[go: up one dir, main page]

JP4747281B2 - Method of joining substrate and device using Au-Sn alloy solder paste - Google Patents

Method of joining substrate and device using Au-Sn alloy solder paste Download PDF

Info

Publication number
JP4747281B2
JP4747281B2 JP2006090902A JP2006090902A JP4747281B2 JP 4747281 B2 JP4747281 B2 JP 4747281B2 JP 2006090902 A JP2006090902 A JP 2006090902A JP 2006090902 A JP2006090902 A JP 2006090902A JP 4747281 B2 JP4747281 B2 JP 4747281B2
Authority
JP
Japan
Prior art keywords
alloy solder
substrate
solder paste
alloy
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006090902A
Other languages
Japanese (ja)
Other versions
JP2007266405A (en
Inventor
石川  雅之
正好 小日向
昭史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006090902A priority Critical patent/JP4747281B2/en
Publication of JP2007266405A publication Critical patent/JP2007266405A/en
Application granted granted Critical
Publication of JP4747281B2 publication Critical patent/JP4747281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining an element, such as an LED (light-emitting diode) element, to a substrate especially by an Au-Sn alloy solder paste. <P>SOLUTION: The Au-Sn alloy solder paste 2 is mounted or applied onto the substrate 1, the element 3 is placed on the Au-Sn alloy solder paste 2 so that one portion of the element 3 is in contact with the surface of the Au-Sn alloy solder paste 2 mounted to or applied to the substrate 1 and one edge of the element is in contact with the substrate 1, and the substrate 1 with the Au-Sn alloy solder paste 2 mounted thereon or applied thereto and with the element 3 placed thereon is subjected to reflow treatment in a non-oxidizing atmosphere in this state. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明は、Au−Sn合金はんだペーストを用いて基板と素子との間の接合部にボイドを発生させることなく接合する方法に関するものであり、特に使用中に発生した熱を放出する必要のある素子、例えば、LED(発光ダイオード)素子を基板に接合する方法に関するものである。   The present invention relates to a method of bonding without generating voids at a bonding portion between a substrate and an element using an Au—Sn alloy solder paste, and it is particularly necessary to release heat generated during use. The present invention relates to a method of bonding an element, for example, an LED (light emitting diode) element to a substrate.

LED(発光ダイオード)素子、GaAs光素子、GaAs高周波素子、熱伝素子などの半導体素子と基板との接合、特に熱がこもると破損に繋がるようなLED(発光ダイオード)素子と基板との接合には、接合部の熱伝導性が非常に重要であるところから、熱伝導性が良くかつ信頼性が高い接合部を形成するAu−Sn合金はんだ箔材(リボンなど)、Auバンプ、Au−Sn合金はんだペーストなどが用いられていた。
For bonding a semiconductor element such as an LED (light-emitting diode) element, a GaAs optical element, a GaAs high-frequency element, or a heat transfer element to the substrate, particularly for bonding an LED (light-emitting diode) element and the substrate that may be damaged when heat is accumulated. Since the thermal conductivity of the joint is very important, an Au—Sn alloy solder foil material (ribbon or the like), Au bump, Au—Sn that forms a joint with good thermal conductivity and high reliability. Alloy solder paste has been used.

しかし、Au−Snはんだ合金箔材(リボンなど)は、材料自身の熱伝導性は高いものの接合時の濡れ性が悪いため接合領域を十分に広く取ることができず、また箔材表面には酸化膜が多いため溶融したAu−Snはんだ合金の流動性が悪い。そのため加熱溶融しながら荷重をかけて接合する工法もあるが、加熱時間が長くまた長時間荷重をかけて接合しなければならないことから、熱を長時間かけることが好ましくないLED(発光ダイオード)素子に適用することができない。さらに、Au−Snはんだ合金箔材の場合、素子に荷重をかけて接合することから素子側面部にAu−Snはんだ合金が這い上がりショートを起こすこともあった。
However, Au-Sn solder alloy foil materials (ribbons, etc.) have high thermal conductivity, but the wettability at the time of bonding is poor, so that the bonding area cannot be made sufficiently wide. Since there are many oxide films, the fluidity of the molten Au—Sn solder alloy is poor. For this reason, there is a method of joining by applying a load while heating and melting, but an LED (light emitting diode) element in which it is not preferable to apply heat for a long time because the heating time is long and it is necessary to apply a load for a long time. Cannot be applied to. Further, in the case of the Au—Sn solder alloy foil material, since the load is applied to the element, the Au—Sn solder alloy may creep up on the side surface of the element and cause a short circuit.

また、Auバンプ法による素子の接合は、素子全体にAu−Snはんだ合金接合層が接合していないため、Au−Snはんだ合金接合層と接合していない部分の熱伝導が悪く、また、このAuバンプ法では300℃以上の温度で荷重をかけながら接合を行なうが、300℃以上高温を長時間保持する必要があり、熱影響を受けて劣化しやすいLED(発光ダイオード)素子に適用することができなかった。

そのため、近年、熱影響を受けて劣化しやすいLED(発光ダイオード)素子の接合には接合信頼性の一層優れたAu−Sn合金はんだペーストが多く用いられるようになってきた。このAu−Sn合金はんだペーストは、Sn:15〜25質量%(好ましくはSn:20質量%)を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn共晶合金ガスアトマイズ粉末とロジン、活性剤、溶剤および増粘剤からなる市販のフラックスとを混合して作られる。
In addition, since the Au-Sn solder alloy bonding layer is not bonded to the entire element in the bonding of the elements by the Au bump method, the heat conduction of the portion not bonded to the Au-Sn solder alloy bonding layer is poor. In the Au bump method, bonding is performed while applying a load at a temperature of 300 ° C. or higher, but it is necessary to maintain a high temperature of 300 ° C. or higher for a long time, and it is applied to an LED (light emitting diode) element that is easily deteriorated due to thermal influence I could not.

For this reason, in recent years, Au-Sn alloy solder pastes with higher bonding reliability have been frequently used for bonding LED (light-emitting diode) elements that are easily deteriorated under the influence of heat. This Au—Sn alloy solder paste contains Sn: 15 to 25% by mass (preferably Sn: 20% by mass), and the remainder is composed of Au and inevitable impurities. Au—Sn eutectic alloy gas atomized powder and rosin It is made by mixing a commercially available flux consisting of an activator, a solvent and a thickener.


このAu−Sn合金はんだペーストを使用して素子と基板を接合すると、接合部がAu−Sn合金はんだで構成されているところから熱伝導性が良く接合信頼性も高いこと、ペーストであるので複数の接合部に一括供給できさらに一括熱処理できること、リフロー時にフラックスがAu−Snはんだ合金表面を覆っているために酸化膜が少なく、そのため、接合時の溶融Au−Snはんだ合金の流動性が大きく、濡れが良くなって接合面積を拡大することができるところから素子全面を接合できること、さらに接合時に過剰な荷重をかける必要がないことなどのメリットがある。

この従来のAu−Sn合金はんだペーストを用いて基板と素子を接合する方法を図2の側面説明図に基づいて具体的に説明する。Au−Sn合金はんだペーストを用いて基板と素子を接合するには図2(a)に示されるように、基板1にAu−Sn合金はんだペースト2を搭載または塗布する。次に、このAu−Sn合金はんだペースト2の真上に図2(b)に示されるように素子3を搭載し、この状態で加熱してリフロー処理を施したのち冷却すると、図2(c)に示されるように、Au−Sn合金はんだ接合層4を介して基板1と素子3が接合する(特許文献1または2など参照)。
特開2003−105462 特開2003−260588

When an element and a substrate are joined using this Au—Sn alloy solder paste, since the joint is made of Au—Sn alloy solder, the thermal conductivity is good and the joining reliability is high, and since it is a paste, a plurality of That can be supplied to the joints at the same time and further heat-treated at the same time, and the flux covers the surface of the Au—Sn solder alloy at the time of reflow, so that there is little oxide film. There are advantages such as that the entire surface of the element can be bonded since wetting improves and the bonding area can be expanded, and that it is not necessary to apply an excessive load during bonding.

A method of joining a substrate and an element using this conventional Au—Sn alloy solder paste will be specifically described based on the side view of FIG. In order to join the substrate and the element using the Au—Sn alloy solder paste, the Au—Sn alloy solder paste 2 is mounted on or applied to the substrate 1 as shown in FIG. Next, as shown in FIG. 2 (b), the element 3 is mounted immediately above the Au—Sn alloy solder paste 2, heated in this state, subjected to reflow treatment, and then cooled. ), The substrate 1 and the element 3 are bonded via the Au—Sn alloy solder bonding layer 4 (see Patent Document 1 or 2, etc.).
JP 2003-105462 A JP 2003-260588 A


前述のように、Au−Sn合金はんだペーストは最も使いやすい接合材であるが、Au−Sn合金はんだペーストには前述のように有機物からなるフラックスを含んでおり、図2(b)に示されるようにAu−Sn合金はんだペースト2の真上に素子3を搭載し、この状態で加熱してリフロー処理を施すと、Au−Sn合金はんだペースト2は溶融する際にフラックスからガスが発生し、この時Au−Sn合金はんだペースト2の真上に素子3が被さっているために、溶融中に発生したガスが逃げ場を失って閉じ込められ、Au−Sn合金はんだ接合層4の中にボイド5が生成することがある。Au−Sn合金はんだ接合層4の中にボイド5が生成すると素子3と基板1との接合面積が少なくなり、接合面積が少なくなると素子3に発生した熱の放熱性が悪くなるので好ましくない。

As described above, the Au-Sn alloy solder paste is the most easy-to-use bonding material, but the Au-Sn alloy solder paste contains the flux made of organic matter as described above, and is shown in FIG. When the element 3 is mounted just above the Au—Sn alloy solder paste 2 and heated in this state and subjected to reflow treatment, gas is generated from the flux when the Au—Sn alloy solder paste 2 is melted, At this time, since the element 3 is covered immediately above the Au—Sn alloy solder paste 2, the gas generated during melting loses escape and is trapped, and the void 5 is formed in the Au—Sn alloy solder bonding layer 4. May be generated. If voids 5 are generated in the Au—Sn alloy solder bonding layer 4, the bonding area between the element 3 and the substrate 1 decreases, and if the bonding area decreases, the heat dissipation of the heat generated in the element 3 deteriorates, which is not preferable.

本発明者らは、これら課題を解決すべく研究を行った。その結果、
Au−Sn合金はんだペーストを基板に搭載または塗布し、前記基板に搭載または塗布したAu−Sn合金はんだペーストに素子の一部が接しかつ素子の一端が基板に接するように素子をAu−Sn合金はんだペースト上に載置し、かかる状態でAu−Sn合金はんだペーストを搭載または塗布しかつ素子を載置した基板を非酸化性雰囲気中でリフロー処理すると、基板に搭載または塗布したAu−Sn合金はんだペーストの表面が一部被さることなく不完全に素子が載置されているところから、リフロー処理中に、Au−Sn合金はんだペーストが溶融してAu−Sn合金はんだペーストに含まれるフラックスの分解ガスおよびAu−Sn合金はんだペーストに含まれるAu−Sn合金はんだ粉末が溶融してAu−Sn合金はんだ粉末の表面の酸化膜とフラックスとが反応して生成したガスなどが放出されやすくなり、ガスが抜けた溶融Au−Sn合金はんだが生成し、このガスが抜けた溶融Au−Sn合金はんだが基板の表面を伝って素子の下に濡れ広がると、溶融Au−Sn合金はんだのセルフアライメント効果により素子が溶融Au−Sn合金はんだの中央に向かって引き戻され、ガスが十分に抜けた溶融Au−Sn合金はんだのほぼ中央に素子が乗った状態となり、かかる状態で冷却すると、基板と素子との間のAu−Sn合金はんだ接合層の中にボイドが発生することなく接合することができる、という知見が得られたのである。
The present inventors have conducted research to solve these problems. as a result,
An Au—Sn alloy solder paste is mounted on or applied to a substrate, and the device is Au—Sn alloy so that a part of the element is in contact with the Au—Sn alloy solder paste mounted or applied on the substrate and one end of the element is in contact with the substrate. An Au—Sn alloy placed on or applied to the substrate is mounted on or applied to the solder paste, and the Au—Sn alloy solder paste is mounted or applied in such a state and the substrate on which the element is mounted is reflowed in a non-oxidizing atmosphere. Since the element is placed incompletely without partially covering the surface of the solder paste, the Au—Sn alloy solder paste melts during the reflow process, and the flux contained in the Au—Sn alloy solder paste is decomposed. Table of Au-Sn alloy solder powder by melting Au-Sn alloy solder powder contained in gas and Au-Sn alloy solder paste The gas generated by the reaction between the oxide film and the flux is easily released, and a molten Au—Sn alloy solder from which the gas has been released is generated, and the molten Au—Sn alloy solder from which the gas has been released forms the surface of the substrate. Then, when wet and spread under the element, the element is pulled back toward the center of the molten Au—Sn alloy solder by the self-alignment effect of the molten Au—Sn alloy solder, and the molten Au—Sn alloy solder from which the gas has sufficiently escaped is obtained. The element is placed almost in the center, and when it is cooled in such a state, it is possible to obtain the knowledge that the Au-Sn alloy solder joint layer between the substrate and the element can be joined without generating voids. It was.

この発明は、かかる知見に基づいて成されたものであって、 Au−Sn合金はんだペーストを基板に搭載または塗布し、前記基板に搭載または塗布したAu−Sn合金はんだペーストの表面に素子の一部が接しかつ素子の一端が基板に接するように素子をAu−Sn合金はんだペースト上に載置し、かかる状態でAu−Sn合金はんだペーストを搭載または塗布しかつ素子を載置した基板を非酸化性雰囲気中でリフロー処理し、溶融Au−Sn合金はんだが前記素子の下に濡れ広がって潜り込み、該素子が溶融Au−Sn合金はんだの中央に向かって引き戻された後、前記素子の全体が溶融Au−Sn合金はんだに乗った状態で冷却するAu−Sn合金はんだペーストを用いた基板と素子の接合方法、に特徴を有するものである。 The present invention has been made on the basis of such knowledge. An Au—Sn alloy solder paste is mounted on or applied to a substrate, and an element of the device is formed on the surface of the Au—Sn alloy solder paste mounted or applied on the substrate. The element is placed on the Au-Sn alloy solder paste so that the part is in contact and one end of the element is in contact with the substrate. In this state, the substrate on which the element is placed is mounted or applied with the Au-Sn alloy solder paste. After reflow treatment in an oxidizing atmosphere , the molten Au-Sn alloy solder wets and spreads under the element, and the element is pulled back toward the center of the molten Au-Sn alloy solder. It has a feature in a method of joining a substrate and an element using an Au—Sn alloy solder paste that cools in a state of being put on molten Au—Sn alloy solder .

この発明のAu−Sn合金はんだペーストを用いた基板と素子の接合方法を図面に基づいて具体的に説明する。図1はこの発明のAu−Sn合金はんだペーストを用いた基板と素子の接合方法を説明するための側面説明図である。
A method for joining a substrate and an element using the Au—Sn alloy solder paste of the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory side view for explaining a method of joining a substrate and an element using the Au—Sn alloy solder paste of the present invention.

図1(a)に示されるように、Au−Sn合金はんだペースト2を基板1に搭載または塗布し、さらに素子3を基板1に搭載または塗布したAu−Sn合金はんだペースト2の表面の端部に素子3の一部が接しかつ素子3の一端が基板1に接するように素子3をAu−Sn合金はんだペースト上に載置する。この基板1の表面には最表面層としてAuめっき層(図示せず)を形成しておくことが好ましい。 この状態でAu−Sn合金はんだペースト2および素子3を乗せた基板1を非酸化性雰囲気中でリフロー処理すると、Au−Sn合金はんだペースト2の上に素子3が被さらない部分あるためにリフロー処理中に図1(b)に示されるように、Au−Sn合金はんだペースト2が溶融してAu−Sn合金はんだペースト2に含まれるフラックスの分解ガス6が放出され、さらにAu−Sn合金はんだペーストに含まれるAu−Sn合金はんだ粉末が溶融してAu−Sn合金はんだ粉末の表面の酸化膜とフラックスとが反応して生成したガス6が放出されやすくなり、図1(c)に示されるように、ガスが抜けた溶融Au−Sn合金はんだ4’が生成し、このガスが抜けた溶融Au−Sn合金はんだ4’が基板1の表面を伝って素子3の下に濡れ広がり、このガスが抜けた溶融Au−Sn合金はんだ4’が基板1の表面を伝って素子3の下に濡れ広がると、図1(c)に示されるように、溶融Au−Sn合金はんだ4’が素子3の下に潜り込み、溶融Au−Sn合金はんだ4’が素子3の下に潜り込むと同時に溶融Au−Sn合金はんだ4’のセルフアライメント効果により素子3が溶融Au−Sn合金はんだ4’の中央に向かって引き戻され(すなわち、図1(c)のA方向に引き戻され)てガスが十分に抜けた溶融Au−Sn合金はんだ4’のほぼ中央に素子3が乗った状態(素子3の全体が溶融Au−Sn合金はんだ4’に乗った状態)となり、かかる状態で冷却すると、図1(d)に示されるように、基板1と素子3との間のAu−Sn合金はんだ接合層4の中にボイドが発生することなく接合することができる。
As shown in FIG. 1A, an end portion of the surface of the Au—Sn alloy solder paste 2 on which the Au—Sn alloy solder paste 2 is mounted or applied on the substrate 1 and the element 3 is mounted on or applied to the substrate 1. The element 3 is placed on the Au—Sn alloy solder paste so that a part of the element 3 is in contact with the substrate 3 and one end of the element 3 is in contact with the substrate 1. An Au plating layer (not shown) is preferably formed on the surface of the substrate 1 as the outermost surface layer. In this state, if the substrate 1 on which the Au—Sn alloy solder paste 2 and the element 3 are placed is reflowed in a non-oxidizing atmosphere, the reflow is caused because the element 3 is not covered on the Au—Sn alloy solder paste 2. As shown in FIG. 1B, the Au—Sn alloy solder paste 2 is melted during the process, and the flux decomposition gas 6 contained in the Au—Sn alloy solder paste 2 is released, and further the Au—Sn alloy solder. The Au—Sn alloy solder powder contained in the paste is melted, and the gas 6 generated by the reaction between the oxide film on the surface of the Au—Sn alloy solder powder and the flux is easily released, as shown in FIG. As described above, the molten Au—Sn alloy solder 4 ′ from which the gas has been released is generated, and the molten Au—Sn alloy solder 4 ′ from which the gas has been released wets under the element 3 along the surface of the substrate 1. When the molten Au—Sn alloy solder 4 ′ from which the gas has escaped passes along the surface of the substrate 1 and spreads under the element 3, as shown in FIG. 1C, the molten Au—Sn alloy solder 4 ′. 'Is submerged under the element 3 and the molten Au-Sn alloy solder 4' is submerged under the element 3, and at the same time, the element 3 becomes molten Au-Sn alloy solder 4 'by the self-alignment effect of the molten Au-Sn alloy solder 4'. It pulled back toward the center (i.e., FIG. 1 (a is pulled back in the direction of c)) state that almost center element 3 rode the molten Au-Sn alloy solder 4 gas is sufficiently omission Te '(element 3 When the substrate is cooled in such a state, the Au—Sn alloy solder joint between the substrate 1 and the element 3 is obtained as shown in FIG. No voids in layer 4 It can be joined.


図1(a)に示されるように、基板1の上に搭載または塗布されたAu−Sn合金はんだペースト2の上に、素子3の一部がかかるようにかつ素子3の一端が基板に接するように素子3を載置すればよい。このときAu−Sn合金はんだペースト2の表面が可能な限り素子3によって被覆されないように素子3をAu−Sn合金はんだペースト2の上に載置する。

As shown in FIG. 1A, a part of the element 3 is placed on the Au—Sn alloy solder paste 2 mounted or applied on the substrate 1 and one end of the element 3 is in contact with the substrate. The element 3 may be placed as described above. At this time, the element 3 is placed on the Au—Sn alloy solder paste 2 so that the surface of the Au—Sn alloy solder paste 2 is not covered with the element 3 as much as possible.

この発明のAu−Sn合金はんだペーストを用いた接合方法によると、基板1と素子3の間の接合部にボイドの発生が少なくなって接合部の熱伝導性が劣化せず、したがって、使用中に素子に発生した熱が放熱し易くなり、産業上優れた効果をもたらすものである。   According to the bonding method using the Au—Sn alloy solder paste of the present invention, the generation of voids is reduced in the bonding portion between the substrate 1 and the element 3, and the thermal conductivity of the bonding portion is not deteriorated. In addition, the heat generated in the element can be easily dissipated, resulting in an excellent industrial effect.

Sn:22質量%を含有し、残部がAuからなる成分組成を有しかつ5〜16μmの粒径を有する粉末が80%以上含まれるAu−Sn合金はんだ粉末を用意し、このAu−Sn合金はんだ粉末を市販のRMAタイプのロジン系フラックスに、ロジン系フラックス:7質量%を含有し残部がAu−Sn合金はんだ粉末の配合組成となるように配合し混練してAu−Sn合金はんだペーストを作製した。このAu−Sn合金はんだペーストは三菱マテリアル株式会社製金錫合金ペーストとして市販されているものである。

さらに、基板として厚さ:100μmのCu板に厚さ:5μmのNiめっきを施し、さらにその上に厚さ:1μmのAuめっきを施した基板を用意した。
さらにLED素子の代替として、縦:500μm、横:500μm、厚さ:300μmの角銅板を用意し、この角銅板に厚さ:5μmのNiめっきを施し、さらにその上に厚さ:0.5μmのAuめっきを施した代替LED素子を用意した。
An Au—Sn alloy solder powder containing Sn: 22% by mass, with the balance being composed of Au, and containing 80% or more of a powder having a particle size of 5 to 16 μm is prepared. This Au—Sn alloy Solder powder is mixed with a commercially available RMA type rosin-based flux, rosin-based flux: 7% by mass, with the balance being the composition of Au-Sn alloy solder powder, and kneaded to prepare an Au-Sn alloy solder paste. Produced. This Au-Sn alloy solder paste is commercially available as a gold-tin alloy paste manufactured by Mitsubishi Materials Corporation.

Further, a substrate was prepared by applying Ni plating with a thickness of 5 μm to a Cu plate with a thickness of 100 μm as a substrate, and further applying Au plating with a thickness of 1 μm thereon.
Furthermore, as an alternative to the LED element, a square copper plate having a length of 500 μm, a width of 500 μm, and a thickness of 300 μm is prepared, Ni plating of a thickness of 5 μm is applied to the square copper plate, and a thickness of 0.5 μm is further formed thereon. An alternative LED element with Au plating was prepared.

実施例1
先に用意した基板の上に、先に用意したAu−Sn合金はんだペーストをピン転写法により0.5mg塗布し、さらに塗布したAu−Sn合金はんだペーストの上に、Au−Sn合金はんだペーストが上から見て半分が代替LED素子によって被さるようにかつ代替LED素子の一端が基板に接するように代替LED素子を載置した。

かかる状態でAu−Sn合金はんだペーストを塗布しさらに代替LED素子を載置した基板を窒素雰囲気中の熱対流型炉に装入して200℃に60秒間保持したのち、さらに310℃、30秒間保持することによりリフロー処理を施し、ついで冷却することにより基板と代替LED素子の間にAu−Sn合金はんだ接合層を有するはんだ接合試験片を作製した。
このはんだ接合試験片を透過X線装置(ToshibaIT&ControlSystem‘sTOSMICRON−6090FP)を用いてX線写真を撮り、画像処理(2値化)処理して接合面積%を求め、その結果を表1に示した。
Example 1
On the prepared substrate, 0.5 mg of the previously prepared Au—Sn alloy solder paste is applied by the pin transfer method, and the Au—Sn alloy solder paste is further applied on the applied Au—Sn alloy solder paste. The alternative LED element was placed so that half of the alternative LED element was covered with the alternative LED element when viewed from above and one end of the alternative LED element was in contact with the substrate.

In such a state, the substrate on which the Au—Sn alloy solder paste is applied and the alternative LED element is mounted is placed in a thermal convection furnace in a nitrogen atmosphere and held at 200 ° C. for 60 seconds, and then at 310 ° C. for 30 seconds. A reflow treatment was performed by holding, followed by cooling to prepare a solder joint test piece having an Au—Sn alloy solder joint layer between the substrate and the alternative LED element.
An X-ray photograph of this solder joint test piece was taken using a transmission X-ray apparatus (ToshibaIT & Control System's TOSMICRON-6090FP), image processing (binarization) processing was performed to determine the joint area%, and the results are shown in Table 1. .

従来例1
先に用意した基板の上に、先に用意したAu−Sn合金はんだペーストをピン転写法により0.5mg塗布し、この塗布したAu−Sn合金はんだペーストの真上に代替LED素子がくるように代替LED素子を載置し、かかるAu−Sn合金はんだペーストの真上に代替LED素子を載置した基板を窒素雰囲気中の熱対流型炉に装入して200℃に60秒間保持したのち、さらに310℃、30秒間保持することによりリフロー処理を施し、ついで冷却することにより基板と代替LED素子の間にAu−Sn合金はんだ接合層を有するはんだ接合試験片を作製した。

このはんだ接合試験片を透過X線装置(ToshibaIT&ControlSystem‘sTOSMICRON−6090FP)を用いてX線写真を撮り、画像処理(2値化)処理して接合面積%を求め、その結果を表1に示した。
Conventional Example 1
Apply 0.5 mg of the previously prepared Au—Sn alloy solder paste on the previously prepared substrate by the pin transfer method so that the alternative LED element comes directly above the applied Au—Sn alloy solder paste. After placing the substitute LED element, placing the substrate on which the substitute LED element was placed directly above the Au—Sn alloy solder paste in a thermal convection furnace in a nitrogen atmosphere and holding at 200 ° C. for 60 seconds, Furthermore, the reflow process was performed by hold | maintaining at 310 degreeC for 30 second, and it cooled, and the soldering test piece which has an Au-Sn alloy soldering layer between a board | substrate and an alternative LED element was produced.

An X-ray photograph of this solder joint test piece was taken using a transmission X-ray apparatus (ToshibaIT & Control System's TOSMICRON-6090FP), image processing (binarization) processing was performed to determine the joint area%, and the results are shown in Table 1. .

Figure 0004747281
Figure 0004747281

表1に示される結果から、実施例1による接合面積は従来例1による接合面積に比べて格段に大きいことから、実施例1の本発明方法によると、基板と素子との間に形成されているAu−Sn合金はんだ接合層に発生するボイドは従来例1に比べて格段に少ないことが分かり、Au−Sn合金はんだ接合層に発生するボイドが少ないこの発明のAu−Sn合金はんだペーストを用いた基板と素子の接合方法は特に熱がこもることが好ましくないLED素子などの接合に優れた効果を有することが分かる。   From the results shown in Table 1, since the bonding area according to Example 1 is much larger than the bonding area according to Conventional Example 1, it is formed between the substrate and the device according to the method of the present invention in Example 1. It can be seen that the number of voids generated in the Au-Sn alloy solder joint layer is much smaller than that of the conventional example 1, and the number of voids generated in the Au-Sn alloy solder joint layer is small. It can be seen that the bonding method between the substrate and the element has an excellent effect in bonding an LED element or the like, in which heat is not particularly preferred.

この発明の方法により基板と素子を接合する工程を説明するための側面説明図である。It is side surface explanatory drawing for demonstrating the process of joining a board | substrate and an element by the method of this invention. 従来の方法により基板と素子を接合する工程を説明するための側面説明図である。It is side surface explanatory drawing for demonstrating the process of joining a board | substrate and an element with the conventional method.

符号の説明Explanation of symbols

1:基板、2:Au−Sn合金はんだペースト、3:素子、4:Au−Sn合金はんだ接合層、4´:溶融Au−Sn合金はんだ、5:ボイド、6:ガス。
1: substrate, 2: Au—Sn alloy solder paste, 3: element, 4: Au—Sn alloy solder bonding layer, 4 ′: molten Au—Sn alloy solder, 5: void, 6: gas.

Claims (4)

Au−Sn合金はんだペーストを基板に搭載または塗布し、前記基板に搭載または塗布したAu−Sn合金はんだペーストの表面の端部に素子の一部が接しかつ素子の一端が基板に接するように素子をAu−Sn合金はんだペースト上に載置し、かかる状態でAu−Sn合金はんだペーストを搭載または塗布しかつ素子を載置した基板を非酸化性雰囲気中でリフロー処理し、溶融Au−Sn合金はんだが前記素子の下に濡れ広がって潜り込み、該素子が溶融Au−Sn合金はんだの中央に向かって引き戻された後、前記素子の全体が溶融Au−Sn合金はんだに乗った状態で冷却することを特徴とするAu−Sn合金はんだペーストを用いた基板と素子の接合方法。 An element in which an Au—Sn alloy solder paste is mounted on or applied to a substrate, a part of the element is in contact with the end of the surface of the Au—Sn alloy solder paste mounted or applied on the substrate, and one end of the element is in contact with the substrate. Is placed on the Au—Sn alloy solder paste, and in this state, the Au—Sn alloy solder paste is mounted or applied, and the substrate on which the element is placed is reflowed in a non-oxidizing atmosphere to obtain a molten Au—Sn alloy. After the solder spreads and sinks under the element and the element is pulled back toward the center of the molten Au—Sn alloy solder, the entire element is cooled in a state of being on the molten Au—Sn alloy solder. A method for joining a substrate and an element using an Au—Sn alloy solder paste characterized by the above. 前記素子は発光ダイオード素子であることを特徴とする請求項1記載のAu−Sn合金はんだペーストを用いた基板と素子の接合方法。 2. The method for bonding a substrate and an element using an Au—Sn alloy solder paste according to claim 1, wherein the element is a light emitting diode element. 前記Au−Sn合金はんだペーストは、Sn:15〜25質量%を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn合金粉末とフラックスとを混合して得られたAu−Sn合金はんだペーストであることを特徴とする請求項1記載のAu−Sn合金はんだペーストを用いた基板と素子の接合方法。The Au—Sn alloy solder paste contains Sn: 15 to 25% by mass, and the remainder is Au—Sn alloy obtained by mixing an Au—Sn alloy powder having a composition composed of Au and inevitable impurities and a flux. The method for joining a substrate and an element using the Au-Sn alloy solder paste according to claim 1, wherein the solder paste is a solder paste. 前記基板は表面に金メッキされた基板であることを特徴とする請求項1記載のAu−Sn合金はんだペーストを用いた基板と素子の接合方法。 2. The method for bonding a substrate and an element using an Au-Sn alloy solder paste according to claim 1, wherein the substrate is a substrate whose surface is gold-plated.
JP2006090902A 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste Active JP4747281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090902A JP4747281B2 (en) 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090902A JP4747281B2 (en) 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste

Publications (2)

Publication Number Publication Date
JP2007266405A JP2007266405A (en) 2007-10-11
JP4747281B2 true JP4747281B2 (en) 2011-08-17

Family

ID=38639085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090902A Active JP4747281B2 (en) 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste

Country Status (1)

Country Link
JP (1) JP4747281B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767160B2 (en) * 2006-12-25 2011-09-07 京セラ株式会社 Mounting method of chip parts
JP5077684B2 (en) * 2008-03-25 2012-11-21 三菱マテリアル株式会社 Au-Sn alloy solder paste for pin transfer
JP5003560B2 (en) * 2008-03-31 2012-08-15 三菱マテリアル株式会社 Au-Sn alloy solder paste for dispensing
JP5077690B2 (en) * 2008-05-29 2012-11-21 三菱マテリアル株式会社 Au-Sn alloy solder paste for printing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290478A (en) * 1991-03-19 1992-10-15 Denki Kagaku Kogyo Kk Matrix circuit board, its manufacture and display board
JPH05326574A (en) * 1991-05-24 1993-12-10 Mitsumi Electric Co Ltd Die bonding method for semiconductor element
JP3110170B2 (en) * 1992-09-02 2000-11-20 第一高周波工業株式会社 Plate soldering method
JP2003151998A (en) * 2001-11-16 2003-05-23 Denso Corp Method for manufacturing semiconductor device
JP3958608B2 (en) * 2002-03-11 2007-08-15 日本特殊陶業株式会社 Wiring board manufacturing method
JP2004031697A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module
JP4560830B2 (en) * 2004-06-28 2010-10-13 三菱マテリアル株式会社 Au-Sn alloy powder for solder paste

Also Published As

Publication number Publication date
JP2007266405A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4924920B2 (en) Method for bonding the entire bonding surface of an element to a substrate using an Au-Sn alloy solder paste
KR101722893B1 (en) Cu/ceramic material joint, method for manufacturing cu/ceramic material joint, and substrate for power module
JP5363789B2 (en) Optical semiconductor device
JP2008010703A (en) Method for bonding between components of semiconductor device
JP2000210767A (en) Method for joining two parts
JP4747281B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JPWO2007119571A1 (en) Solder layer, device bonding substrate using the same, and method for manufacturing the device bonding substrate
JP5849421B2 (en) Solder, semiconductor device using solder, and soldering method
JP2010029868A (en) Lead-free solder paste, electronic circuit board using the same, and method for manufacturing the same
JP7484268B2 (en) METHOD FOR TEMPORARY FIXING OF METAL MEMBER, METHOD FOR MANUFACTURING JOINT BODY, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD
JP2008277335A (en) Semiconductor device and manufacturing method thereof
JP2008211101A (en) Solder layer, substrate for bonding device using the same, and method of manufacturing the substrate
CN112654453B (en) Method for manufacturing bonded structure
JP4600672B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
WO2021045131A1 (en) Solder paste and solder bonded body
JP4747280B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JP5062710B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JP4947345B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JP6089243B2 (en) Manufacturing method of bonded structure
JP5391584B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste with less void generation
JP2017168635A (en) Substrate for power module and manufacturing method of power module
JP2007109859A (en) Method for manufacturing electronic parts
JP7267522B1 (en) Bonding materials and semiconductor devices
JP2005349443A (en) Bonding method and bonding agent
JP2000176678A (en) Cream solder and packaging product using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110417

R150 Certificate of patent or registration of utility model

Ref document number: 4747281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250