JP4745990B2 - Turbine equipment and initial switching method for oxygen treatment of turbine equipment - Google Patents
Turbine equipment and initial switching method for oxygen treatment of turbine equipment Download PDFInfo
- Publication number
- JP4745990B2 JP4745990B2 JP2007021679A JP2007021679A JP4745990B2 JP 4745990 B2 JP4745990 B2 JP 4745990B2 JP 2007021679 A JP2007021679 A JP 2007021679A JP 2007021679 A JP2007021679 A JP 2007021679A JP 4745990 B2 JP4745990 B2 JP 4745990B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- boiler
- water supply
- turbine
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Water Treatments (AREA)
Description
本発明は、タービン給水の揮発性物質処理(AVT)から酸素処理(CWT)に最初に切替えるに際し、給水中に鉄成分の溶出を抑制したタービン設備及びタービン設備の酸素処理の初期切替え方法に関する。 The present invention relates to a turbine facility that suppresses elution of iron components in feed water and an initial switching method for oxygen treatment of the turbine facility when the volatile material treatment (AVT) of turbine feed water is first switched to oxygen treatment (CWT).
従来、火力及び原子力発電プラント等では、発生させた高温・高圧の蒸気をタービンに供給し、この蒸気によりタービンを駆動して発電を行っている。タービンを駆動した後の蒸気は、復水器により冷却されて水の状態に戻された後、再び加熱されてボイラ、原子炉、蒸気発生器に供給され、再使用される。 Conventionally, in thermal power and nuclear power plants, generated high-temperature and high-pressure steam is supplied to a turbine, and the turbine is driven by this steam to generate power. The steam after driving the turbine is cooled by the condenser and returned to the water state, then heated again, supplied to the boiler, the nuclear reactor, and the steam generator, and reused.
火力発電プラントにおけるタービン設備の一例としては、図4に示すような構成のものが知られている。図4に示すように、このタービン設備100は、熱源からの熱によって蒸気11を発生させるボイラ118と、該ボイラ118の蒸気11により作動する蒸気タービン12と、該蒸気タービン12からの排気を復水する復水器106と、該復水器106で凝縮された復水を給水107として前記ボイラ118側に送給する給水系統Aとから構成されている。前記給水系統Aでは、前記復水器106と低圧給水ヒータ109との間においては、復水ポンプ18及び復水ブースタポンプ21が給水管13に介装されており、前記低圧給水ヒータ109と高圧給水ヒータ112との間においては、脱気器110、貯槽111及びボイラ給水ポンプ22が前記給水管13に介装されている。なお、符号104は補給水タンク、105は補給水、114は過熱器、115は再熱器を各々図示する。
As an example of turbine equipment in a thermal power plant, one having a configuration as shown in FIG. 4 is known. As shown in FIG. 4, the
また、前記給水系統Aの給水管13の復水器106の出口側においては、pH調整剤のアンモニアと脱酸素剤のヒドラジンを注入する薬剤注入部30が設けられており、揮発性物質処理(All Volatile Treatment:AVT)している。このAVTは、所定量のヒドラジンの注入と、薬剤注入部30からはpH調整用として給水に所定量のアンモニアを注入しており、給水のpHを9.5以上とすると共にアンモニア濃度を0.5ppm以上となるようにしている。
これは、一般に、給水のpHが9.0を下回ると流れによるエロージョン・コロージョン(腐食・浸食)の発生が懸念されるので、給水107のpHを9.5としている(特許文献1)。
このAVTは、給水配管等に対する鉄腐食を抑制するために、母材の表面にマグネタイト(Fe3O4)を形成している。
Further, on the outlet side of the
In general, since the occurrence of erosion / corrosion (corrosion / erosion) due to the flow is concerned when the pH of the feed water falls below 9.0, the pH of the
In this AVT, magnetite (Fe 3 O 4 ) is formed on the surface of a base material in order to suppress iron corrosion on a water supply pipe or the like.
ところで、このようなAVTを行なっているタービン設備100において、定期点検等のプラント停止時においては、AVTから給水中に微量の酸素を溶存させる複合水処理(Combined Water Treatment:CWT)を行なっている。
これは、AVTでは停止の期間中にボイラ配管の鉄腐食防止のために酸洗浄を2年に一回程度行なう必要があるからである。
よって、10年以上も酸洗浄が不要なCWTとするために、図4に示すように、CWTでは第1の酸素注入部31−1及び第2の酸素注入部31−2を設け、給水107中に酸素を注入し、所定量の酸素を溶存させるようにしている。
By the way, in the
This is because in AVT, it is necessary to perform acid cleaning about once every two years in order to prevent iron corrosion of the boiler piping during the stop period.
Therefore, in order to obtain a CWT that does not require acid cleaning for more than 10 years, as shown in FIG. 4, the CWT is provided with a first oxygen injection unit 31-1 and a second oxygen injection unit 31-2, and
ここで、酸素注入部を二箇所設けているのは、酸素が給水系統A内に行き亙るのに時間を要するからであり、具体的には復水器106出口側に設置した第1の酸素注入部31−1以外に、脱気器110の後流側に第2酸素注入部31−2を設置している。
この酸素処理は、給水中の鉄成分を酸素の作用によって2価の状態(マグネタイト被膜)からより鉄の溶解度の低い3価の状態(ヘマタイト被膜)として水質管理をしている。
Here, the two oxygen injection portions are provided because it takes time for oxygen to reach the inside of the water supply system A. Specifically, the first oxygen is provided on the outlet side of the
In this oxygen treatment, the water component is controlled from the divalent state (magnetite coating) to the trivalent state (hematite coating) having lower iron solubility by the action of oxygen.
このCWTに切替えるに際しては、酸素処理の条件であるpH9.3以下とする必要があるので、酸素が所定量(例えば50μg/L)となるまでは、給水中においては酸素が無い状態となり、鉄溶出を余儀なくされていた。
このため、迅速に酸素濃度を所定量とするために、酸素切替えにおいては、酸素濃度計32で酸素濃度を計測しながら二箇所の酸素注入部31−1、31−2から多量(200μg/L程度)の酸素を注入していた。
When switching to this CWT, it is necessary to set the pH to 9.3 or lower, which is the condition for oxygen treatment. Therefore, until oxygen reaches a predetermined amount (for example, 50 μg / L), there is no oxygen in the water supply, and iron It was forced to elute.
Therefore, in order to quickly set the oxygen concentration to a predetermined amount, in oxygen switching, a large amount (200 μg / L) is supplied from the two oxygen injection portions 31-1 and 31-2 while measuring the oxygen concentration with the
このように、CWTの条件である、CWT切替え時にpH濃度を9.3以下、例えば9.0に低下しているので、酸化作用に酸素が消費され、給水中の鉄濃度の一時的な上昇が生じるので、酸素の注入量を増大する必要があると共に、その酸素注入個所も二箇所としており、より簡易な構成の酸素処理の出現が切望されている。 As described above, since the pH concentration is lowered to 9.3 or less, for example, 9.0 at the time of CWT switching, which is a condition of CWT, oxygen is consumed for the oxidation action, and the iron concentration in the feed water is temporarily increased. Therefore, it is necessary to increase the amount of oxygen injected, and the number of oxygen injection locations is two, and the advent of oxygen treatment with a simpler configuration is desired.
本発明は、前記問題に鑑み、ボイラに送給する給水中の鉄濃度の上昇を抑制することができるタービン設備及びタービン設備の酸素処理の初期切替え方法を提供することを目的とする。 An object of this invention is to provide the turbine equipment which can suppress the raise of the iron concentration in the feed water supplied to a boiler, and the initial switching method of the oxygen treatment of a turbine equipment in view of the said problem.
上述した課題を解決するための本発明の第1の発明は、熱源からの熱によって蒸気を発生させるボイラと、ボイラの蒸気により作動する蒸気タービンと、蒸気タービンの排気を復水する復水器と、復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備の酸素処理の初期切替え方法において、タービン給水の揮発性物質処理(AVT)から酸素処理(CWT)に最初に切替えるに際し、pH9.3〜9.6の状態で酸素を供給して、給水系統全体に酸素を所定濃度とし、その後pHを8.5〜9.3とすると共に、切替え前後のpHの差が0.3以上であることを特徴とするタービン設備の酸素処理の初期切替え方法にある。 A first invention of the present invention for solving the above-described problems includes a boiler that generates steam by heat from a heat source, a steam turbine that operates by steam of the boiler, and a condenser that condenses the exhaust of the steam turbine. And an initial switching method of the oxygen treatment of the turbine equipment comprising the feed water system for feeding the condensate condensed in the condenser to the exhaust heat recovery boiler side, the oxygen treatment from the volatile substance treatment (AVT) of the turbine feed water When switching to (CWT) for the first time, oxygen is supplied in a state of pH 9.3 to 9.6, oxygen is set to a predetermined concentration throughout the water supply system, and then the pH is adjusted to 8.5 to 9.3. The difference in pH between before and after is 0.3 or more.
第2の発明は、第1の発明において、酸素供給が復水器の出口の一箇所から給水中に注入することを特徴とするタービン設備の酸素処理の初期切替え方法にある。 According to a second aspect of the present invention, in the first aspect of the present invention, there is provided an initial switching method for oxygen treatment of a turbine facility, characterized in that the oxygen supply is injected into the feed water from a single outlet of the condenser.
第3の発明は、熱源からの熱によって蒸気を発生させるボイラと、該ボイラの蒸気により作動する蒸気タービンと、該蒸気タービンからの排気を復水する復水器と、該復水器で凝縮された復水を給水として前記ボイラ側に送給する給水系統と、前記復水器の出口側で給水系統の給水中に酸素を注入する酸素注入部と、前記給水を脱気する脱気器の後流側で給水中の酸素濃度を計測する第1の酸素濃度計と、前記ボイラの出口側でボイラ水中の酸素濃度を計測する第2の酸素濃度計とを具備すると共に、前記タービン給水の揮発性物質処理(AVT)から酸素処理(CWT)に最初に切替えるに際し、pH9.3〜9.6の状態で酸素を供給して、給水系統全体に酸素を所定濃度とし、その後pHを8.5〜9.3とすると共に、切替え前後のpHの差が0.3以上であることを特徴とするタービン設備にある。 According to a third aspect of the present invention, there is provided a boiler that generates steam by heat from a heat source, a steam turbine that is operated by steam of the boiler, a condenser that condenses exhaust gas from the steam turbine, and condensation in the condenser Water supply system for feeding the condensed condensate as feed water to the boiler side, an oxygen injection section for injecting oxygen into the feed water of the water supply system on the outlet side of the condenser, and a deaerator for degassing the feed water A first oxygen concentration meter that measures the oxygen concentration in the feed water on the downstream side, and a second oxygen concentration meter that measures the oxygen concentration in the boiler water on the outlet side of the boiler, and the turbine feed water When first switching from volatile substance treatment (AVT) to oxygen treatment (CWT), oxygen is supplied at a pH of 9.3 to 9.6 to bring the entire water supply system to a predetermined concentration, and then the pH is set to 8 .5 to 9.3 and before and after switching In turbine equipment and a difference H is 0.3 or more.
本発明によれば、給水の水質管理方法をAVTからCWTに最初に切替えるに際し、pHを9.3〜9.6、例えばpH9.5で維持したまま給水中に酸素を注入し、その後pHを8.5〜9.3、例えばpH9.0とすることで、鉄の溶解が抑制されるものとなる。 According to the present invention, when the water quality control method of the feed water is first switched from AVT to CWT, oxygen is injected into the feed water while maintaining the pH at 9.3 to 9.6, for example, pH 9.5, and then the pH is adjusted. By setting the pH to 8.5 to 9.3, for example, pH 9.0, dissolution of iron is suppressed.
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
本発明による実施例に係るタービン設備について、図面を参照して説明する。
図1は、実施例に係るタービン設備の概略図である。図中、前記図4に示した設備と同一構成には同一符号を付して重複した説明は省略する。
A turbine facility according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a turbine facility according to an embodiment. In the figure, the same components as those shown in FIG.
図1に示すように、本実施例にかかるタービン設備10は、熱源からの熱によって蒸気11を発生させるボイラ118と、該ボイラ118の蒸気11により作動する蒸気タービン12と、該蒸気タービン12からの排気を復水する復水器106と、該復水器106で凝縮された復水を給水107として前記ボイラ118側に送給する給水系統Aと、前記復水器106の出口側で給水系統Aの給水107中のpHを調整する薬剤注入部30と、前記復水器106の出口側で給水系統Aの給水107中に酸素を注入する酸素注入部31と、前記給水107を脱気する脱気器110の後流側で給水107中の酸素濃度を計測する第1の酸素濃度計32−1と、前記ボイラ118の出口側でボイラ水中の酸素濃度を計測する第2の酸素濃度計32−2とを具備するものである。
そして、タービン給水の水質処理である揮発性物質処理(AVT)から酸素処理(CWT)に最初に切替えるに際し、pH9.3〜9.6の状態(例えばpH9.5)で酸素を供給して、給水系統全体に酸素を所定濃度とし、その後pHを8.5〜9.3(例えばpH9.0)とすると共に、切替え前後のpHの差が0.3以上となるようにしている。
As shown in FIG. 1, a
And when switching from the volatile substance treatment (AVT) which is the water quality treatment of the turbine feed water to the oxygen treatment (CWT) for the first time, oxygen is supplied in a state of pH 9.3 to 9.6 (for example, pH 9.5), The oxygen is set to a predetermined concentration in the entire water supply system, and then the pH is set to 8.5 to 9.3 (for example, pH 9.0), and the difference in pH before and after switching is set to 0.3 or more.
ここで、本発明でAVTからCWTに最初に切替える際とは、水質管理条件としてAVTを行なっているタービン設備において、第1回目の定期点検等のプラント停止時或いは、AVT水質管理条件で試運転を行なっており、その試運転終了後に、最初にCWTに切替える際のことをいう。 Here, when switching from AVT to CWT for the first time in the present invention, the turbine equipment that is performing AVT as the water quality management condition is when the plant is shut down at the first periodic inspection or the test operation is performed under the AVT water quality management condition. It means that when switching to CWT for the first time after the trial run is completed.
前記給水107中の酸素濃度の確認は、脱気器110の出口側に第1の酸素濃度計32−1を設けると共に、前記ボイラ118と過熱器114との間のボイラ水中の酸素濃度を第2の酸素濃度計32−2で計測し、この第2の酸素濃度計32−2での酸素が所定濃度に達したことを確認してから、薬剤注入部30で供給するpH調整剤(例えばアンモニア)の注入量を変化させて、CWTのpH条件とするようにしている。
The oxygen concentration in the
この結果、従来においてはCWTにおいて、AVTからCWTに切替える際に、pHを例えば9.5から9.0に変化させることによる、鉄溶解度の上昇を抑制することができる。 As a result, in the conventional CWT, when the AVT is switched to the CWT, an increase in iron solubility caused by changing the pH from, for example, 9.5 to 9.0 can be suppressed.
すなわち、本発明では、前記ボイラ118出口に設置した第2の酸素濃度計32−2において、所定濃度(例えば50μg/L)に達していることを確認してから、pHを8.5〜9.3、例えばpH9.0と下げるようにすることで、前記給水107中の鉄溶解を抑制することができるので、給水中の鉄濃度の抑制を図ることができる。
なお、本実施例では、第2の酸素濃度計32−2は前記過熱器114の入口側に設けているが、本発明はこれに限定されるものではなく、前記過熱器114の出口側に設けるようにしてもよい。
That is, in the present invention, after confirming that the second oxygen concentration meter 32-2 installed at the outlet of the boiler 118 has reached a predetermined concentration (for example, 50 μg / L), the pH is adjusted to 8.5-9. .3, for example, by reducing the pH to 9.0, it is possible to suppress iron dissolution in the
In the present embodiment, the second oxygen concentration meter 32-2 is provided on the inlet side of the
この結果、従来では図4に示すように、給水系統Aにおいて、第1の酸素注入部31−1と第2の酸素注入部31−2との二箇所から酸素を注入することを一箇所とすることで設備の低減を図ることができる。 As a result, conventionally, as shown in FIG. 4, in the water supply system A, oxygen is injected from two locations of the first oxygen injection portion 31-1 and the second oxygen injection portion 31-2. By doing so, the equipment can be reduced.
また、酸素が給水系統内に十分に行き亙ってからpHを低下させるので、給水中への鉄の溶解を防止することできる。 In addition, since the pH is lowered after oxygen reaches the water supply system sufficiently, dissolution of iron in the water supply can be prevented.
<試験例>
次に、本発明と従来技術におけるAVTからCWTへの切替え際のpHの変化、第1及び第2の酸素濃度計での酸素濃度の変化、給水中の鉄濃度の変化について試験の結果を図2及び図3に示す。
<Test example>
Next, the test results are shown for the change in pH when switching from AVT to CWT in the present invention and the prior art, the change in oxygen concentration in the first and second oximeters, and the change in iron concentration in the feed water. 2 and FIG.
本発明である実施例においては、AVTからCWTの切替えを所定濃度(50μg/L)となったことを確認してから行なった。この結果、給水107中の鉄濃度は殆ど変化しなかった。
In the embodiment according to the present invention, switching from AVT to CWT was performed after confirming that the concentration reached a predetermined concentration (50 μg / L). As a result, the iron concentration in the
これに対し、従来技術である比較例においては、AVTからCWTの切替えを酸素注入と同時にpHを9.0としていると共に、迅速に給水中の酸素濃度を所定濃度(50μg/L)とするために、最初は200μg/Lの酸素を供給しているので、酸素濃度が上昇すると共に、鉄溶解量が一時的に大幅に増大していた。 On the other hand, in the comparative example which is the prior art, the pH is set to 9.0 simultaneously with the oxygen injection when switching from AVT to CWT, and the oxygen concentration in the feed water is quickly set to a predetermined concentration (50 μg / L). In addition, since 200 μg / L of oxygen was initially supplied, the oxygen concentration increased and the amount of dissolved iron temporarily increased significantly.
以上の結果より、AVTからCWTに切替える場合において、切替え初期においてはpHをAVTの状態で推移し、ボイラ118出口における酸素濃度が所定濃度となったことを確認した後に、pHをCWTの条件とするようにすることで、給水中への鉄の溶解を抑制することができることとなった。 From the above results, in the case of switching from AVT to CWT, in the initial stage of switching, the pH was changed to the AVT state, and after confirming that the oxygen concentration at the boiler 118 outlet became a predetermined concentration, the pH was changed to the CWT condition. By doing so, it became possible to suppress dissolution of iron in the water supply.
以上のように、本発明は、AVTからCWTに切替える場合において、切替え初期においてはpHをAVTの状態で推移させ、ボイラ出口における酸素濃度が所定濃度となったことを確認した後に、pHをCWTの条件とするようにすることで、給水中への鉄の溶解を抑制することができる。 As described above, in the present invention, when switching from AVT to CWT, the pH is changed in the AVT state at the initial stage of switching, and after confirming that the oxygen concentration at the boiler outlet becomes a predetermined concentration, the pH is changed to CWT. By setting it as these conditions, melt | dissolution of the iron to water supply can be suppressed.
10 タービン設備
11 蒸気
118 ボイラ
106 復水器
107 給水
A 給水系統
30 薬剤注入部
31 酸素注入部
32−1 第1の酸素濃度計
32−2 第2の酸素濃度計
DESCRIPTION OF
Claims (3)
タービン給水の揮発性物質処理(AVT)から酸素処理(CWT)に最初に切替えるに際し、
pH9.3〜9.6の状態で酸素を供給して、給水系統全体に酸素を所定濃度とし、その後pHを8.5〜9.3とすると共に、切替え前後のpHの差が0.3以上であることを特徴とするタービン設備の酸素処理の初期切替え方法。 A boiler that generates steam by heat from the heat source, a steam turbine that operates with the steam of the boiler, a condenser that condenses the exhaust of the steam turbine, and the condensate condensed in the condenser is on the exhaust heat recovery boiler side In the initial switching method of oxygen treatment of turbine equipment consisting of a water supply system that feeds
When first switching from volatile treatment (AVT) to oxygen treatment (CWT) for turbine feedwater,
Oxygen is supplied in a state of pH 9.3 to 9.6, oxygen is set to a predetermined concentration throughout the water supply system, pH is then adjusted to 8.5 to 9.3, and the difference in pH before and after switching is 0.3. An initial switching method for oxygen treatment of turbine equipment, which is as described above.
酸素供給が復水器の出口の一箇所から給水中に注入することを特徴とするタービン設備の酸素処理の初期切替え方法。 In claim 1,
An initial oxygen switching method for turbine equipment, characterized in that oxygen supply is injected into feed water from a single outlet of a condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007021679A JP4745990B2 (en) | 2007-01-31 | 2007-01-31 | Turbine equipment and initial switching method for oxygen treatment of turbine equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007021679A JP4745990B2 (en) | 2007-01-31 | 2007-01-31 | Turbine equipment and initial switching method for oxygen treatment of turbine equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008185016A JP2008185016A (en) | 2008-08-14 |
JP4745990B2 true JP4745990B2 (en) | 2011-08-10 |
Family
ID=39728225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007021679A Expired - Fee Related JP4745990B2 (en) | 2007-01-31 | 2007-01-31 | Turbine equipment and initial switching method for oxygen treatment of turbine equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4745990B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8277726B2 (en) * | 2010-03-17 | 2012-10-02 | Babcock & Wilcox Power Generation Group, Inc. | Hybrid water treatment for high temperature steam generators |
JP6355529B2 (en) * | 2014-11-04 | 2018-07-11 | 三菱日立パワーシステムズ株式会社 | Power plant and power plant operating method |
CN109000217B (en) * | 2018-09-26 | 2023-06-20 | 西安热工研究院有限公司 | A full cycle system and method for adding ammonia to power plant boiler feed water |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0743093B2 (en) * | 1986-04-18 | 1995-05-15 | 九州電力株式会社 | Boiler feedwater treatment method |
JPS62248903A (en) * | 1986-04-22 | 1987-10-29 | 三菱重工業株式会社 | Method of treating boiler feedwater |
JPH0921504A (en) * | 1995-07-06 | 1997-01-21 | Mitsubishi Heavy Ind Ltd | Oxygen-injecting water treatment method in thermal power plant |
JPH0933006A (en) * | 1995-07-21 | 1997-02-07 | Mitsubishi Heavy Ind Ltd | Feed water treatment method for thernal power plant |
JPH09299943A (en) * | 1996-05-20 | 1997-11-25 | Mitsubishi Heavy Ind Ltd | Oxygen treatment of drum type boiler feed water |
JP3287243B2 (en) * | 1996-11-28 | 2002-06-04 | 栗田工業株式会社 | Oxygen scavenger |
DE19736885A1 (en) * | 1997-08-25 | 1999-03-04 | Siemens Ag | Steam generator, in particular waste heat steam generator and method for operating this steam generator |
JPH11241806A (en) * | 1997-12-25 | 1999-09-07 | Nikkiso Co Ltd | Oxygen gas injection control device |
JP4233746B2 (en) * | 2000-12-08 | 2009-03-04 | 三菱重工業株式会社 | Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method |
JP2003097801A (en) * | 2001-09-25 | 2003-04-03 | Babcock Hitachi Kk | Water treating device and water treating method for power generating plant |
JP2003254503A (en) * | 2002-02-27 | 2003-09-10 | Mitsubishi Heavy Ind Ltd | Supply water quality monitoring method and supply water quality monitoring device of power generation plant |
JP2005042732A (en) * | 2004-08-16 | 2005-02-17 | Hitachi Ltd | Power plant |
JP4442764B2 (en) * | 2004-11-30 | 2010-03-31 | バブコック日立株式会社 | Drum boiler and exhaust heat recovery boiler equipped with drum boiler |
-
2007
- 2007-01-31 JP JP2007021679A patent/JP4745990B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008185016A (en) | 2008-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5651580B2 (en) | Water quality management method and system for power plant | |
JP5637867B2 (en) | Plant operating method and system | |
JP5230239B2 (en) | Combined water treatment method for turbine equipment | |
JP4745990B2 (en) | Turbine equipment and initial switching method for oxygen treatment of turbine equipment | |
JP6148815B2 (en) | Hybrid water treatment for high temperature steam generators. | |
WO2016139837A1 (en) | Method for cleaning furnace wall tube of once-through boiler | |
JP2010266131A (en) | Steam generator scale adhesion suppressing method | |
JP7132162B2 (en) | Corrosion suppression method for carbon steel piping | |
JP4167920B2 (en) | Chemical decontamination method | |
JPH11236689A (en) | Water treating apparatus for power generating plant and water treatment | |
JP2003097801A (en) | Water treating device and water treating method for power generating plant | |
JP2004198006A (en) | Iron ion crystallization restricting system and superheated steam plant | |
JPS6151758B2 (en) | ||
JP6868545B2 (en) | Corrosion control method for carbon steel parts of plants | |
Drexler et al. | Water chemistry operation experience and steam generator maintenance measures in PWRs | |
JPH11304993A (en) | Turbine equipment for power generation | |
JP7232702B2 (en) | Pressurized water nuclear plant and method of operating pressurized water nuclear plant | |
JP2007064501A (en) | Steaming method for boiler plant, boiler plant, and steaming device for boiler plant | |
JP2010216762A (en) | Method of preventing corrosion of water supply line and condensate line of high-pressure boiler system | |
JP3691019B2 (en) | Power plant cleanup operation device and operation method | |
JP2007292414A (en) | Combined cycle power generation facility and water quality management method for combined cycle power generation facility | |
JPH10197685A (en) | Operating method of nuclear power plant and nuclear power plant | |
CN106560641A (en) | Piping Member, Nitrogen Monoxide Cracking Unit, And Power Generation System | |
JP6076668B2 (en) | PWR power plant secondary cooling system pipe thinning suppression system and method | |
JP2002098306A (en) | Boiler equipment, and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110512 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |