[go: up one dir, main page]

JP4743036B2 - Leak sensor device - Google Patents

Leak sensor device Download PDF

Info

Publication number
JP4743036B2
JP4743036B2 JP2006203540A JP2006203540A JP4743036B2 JP 4743036 B2 JP4743036 B2 JP 4743036B2 JP 2006203540 A JP2006203540 A JP 2006203540A JP 2006203540 A JP2006203540 A JP 2006203540A JP 4743036 B2 JP4743036 B2 JP 4743036B2
Authority
JP
Japan
Prior art keywords
leakage
phase change
change amount
parallel
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006203540A
Other languages
Japanese (ja)
Other versions
JP2008032428A (en
Inventor
豪 竹内
博 徳永
浩一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2006203540A priority Critical patent/JP4743036B2/en
Publication of JP2008032428A publication Critical patent/JP2008032428A/en
Application granted granted Critical
Publication of JP4743036B2 publication Critical patent/JP4743036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は生産ラインなどの設備から漏れる液体を検知する漏液センサ装置に係り、特にパイプラインや半導体工場床下に沿って平行に配置した平行電線路に流れる電流が漏液によって変化する位相変化量を検出し、漏液位置を特定する漏液センサ装置に関する。   The present invention relates to a leakage sensor device that detects liquid leaking from equipment such as a production line, and in particular, the amount of phase change in which the current flowing through parallel electric wires arranged in parallel along the pipeline or under the floor of a semiconductor factory changes due to leakage. The present invention relates to a liquid leakage sensor device that detects a liquid leakage and identifies a liquid leakage position.

従来の漏液センサ装置は、「特許文献1」(漏液検知装置)に開示されているように、相互に絶縁され、ほぼ平行に配置された第1および第2の導体から成る検知線を有し、少なくとも第2の導体を長さ方向または区間毎に一様な導体抵抗を有する位置検知用導体として成る検知線と、この検知線の片端に接続され、第1の導体側を上流側として定電流を供給する定電流電源と、電圧測定手段と、判定手段とを備え、漏液時に定電流電源から供給される定電流によって位置検知用導体の漏液位置から近端または遠端までの電圧降下値を電圧測定手段によって測定し、測定される電圧値から判定手段が漏液位置を算定するものであって、定電流電源は、所定値以下のデューティ比を有し、ピーク値が一定のパルス電流を発生するパルス電源であり、電圧測定手段は、パルス電圧のピーク値を測定するパルス電圧測定手段で構成されている。   As disclosed in "Patent Document 1" (leakage detection device), a conventional leakage sensor device has a detection line composed of first and second conductors that are insulated from each other and arranged substantially in parallel. A detection line as a position detection conductor having at least a second conductor having a uniform conductor resistance in the length direction or every section, and connected to one end of the detection line, the first conductor side being the upstream side As a constant current power source for supplying a constant current, a voltage measuring means, and a judging means, and from the leak position of the position detection conductor to the near end or the far end by a constant current supplied from the constant current power supply at the time of leak The voltage drop value is measured by the voltage measuring means, and the determining means calculates the leak position from the measured voltage value. The constant current power source has a duty ratio equal to or less than a predetermined value, and the peak value is A pulse power supply that generates a constant pulse current. Voltage measuring means is composed of a pulse voltage measuring means for measuring the peak value of the pulse voltage.

上記のように、定電流電源が所定値以下のデューティ比を有し、ピーク値が一定のパルス電流を発生するパルス電源とし、電圧測定手段がパルス電圧のピーク値を測定するパルス電圧測定手段としたので、漏液の分極を生じることなく、パルス電流のピーク値が短時間に真の値に安定し、漏液位置を正確に測定できるものである。
特開平7−113719号公報(請求項1、図4を参照)
As described above, the constant current power source is a pulse power source that generates a pulse current having a duty ratio equal to or less than a predetermined value and a constant peak value, and the voltage measuring unit is a pulse voltage measuring unit that measures the peak value of the pulse voltage; Therefore, the peak value of the pulse current is stabilized at a true value in a short time without causing the leakage of the liquid, and the position of the liquid leakage can be accurately measured.
Japanese Patent Laid-Open No. 7-113719 (refer to claim 1 and FIG. 4)

しかしながら、「特許文献1」(漏液検知装置)に開示された漏液センサ装置は、パルス電流によって漏液位置から近端または遠端までの電圧降下を発生させるため、第2の導体を長さ方向または区間ごとに一様な導体抵抗を有する複数の抵抗体で構成するため、漏液位置を高精度に検出する場合には、第2の導体に多くの抵抗体を設けねばならず、抵抗体の部品点数の増加を招く課題がある。   However, since the leak sensor device disclosed in “Patent Document 1” (leak detector) generates a voltage drop from the leak position to the near end or the far end by a pulse current, the second conductor is long. Since it is composed of a plurality of resistors having a uniform conductor resistance in each direction or section, when detecting the leak position with high accuracy, a lot of resistors must be provided on the second conductor, There exists a subject which causes the increase in the number of parts of a resistor.

また、「特許文献1」に開示された漏液センサ装置は、漏液位置から近端または遠端までの電圧降下を測定するため、第2の導体の遠端から近端まで、漏液に溶解しない絶縁層で覆った導体が必要となり、1本の漏液に溶解しない絶縁層で覆った導体(線材)を、漏液で溶解する絶縁層で覆われた第1および第2の導体(線材)から独立して設けなければならないため、線材が3本必要となってコストアップを招き、線材の敷設に工数が発生する課題がある。   In addition, the leak sensor device disclosed in “Patent Document 1” measures the voltage drop from the leak position to the near end or the far end, and therefore leaks from the far end to the near end of the second conductor. The conductor covered with the insulating layer which does not melt | dissolve is needed, and the conductor (wire material) covered with the insulating layer which does not melt | dissolve in one liquid leak is changed into the 1st and 2nd conductor ( Therefore, three wires are required, resulting in an increase in cost, and there is a problem that man-hours are required for laying the wire.

さらに、「特許文献1」に開示された漏液センサ装置は、漏液位置と第2導体の近端または遠端との間の電圧降下を切替えて測定するためのスイッチ手段が必要とされ、またスイッチ手段を切替える操作が発生する課題もある。   Furthermore, the leak sensor device disclosed in “Patent Document 1” requires switch means for switching and measuring the voltage drop between the leak position and the near end or far end of the second conductor, There is also a problem that an operation for switching the switch means occurs.

この発明はこのような課題を解決するためになされたもので、その目的は平行2線の電線路間に正弦波の高周波電圧を印加して、漏液の発生しない初期電流の位相を測定しておき、漏液が発生して電線路に流れる漏液時電流の位相を検出し、漏液時電流の位相と初期電流の位相の偏差である位相変化量から漏液位置をピンポイントで特定可能な漏液センサ装置を提供することにある。   The present invention has been made to solve such a problem, and its object is to apply a sinusoidal high-frequency voltage between two parallel wire lines and measure the phase of the initial current at which no leakage occurs. Detecting the phase of the leakage current that flows through the electric line when leakage occurs, and pinpointing the leakage position from the amount of phase change that is the deviation between the leakage current phase and the initial current phase The object is to provide a possible liquid leakage sensor device.

前記課題を解決するためこの発明に係る漏液センサ装置は、 2線の平行電線を絶縁体で被覆し、絶縁体の中央を平行電線の延長方向に沿って連続溝または間歇溝を形成して、溝または桝状の溝に貯えられる漏液によって平行電線間に静電容量を発生する漏液センサと、漏液センサの給電端に高周波の正弦波電圧を印加し、漏液センサに発生した静電容量に基づいて平行電線に流れる高周波の正弦波電流の位相変化量を検出し、検出した位相変化量に対応した平行電線の給電端から漏液発生位置までの距離を判定する検出/判定手段と、を有して構成し、更に、検出/判定手段が、平行電線の給電端に高周波の正弦波電圧を供給する基準電圧部と、漏液の無い初期状態に、平行電線に流れる初期電流を検出し、正弦波電圧に変換する電流検出部と、基準電圧部から供給される正弦波電圧と電流検出部から供給される正弦波電圧の位相および振幅を調整してキャンセルするキャンセル部と、 漏液時に流れる漏液時電流の位相変化量を検出する位相変化量検出部と、位相変化量検出部からの位相変化量を積分し、直流電圧で出力する位相−電圧変換部と、基準クロックから高周波の正弦波電圧を発生するとともに、位相変化量を検出するトリガパルスを発生するクロック処理部と、を備えたことを特徴とする。
In order to solve the above-described problems, a leak sensor device according to the present invention includes two parallel wires covered with an insulator, and the center of the insulator is formed with a continuous groove or an intermittent groove along the extending direction of the parallel wires. A leakage sensor that generates a capacitance between parallel wires due to leakage stored in a groove or bowl-shaped groove, and a high-frequency sine wave voltage applied to the power supply end of the leakage sensor. Detection / determination that detects the phase change amount of the high-frequency sine wave current flowing in the parallel wires based on the capacitance and determines the distance from the feeding end of the parallel wire to the leak occurrence position corresponding to the detected phase change amount And a detection / judgment means for supplying the high-frequency sine wave voltage to the feeding ends of the parallel wires and an initial state of flowing through the parallel wires in a liquid-free initial state. Current detector that detects current and converts it to sine wave voltage And a cancellation unit that adjusts and cancels the phase and amplitude of the sine wave voltage supplied from the reference voltage unit and the sine wave voltage supplied from the current detection unit, and the phase change amount of the leakage current that flows at the time of leakage The phase change detection unit to detect, the phase change from the phase change detection unit are integrated, and a phase-voltage conversion unit that outputs a DC voltage, and a high-frequency sine wave voltage is generated from the reference clock, and the phase change And a clock processor for generating a trigger pulse for detecting the quantity .

この発明に係る漏液センサ装置は、2線の平行電線を絶縁体で被覆し、絶縁体の中央を平行電線の延長方向に沿って連続溝または間歇溝を形成して、連続溝または間歇溝に貯えられる漏液によって平行電線間に静電容量を発生する漏液センサと、漏液センサの給電端に高周波の正弦波電圧を印加し、漏液センサに発生した静電容量に基づいて平行電線に流れる高周波の正弦波電流の初期電流位相からの位相変化量を検出し、検出した位相変化量に対応した平行電線の給電端から漏液発生位置までの距離を判定する検出/判定手段とを備えたので、漏液センサは、平行電線を絶縁体で被覆した単純な構成で、漏液に伴う平行電線間の静電容量を発生し、平行電線の距離に対応した高周波の正弦波電流の位相変化量を生じ、検出/判定手段は、高周波の正弦波電流の位相変化量を検出し、この位相変化量を平行電線の給電端から漏液発生位置までの距離として判定するので、漏液位置を平行電線上のピンポイントとして判定することができる。更に、この発明に係る前記検出/判定手段は、平行電線の給電端に高周波の正弦波電圧を供給する基準電圧部と、漏液の無い初期状態に、平行電線に流れる初期電流を検出し、正弦波電圧に変換する電流検出部と、基準電圧部から供給される正弦波電圧と電流検出部から供給される正弦波電圧の位相および振幅を調整してキャンセルするキャンセル部と、漏液時に流れる漏液時電流の位相変化量を検出する位相変化量検出部と、位相変化量検出部からの位相変化量を積分し、直流電圧で出力する位相−電圧変換部と、基準クロックから高周波の正弦波電圧を発生するとともに、位相変化量を検出するトリガパルスを発生するクロック処理部とを備えたので、平行線路を流れる漏液の無い初期電流の位相をキャンセルし、直流電圧0vで出力し、漏液時電流の位相変化量をパルス幅で抽出し、このパルス幅を積分して、位相変化量に対応した直流電圧を出力することができる。
The liquid leakage sensor device according to the present invention covers two parallel electric wires with an insulator, and forms a continuous groove or intermittent groove along the extending direction of the parallel electric wire at the center of the insulator, thereby forming the continuous groove or intermittent groove. A leakage sensor that generates capacitance between parallel wires due to leakage stored in the battery, and a high-frequency sine wave voltage applied to the power supply end of the leakage sensor, and parallel based on the capacitance generated in the leakage sensor Detection / determination means for detecting a phase change amount from an initial current phase of a high-frequency sine wave current flowing in the electric wire, and determining a distance from a feeding end of the parallel wire corresponding to the detected phase change amount to a leakage occurrence position; Therefore, the leak sensor has a simple configuration in which parallel wires are covered with an insulator, generates a capacitance between the parallel wires due to the leak, and a high-frequency sine wave current corresponding to the distance of the parallel wires. Phase detection amount, and the detection / determination means is high. Since the phase change amount of the sinusoidal current of the wave is detected and this phase change amount is determined as the distance from the feeding end of the parallel wire to the leak occurrence position, the leak position is determined as a pin point on the parallel wire. Can do. Further, the detection / determination means according to the present invention detects a reference voltage unit that supplies a high-frequency sine wave voltage to the feeding end of the parallel wires, and an initial current that flows through the parallel wires in an initial state without leakage, A current detection unit that converts to a sine wave voltage, a cancellation unit that adjusts and cancels the phase and amplitude of the sine wave voltage supplied from the reference voltage unit and the sine wave voltage supplied from the current detection unit, and flows when the liquid leaks Phase change amount detection unit for detecting the phase change amount of the current at the time of leakage, phase-voltage conversion unit for integrating the phase change amount from the phase change amount detection unit and outputting it as a DC voltage, and a high frequency sine from the reference clock In addition to generating a wave voltage and a clock processing unit that generates a trigger pulse that detects the amount of phase change, the phase of the initial current without leakage flowing through the parallel line is canceled and output at a DC voltage of 0 v The phase change amount of leakage when the current extracted by the pulse width, by integrating the pulse width, it is possible to output a DC voltage corresponding to the phase variation amount.

また、この発明に係る平行電線は、遠端を平行電線の特性インピーダンスで終端することを特徴とする。   The parallel wire according to the present invention is characterized in that the far end is terminated with the characteristic impedance of the parallel wire.

この発明に係る平行電線は、遠端を平行電線の特性インピーダンスで終端するので、平行電線のインピーダンスと特性インピーダンスとの間でマッチングが取れ、終端の反射を最小にして、位相変化量を正確に検出することができる。   In the parallel wire according to the present invention, the far end is terminated with the characteristic impedance of the parallel wire, so that the matching between the impedance of the parallel wire and the characteristic impedance is obtained, the reflection at the end is minimized, and the phase change amount is accurately determined. Can be detected.

さらに、この発明に係る位相変化量は、漏液によって平行電線間に発生する静電容量に拘わりなく、静電容量が発生する平行電線の給電端からの距離に対応することを特徴とする。   Furthermore, the phase change amount according to the present invention is characterized by corresponding to the distance from the feeding end of the parallel wire where the capacitance is generated regardless of the capacitance generated between the parallel wires due to leakage.

この発明に係る位相変化量は、漏液によって平行電線間に発生する静電容量に拘わりなく、静電容量が発生する平行電線の給電端からの距離に対応するので、漏液が発生する平行電線上の位置をピンポイントで特定することができる。   The phase change amount according to the present invention corresponds to the distance from the feeding end of the parallel wire where the capacitance is generated regardless of the capacitance generated between the parallel wires due to the leakage, and thus the parallel generation where the leakage occurs. The position on the electric wire can be pinpointed.

さらに、この発明に係る検出/判定手段は、位相変化量検出部からの位相変化量を給電端から漏液が発生した距離に変換する位相変化量−距離変換部を備えたことを特徴とする。   Furthermore, the detection / determination means according to the present invention includes a phase change-distance conversion unit that converts the phase change amount from the phase change amount detection unit into a distance at which leakage occurs from the power supply end. .

この発明に係る検出/判定手段は、位相変化量検出部からの位相変化量を給電端から漏液が発生した距離に変換する位相変化量−距離変換部を備えたので、漏液センサの給電端から液漏れが発生した平行電線上の位置を特定することができる。   Since the detection / judgment means according to the present invention includes the phase change amount-distance conversion unit that converts the phase change amount from the phase change amount detection unit to the distance at which the liquid leakage occurs from the power supply end, the power supply of the leak sensor The position on the parallel electric wire where the liquid leakage has occurred from the end can be specified.

この発明に係る漏液センサ装置は、2線の平行電線を絶縁体で被覆し、絶縁体の中央を平行電線の延長方向に沿って連続溝または間歇溝を形成して、連続溝または間歇溝に貯えられる漏液によって平行電線間に静電容量を発生する漏液センサと、漏液センサの給電端に高周波の正弦波電圧を印加し、漏液センサに発生した静電容量に基づいて平行電線に流れる高周波の正弦波電流の位相変化量を検出し、検出した位相変化量に対応した平行電線の給電端から漏液発生位置までの距離を判定する検出/判定手段とを備えたので、漏液センサは、平行電線を絶縁体で被覆した単純な構成で、漏液に伴う平行電線間の静電容量を発生し、平行電線の距離に対応した高周波の正弦波電流の位相変化量を生じ、検出/判定手段は、高周波の正弦波電流の位相変化量を検出し、この位相変化量を平行電線の給電端から漏液発生位置までの距離として判定するので、漏液位置を平行電線上のピンポイントとして判定することができ、平行電線の単純な構成の漏液センサで、漏液位置を高精度に特定することができる。   The liquid leakage sensor device according to the present invention covers two parallel electric wires with an insulator, and forms a continuous groove or intermittent groove along the extending direction of the parallel electric wire at the center of the insulator, thereby forming the continuous groove or intermittent groove. A leakage sensor that generates capacitance between parallel wires due to leakage stored in the battery, and a high-frequency sine wave voltage applied to the power supply end of the leakage sensor, and parallel based on the capacitance generated in the leakage sensor Since the phase change amount of the high-frequency sine wave current flowing through the electric wire is detected, and the detection / determination means for determining the distance from the feeding end of the parallel electric wire corresponding to the detected phase change amount to the position where the leakage occurs, The leak sensor has a simple configuration in which the parallel wires are covered with an insulator, generates capacitance between the parallel wires due to the leak, and measures the phase change of the high-frequency sine wave current corresponding to the distance of the parallel wires. The detection / determination means generates a high-frequency sine wave current Since the phase change amount is detected and this phase change amount is determined as the distance from the feeding end of the parallel wire to the leak occurrence position, the leak position can be determined as a pinpoint on the parallel wire, With a leak sensor with a simple configuration, the leak position can be specified with high accuracy.

また、この発明に係る平行電線は、終端を平行電線の特性インピーダンスで終端するので、平行電線のインピーダンスと特性インピーダンスとの間でマッチングが取れ、終端の反射を最小にして、位相変化量を正確に検出することができ、位相変化量に対応した平行電線上の漏液位置を特定することができる。   In addition, since the parallel wire according to the present invention terminates at the characteristic impedance of the parallel wire, the matching between the impedance of the parallel wire and the characteristic impedance is obtained, the reflection at the end is minimized, and the phase change amount is accurately determined. It is possible to detect the liquid leakage position on the parallel wire corresponding to the phase change amount.

さらに、この発明に係る位相変化量は、漏液によって平行電線間に発生する静電容量に拘わりなく、静電容量が発生する平行電線の給電端からの距離に対応するので、漏液が発生する平行電線上の位置をピンポイントで特定することができ、漏液センサを平行電線の単純な構成にして、漏液位置を高精度に検出することができる。   Furthermore, the amount of phase change according to the present invention corresponds to the distance from the feeding end of the parallel wire where the capacitance is generated regardless of the capacitance generated between the parallel wires due to the leakage, so that leakage occurs. The position on the parallel electric wire can be pinpointed, and the liquid leakage sensor can be detected with high accuracy by making the liquid leakage sensor a simple configuration of the parallel electric wire.

また、この発明に係る検出/判定手段は、平行電線の給電端に高周波の正弦波電圧を供給する基準電圧部と、漏液の無い初期状態に、平行電線に流れる初期電流を検出し、正弦波電圧に変換する電流検出部と、基準電圧部から供給される正弦波電圧と電流検出部から供給される正弦波電圧の位相および振幅を調整してキャンセルするキャンセル部と、漏液時に流れる漏液時電流の位相変化量を検出する位相変化量検出部と、位相変化量検出部からの位相変化量を積分し、直流電圧で出力する位相−電圧変換部と、基準クロックから高周波の正弦波電圧を発生するとともに、位相変化量を検出するトリガパルスを発生するクロック処理部とを備えたので、平行線路を流れる漏液の無い初期電流の位相をキャンセルし、直流電圧0vで出力し、漏液時電流の位相変化量をパルス幅で抽出し、このパルス幅を積分して、位相変化量に対応した直流電圧を出力することができ、直流電圧の出力により、漏液の発生を認識するとともに、直流電圧の出力に対応した平行電線上の漏液位置を正確に特定することができる。   Further, the detection / judgment means according to the present invention detects the initial current flowing through the parallel wires in a reference voltage unit that supplies a high-frequency sine wave voltage to the feeding ends of the parallel wires and an initial state without leakage, and the sine A current detection unit for converting to a wave voltage, a cancel unit for adjusting and canceling the phase and amplitude of the sine wave voltage supplied from the reference voltage unit and the sine wave voltage supplied from the current detection unit, Phase change amount detection unit for detecting the phase change amount of the liquid current, phase-voltage conversion unit for integrating the phase change amount from the phase change amount detection unit and outputting it as a DC voltage, and a high frequency sine wave from the reference clock In addition to generating a voltage and a clock processing unit for generating a trigger pulse for detecting the amount of phase change, the phase of the initial current without leakage flowing through the parallel line is canceled, and output at a DC voltage of 0 v, The phase change amount of the hourly current is extracted by the pulse width, and this pulse width can be integrated to output a DC voltage corresponding to the phase change amount, and the occurrence of liquid leakage is recognized by the output of the DC voltage. The position of the liquid leakage on the parallel electric wires corresponding to the output of the DC voltage can be accurately specified.

さらに、この発明に係る検出/判定手段は、位相変化量検出部からの位相変化量を給電端から漏液が発生した距離に変換する位相変化量−距離変換部を備えたので、漏液センサの給電端から液漏れが発生した平行電線上の位置を特定することができ、漏液が発生した漏液位置の距離をピンポイントで認識することができる。   Further, the detection / judgment means according to the present invention includes the phase change amount-distance conversion unit that converts the phase change amount from the phase change amount detection unit into the distance at which the liquid leakage has occurred from the power supply end. The position on the parallel electric wire where the liquid leakage has occurred can be specified from the power feeding end of the battery, and the distance of the liquid leakage position where the liquid leakage has occurred can be recognized pinpoint.

以下、本発明の実施の形態を添付図面に基づいて説明する。なお、本発明は半導体工場内の床下やパイプラインなどからの漏液発生時に、漏液位置を特定するため、絶縁体で被覆された2線式の平行電線を床下やパイプの下側に沿って平行に配置し、漏液によって平行電線間に発生する静電容量に伴って平行電線に流れる高周波の正弦波電流の位相変化量を検出し、この位相変化量に対応した平行電線の給電端から漏液位置までの距離を判定して、漏液位置を特定するものである。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in the present invention, in order to identify the position of leakage when leakage occurs from under the floor in a semiconductor factory or from a pipeline, a two-wire parallel wire covered with an insulator is placed under the floor or under the pipe. The phase change amount of the high-frequency sine wave current flowing in the parallel wires due to the capacitance generated between the parallel wires due to liquid leakage is detected, and the feed ends of the parallel wires corresponding to this phase change amount are detected. The distance from the liquid leakage position to the liquid leakage position is determined to identify the liquid leakage position.

図1はこの発明に係る漏液センサ装置の実施の形態基本構成図である。図1において、漏液センサ装置1は、漏液センサ2と、検出/判定手段3とから構成されている。   FIG. 1 is a basic configuration diagram of an embodiment of a liquid leakage sensor device according to the present invention. In FIG. 1, a liquid leakage sensor device 1 includes a liquid leakage sensor 2 and detection / determination means 3.

漏液センサ2は、導体C1.C2の2線の平行電線ELに、絶縁体Ioで被覆が施されており、平行電線ELの給電端A1−A2に高周波の正弦波電圧Vaが印加され、平行電線ELの遠端B1−B2を平行電線ELの特性インピーダンスZoで終端された構成を有する。平行電線ELを特性インピーダンスZoで終端することにより、平行電線ELのインピーダンスと特性インピーダンスZoとの間でインピーダンスマッチングを取ることができ、終端からの高周波の正弦波電圧Vaの反射を最小にすることができる。   The leak sensor 2 includes conductors C1. The two parallel wires EL of C2 are coated with an insulator Io, a high-frequency sine wave voltage Va is applied to the feeding end A1-A2 of the parallel wires EL, and the far ends B1-B2 of the parallel wires EL Is terminated with the characteristic impedance Zo of the parallel electric wire EL. By terminating the parallel wire EL with the characteristic impedance Zo, impedance matching can be achieved between the impedance of the parallel wire EL and the characteristic impedance Zo, and the reflection of the high-frequency sine wave voltage Va from the end is minimized. Can do.

また、漏液センサ2は、半導体製造工場内のウェハー洗浄水を流すパイプラインや原子力発電所の原子炉の冷却水を流すパイプライン等に沿って平行に配置され、パイプラインから洗浄水や冷却水が漏れた場合に、洗浄水や冷却水の漏液が絶縁体Ioを濡らすように、または絶縁体Io上に貯まるように構成される。   In addition, the leak sensor 2 is arranged in parallel along a pipeline for supplying wafer cleaning water in a semiconductor manufacturing factory, a pipeline for supplying cooling water for a nuclear power plant nuclear reactor, and the like. When water leaks, the leakage of cleaning water or cooling water is configured to wet the insulator Io or to be accumulated on the insulator Io.

なお、漏液センサ2は、漏液が無い場合、雨水や結露などに晒されない環境に適用されるものとする。   In addition, the leak sensor 2 shall be applied to the environment which is not exposed to rain water, dew condensation, etc., when there is no leak.

このような状態において、漏液センサ2の給電端A1−A2に高周波の正弦波電圧Vaが印加されると、洗浄水や冷却水の漏れが無い初期状態には、平行電線ELに高周波の正弦波初期電流INが流れる。   In such a state, when a high-frequency sine wave voltage Va is applied to the power feeding end A1-A2 of the liquid leakage sensor 2, a high-frequency sine is applied to the parallel wires EL in an initial state where there is no leakage of cleaning water or cooling water. A wave initial current IN flows.

この初期電流INには、平行電線ELの導体C1.C2および絶縁体Ioの誘電率εNにより決定される静電容量CNに伴って発生する位相θ1が現れる。   This initial current IN includes conductors C1. The phase θ1 generated with the capacitance CN determined by C2 and the dielectric constant εN of the insulator Io appears.

上記初期状態から、漏液センサ2の給電端A1−A2から任意の距離XSの位置(漏液位置P)に漏液が発生すると、平行電線ELに高周波の正弦波漏液時電流IRが流れる。   When leakage occurs at a position (leakage position P) at an arbitrary distance XS from the power feed end A1-A2 of the leakage sensor 2 from the initial state, a high-frequency sinusoidal leakage current IR flows through the parallel wire EL. .

この漏液時電流IRには、漏液位置Pの導体C1.C2および絶縁体Ioに漏液が貯まることにより、この部分(漏液位置P)の誘電率が誘電率εRに変化すること伴って静電容量Cmが発生し、静電容量Cmの発生に伴って変化する漏液時位相θ2が現れる。ただし、漏液時位相θ2は、初期電流INの初期位相θ1と漏液に伴い発生する静電容量Cmに起因する位相変化量φの和として現れる。   The leakage current I R includes the conductors C 1. By storing liquid leakage in C2 and the insulator Io, the capacitance Cm is generated as the dielectric constant of this portion (leakage position P) changes to the dielectric constant εR, and as the capacitance Cm is generated. The leaked phase θ2 appears. However, the leakage phase θ2 appears as the sum of the initial phase θ1 of the initial current IN and the phase change φ due to the capacitance Cm generated due to leakage.

なお、漏液発生に伴う漏液時電流IRの位相変化量φは、後述するように、漏液発生に伴う静電容量Cmが所定範囲内にある場合には、静電容量Cmに拘わりなく、給電端A1−A2から漏液位置Pまでの距離XSによって決定されることになる。   As will be described later, the phase change amount φ of the leakage current IR due to the occurrence of leakage is not related to the capacitance Cm when the capacitance Cm due to leakage is within a predetermined range. The distance XS from the power feeding end A1-A2 to the liquid leakage position P is determined.

検出/判定手段3は、漏液センサ2の給電端A1−A2に高周波の正弦波電圧Vaを印加し、漏液センサ2に発生した静電容量Cmに基づいて平行電線ELに流れる高周波の正弦波電流(漏液時電流IR)の位相変化量φを検出し、検出した位相変化量φに対応した平行電線ELの給電端A1−A2から漏液発生位置(漏液位置P)までの距離(XS)を判定する。   The detection / judgment means 3 applies a high-frequency sine wave voltage Va to the power feeding terminals A 1 -A 2 of the liquid leakage sensor 2, and the high-frequency sine flowing in the parallel electric wire EL based on the capacitance Cm generated in the liquid leakage sensor 2. The phase change amount φ of the wave current (leakage current IR) is detected, and the distance from the feed end A1-A2 of the parallel wire EL corresponding to the detected phase change φ to the leak occurrence position (leakage position P) (XS) is determined.

図2はこの発明に係る漏液センサの一実施の形態構成図である。図2−aに漏液センサの断面図、図2−bに連続溝を有する漏液センサ、図2−cに間歇溝を有する漏液センサを示す。漏液センサ2は、平行電線ELを形成する導体C1と.導体C2と、導体C1.C2を被覆する絶縁体Ioとから構成される。   FIG. 2 is a configuration diagram of an embodiment of a liquid leakage sensor according to the present invention. FIG. 2-a shows a cross-sectional view of the liquid leakage sensor, FIG. 2-b shows a liquid leakage sensor having a continuous groove, and FIG. 2-c shows a liquid leakage sensor having an intermittent groove. The liquid leakage sensor 2 includes conductors C1 and. Conductor C2 and conductors C1. And an insulator Io covering C2.

絶縁体Ioは、漏液に溶解しない材料で構成され、中央を平行電線ELの延長方向に沿って連続溝M1、または間歇溝M2を形成し、給電端A1−A2からの距離XSの漏液位置Pに液漏れが発生すると、対象となる漏液(例えば、洗浄水や冷却水)を連続溝M1または間歇溝M2に貯えられるようにする。   The insulator Io is made of a material that does not dissolve in the liquid leakage, and forms a continuous groove M1 or an intermittent groove M2 in the center along the extending direction of the parallel electric wires EL, and the liquid leakage at a distance XS from the power feeding end A1-A2. When liquid leakage occurs at the position P, the target liquid leakage (for example, cleaning water or cooling water) is stored in the continuous groove M1 or the intermittent groove M2.

漏液が無い初期状態には、漏液センサ2は、平行電線ELの導体C1.C2および絶縁体Ioの誘電率εNにより決定される静電容量CNが発生する。   In the initial state where there is no leakage, the leakage sensor 2 is connected to the conductors C1. A capacitance CN determined by C2 and the dielectric constant εN of the insulator Io is generated.

一方、漏液が絶縁体Ioの連続溝M1または間歇溝M2に蓄えられると、漏液位置Pの近傍には、漏液を含む絶縁体Ioの誘電率が誘電率εRに変化し、漏液に伴う静電容量Cmが発生する。   On the other hand, when the leaked liquid is stored in the continuous groove M1 or the intermittent groove M2 of the insulator Io, the dielectric constant of the insulator Io including the leak changes to the dielectric constant εR in the vicinity of the leak position P, A capacitance Cm is generated.

漏液に伴って発生する静電容量Cmは、図2−bに示す連続溝M1では、漏液位置Pを中心にして漏液が広がるため、漏液の貯えられる範囲に応じて増加することになる。   The electrostatic capacity Cm generated due to the leakage increases in the continuous groove M1 shown in FIG. 2B, since the leakage spreads around the leakage position P, and therefore increases according to the range in which the leakage is stored. become.

一方、図2−cに示す間歇溝M2では、漏液位置Pの間歇溝M2に漏液が貯えられるため、間歇溝M2の大きさで決まる静電容量Cmとなる。   On the other hand, in the intermittent groove M2 shown in FIG. 2C, since the leakage is stored in the intermittent groove M2 in the leakage position P, the capacitance Cm is determined by the size of the intermittent groove M2.

漏液の無い初期状態に、漏液センサ2に流れる高周波の正弦波初期電流INは、静電容量CNにより、初期位相θ1が現れる。   The initial phase θ1 of the high-frequency sine wave initial current IN flowing through the leak sensor 2 appears in the initial state without leak due to the capacitance CN.

一方、漏液時に、漏液センサ2に流れる高周波の正弦波漏液時電流IRは、静電容量CNと漏液が貯えられることによって発生する静電容量Cmにより、漏液時位相θ2が現れる。   On the other hand, when leakage occurs, the high-frequency sine wave leakage current IR flowing through the leakage sensor 2 has a leakage phase θ2 due to the capacitance CN and the capacitance Cm generated by storing the leakage. .

漏液時電流IRの漏液時位相θ2と初期電流INの初期位相θ1の偏差(=θ2−θ1)である位相変化量φを検出することにより、漏液の発生と漏液位置Pを特定することができる。   By detecting the phase change amount φ, which is the deviation (= θ2-θ1) between the leakage phase θ2 of the leakage current IR and the initial phase θ1 of the initial current IN, the occurrence of leakage and the position P of the leakage are specified. can do.

次に、漏液により発生する静電容量Cm、位相変化量φならびに給電端A1−A2から漏液位置Pまでの距離XSの関係について、位相変化量φから判定する原理について説明する。図3はこの発明に係る位相変化量の一実施の形態実験回路図である。図3において、平行電線ELの給電端A1−A2に高周波の正弦波電圧Vaを印加し、遠端B1−B2を平行電線ELの線路インピーダンスZoで終端する。   Next, the principle of determining the relationship between the capacitance Cm generated due to leakage, the phase change amount φ, and the distance XS from the power supply terminal A1-A2 to the leak position P from the phase change amount φ will be described. FIG. 3 is an experimental circuit diagram of an embodiment of the phase change amount according to the present invention. In FIG. 3, a high-frequency sine wave voltage Va is applied to the feeding end A1-A2 of the parallel wire EL, and the far end B1-B2 is terminated with the line impedance Zo of the parallel wire EL.

給電端A1−A2からの距離XSに静電容量Cm(コンデンサ)を挿入して、平行電線ELに流れる高周波の正弦波電流ILを測定し、正弦波電流ILの位相(位相変化量φ)を検出する。挿入する静電容量Cm(コンデンサ)は、10pF、30PFおよび50pFとし、給電端A1−A2からの距離XSは、0〜100mとする。   A capacitance Cm (capacitor) is inserted at a distance XS from the power supply end A1-A2, a high-frequency sine wave current IL flowing through the parallel wire EL is measured, and a phase (phase change amount φ) of the sine wave current IL is measured. To detect. The capacitance Cm (capacitor) to be inserted is 10 pF, 30 PF, and 50 pF, and the distance XS from the power feeding end A1-A2 is 0 to 100 m.

静電容量Cmを距離XSの平行電線EL間に挿入したときの、正弦波電流ILの位相変化量φは、一般的に式−(1)で表され、ω=2πf、β=ωZo、fは正弦波電圧Vaの周波数である。   The phase change amount φ of the sine wave current IL when the electrostatic capacitance Cm is inserted between the parallel wires EL of the distance XS is generally expressed by the equation − (1), and ω = 2πf, β = ωZo, f Is the frequency of the sinusoidal voltage Va.

φ=tan-1[1-ωCmZo-tan(β・XS)]/[2-ωCmZo tan(β・XS)]……式−(1)。 φ = tan −1 [1-ωCmZo-tan (β · XS)] / [2-ωCmZo tan (β · XS)] Equation (1).

図4はこの発明に係る位相変化量の一実施の形態演算結果図である。図4において、位相変化量φは、式−(1)に示す静電容量Cmの値(10〜50pF)に拘わりなく、距離XSに依存することが明らかである。なお、位相変化量φの演算結果は、図3を用いた実験結果に一致する。   FIG. 4 is a calculation result diagram of an embodiment of the phase change amount according to the present invention. In FIG. 4, it is apparent that the phase change amount φ depends on the distance XS regardless of the value (10 to 50 pF) of the capacitance Cm shown in the equation (1). Note that the calculation result of the phase change amount φ coincides with the experimental result using FIG.

漏液に伴う漏液時電流IRの位相変化量φは、給電端A1−A2からの距離XSに依存するので、位相変化量φを検出することにより、平行電線EL上の漏液発生位置の給電端からの距離XSを特定することができる。   Since the phase change amount φ of the leakage current IR due to the leakage depends on the distance XS from the power feeding end A1-A2, the position of the leakage occurrence position on the parallel wire EL is detected by detecting the phase change amount φ. The distance XS from the power supply end can be specified.

したがって、漏液センサ2の溝形状は、図2−bに示す平行電線ELの延長方向に沿って連続溝M1よりも、図2−cに示す間歇溝M2のほうが距離XSを特定するのに望ましい。   Accordingly, the groove shape of the leak sensor 2 is such that the intermittent groove M2 shown in FIG. 2-c specifies the distance XS rather than the continuous groove M1 along the extending direction of the parallel electric wires EL shown in FIG. 2-b. desirable.

このように、この発明に係る平行電線ELは、遠端B1−B2を平行電線ELの線路インピーダンスZoで終端するので、平行電線のインピーダンスと特性インピーダンスとの間でマッチングが取れ、終端の反射を最小にして、位相変化量φを正確に検出することができ、位相変化量φに対応した平行電線EL上の漏液位置Pを特定することができる。   Thus, since the parallel electric wire EL which concerns on this invention terminates far end B1-B2 with the line impedance Zo of the parallel electric wire EL, it can match between the impedance of a parallel electric wire, and characteristic impedance, and can reflect reflection of a termination | terminus. The phase change amount φ can be accurately detected with the minimum, and the liquid leakage position P on the parallel electric wire EL corresponding to the phase change amount φ can be specified.

また、この発明に係る位相変化量φは、漏液によって平行電線EL間に発生する静電容量Cmに拘わりなく、静電容量が発生する平行電線ELの給電端A1−A2からの距離XSに対応するので、漏液が発生する平行電線上の位置(漏液位置P)をピンポイントで特定することができ、漏液センサ2を平行電線ELの単純な構成にして、漏液位置を高精度に検出することができる。   In addition, the phase change amount φ according to the present invention is equal to the distance XS from the power feeding end A1-A2 of the parallel wire EL where the capacitance is generated, regardless of the capacitance Cm generated between the parallel wires EL due to leakage. Therefore, it is possible to pinpoint the position (leakage position P) on the parallel electric wire where the liquid leak occurs, and make the leak sensor 2 a simple configuration of the parallel electric wire EL to increase the liquid leakage position. It can be detected with accuracy.

続いて、漏液時に、平行電線ELに流れる漏液時電流IRの位相変化量φを検出し、給電端からの距離XS(漏液位置P)を特定する検出/判定手段3について説明する。図5はこの発明に係る検出/判定手段の一実施の形態要部ブロック構成図である。図5において、検出/判定手段3は、平行電線ELの給電端A1−A2に接続し、基準電圧部4、電流検出部5、キャンセル部6,位相変化量検出部7、位相−電圧変換部8、位相−距離変換部9およびクロック処理部10を備える。   Subsequently, the detection / determination means 3 for detecting the phase change amount φ of the leakage current IR flowing in the parallel electric wire EL and detecting the distance XS (leakage position P) from the power supply end at the time of leakage will be described. FIG. 5 is a block diagram showing the principal part of one embodiment of the detection / determination means according to the present invention. In FIG. 5, the detection / determination means 3 is connected to the power feeding ends A1-A2 of the parallel electric wires EL, and the reference voltage unit 4, the current detection unit 5, the cancellation unit 6, the phase change amount detection unit 7, and the phase-voltage conversion unit. 8. A phase-distance conversion unit 9 and a clock processing unit 10 are provided.

基準電圧部4は、クロック処理部10のバンドパスフィルタ部13から供給される高周波の正弦波電圧の振幅を調整し、例えば1vの基準電圧(高周波の正弦波電圧Va)を漏液センサ2の給電端A1−A2に印加するとともに、キャンセル部6に提供する。   The reference voltage unit 4 adjusts the amplitude of the high frequency sine wave voltage supplied from the band pass filter unit 13 of the clock processing unit 10, and, for example, applies a 1 v reference voltage (high frequency sine wave voltage Va) to the liquid leakage sensor 2. While being applied to the power feeding end A1-A2, it is provided to the cancel unit 6.

電流検出部5は、漏液センサ2の平行電線ELに流れる高周波の正弦波電流である初期電流INまたは漏液時電流IRを検出し、検出した初期電流INまたは漏液時電流IRを高周波の正弦波電圧信号に変換し、変換した電圧信号をキャンセル部6に提供する。   The current detection unit 5 detects an initial current IN or a leakage current IR that is a high-frequency sine wave current flowing through the parallel electric wire EL of the leakage sensor 2, and the detected initial current IN or leakage current IR is detected as a high frequency. The signal is converted into a sine wave voltage signal, and the converted voltage signal is provided to the cancel unit 6.

キャンセル部6は、基準電圧部4から提供される高周波の正弦波電圧Vaと、電流検出部5から提供される初期電流INを変換した電圧信号とを比較して位相、振幅、および必要に応じて極性を反転し、正弦波電圧Vaと初期電流INを変換した電圧信号とをキャンセルして0vの出力を位相変化量検出部7に供給する。   The cancel unit 6 compares the high-frequency sine wave voltage Va provided from the reference voltage unit 4 with the voltage signal obtained by converting the initial current IN provided from the current detection unit 5, and the phase, amplitude, and as necessary. Then, the polarity is reversed, the sine wave voltage Va and the voltage signal obtained by converting the initial current IN are canceled, and an output of 0 v is supplied to the phase change amount detection unit 7.

また、キャンセル部6は、電流検出部5から提供される漏液時電流IRを変換した電圧信号と、初期電流INを変換した電圧信号を0vで補正出力した電圧信号と比較し、漏液時電流IRと初期電流INの差分に相当した電圧信号vKを位相変化量検出部7に供給する。   The cancel unit 6 compares the voltage signal converted from the leakage current IR provided from the current detection unit 5 with the voltage signal obtained by correcting and outputting the voltage signal converted from the initial current IN at 0v. A voltage signal vK corresponding to the difference between the current IR and the initial current IN is supplied to the phase change amount detector 7.

なお、電圧信号vKは、初期電流INに対応した電圧信号がキャンセル部6で補正(位相および振幅)されているので、漏液時電流IRと初期電流INの差分電流に対応した出力となるので、電圧信号vKの位相も漏液時電流IRと初期電流INの差分の位相変化量φとなる。   The voltage signal vK is an output corresponding to the difference current between the leakage current IR and the initial current IN because the voltage signal corresponding to the initial current IN is corrected (phase and amplitude) by the cancel unit 6. The phase of the voltage signal vK also becomes the phase change amount φ of the difference between the leakage current IR and the initial current IN.

つまり、電圧信号vKは、漏液センサ2に漏液が発生した時に流れる漏液時電流IRの位相変化量φを有することになる。   That is, the voltage signal vK has the phase change amount φ of the leakage current IR that flows when leakage occurs in the leakage sensor 2.

位相変化量検出部7は、0クロスコンバータ機能、フリップ/フロップ(F/F)機能を備え、キャンセル部6から供給される高周波の正弦波電圧である電圧信号vKを0クロスコンバータを介してデューティ50%のパルス信号に変換し、パルス信号をF/Fのセットパルスとし、クロック処理部10から供給されるトリガパルスをF/Fのリセットパルスとすることにより、電圧信号vKの位相変化量φを位相検出出力(パルス)として検出する。位相検出出力(パルス)φは、位相−電圧変換部8および位相−距離変換部9に提供される。なお、パルス信号のデューティは、50%を超え(>50%)、または下回って(<50%)もよい。   The phase change amount detection unit 7 has a zero cross converter function and a flip / flop (F / F) function, and outputs a voltage signal vK, which is a high-frequency sine wave voltage supplied from the cancel unit 6, via the zero cross converter. By converting the pulse signal to a 50% pulse signal, using the pulse signal as an F / F set pulse, and using the trigger pulse supplied from the clock processing unit 10 as an F / F reset pulse, the phase change amount φ of the voltage signal vK Is detected as a phase detection output (pulse). The phase detection output (pulse) φ is provided to the phase-voltage conversion unit 8 and the phase-distance conversion unit 9. Note that the duty of the pulse signal may be greater than 50% (> 50%) or less (<50%).

位相−電圧変換部8は、積分回路などで構成し、位相変化量検出部7から供給される位相検出出力(パルス)φに積分を施して平均化し、出力電圧Voを出力する。   The phase-voltage conversion unit 8 includes an integration circuit and the like, integrates and averages the phase detection output (pulse) φ supplied from the phase change amount detection unit 7 and outputs the output voltage Vo.

出力電圧Voは、位相検出出力(パルス)φに対応して変化するので、出力電圧Voと位相変化量φの対応、および図4に示す位相変化量φと給電端からの距離XSの対応から漏液センサ2の給電端からの距離XS(漏液位置P)を特定することができる。   Since the output voltage Vo changes corresponding to the phase detection output (pulse) φ, the correspondence between the output voltage Vo and the phase change amount φ and the correspondence between the phase change amount φ and the distance XS from the power supply end shown in FIG. The distance XS (leakage position P) from the power feed end of the leak sensor 2 can be specified.

位相−距離変換部9は、図4に示す位相変化量φと給電端からの距離XSのデータテーブルを記憶し、位相変化量検出部7から供給される位相検出出力(パルス)φに基づいて位相変化量φを検出し、データテーブルを検索して、位相変化量φに対応する給電端からの距離XSを出力する。これにより、漏液位置Pまでの給電端からの距離XSを特定することができる。   The phase-distance conversion unit 9 stores a data table of the phase change amount φ and the distance XS from the power feeding end shown in FIG. 4, and based on the phase detection output (pulse) φ supplied from the phase change amount detection unit 7. The phase change amount φ is detected, the data table is searched, and the distance XS from the power feed end corresponding to the phase change amount φ is output. Thereby, the distance XS from the power feeding end to the liquid leakage position P can be specified.

クロック処理部10は、水晶発振部11、分周部12、バンドパスフィルタ部13およびトリガパルス発生部14を備える。   The clock processing unit 10 includes a crystal oscillation unit 11, a frequency division unit 12, a band pass filter unit 13, and a trigger pulse generation unit 14.

水晶発振部11は、水晶発振器で構成し、水晶振動子の高周波パルスを発生し、分周部12に供給する。   The crystal oscillation unit 11 is configured by a crystal oscillator, generates a high frequency pulse of the crystal resonator, and supplies the high frequency pulse to the frequency division unit 12.

分周部12は、分周回路で構成し、水晶発振部11から供給される高周波パルスを所定数に分周し、分周した周波数のパルスを基準パルスとしてバンドパスフィルタ部13およびトリガパルス発生部14に供給する。   The frequency dividing unit 12 is configured by a frequency dividing circuit, divides the high frequency pulse supplied from the crystal oscillation unit 11 into a predetermined number, and uses the divided frequency pulse as a reference pulse to generate the bandpass filter unit 13 and the trigger pulse. To the unit 14.

バンドパスフィルタ部13は、分周部12から供給される基準パルスにフィルタリングを施し、基準パルスの高周波の正弦波電圧を発生し、発生した高周波の正弦波電圧を基準電圧部4に提供する。   The band-pass filter unit 13 filters the reference pulse supplied from the frequency dividing unit 12 to generate a high-frequency sine wave voltage of the reference pulse, and provides the generated high-frequency sine wave voltage to the reference voltage unit 4.

トリガパルス発生部14は、分周部12から供給される基準パルスの立ち上がりでワンショットのトリガパルスを発生し、トリガパルスを位相変化量検出部7に提供する。   The trigger pulse generator 14 generates a one-shot trigger pulse at the rising edge of the reference pulse supplied from the frequency divider 12, and provides the trigger pulse to the phase change amount detector 7.

図6はこの発明に係る検出/判定手段の各部波形図である。図6において、(1)の波形は、分周部12から出力される基準パルスを表す。(2)の波形は、基準電圧部4から平行電線ELに供給される高周波の正弦波電圧Vaを表す。   FIG. 6 is a waveform diagram of each part of the detection / determination means according to the present invention. In FIG. 6, the waveform (1) represents the reference pulse output from the frequency divider 12. The waveform of (2) represents the high frequency sine wave voltage Va supplied from the reference voltage unit 4 to the parallel electric wire EL.

(3)の波形は、電流検出部5が検出し、電圧信号vKに変換した漏液時電流IRを表わしている。線路インピーダンスが容量性であると位相は進み、誘導性であると位相は遅れる。実施例のように平行2線の電線路では線路インピーダンスが容量性となり位相は進む。(4)の波形は、位相変化量検出部7が電圧信号vKに0クロス変換処理を施し、デューティ50%のパルスに変換したパルス信号を表す。   The waveform of (3) represents the leakage current IR detected by the current detector 5 and converted into the voltage signal vK. If the line impedance is capacitive, the phase is advanced, and if the line impedance is inductive, the phase is delayed. As in the embodiment, in the parallel two-wire electric line, the line impedance becomes capacitive and the phase advances. The waveform (4) represents a pulse signal obtained by the phase change amount detection unit 7 performing 0-cross conversion processing on the voltage signal vK and converting the voltage signal vK into a pulse having a duty of 50%.

(5)の波形は、トリガパルス発生部14から出力されるトリガパルスを表す。(6)の波形は、位相変化量検出部7から出力される位相検出出力(パルス)φを表す。(7)の波形は、位相−電圧変換部8から出力される出力電圧Voを表す。   The waveform (5) represents a trigger pulse output from the trigger pulse generator 14. The waveform of (6) represents the phase detection output (pulse) φ output from the phase change amount detection unit 7. The waveform of (7) represents the output voltage Vo output from the phase-voltage conversion unit 8.

図7はこの発明に係る漏液センサ装置の一実施の形態漏液位置検出図である。図7において、静電容量Cmをパラメータ(10pF、51pFおよび100pF)にした給電端からの距離XSと出力電圧Voの関係を表す。   FIG. 7 is a leakage position detection diagram of an embodiment of a leakage sensor device according to the present invention. In FIG. 7, the relationship between the distance XS from the power feeding end and the output voltage Vo using the capacitance Cm as a parameter (10 pF, 51 pF and 100 pF) is shown.

このように、この発明に係る検出/判定手段3は、平行電線ELの給電端A1−A2に高周波の正弦波電圧Vaを供給する基準電圧部4と、漏液の無い初期状態に、平行電線ELに流れる初期電流INを検出し、正弦波電圧に変換する電流検出部5と、基準電圧部4から供給される正弦波電圧と電流検出部5から供給される正弦波電圧の位相および振幅を調整してキャンセルするキャンセル部6と、漏液時に流れる漏液時電流IRの位相変化量φを検出する位相変化量検出部7と、位相変化量検出部7からの位相変化量(位相検出出力パルφ)を積分し、直流電圧(出力電圧Vo)で出力する位相−電圧変換部8と、基準クロックから高周波の正弦波電圧を発生するとともに、位相変化量を検出するトリガパルスを発生するクロック処理部10とを備えたので、平行電線ELを流れる漏液の無い初期電流INの位相をキャンセルし、直流電圧0vで出力し、漏液時電流IRの位相変化量φをパルス幅(位相検出出力パルスφ)で抽出し、このパルス幅を積分して、位相変化量φに対応した直流電圧(出力電圧Vo)を出力することができ、直流電圧の出力(出力電圧Vo)により、漏液の発生を認識するとともに、直流電圧の出力(出力電圧Vo)に対応した平行電線上の漏液位置XSを正確に特定することができる。   As described above, the detection / determination means 3 according to the present invention includes the reference voltage unit 4 that supplies the high-frequency sine wave voltage Va to the power feeding ends A1-A2 of the parallel wires EL, and the parallel wires in the initial state without leakage. The current detection unit 5 that detects the initial current IN flowing through the EL and converts it into a sine wave voltage, and the phase and amplitude of the sine wave voltage supplied from the reference voltage unit 4 and the sine wave voltage supplied from the current detection unit 5 Cancellation unit 6 for adjusting and canceling, phase change amount detection unit 7 for detecting phase change amount φ of leakage current IR flowing at the time of leak, and phase change amount (phase detection output from phase change amount detection unit 7) Pal φ) is integrated and a phase-voltage converter 8 that outputs a DC voltage (output voltage Vo) and a clock that generates a high-frequency sine wave voltage from a reference clock and a trigger pulse that detects a phase change amount With the processing unit 10 As a result, the phase of the initial current IN without leakage flowing through the parallel wire EL is canceled and output with a DC voltage of 0 V, and the phase change amount φ of the leakage current IR is extracted with the pulse width (phase detection output pulse φ). The pulse width can be integrated to output a DC voltage (output voltage Vo) corresponding to the phase change amount φ, and the occurrence of liquid leakage is recognized by the output of the DC voltage (output voltage Vo). The liquid leakage position XS on the parallel wires corresponding to the output of the DC voltage (output voltage Vo) can be accurately specified.

また、この発明に係る検出/判定手段3は、位相変化量検出部7からの位相変化量(位相検出出力パルスφ)を給電端A1−A2から漏液が発生した距離XSに変換する位相変化量−距離変換部9を備えたので、漏液センサ2の給電端A1−A2から液漏れが発生した平行電線EL上の位置(漏液位置P)を特定することができ、漏液が発生した漏液位置Pの距離XSをピンポイントで認識することができる。   Further, the detection / judgment means 3 according to the present invention converts the phase change amount (phase detection output pulse φ) from the phase change amount detection unit 7 into the distance XS where the leakage has occurred from the power supply end A1-A2. Since the amount-distance conversion unit 9 is provided, the position (leakage position P) on the parallel electric wire EL where the liquid leakage has occurred from the power feeding end A1-A2 of the liquid leakage sensor 2 can be specified, and the liquid leakage occurs. The distance XS of the leaked liquid position P can be recognized pinpointed.

以上説明したように、この発明に係る漏液センサ装置1は、2線の平行電線ELを絶縁体Ioで被覆し、絶縁体Ioの中央を平行電線ELの延長方向に沿って連続溝M1または間歇溝M2を形成して、連続溝M1または間歇溝M2に貯えられる漏液によって平行電線EL間に静電容量Cmを発生する漏液センサ2と、漏液センサ2の給電端A1−A2に高周波の正弦波電圧Vaを印加し、漏液センサ2に発生した静電容量Cmに基づいて平行電線ELに流れる高周波の正弦波電流(漏液時電流IR)の位相変化量φを検出し、検出した位相変化量φに対応した平行電線ELの給電端A1−A2から漏液発生位置(漏液位置P)までの距離XSを判定する検出/判定手段3とを備えたので、漏液センサ2は、平行電線ELを絶縁体Ioで被覆した単純な構成で、漏液に伴う平行電線EL間の静電容量Cmを発生し、平行電線ELの距離XSに対応した高周波の正弦波電流の位相変化量φを生じ、検出/判定手段3は、高周波の正弦波電流(漏液時電流IR)の位相変化量φを検出し、この位相変化量φを平行電線ELの給電端A1−A2から漏液発生位置(漏液位置P)までの距離XSとして判定するので、漏液位置を平行電線上のピンポイントとして判定することができ、平行電線の単純な構成の漏液センサで、漏液位置を高精度に特定することができる。   As described above, the liquid leakage sensor device 1 according to the present invention covers the two parallel wires EL with the insulator Io, and the center of the insulator Io along the extending direction of the parallel wires EL or the continuous groove M1 or A leakage sensor 2 that forms an intermittent groove M2 and generates a capacitance Cm between the parallel electric wires EL due to leakage stored in the continuous groove M1 or the intermittent groove M2, and a power supply terminal A1-A2 of the leakage sensor 2 Applying a high-frequency sine wave voltage Va, detecting a phase change amount φ of a high-frequency sine wave current (leakage current IR) flowing in the parallel wire EL based on the capacitance Cm generated in the liquid leakage sensor 2; Since it is provided with detection / determination means 3 for determining the distance XS from the feeding end A1-A2 of the parallel wire EL corresponding to the detected phase change amount φ to the leakage occurrence position (leakage position P), the leakage sensor 2 is a simple configuration in which the parallel wire EL is covered with the insulator Io. A capacitance Cm between the parallel wires EL due to leakage is generated, and a phase change φ of the high frequency sine wave current corresponding to the distance XS of the parallel wires EL is generated. The phase change amount φ of the wave current (leakage current IR) is detected, and this phase change amount φ is determined as the distance XS from the feeding end A1-A2 of the parallel wire EL to the leak occurrence position (leakage position P). Therefore, the leak position can be determined as a pin point on the parallel wires, and the leak position can be specified with high accuracy by a leak sensor having a simple configuration of the parallel wires.

なお、本実施の形態では、漏液の対象となる液体を洗浄水や冷却水で説明したが、漏液センサの絶縁体を対象となる液体に溶解せず、誘電率が変化するものであれば、任意の液体でもよい。   In the present embodiment, the liquid to be leaked has been described as cleaning water or cooling water. However, the insulator of the leak sensor is not dissolved in the target liquid and the dielectric constant changes. Any liquid may be used.

本発明に係る漏液センサ装置は、平行2線の電線路間に正弦波高周波電圧を印加して、漏液の発生しない初期電流の位相を測定しておき、漏液が発生して電線路に流れる漏液時電流の位相を検出し、漏液時電流の位相と初期電流の位相の偏差である位相変化量から漏液位置をピンポイントで特定可能なもので、漏液の検出を平行電線で実行するあらゆる漏液センサ装置に適用することができる。   The liquid leakage sensor device according to the present invention applies a sinusoidal high-frequency voltage between two parallel wire lines, measures the phase of the initial current at which no liquid leakage occurs, Detects the phase of the leakage current flowing through the sensor and pinpoints the leakage position from the amount of phase change, which is the deviation between the phase of the leakage current and the phase of the initial current. The present invention can be applied to any liquid leakage sensor device that runs on electric wires.

この発明に係る漏液センサ装置の実施の形態基本構成図Embodiment Basic Configuration of Leak Sensor Device According to the Invention この発明に係る漏液センサの断面図Sectional view of a leak sensor according to the present invention この発明に係る連続溝を有する漏液センサ構成図Liquid leakage sensor configuration diagram having a continuous groove according to the present invention この発明に係る間歇溝を有する漏液センサの構成図Configuration diagram of a leak sensor having an intermittent groove according to the present invention この発明に係る位相変化量の一実施の形態実験回路図Experimental circuit diagram of one embodiment of phase change amount according to the present invention この発明に係る位相変化量の一実施の形態演算結果図Calculation result diagram of one embodiment of phase change amount according to this invention この発明に係る検出/判定手段の一実施の形態要部ブロック構成図Block diagram of main part of one embodiment of detection / determination means according to the present invention この発明に係る検出/判定手段の各部波形図Waveform diagram of each part of detection / determination means according to the present invention この発明に係る漏液センサ装置の一実施の形態漏液位置検出図One embodiment of a leak sensor apparatus according to the present invention

符号の説明Explanation of symbols

1 漏液センサ装置
2 漏液センサ
3 検出/判定手段
4 基準電圧部
5 電流検出部
6 キャンセル部
7 位相変化量検出部
8 位相−電圧変換部
9 位相−距離変換部
10 クロック処理部
11 水晶発振部
12 分周部
13 バンドパスフィルタ部
14 トリガパルス発生部
A1−A2 給電端
B1−B2 遠端
EL 平行電線
C1.C2 導体
Io 絶縁体
Zo 線路インピーダンス
P 漏液位置
Va 高周波の正弦波電圧
IN 初期電流
IR 漏液時電流
L 平行電線長L
XS 給電端からの距離
M1 連続溝
M2 間歇溝
Cm 静電容量
θ1 初期位相
θ2 漏液時位相
φ 位相変化量

DESCRIPTION OF SYMBOLS 1 Leak sensor 2 Leak sensor 3 Detection / determination means 4 Reference voltage part 5 Current detection part 6 Cancellation part 7 Phase change amount detection part 8 Phase-voltage conversion part 9 Phase-distance conversion part 10 Clock processing part 11 Crystal oscillation Part 12 Frequency Dividing Part 13 Band Pass Filter Part 14 Trigger Pulse Generating Part A1-A2 Feeding End B1-B2 Far End EL Parallel Wire C1. C2 Conductor Io Insulator Zo Line impedance P Leakage position Va High frequency sine wave voltage IN Initial current IR Leakage current L Parallel wire length L
XS Distance from feed end M1 Continuous groove M2 Intermittent groove Cm Capacitance θ1 Initial phase θ2 Phase at leakage φ Phase change

Claims (4)

2線の平行電線を絶縁体で被覆し、前記絶縁体の中央を前記平行電線の延長方向に沿って連続溝または間歇溝を形成して、前記溝または桝状の溝に貯えられる漏液によって前記平行電線間に静電容量を発生する漏液センサと、前記漏液センサの給電端に高周波の正弦波電圧を印加し、前記漏液センサに発生した静電容量に基づいて前記平行電線に流れる高周波の正弦波電流の位相変化量を検出し、検出した位相変化量に対応した前記平行電線の給電端から漏液発生位置までの距離を判定する検出/判定手段と、を有して構成し、更に、前記検出/判定手段は、
前記平行電線の給電端に高周波の正弦波電圧を供給する基準電圧部と、
漏液の無い初期状態に、前記平行電線に流れる初期電流を検出し、正弦波電圧に変換する電流検出部と、
前記基準電圧部から供給される正弦波電圧と前記電流検出部から供給される正弦波電圧の位相および振幅を調整してキャンセルするキャンセル部と、
漏液時に流れる漏液時電流の位相変化量を検出する位相変化量検出部と、
前記位相変化量検出部からの位相変化量を積分し、直流電圧で出力する位相−電圧変換部と、基準クロックから高周波の正弦波電圧を発生するとともに、位相変化量を検出するトリガパルスを発生するクロック処理部と、
を備えたことを特徴とする漏液センサ装置。
By covering two parallel electric wires with an insulator, forming a continuous groove or an intermittent groove along the extending direction of the parallel electric wire at the center of the insulator, and leaking liquid stored in the groove or the groove-like groove A leakage sensor that generates a capacitance between the parallel wires, and a high-frequency sine wave voltage is applied to a power feeding end of the leakage sensor, and the parallel wires are applied to the parallel wires based on the capacitance generated in the leakage sensor. detecting a phase variation of the sinusoidal current of high frequency, a, a detecting / determining means for determining the distance from the feeding end of said parallel electric wire corresponding to the detected phase variation to leakage generation position configurations flowing Furthermore, the detection / determination means includes
A reference voltage unit for supplying a high-frequency sine wave voltage to the feeding end of the parallel wires;
A current detector that detects an initial current flowing through the parallel wires in an initial state without leakage and converts the current into a sine wave voltage;
A cancellation unit that adjusts and cancels the phase and amplitude of the sine wave voltage supplied from the reference voltage unit and the sine wave voltage supplied from the current detection unit;
A phase change amount detection unit for detecting a phase change amount of a leakage current that flows at the time of leakage;
Integrates the phase change amount from the phase change amount detection unit, outputs a DC voltage, and generates a high-frequency sine wave voltage from the reference clock, and generates a trigger pulse for detecting the phase change amount A clock processing unit to
A liquid leakage sensor device comprising:
前記平行電線は、遠端を前記平行電線の特性インピーダンスで終端することを特徴とする請求項1記載の漏液センサ装置。   The liquid leakage sensor device according to claim 1, wherein the parallel wire terminates a far end with a characteristic impedance of the parallel wire. 前記位相変化量は、漏液によって前記平行電線間に発生する静電容量に拘わりなく、静電容量が発生する前記平行電線の前記給電端からの距離に対応することを特徴とする請求項1記載の漏液センサ装置。   2. The phase change amount corresponds to a distance from the feeding end of the parallel wires in which the capacitance is generated regardless of the capacitance generated between the parallel wires due to liquid leakage. The liquid leakage sensor device described. 前記検出/判定手段は、前記位相変化量検出部からの位相変化量を給電端から漏液が発生した距離に変換する位相変化量−距離変換部を備えたことを特徴とする請求項記載の漏液センサ装置。 The detection / determination means, wherein the phase change amount for converting the phase variation at a distance and liquid leakage from the feeding end is generated from the phase variation detecting unit - according to claim 1, characterized in that with a distance transform unit Liquid leakage sensor device.
JP2006203540A 2006-07-26 2006-07-26 Leak sensor device Expired - Fee Related JP4743036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203540A JP4743036B2 (en) 2006-07-26 2006-07-26 Leak sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203540A JP4743036B2 (en) 2006-07-26 2006-07-26 Leak sensor device

Publications (2)

Publication Number Publication Date
JP2008032428A JP2008032428A (en) 2008-02-14
JP4743036B2 true JP4743036B2 (en) 2011-08-10

Family

ID=39122030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203540A Expired - Fee Related JP4743036B2 (en) 2006-07-26 2006-07-26 Leak sensor device

Country Status (1)

Country Link
JP (1) JP4743036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181750B (en) * 2015-07-30 2018-08-21 东阳市阳涛电子科技有限公司 Tubing internal coating device for detecting leak point
CN112325981B (en) * 2020-11-03 2023-12-26 常州市鼎兴电子有限公司 Optimal matching parameter design method for inductive liquid level sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161045A (en) * 1986-01-08 1987-07-17 Junkosha Co Ltd Sensor for detecting corrosive liquid
JPH0413992A (en) * 1990-05-07 1992-01-17 Sumitomo Electric Ind Ltd Crossing/approach detector
JP3239227B2 (en) * 1993-12-27 2001-12-17 財団法人鉄道総合技術研究所 Moving object position detection device

Also Published As

Publication number Publication date
JP2008032428A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
TWI744409B (en) Non-contact voltage measurement system using reference signal
US9778294B2 (en) Non-contact AC voltage measurement device
US9989561B2 (en) Voltage measurement device and voltage sensor
KR102073452B1 (en) Device for detecting the contacting of an electrical conductor by a tool
JP5737750B2 (en) AC power measuring device
CN102971636A (en) Apparatus and method for measuring the dissipation factor of an insulator
US9759761B2 (en) Method and apparatus for monitoring capacitor bushings for a three-phase AC system
JP2015111087A (en) Non-contact voltage measurement device and non-contact voltage measurement method
JP2002055126A (en) Non-contact type voltage measuring method and device therefor
ES2985402T3 (en) Ground fault monitoring device, circuit and protection techniques
KR101789577B1 (en) On-line Patial Discharge Location Monitoring Device of Rotating high voltage three-phase stator winding
JP4743036B2 (en) Leak sensor device
HUT66406A (en) Wire disruption sensor for wire laying apparatus
KR101406546B1 (en) Sinusoidal insulation monitoring apparatus having operation frequency setting function
US11668751B2 (en) Sensor device and method for determining an alternating voltage
CN110780122B (en) Conductivity meter
JP6998907B2 (en) Detection system, detector and detection method
CA2677775C (en) Apparatus for determining and/or monitoring a process variable
US20190178699A1 (en) Capacitive Limit Level Switch
KR100765107B1 (en) Junction integrated partial discharge measuring device
JP7302703B2 (en) Coupling capacitors used in online partial discharge measurement equipment
JP6161349B2 (en) Low voltage measuring device using probe for measuring conductor voltage of electric wire
KR101450451B1 (en) A detection device of insulation resistance for non-interruption of electric power and hot-line
US20250182926A1 (en) Connection conductor, arrangement having a connection conductor and use of a connection conductor
CN114200262A (en) High-voltage cable elbow terminal partial discharge and transient steady state voltage on-line measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees