JP4746076B2 - Intracavity ultrasound probe - Google Patents
Intracavity ultrasound probe Download PDFInfo
- Publication number
- JP4746076B2 JP4746076B2 JP2008188084A JP2008188084A JP4746076B2 JP 4746076 B2 JP4746076 B2 JP 4746076B2 JP 2008188084 A JP2008188084 A JP 2008188084A JP 2008188084 A JP2008188084 A JP 2008188084A JP 4746076 B2 JP4746076 B2 JP 4746076B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic probe
- flexible substrate
- flexible
- cavity
- transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
Description
本発明は、被検者の体腔内に挿入して超音波ビームを走査する体腔内超音波探
触子に関する。
The present invention relates to an intrabody cavity ultrasonic probe that is inserted into a body cavity of a subject and scans an ultrasound beam.
体腔内超音波探触子は、人体の口や肛門などから人体内に挿入して、食道壁、腸壁などの内部から観察するためのものである。このため、腸管などの管状臓器の複雑な形状に沿って自在に曲げられる湾曲部について次のように様々な工夫がなされている。 The body cavity ultrasound probe is inserted into the human body through the mouth or anus of the human body and observed from inside the esophageal wall, intestinal wall, and the like. For this reason, various contrivances have been made for the curved portion that can be freely bent along the complicated shape of a tubular organ such as the intestine.
まず、特許第2790253号公報(第1の従来法)に開示されるように、超音波送受信を行う振動子を複数アレー状に配列した超音波振動子群と、一端に前記超音波振動子群の各超音波振動子から信号を取り出す電極引出し用リードが形成され、前記超音波振動子群に対し振動子長手方向と所定の角度をもって形成され可撓性の印刷回路板とを具備する電子走査型超音波プローブがある。 First, as disclosed in Japanese Patent No. 2790253 (first conventional method), an ultrasonic transducer group in which a plurality of transducers performing ultrasonic transmission and reception are arranged in an array, and the ultrasonic transducer group at one end The electrode scanning lead for extracting a signal from each of the ultrasonic transducers is formed, and the electronic scanning includes a flexible printed circuit board formed with a predetermined angle with respect to the longitudinal direction of the transducer with respect to the ultrasonic transducer group Type ultrasonic probe.
上記印刷回路板は、前記超音波振動子群が配置される部分は長方形状に形成され、その長方形状部分に連接して設けられる電極引出し部分では表面の電極パターンを前記超音波振動子群の長手方向に対し角度を傾けて形成し、同時に印刷回路の外形もパターンと同様に角度を傾けて切り出している。超音波振動子群が配設してある回路板部分には、その両端部にそれぞれ接着部を設け、まだ、電極パターンが形成された回路板部分の一端には、接着部を設けている。さらに、その印刷回路を円筒状に形成し、それぞれの接着部を接着剤で接着すると、電極パターンが螺旋状に形成され、印刷回路板の対接着部にできる隙間も螺旋状に形成される。このような構成によって、印刷回路板を折ることなく湾曲できるようにしている。 In the printed circuit board, a portion where the ultrasonic transducer group is disposed is formed in a rectangular shape, and an electrode lead portion provided to be connected to the rectangular portion has a surface electrode pattern of the ultrasonic transducer group. The printed circuit is formed at an angle with respect to the longitudinal direction. At the same time, the outer shape of the printed circuit is cut out at an angle similar to the pattern. The circuit board portion on which the ultrasonic transducer group is disposed is provided with adhesive portions at both ends thereof, and the adhesive portion is provided at one end of the circuit board portion on which the electrode pattern is formed. Furthermore, when the printed circuit is formed in a cylindrical shape and the respective adhesive portions are bonded with an adhesive, the electrode pattern is formed in a spiral shape, and the gap that can be formed in the bonded portion of the printed circuit board is also formed in a spiral shape. With such a configuration, the printed circuit board can be bent without being folded.
上記印刷回路板は、また、超音波振動子群をブロックに分割し、そのブロック毎に印刷回路板の電極引出し部分をθ,−θ,θ,−θの方向へと導き出す。これにより、超音波振動子群及び印刷回路板を円筒状に形成すると、印刷回路板が網の目のように構成される。印刷回路板のリード線を接続する端部の処理は、印刷回路板を編み上げた時リード線を付けるランド部の位置が他の印刷回路板のランド部と重ならないように少しずらしている。また、リード線を接続する端部には、各々の印刷回路板同志を接着するための接着部を設け固定する。このように網の目に構成した方が、(分割しない1枚の)印刷回路板をより一層湾曲することが可能となる。 In the printed circuit board, the ultrasonic transducer group is divided into blocks, and the electrode lead-out portion of the printed circuit board is led in the directions of θ, −θ, θ, and −θ for each block. Accordingly, when the ultrasonic transducer group and the printed circuit board are formed in a cylindrical shape, the printed circuit board is configured like a mesh. The processing of the end portion for connecting the lead wire of the printed circuit board is slightly shifted so that the position of the land portion to which the lead wire is attached when the printed circuit board is knitted does not overlap the land portion of the other printed circuit board. In addition, an adhesive part for adhering each printed circuit board is provided and fixed to the end part to which the lead wire is connected. In this way, it is possible to further bend the printed circuit board (one sheet that is not divided) by configuring the mesh.
次に、実開平5-13408号公報(第2の従来法)に開示されるように、屈曲可能な胴の先端側に超音波センサを備え、Flexible Print Circuit(FPC)により超音波センサからの信号を末端側のケーブルに伝える。FPCは長さ方向に沿って複数のスリットを設け、幅方向に丸める。その周囲を超音波センサのGNDが接続されたコイルスリップリングで囲っている。 Next, as disclosed in Japanese Utility Model Laid-Open No. 5-13408 (second conventional method), an ultrasonic sensor is provided on the tip side of the bendable cylinder, and the flexible print circuit (FPC) The signal is transmitted to the cable on the end side. The FPC is provided with a plurality of slits along the length direction and rounded in the width direction. The surrounding area is surrounded by a coil slip ring to which the GND of the ultrasonic sensor is connected.
しかしながら、上記第1の従来法では、印刷回路板が1枚の板状になっている、あるいは上記従来技術のブロック分割した例でも印刷回路板同志を接着する工程があるので、実質的に印刷回路板が1枚の板状となっている。 However, in the first conventional method, the printed circuit board is in the form of a single plate, or there is a step of bonding the printed circuit boards together even in the above prior art block division example, so printing is substantially performed. The circuit board is a single plate.
このように印刷回路板が1枚の板状であることから、被検者の体腔内に挿入する際に印刷回路板の剛性によって体腔内探触子の湾曲可能な範囲が制限され、その湾曲の制限により、複雑に曲った管状臓器に沿って充分に前記体腔内探触子を湾曲させることができない場合があり、前記体腔内超音波探触子の一部が前記管状臓器の壁部に接触するなど、被検者に苦痛を与えるおそれがあるという点について配慮されていなかった。 Since the printed circuit board is a single plate in this way, the bending range of the body cavity probe is limited by the rigidity of the printed circuit board when inserted into the body cavity of the subject. In some cases, the intracavity probe cannot be sufficiently bent along a complicated curved tubular organ, and a part of the intracavitary ultrasound probe may be placed on the wall of the tubular organ. It was not considered that there was a risk of pain to the subject such as contact.
また、上記第2の従来法では、FPCは長さ方向に沿って複数のスリットを設け、それらはコイルスプリングで囲まれているが、より細径化および多チャンネル化が求められる体腔内超音波探触子では、コイルスプリングを配置するぐらいなら、そのスペースにFPCを配置すると共に、湾曲部の湾曲性を高めたいというニーズを充足することができなかった。 Further, in the second conventional method, the FPC is provided with a plurality of slits along the length direction, which are surrounded by a coil spring. The probe could not satisfy the need to place the FPC in the space and to improve the bendability of the bend as long as the coil spring was placed.
さらに、超音波の分野では診断のみならず、例えば強力超音波を照射して癌細胞を焼灼して治療することが行われ、その治療装置などの電子機器と本発明を採用する超音波診断装置が併用される。そのとき電子機器から超音波探触子に侵入するノイズ対策にも配慮することが求められている。 Furthermore, in the field of ultrasound, not only diagnosis but also, for example, irradiation of high-intensity ultrasound to cauterize and treat cancer cells is performed, and an ultrasound diagnostic apparatus adopting the present invention and an electronic device such as the treatment apparatus Are used together. At that time, it is required to consider noise countermeasures that enter the ultrasonic probe from the electronic device.
本発明の目的は、細径化や多チャンネル化に対応すると共に、湾曲部の湾曲性を高めた体腔内超音波探触子を提供することにある。 An object of the present invention is to provide an intra-body-cavity ultrasonic probe that can cope with the reduction in diameter and the number of channels and that has improved bending properties of a bending portion.
また、本発明の別の目的は、ノイズ対策に配慮した体腔内超音波探触子を提供することにある。 Another object of the present invention is to provide an intracavity ultrasonic probe in consideration of noise countermeasures.
上記目的は、振動子素子を複数チャンネル配列し超音波を送受信する振動子部と、これらの振動子素子の各チャンネルに接続され前記振動子素子に送信信号を供給すると共に前記振動子素子からの受信信号を取り出す信号線を印刷したフレキシブル基板とを備えた体腔内超音波探触子であって、前記フレキシブル基板は、前記複数チャンネルを分割したチャンネルブロックを少なくとも2つ以上形成し、それぞれのチャンネルブロックを螺旋状に巻回され、かつ、該巻回されたチャンネルブロックが、独立して湾曲するように構成されていることを特徴とする体腔内超音波探触子によって達成される。 The above-described object is to provide a transducer unit in which a plurality of transducer elements are arranged and transmit / receive ultrasonic waves, to each transducer element channel, to supply a transmission signal to the transducer element, and from the transducer element A body cavity ultrasonic probe comprising a flexible substrate printed with a signal line for extracting a received signal, wherein the flexible substrate forms at least two channel blocks obtained by dividing the plurality of channels, and each channel The block is spirally wound, and the wound channel block is achieved by an intracavity ultrasonic probe characterized by being configured to bend independently.
また、上記別の目的は、前記2つ以上形成したフレキシブル基板のそれぞれに設けられたシールド材、又は個々のフレキシブル基板を纏めた状態で覆うように設けられたシールド材の少なくとも一方が、シールド材として備えられたことを特徴とする体腔内超音波探触子によって達成される。 Further, the other object is that at least one of the shielding material provided on each of the two or more formed flexible substrates or the shielding material provided so as to cover the individual flexible substrates together is a shielding material. This is achieved by an intracavitary ultrasound probe characterized by being provided as:
本発明は、細径化や多チャンネル化に対応すると共に、湾曲部の湾曲性を高めた体腔内超音波探触子を提供するという効果を奏する。 The present invention has an effect of providing an intra-body-cavity ultrasonic probe that can cope with the reduction in diameter and the number of channels and that has improved bending properties of the bending portion.
また、ノイズ対策に配慮した体腔内超音波探触子を提供するという効果を奏する。 In addition, there is an effect of providing an intracavity ultrasonic probe in consideration of noise countermeasures.
本発明の体腔内超音波探触子について、図面を用いて説明する。 The body cavity ultrasonic probe of the present invention will be described with reference to the drawings.
まず、ラジアル形と呼ばれる体腔内超音波探触子を例とする。図2はラジアルの体腔内超音波探触子の振動子部、フレキシブル基板及びケーブルの接続関係を示す図である。 First, an intracavity ultrasonic probe called a radial shape is taken as an example. FIG. 2 is a diagram showing a connection relationship between a transducer part, a flexible substrate, and a cable of a radial body cavity ultrasonic probe.
振動子部1は振動子素子を複数チャンネル配列させて形成される。フレキシブル基板2は振動子素子の個々のチャンネルに一端を接続され、他端には信号線を送受信するケーブルと接続可能なようにケーブル接続部5を設けている。このフレキシブル基板2は振動子部1の振動子素子とケーブル接続部5とで信号が送受可能なように信号パターン4が布設され、信号パターン4同士は電気的に絶縁されている。また、フレキシブル基板2は1枚の基板で構成されるものでなく、全チャンネルのうちの一部チャンネルをブロック化したものに切り込み部3に分割されて形成される。また、信号パターン4を挟むようにグランドを配置すると、信号伝達の際のクロストークを防止できるので好適である。
The
また、それぞれ分割されたフレキシブル基板2は、それぞれを螺旋状に巻けるように、振動子部1と角度θをなしている。
In addition, each of the divided
次に、図1は本発明の体腔内超音波探触子のフレキシブル基板を螺旋状に巻いた状態を示す図である。 Next, FIG. 1 is a view showing a state in which the flexible substrate of the intracavity ultrasonic probe of the present invention is spirally wound.
振動子部1は、図示の如く、丸められ固定される。この固定は接着の他、型枠等を嵌めることもできる。フレキシブル基板2は基板間ギャップgでもって離間されるように螺旋状に巻かれる。ここでギャップgはフレキシブル基板2を覆う胴をどれだけ曲げるかによって決まる。そこで、図3を用いてその原理を説明する。図3はギャップgの算出のための原理図である。胴を円弧状に曲げると過程したときの半径をR、胴の太さをd、フレキシブル基板1本当たりの幅をaとすると、ギャップgは式(1)のようになる。
The
g=a・d/R 式(1)
このように、ギャップを決められたフレキシブル基板2は、その分割数により、合成樹脂や合成ゴム等でできた可撓管と呼ばれる胴には、図4に示される断面図のように配置される。図4はフレキシブル基板等を収容する可撓管と複数枚のフレキシブル基板の配置関係を示す図である。図4(a)はフレキシブル基板を2分割してそれぞれを螺旋状に巻いた例、図4(b)は3分割の例、図4(c)は4分割の例、図4(d)は5分割の例を示している。6分割以上は最密配置となるようにする。
g = a · d / R Formula (1)
In this way, the
次に、フレキシブル基板がどのように湾曲するのかを説明する。図5はフレキシブル基板の引出しから湾曲までの態様を示す図である。フレキシブル基板は、湾曲する必要がない状態では図5(a)のように収縮している。そして湾曲が必要となったときは、図5(b)のように伸張する構造となっているから、図5(c)のように湾曲させることができるのである。 Next, how the flexible substrate is curved will be described. FIG. 5 is a view showing a mode from the drawing of the flexible substrate to the bending. The flexible substrate is contracted as shown in FIG. 5 (a) when it is not necessary to bend. When it becomes necessary to bend, since it has a structure that expands as shown in FIG. 5 (b), it can be bent as shown in FIG. 5 (c).
また、体腔内超音波探触子には、ラジアル形の他、コンベックス形、経食道用、腹腔用があるので、それら適用例を挙げておく。 In addition to the radial type, the intracavity ultrasonic probe includes a convex type, a transesophageal type, and an abdominal type, and examples of their application will be given.
図6はコンベックス形超音波探触子への本発明の適用例を示す図、図7は経食道用超音波探触子への本発明の適用例を示す図、図8は腹腔用超音波探触子への本発明の適用例を示す図である。ラジアル形は管状臓器の内面を断面方向に視野を有するのに対して、コンベックス形は内壁の矩形視野を有するものである。経食道用の多くは図示するように例えば円形視野や多角形視野を有している。また、腹腔用はコンベックス形と同じ矩形視野であるが、これは管状臓器に沿って被検者に挿入するものでなく、被検体の体表に穴を開けて挿入するものであるので、操作者が握る部分が可撓管8では扱いづらいので、硬質部12となっている。 6 is a diagram showing an example of application of the present invention to a convex ultrasound probe, FIG. 7 is a diagram showing an example of application of the present invention to a transesophageal ultrasound probe, and FIG. 8 is an abdominal ultrasound. It is a figure which shows the example of application of this invention to a probe. The radial shape has a field of view in the cross-sectional direction of the inner surface of the tubular organ, whereas the convex shape has a rectangular field of the inner wall. Many transesophageal tracts have, for example, a circular field or a polygonal field as shown. In addition, the abdominal cavity has the same rectangular field as the convex shape, but this is not inserted into the subject along the tubular organ, but is inserted through a hole in the body surface of the subject. Since the portion gripped by the person is difficult to handle in the flexible tube 8, it is a hard portion 12.
また、フレキシブル基板は、図9(a)に示すように、曲げ応力に対応するために個々のフレキシブル基板を樹脂製チューブ13で覆ってもよい。樹脂製チューブ13で覆った胴の断面図は、図9(b)のように配置される。図9(b)では5分割の例を挙げた。 In addition, as shown in FIG. 9 (a), each flexible substrate may be covered with a resin tube 13 in order to cope with bending stress. A cross-sectional view of the cylinder covered with the resin tube 13 is arranged as shown in FIG. 9 (b). In FIG. 9 (b), an example of five divisions is given.
また、フレキシブル基板は、図10に示すように、2層のプリント基板で構成され、一方の1層には信号線を、他方の1層には1層全面にGND層14を配している。これにより、信号線の層には信号線のパターンを集積できるので多チャンネル化に有効であると共に、クロストークの解消に有効である。2層のフレキシブル基板を配置した胴の断面図は、図10(b)のように配置される。図10(b)では5分割の例を挙げた。
As shown in FIG. 10, the flexible substrate is composed of a two-layer printed circuit board, in which one signal line is arranged on one layer and a
上記説明した実施形態によれば、フレキシブル基板(印刷回路板)が1枚の板状である湾曲可能な範囲の制限が解除され、湾曲の度合いを適切に確保できるとともに、コイルスプリングを配置しないので、より細径化および多チャンネル化に対応することができる。 According to the embodiment described above, the limitation of the bendable range in which the flexible substrate (printed circuit board) is a single plate is released, and the degree of bending can be appropriately secured, and the coil spring is not disposed. Therefore, it is possible to cope with a smaller diameter and a larger number of channels.
また、フレキシブル基板の分割は、チャネルを均等に分割してもよいが、不均等に分割してもよい。 In addition, the flexible substrate may be divided evenly, although the channels may be divided equally.
また、ギャップを適正な値に設定するので、フレキシブル基板内での信号線の断線も起き難くなっている。 In addition, since the gap is set to an appropriate value, disconnection of the signal line in the flexible substrate is difficult to occur.
また、フレキシブル基板が樹脂製チューブに覆われる、或いはフレキシブル基板が2層以上の多層のパターンによって形成されるなど各実施形態の組み合わせも本発明に適用されることはいうまでもないことである。 Further, it goes without saying that combinations of the embodiments, such as the flexible substrate being covered with a resin tube or the flexible substrate being formed by a multilayer pattern of two or more layers, are also applied to the present invention.
次に、シールド対策の実施形態について説明する。 Next, an embodiment of a shield measure will be described.
図11及び図12は、FPCをシールド材で覆う構造の例を示したものである。 11 and 12 show examples of structures in which the FPC is covered with a shield material.
まず、図11に示すように、振動子部1を円筒状に形成し、さらにFPC2を螺旋状に加工する。FPC2のそれぞれには、樹脂性チューブ13で相互が絶縁されている。樹脂性チューブ13の外装には導電性テープ等のシールド材20が付けられる。このシールド材には、屈曲性が優れたシールド効果が高い導電性のスパイラルチューブやクロスチューブ等が用いられる。
First, as shown in FIG. 11, the
次に、図12のように、図11で組立られたFPC一式を、可撓管5に収容する。ケーブルの外側を覆うシールド材21は、シールド材20と同様の材料を用いるか、同軸ケーブル等で用いられている偏組シールド等を用いてもよい。シールド材20とシールド材21は共に導電材であるため、両者が接触する配置とすることにより電気的に接続されることになる。シールド材20とシールド材21を接続することで、よりシールド性を向上させた構造となる。 Next, as shown in FIG. 12, the set of FPCs assembled in FIG. For the shield material 21 that covers the outside of the cable, the same material as the shield material 20 may be used, or an offset shield or the like used in a coaxial cable or the like may be used. Since both the shield material 20 and the shield material 21 are conductive materials, they are electrically connected by arranging them so as to contact each other. By connecting the shield material 20 and the shield material 21, the shield property is further improved.
また、シールド材を用いないで、螺旋状フレキシブル基板を保護している樹脂製チューブ表面を金、銀、銅の金属粉末を蒸着させてもよい。 Moreover, you may vapor-deposit metal powder of gold | metal | money, silver, and copper on the resin-made tube surfaces which are protecting the helical flexible board | substrate, without using a shielding material.
また、詳細な説明は省略するが、図6で説明したコンベックス形超音波探触子、図7で説明した経食道用超音波探触子を含む全ての体腔内超音波探触子へ適用できることはいうまでもない。 Although not described in detail, it can be applied to all intracavitary ultrasound probes including the convex ultrasound probe described in FIG. 6 and the transesophageal ultrasound probe described in FIG. Needless to say.
このように、超音波探触子に振動子から信号を引き出す際、螺旋状フレキシブル基板をシールド効果のある材料を用いてシールドを施した構造を持つことで、他の電子機器や医療機器と同時に使用した場合、超音波画像上に影響を与えていた、これらの装置が発生する電磁波ノイズを遮断することができることから鮮明な超音波画像を提供することが可能となる。 In this way, when a signal is extracted from the transducer to the ultrasonic probe, it has a structure in which the spiral flexible substrate is shielded using a material having a shielding effect, so that it can be used simultaneously with other electronic devices and medical devices. When used, it is possible to provide a clear ultrasonic image because electromagnetic noise generated by these devices, which has an influence on the ultrasonic image, can be blocked.
1 振動子部、2 フレキシブル基板(FPC)、5 ケーブル接続部、20、21 シールド材 1 Transducer, 2 Flexible substrate (FPC), 5 Cable connection, 20, 21 Shield material
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008188084A JP4746076B2 (en) | 2001-05-14 | 2008-07-22 | Intracavity ultrasound probe |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001142831 | 2001-05-14 | ||
JP2001142831 | 2001-05-14 | ||
JP2008188084A JP4746076B2 (en) | 2001-05-14 | 2008-07-22 | Intracavity ultrasound probe |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002114333A Division JP4179587B2 (en) | 2001-05-14 | 2002-04-17 | Intracavity ultrasound probe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008289910A JP2008289910A (en) | 2008-12-04 |
JP4746076B2 true JP4746076B2 (en) | 2011-08-10 |
Family
ID=40165216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008188084A Expired - Fee Related JP4746076B2 (en) | 2001-05-14 | 2008-07-22 | Intracavity ultrasound probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4746076B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103108594B (en) | 2011-05-13 | 2015-02-04 | 奥林巴斯医疗株式会社 | Ultrasound transducer unit, ultrasound endoscope |
WO2021149205A1 (en) | 2020-01-22 | 2021-07-29 | オリンパス株式会社 | Ultrasonic vibrator unit and ultrasonic endoscope |
US20220280754A1 (en) * | 2021-03-04 | 2022-09-08 | Covidien Lp | Sleeve for an endoscope and/or catheter including a helical design |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02271843A (en) * | 1989-04-13 | 1990-11-06 | Olympus Optical Co Ltd | Electronic scan type ultrasonic probe |
JPH0513408U (en) * | 1991-08-06 | 1993-02-23 | 横河メデイカルシステム株式会社 | Endoscopic ultrasonic probe |
JPH05509246A (en) * | 1990-08-02 | 1993-12-22 | ベー・ファウ・オプティシェ・インダストリー・“デ・オウデ・デルフト” | endoscopic probe |
JPH07116168A (en) * | 1993-10-25 | 1995-05-09 | Terumo Corp | Ultrasonic probe used in body cavity |
JPH11305143A (en) * | 1998-04-21 | 1999-11-05 | Toshiba Corp | Electronic endoscope device |
JP2001224590A (en) * | 2000-02-15 | 2001-08-21 | Matsushita Electric Ind Co Ltd | Ultrasonic probe |
JP2003033354A (en) * | 2001-05-14 | 2003-02-04 | Hitachi Medical Corp | Ultrasonic wave probe in coelom |
-
2008
- 2008-07-22 JP JP2008188084A patent/JP4746076B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02271843A (en) * | 1989-04-13 | 1990-11-06 | Olympus Optical Co Ltd | Electronic scan type ultrasonic probe |
JPH05509246A (en) * | 1990-08-02 | 1993-12-22 | ベー・ファウ・オプティシェ・インダストリー・“デ・オウデ・デルフト” | endoscopic probe |
JPH0513408U (en) * | 1991-08-06 | 1993-02-23 | 横河メデイカルシステム株式会社 | Endoscopic ultrasonic probe |
JPH07116168A (en) * | 1993-10-25 | 1995-05-09 | Terumo Corp | Ultrasonic probe used in body cavity |
JPH11305143A (en) * | 1998-04-21 | 1999-11-05 | Toshiba Corp | Electronic endoscope device |
JP2001224590A (en) * | 2000-02-15 | 2001-08-21 | Matsushita Electric Ind Co Ltd | Ultrasonic probe |
JP2003033354A (en) * | 2001-05-14 | 2003-02-04 | Hitachi Medical Corp | Ultrasonic wave probe in coelom |
Also Published As
Publication number | Publication date |
---|---|
JP2008289910A (en) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7766838B2 (en) | Ultrasonic probe in body cavity | |
JP4179587B2 (en) | Intracavity ultrasound probe | |
JP4293321B2 (en) | Probe assembly | |
CN103648404B (en) | Ultrasonic endoscope | |
JP5973761B2 (en) | Cable connection structure | |
JP6542198B2 (en) | Cable connection structure and endoscope apparatus | |
KR101356615B1 (en) | Ultrasound transducer using signal path integrated housing | |
JP4746076B2 (en) | Intracavity ultrasound probe | |
JP2023033561A (en) | Ultrasonic sensor array and catheter | |
WO2020139645A2 (en) | Transducer-mounted needle assembly with improved electrical connection to power source | |
JP4468691B2 (en) | Ultrasonic signal cable connector device | |
US6030346A (en) | Ultrasound imaging probe assembly | |
CN110494084B (en) | Ultrasonic endoscope | |
WO2007112269A1 (en) | Transesophageal ultrasound probe with thin and flexible wiring | |
WO2016009689A1 (en) | Ultrasound observation device | |
JP6132963B2 (en) | Cable connection structure, ultrasound probe and ultrasound endoscope system | |
JP7592548B2 (en) | Ultrasound endoscope | |
US11589837B2 (en) | Ultrasound transducer, ultrasound endoscope, and method of manufacturing ultrasound transducer | |
JP7324180B2 (en) | ultrasound endoscope | |
JP4356972B2 (en) | Intracavity ultrasound probe | |
KR101565106B1 (en) | Ultrasound transducer using signal path integrated housing | |
JP2006340907A (en) | Cable of ultrasonic probe and ultrasonic probe | |
JPS6125537A (en) | Ultrasonic probe and its production | |
JPH05103783A (en) | Ultrasonic probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110509 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110512 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |