把握できる。
(3) Display cross-sectional information in pseudo three-dimensional:
As shown in FIG. 12, a viewpoint different from the viewpoint from the
(4)実空間上の基準線からの奥行き情報を抽出しての表示
図8、図13に示すように基準線分54或いは基準線54上の点Dを、観察対象4の表面上に写像した点D1 と、点A、Bの実空間への写像点である点A1 、B1 を結んだ直線A1 B1 上に写像した点D2 との距離を、補正基準画像50上で基準線分54に対して垂直方向に表す。点Dを基準線分54或いは基準線53上のすべての点とすることで、断面形状外形線57eを表示する。なお、この表示方法においても前記(1)での説明と同様、凹凸を知る手掛かりとして、視線の方向を示す矢印Cを表示する。なお、手掛かりとして断面外形線57eに線分D1 D2 の長さに応じた色をつけるようにも設定してもよい。 この表示方法では、奥行き差が非常に大きい画像においても結果をコンパクトに表示することができる。
(4) Display by extracting depth information from the reference line in the real space As shown in FIGS. 8 and 13, the
次に、前記対応点探索のアルゴリズムを説明する。
対応点の探索は、すべて計測用補正画像上で行う。対応点の探索は、テンプレートマッチング或いはウィンドウマッチングとして知られ、注目点の周囲にある点の情報を助けに対応点を探索するアルゴリズムを用いる。
Next, the corresponding point search algorithm will be described.
All search for corresponding points is performed on the correction image for measurement. The search for corresponding points is known as template matching or window matching, and uses an algorithm for searching for corresponding points with the help of information about points around the point of interest.
補正基準画像50に対して点として投影される空間上の直線は、補正参照画像51上では直線として投影される。この直線をエピポーララインと呼ぶ。補正基準画像50上の注目点に対する補正参照画像51上の対応点は、理論上前記エピポーライン上にしか存在しない。したがって、対応点の探索は、誤差を見込んでエピポーララインとその上下数ピクセルの範囲で行えば良い。よって、探索の手順は図14に示すフローチャートのようになる。
A straight line in space projected as a point on the
まず、ステップS107で示した対応点の探索が開始されると、ステップS201に示すように注目点の周囲に領域P1 を設定する。そして、ステップS202に移行して注目点に対応するエピポーララインを計算し、ステップS203でこのエピポーララインの上下数ピクセルの範囲内の点を対応点の候補点として抽出する。 First, when the search for corresponding points shown in step S107 is started, a region P1 is set around the point of interest as shown in step S201. In step S202, an epipolar line corresponding to the point of interest is calculated. In step S203, points within a range of several pixels above and below the epipolar line are extracted as candidate points of corresponding points.
次に、ステップS204に移行して前記候補点の周りに前記注目点に設定した領域P1 と同じ大きさの領域P2 を設定し、ステップS205に示すように注目点の領域P1 と各対応点の候補点の周りの領域P2 との濃度値の正規化相互相関或いは、差の自乗和等を計算して対応度を求め、ステップS206,S207に示すようにすべての候補点の対応度を計算し、その結果をすべての候補点について保存する。すべての候補点についての対応度の保存が済んだなら、ステップS208,S209に示すように最も高い対応度である候補点を注目点に対する対応点として座標を保存する。そして、ステップS210に示すようにすべての注目点に対する対応点を求めたなら対応点探索を終了してステップS108に移行する。 Next, the process proceeds to step S204, where a region P2 having the same size as the region P1 set as the target point is set around the candidate point, and as shown in step S205, the region P1 of the target point and each corresponding point The degree of correspondence is obtained by calculating normalized cross-correlation of density values with the region P2 around the candidate point or the sum of squares of differences, etc., and the degree of correspondence of all candidate points is calculated as shown in steps S206 and S207. Save the results for all candidate points. When the correspondence levels for all candidate points have been stored, the coordinates are stored with the candidate point having the highest correspondence level as the corresponding point for the target point, as shown in steps S208 and S209. If the corresponding points for all the points of interest are obtained as shown in step S210, the corresponding point search is terminated and the process proceeds to step S108.
この対応点探索を行うことによって、図14に示すように補正基準画像50の基準線分54の各注目点に対応する各対応点を描出し、すべての対応点探索を行うことによって対応点の集合である対応点群59が補正参照画像51上に表示される。
By performing this corresponding point search, as shown in FIG. 14, each corresponding point corresponding to each target point of the
このように、観察中、ステレオ計測モードに変換して、モニタ画面上に表示されている基準画像上に2点を指定することによって、容易に観察者が観察を行いたいと思う部分が位置するように切断基準線を形成することができる。 In this way, by converting to the stereo measurement mode during observation and specifying two points on the reference image displayed on the monitor screen, a portion where the observer wants to easily observe is located. Thus, the cutting reference line can be formed.
また、観察者によって指定された切断基準線の断面情報が、観察者の所望する断面形状外形線図としてモニタ画面上に表示させることによって、容易に断面形状の把握を行える。 Further, the cross-sectional information of the cutting reference line designated by the observer is displayed on the monitor screen as a cross-sectional outline drawing desired by the observer, so that the cross-sectional shape can be easily grasped.
これらのことによって、観察中に腐食部などを発見した場合、手際良く、観察部の指定を行えるととともに、指定した観察部の断面形状の把握を直感的に行って短時間での観察を可能にする。 As a result, if a corroded part is discovered during observation, the observation part can be specified efficiently, and the cross-sectional shape of the specified observation part can be intuitively grasped in a short time. To.
なお、対応点の探索範囲を切断基準線上ではなく切断基準線分上に限定することによって更に結果を得るまでの時間の短縮を行える。 Note that by limiting the search range of corresponding points not to the cutting reference line but to the cutting reference line segment, it is possible to further shorten the time until the result is obtained.
また、本実施形態においては対応点探索を基準線53又は基準線分54上のすべての注目点に対して行っているが、基準画像50と参照画像51との対応付けには本質的にあいまいさがある。このため、例えば周囲に濃度差のない点や、基準画像では見えていて参照画像では見えていない、或いはその逆の領域であるオクルージョン領域内の点、或いはオクルージョン領域に隣接する点においては正確な対応付けが困難になる。
In the present embodiment, the corresponding point search is performed for all the points of interest on the
そして、この結果、誤った点を対応点としてしまうおそれがあり、誤った点を対応点とすることによって、表示される対応点群59の位置情報にノイズが載ることになり、場合によっては観察対象の形状の判断を誤らせることになる。
As a result, there is a possibility that an incorrect point is set as a corresponding point. By setting the incorrect point as a corresponding point, noise is included in the position information of the displayed
そこで、以下に示す複数の工夫によって、対応を誤りやすい点の排除、或いは対応精度を上げて、得られる断面情報精度を上げられる。
以下、複数画像間での対応付けのあいまいさを減らす工夫を説明する。
Therefore, the accuracy of the cross-sectional information obtained can be improved by eliminating the points that are likely to be mistaken for correspondence or by increasing the accuracy of correspondence by a plurality of ideas described below.
Hereinafter, a device for reducing the ambiguity of association between a plurality of images will be described.
(1)基準線上での順序を利用して断面情報の精度を上げる方法を図16及び図17のフローチャートを参照して説明する。
図16及び図17のフローチャートに示すようにステップS301に示すように基準線53上に並んでいる全注目点の並び順序を求める。この順序は、基準画像を撮像する光学系の光学中心と、参照画像を撮像する光学系の光学中心とを結ぶ直線である基線と直行し、撮像面と平行な軸へ射影した場合にも本来変化しない。そして、これは基準画像50の画像中心Oに対応するエピポーラライン61に直行する参照画像51上の軸62へ射影した場合と同値である。
(1) A method for improving the accuracy of the cross-sectional information using the order on the reference line will be described with reference to the flowcharts of FIGS.
As shown in the flowcharts of FIGS. 16 and 17, as shown in step S301, the arrangement order of all the points of interest arranged on the
よって、ステップS302に示すように全注目点に対応する全対応点の前記軸62への射影点を求める一方、ステップS303に移行してその軸62上における射影点の並び順序を求める。
Therefore, as shown in step S302, the projection points on all the corresponding points corresponding to all the attention points are calculated on the
そして、ステップS304,S305,S306に示すように注目点の並び順序と対応点の射影点の並び順序とが矛盾するか否かを確認して、並び順序が矛盾する点については対応付けに失敗した点として注目点から除外する一方、並び順序の一致する点については対応点に対する注目点として採用する。つまり、例えば、基準線上でa、b、c、d、eの順で並んでいた注目点について、その対応点の射影点が軸62上でa、b、d、c、eの順で並んだ場合には、点d,cに相当する注目点を、並び順に矛盾が生じていることから排除する。
Then, as shown in steps S304, S305, and S306, it is checked whether or not the arrangement order of the points of interest and the arrangement order of the projection points of the corresponding points are inconsistent. While the points are excluded from the attention points, the points having the same arrangement order are adopted as the attention points with respect to the corresponding points. That is, for example, for the attention points arranged in the order of a, b, c, d, e on the reference line, the projection points of the corresponding points are arranged on the
なお、この処理は、前記図4に示したフローチャートのステップS106とステップS107との間で行い、ステップS107以降の処理は採用された点についてのみ計算を行う。 This process is performed between step S106 and step S107 in the flowchart shown in FIG. 4, and the processes after step S107 are calculated only for the points that have been adopted.
(2)周囲の点の奥行き情報を利用して断面情報の精度を上げる方法を図18のフローチャートを参照して説明する。
まず、前記ステップS106に示した注目点抽出の範囲を注目点に隣接する画素にまで広げる。つまり、図18のステップS401に示すように基準線53上の注目点とその周りの8点の合計9点について対応付けを行う。
(2) A method for improving the accuracy of the cross-section information using the depth information of surrounding points will be described with reference to the flowchart of FIG.
First, the attention point extraction range shown in step S106 is expanded to pixels adjacent to the attention point. That is, as shown in step S401 in FIG. 18, a total of nine points including the attention point on the
そして、ステップS402,403に示すように9点の奥行き値の中で、中央の値である3つの値(最大3値と最小3値とを除いた値)の平均を注目点の奥行き値として処理する。この処理が一種のローパスフィルタとなる。この処理は、前記図4に示したフローチャートのステップS109とステップS110との間で行う。 Then, as shown in steps S402 and S403, among the nine depth values, the average of the three values that are the central values (the value excluding the maximum three values and the minimum three values) is used as the depth value of the target point. To process. This process becomes a kind of low-pass filter. This process is performed between step S109 and step S110 in the flowchart shown in FIG.
(3)逆対応点の利用によって断面情報の精度を上げる方法を図19のフローチャートを参照して説明する。
前記ステップS107において、補正基準画像50のある注目点の対応点を補正参照画像51でとった後、図19のステップS501に示すように、その対応を取った点ついて前記図14で示したフローチャートにしたがって、逆に補正参照画像51から補正基準画像50への逆対応点をとっていく。
(3) A method for improving the accuracy of the cross-sectional information by using the inverse corresponding point will be described with reference to the flowchart of FIG.
In step S107, after a corresponding point of a certain point of interest in the
そして、ステップS502,S503,S504,S505に示すように逆対応点が元の注目点に対して対応するか否かを確認して、対応する点がなかった点を対応付けに失敗した点として注目点から除き、一致する点を注目点として採用する処理を行う。この処理は、前記図4に示したステップS107とステップS108との間で行い、ステップS108以降の処理は採用した点についてのみ計算を行う。 Then, as shown in steps S502, S503, S504, and S505, it is confirmed whether or not the reverse corresponding point corresponds to the original attention point, and a point that does not have a corresponding point is regarded as a point in which the association has failed. A process of excluding the point of interest as the point of interest is performed. This processing is performed between step S107 and step S108 shown in FIG. 4, and the processing after step S108 is calculated only for the adopted points.
(4)エピポーララインからのずれの大きさを利用して断面情報の精度を上げる方法を図20のフローチャートを参照して説明する。
対応付けの結果で決まる補正参照画像51上の対応点のエピポーララインからのずれは、一定の傾向をもつはずである。このことを利用して、図20のステップS601に示すように全ての対応点についてのずれ量を求める。そして、ステップS602に示すように求めたずれ量を統計処理し、ステップS603に示すようにこの処理結果からずれの傾向を求めるとともにずれ量を許容する閾値を決める。
(4) A method for improving the accuracy of the cross-sectional information using the magnitude of deviation from the epipolar line will be described with reference to the flowchart of FIG.
The deviation from the epipolar line of the corresponding point on the corrected
この後、ステップS604,S605,S606,S607に示すようにずれ量の閾値から外れたものについては対応付けに失敗した点として注目点から除外し、ずれ量の閾値以下の点を注目点として採用する処理を行う。この処理は、前記図4に示したステップS107とステップS108との間で行い、ステップS108以降の処理は採用した点についてのみ計算を行う。 Thereafter, as shown in steps S604, S605, S606, and S607, those that deviate from the deviation amount threshold value are excluded from the attention points as points that have failed to be associated, and points that are less than the deviation amount threshold value are adopted as attention points. Perform the process. This processing is performed between step S107 and step S108 shown in FIG. 4, and the processing after step S108 is calculated only for the adopted points.
(5)微分値を利用して断面情報の精度を上げる方法を図21のフローチャートを参照して説明する。
対応付けは、注目点の周囲に濃度変化があるところでは取り易く、濃度変化のないところでは取り難い。したがって、濃度変化のあるところだけを注目点に選ぶことによって、対応付けのあいまいさを少なくできる。
このため、図21のステップS701に示すように注目点で微分フィルタをかけて濃度変化の値を求める。
(5) A method for improving the accuracy of the cross-sectional information using the differential value will be described with reference to the flowchart of FIG.
The association is easy to take when there is a density change around the point of interest, and difficult to take when there is no density change. Therefore, the ambiguity of the association can be reduced by selecting only the places where the density changes as the attention points.
For this reason, as shown in step S701 of FIG. 21, the value of the density change is obtained by applying a differential filter at the point of interest.
そして、ステップS702,S703,S704,S705に示すように濃度変化の値が閾値以上である否かを判断して濃度変化の有無を検出し、閾値以下のとき注目点から除外し、閾値以上のとき注目点として採用する。即ち、濃度変化があると判断した画素についてのみ対応点の探索を行う。この処理は、前記図4に示したステップS106とステップS107との間で行い、ステップ107以降の処理は採用した点についてのみ計算を行う。 Then, as shown in steps S702, S703, S704, and S705, it is determined whether or not the value of the density change is equal to or greater than the threshold value, and the presence or absence of the density change is detected. Sometimes adopted as a point of interest. That is, a search for corresponding points is performed only for pixels that are determined to have a density change. This processing is performed between step S106 and step S107 shown in FIG. 4, and the processing after step 107 is calculated only for the points adopted.
(6)注目点の周りに設定する領域の形状を調節して断面情報の精度を上げる方法を説明する。
注目点がオクルージョン領域に隣接している場合には、注目点の周りに設定する探索用の領域内にオクルージョン領域が入ってしまうことにより対応付けがあいまいになる。そこで、注目点が探索領域の縁部に位置するようにした小さな領域を併用して探索を行い、一番高い対応度を出した領域による結果をその候補点の対応度とする。小さな領域の例としては図22の点線に示す境界線の右側に示すような領域であり、図中黒丸印が注目点を示す。そして、境界線の左側に示す領域は通常設定される領域である。
(6) A method of increasing the accuracy of the cross-sectional information by adjusting the shape of the region set around the attention point will be described.
When the attention point is adjacent to the occlusion area, the association is ambiguous because the occlusion area enters the search area set around the attention point. Therefore, a search is performed by using a small region in which the attention point is located at the edge of the search region, and the result of the region having the highest correspondence is set as the correspondence of the candidate point. An example of the small region is a region as shown on the right side of the boundary shown by the dotted line in FIG. 22, and a black circle mark in the drawing indicates the attention point. And the area | region shown on the left side of a boundary line is an area | region normally set.
上述した6つの方法を、単独或いは任意の2つ以上を組み合わせて断面情報を得ることによって、得られる断面情報の精度が高精度になる。 By obtaining the cross-sectional information by combining the six methods described above alone or in combination with any two or more, the accuracy of the obtained cross-sectional information becomes high.
また、上述したように2点を指定して断面情報を得る代わりに、図23及び図24に示すように補正基準画面50A上の1点だけを単独の基準点71として指定することにより、その基準点71を通る直線を基準線として断面情報を得るようにしてもよい。
Further, instead of obtaining the cross-section information by designating two points as described above, by designating only one point on the correction reference screen 50A as a
なお、前記基準線としては以下のものが設定可能である。
(1)指定された基準点71を通り、モニタ30の画面水平方向に対して平行な図23に示す直線72。
(2)指定された基準点71を通り、モニタ30の画面垂直方向に対して平行な図23に示す直線73。
(3)指定された基準点71を通り、モニタ30の画面水平方向及び画面垂直方向に対して平行な図23に示す直線72,73。
(4)指定された基準点71を通り、前記2直線72,73に対してそれぞれ任意の角度で交わる図24に示す直線74。
The following can be set as the reference line.
(1) A
(2) A
(3)
(4) A
このように、1点を指定することによって基準線が決まることにより、より操作を簡便にすることができ、断面形状を知りたい場所を直接的に指定することできる。 As described above, the reference line is determined by designating one point, whereby the operation can be further simplified, and the location where the cross-sectional shape is desired can be designated directly.
なお、本実施形態においては2つの画像を用いた例を示したが、画像は3つ以上であっても同様に断面表示を行える。 In the present embodiment, an example in which two images are used has been described. However, even if there are three or more images, a cross-sectional display can be performed in the same manner.
また、第2実施形態として、ステレオ計測モードに切り替えたときに表示される画像を、前記補正基準画像50及び前記補正参照画像51代わりに補正前の基準画像と参照画像として、基準線の指定を基準画像上で行うようにしてもよい。これにより、計測用補正画像生成の処理を簡略化できるため、ステレオ計測モードに切り替える際にかかる時間を大幅に短縮することができる。なお、その他の作用・効果は前記第1実施形態と同様である。
Further, as the second embodiment, the image displayed when switching to the stereo measurement mode is used as a reference image and a reference image before correction instead of the
尚、本発明は、以上述べた実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で種々変形実施可能である。 The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.
1…内視鏡装置 30…モニタ 35…計測装置本体 40…撮像部
41,42…対物レンズ系 50…基準画像 51…参照画像
53…切断基準線 57a…断面形状外形線
DESCRIPTION OF
Claims (3)
前記演算処理部は、
前記基準画像を画面上に表示させる画像表示手段と、
前記画面に表示された画像上で、前記観察対象の切断位置を特定する切断基準線を指定する切断基準線指定手段と、
この切断基準線上の点に対応する前記基準画像上の点を注目点とし、この注目点に対応する前記参照画像上の対応点を探索する対応点探索手段と、
前記基準画像上における注目点の位置と、前記対応点探索手段で求めた前記参照画像上の対応点の位置とから、前記切断基準線上の各注目点に写像される空間上の点の3次元座標である、前記切断位置における前記観察対象の断面情報を得る断面情報演算手段と、
この断面情報演算手段で得られた値を基に断面情報を出力する断面情報出力手段と、
を具備し、
前記断面情報出力手段は、前記画面の前記基準画像上に表示される前記切断基準線に基づく前記断面情報を、前記画面上に断面形状外形線図として前記画像表示手段に表示させ、
前記画像表示手段は、前記基準画像及び前記切断基準線分を前記画面上で二分割された一方に表示し、前記断面形状外形線図を二分割された前記画面上の他方に表示することを特徴とする内視鏡装置。 An imaging unit that images an observation target from a plurality of viewpoints, and an arithmetic processing unit for performing stereo measurement using one of the images at the plurality of viewpoints obtained by the imaging unit as a reference image and the remaining images as reference images An endoscopic device,
The arithmetic processing unit includes:
Image display means for displaying the reference image on a screen;
On the image displayed on the screen, a cutting reference line specifying means for specifying a cutting reference line for specifying the cutting position of the observation target;
A corresponding point search means for searching for a corresponding point on the reference image corresponding to the point of interest, with a point on the reference image corresponding to the point on the cutting reference line as a point of interest;
A three-dimensional space point mapped to each point of interest on the cutting reference line from the position of the point of interest on the reference image and the position of the corresponding point on the reference image obtained by the corresponding point search means Cross-section information calculating means for obtaining cross-section information of the observation object at the cutting position, which is coordinates;
Cross-section information output means for outputting cross-section information based on the value obtained by the cross-section information calculation means;
Comprising
The cross-section information output means causes the image display means to display the cross-section information based on the cutting reference line displayed on the reference image of the screen as a cross-sectional shape outline diagram on the screen,
The image display means, said reference image and displays the cutting reference line segment to one which is bisected by the previous SL screen, for displaying the cross-sectional shape outline view to the other on the two split the screen An endoscope apparatus characterized by the above.
前記演算処理部は、
前記基準画像を画面上に表示させる画像表示手段と、
前記画面に表示された画像上で、前記観察対象の切断位置を特定する切断基準線を指定する切断基準線指定手段と、
この切断基準線上の点に対応する前記基準画像上の点を注目点とし、この注目点に対応する前記参照画像上の対応点を探索する対応点探索手段と、
前記基準画像上における注目点の位置と、前記対応点探索手段で求めた前記参照画像上の対応点の位置とから、前記切断基準線上の各注目点に写像される空間上の点の3次元座標である、前記切断位置における前記観察対象の断面情報を得る断面情報演算手段と、
この断面情報演算手段で得られた値を基に断面情報を出力する断面情報出力手段と、
を具備し、
前記断面情報出力手段は、前記画面の前記基準画像上に表示される前記切断基準線に基づく前記断面情報を、前記画面上に断面形状外形線図として前記画像表示手段に表示させ、
前記画像表示手段は、前記断面形状外形線図を前記画面上に表示させたウィンドウに表示することを特徴とする内視鏡装置。 An imaging unit that images an observation target from a plurality of viewpoints, and an arithmetic processing unit for performing stereo measurement using one of the images at the plurality of viewpoints obtained by the imaging unit as a reference image and the remaining images as reference images An endoscopic device,
The arithmetic processing unit includes:
Image display means for displaying the reference image on a screen;
On the image displayed on the screen, a cutting reference line specifying means for specifying a cutting reference line for specifying the cutting position of the observation target;
A corresponding point search means for searching for a corresponding point on the reference image corresponding to the point of interest, with a point on the reference image corresponding to the point on the cutting reference line as a point of interest;
A three-dimensional space point mapped to each point of interest on the cutting reference line from the position of the point of interest on the reference image and the position of the corresponding point on the reference image obtained by the corresponding point search means Cross-section information calculating means for obtaining cross-section information of the observation object at the cutting position, which is coordinates;
Cross-section information output means for outputting cross-section information based on the value obtained by the cross-section information calculation means;
Comprising
The cross-section information output means causes the image display means to display the cross-section information based on the cutting reference line displayed on the reference image of the screen as a cross-sectional shape outline diagram on the screen,
The endoscope apparatus characterized in that the image display means displays the sectional shape outline diagram in a window displayed on the screen.
前記演算処理部は、
前記基準画像を画面上に表示させる画像表示手段と、
前記画面に表示された画像上で、前記観察対象の切断位置を特定する切断基準線を指定する切断基準線指定手段と、
この切断基準線上の点に対応する前記基準画像上の点を注目点とし、この注目点に対応する前記参照画像上の対応点を探索する対応点探索手段と、
前記基準画像上における注目点の位置と、前記対応点探索手段で求めた前記参照画像上の対応点の位置とから、前記切断基準線上の各注目点に写像される空間上の点の3次元座標である、前記切断位置における前記観察対象の断面情報を得る断面情報演算手段と、
この断面情報演算手段で得られた値を基に断面情報を出力し、前記画面の前記基準画像上に表示される前記切断基準線に基づく前記断面情報を、前記画面上に断面形状外形線図として前記画像表示手段に表示させる断面情報出力手段と、
を具備し、
前記画像表示手段は、前記切断基準線指定手段による前記切断基準線を指定可能とする状態から、前記断面形状外形線図を表示する状態に移行する
ことを特徴とする内視鏡装置。 An imaging unit that images an observation target from a plurality of viewpoints, and an arithmetic processing unit for performing stereo measurement using one of the images at the plurality of viewpoints obtained by the imaging unit as a reference image and the remaining images as reference images An endoscopic device,
The arithmetic processing unit includes:
Image display means for displaying the reference image on a screen;
On the image displayed on the screen, a cutting reference line specifying means for specifying a cutting reference line for specifying the cutting position of the observation target;
A corresponding point search means for searching for a corresponding point on the reference image corresponding to the point of interest, with a point on the reference image corresponding to the point on the cutting reference line as a point of interest;
A three-dimensional space point mapped to each point of interest on the cutting reference line from the position of the point of interest on the reference image and the position of the corresponding point on the reference image obtained by the corresponding point search means Cross-section information calculating means for obtaining cross-section information of the observation object at the cutting position, which is coordinates;
Cross-section information is output based on the value obtained by the cross-section information calculation means, and the cross-section information based on the cutting reference line displayed on the reference image of the screen is displayed on the screen as a cross-sectional shape outline diagram. Section information output means to be displayed on the image display means as
Comprising
The image display means, from the state to be designated the cutting reference line by the cutting reference line designating means, to migrate to a state of displaying the cross-sectional shape outline view
The endoscope apparatus according to claim and this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009102371A JP4750197B2 (en) | 2009-04-20 | 2009-04-20 | Endoscope device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009102371A JP4750197B2 (en) | 2009-04-20 | 2009-04-20 | Endoscope device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24758899A Division JP4343341B2 (en) | 1999-09-01 | 1999-09-01 | Endoscope device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009199089A JP2009199089A (en) | 2009-09-03 |
JP2009199089A5 JP2009199089A5 (en) | 2010-01-07 |
JP4750197B2 true JP4750197B2 (en) | 2011-08-17 |
Family
ID=41142558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009102371A Expired - Lifetime JP4750197B2 (en) | 2009-04-20 | 2009-04-20 | Endoscope device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4750197B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5530225B2 (en) | 2010-03-09 | 2014-06-25 | オリンパス株式会社 | Endoscope apparatus and program |
JP5464671B2 (en) * | 2011-06-15 | 2014-04-09 | Necシステムテクノロジー株式会社 | Image processing apparatus, image processing method, and image processing program |
WO2015056471A1 (en) | 2013-10-17 | 2015-04-23 | オリンパス株式会社 | Endoscope device |
CN110989886B (en) * | 2019-11-29 | 2022-05-27 | 广州海格星航信息科技有限公司 | Three-dimensional space grid selection method and device based on space map |
-
2009
- 2009-04-20 JP JP2009102371A patent/JP4750197B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2009199089A (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4343341B2 (en) | Endoscope device | |
US9066086B2 (en) | Methods for generating stereoscopic views from monoscopic endoscope images and systems using the same | |
US7443488B2 (en) | Endoscope apparatus, method of operating the endoscope apparatus, and program to be executed to implement the method | |
WO2017199285A1 (en) | Image processing device and image processing method | |
US11540706B2 (en) | Method of using a manually-operated light plane generating module to make accurate measurements of the dimensions of an object seen in an image taken by an endoscopic camera | |
JPWO2016208664A1 (en) | Endoscope device | |
WO2014027229A1 (en) | Method and apparatus for converting 2d images to 3d images | |
CN112184653B (en) | Binocular endoscope-based focus three-dimensional size measuring and displaying method | |
US8764635B2 (en) | Endoscope apparatus | |
JP2018197674A (en) | Operation method of measuring device, measuring device, measurement system, three-dimensional shape restoring device, and program | |
JP4750197B2 (en) | Endoscope device | |
CN109493378B (en) | Verticality detection method based on combination of monocular vision and binocular vision | |
CN113925441A (en) | Imaging method and imaging system based on endoscope | |
JP6789899B2 (en) | Measuring device and operating method of measuring device | |
CN110873717A (en) | Image acquisition device and method for operating image acquisition device | |
JP7462255B2 (en) | ENDOSCOPIC SHAPE MEASURING SYSTEM AND ENDOSCOPIC SHAPE MEASURING METHOD | |
US11430114B2 (en) | Landmark estimating method, processor, and storage medium | |
JP6210483B2 (en) | 3D shape acquisition device from stereoscopic endoscope image | |
JP6081209B2 (en) | Endoscope apparatus and program | |
CN112294453A (en) | A system and method for three-dimensional reconstruction of microsurgery operating field | |
JP5976436B2 (en) | Endoscope apparatus and program | |
EP3875900A1 (en) | Ranging camera | |
JP2014064657A (en) | Stereoscopic endoscope apparatus | |
US10912444B2 (en) | Image processing apparatus, image processing method, and endoscope | |
JP6426215B2 (en) | Endoscope apparatus and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110518 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4750197 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |