JP4741326B2 - Oxide superconducting conductor and manufacturing method thereof - Google Patents
Oxide superconducting conductor and manufacturing method thereof Download PDFInfo
- Publication number
- JP4741326B2 JP4741326B2 JP2005258927A JP2005258927A JP4741326B2 JP 4741326 B2 JP4741326 B2 JP 4741326B2 JP 2005258927 A JP2005258927 A JP 2005258927A JP 2005258927 A JP2005258927 A JP 2005258927A JP 4741326 B2 JP4741326 B2 JP 4741326B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- thin film
- metal substrate
- oxide superconducting
- surface roughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、テープ状などの金属基材上に多結晶中間薄膜を介して酸化物超電導薄膜を成膜してなる酸化物超電導導体およびその製造方法に関する。 The present invention relates to oxide superconducting conductors and a manufacturing method obtained by forming the oxide superconducting thin film through the polycrystalline intermediate thin on a metal substrate such as a tape.
従来、金属テープ材などの平滑な金属基材上に、中間層を介してY1Ba2Cu3Ox系酸化物超電導体などの酸化物超電導薄膜を成膜した構成の酸化物超電導導体として、例えば、特許文献1〜4に開示された技術が提案されている。 Conventionally, an oxide superconducting conductor in which an oxide superconducting thin film such as a Y 1 Ba 2 Cu 3 O x- based oxide superconductor is formed on a smooth metal substrate such as a metal tape material via an intermediate layer For example, techniques disclosed in Patent Documents 1 to 4 have been proposed.
特許文献1には、金属、Ni基合金またはイットリア安定化ジルコニアからなり、かつ可撓性を有する基材と、平均表面粗さが0.05μm以下である前記基材の表面上に形成されている酸化物超電導層とを備えた超電導線が開示されている。また、この基材としては、セラミックコーティング層を有する金属又は合金からなる基材を用いることも記載されている。
特許文献2には、表面粗さRmaxが0.05μm以下に平滑化された長尺板状基材上に安定化ジルコニア等の材料をRFスパッタ法等により蒸着して形成された中間層が設けられ、該中間層上にレーザ蒸着法等により酸化物超電導層が形成された構成となっている。
特許文献3には、インコネル600板とセラミックス超電導体層との間に銀及びマグネシアを含む混合物からなる中間層を介在させたセラミックス超電導複合体が開示されている。
特許文献4には、ニッケル合金母材の1回の圧延での加工度を20%以下とし、圧延工程の前にニッケル合金母材を1000〜1050℃で焼き鈍し、さらにニッケル合金母材のトータルの加工度を60%以下とする超電導テープ導体用基材の製造方法が開示されている。
Patent Document 2 discloses an intermediate layer formed by vapor-depositing a material such as stabilized zirconia by an RF sputtering method or the like on a long plate-like substrate smoothed to have a surface roughness R max of 0.05 μm or less. The oxide superconducting layer is formed on the intermediate layer by a laser vapor deposition method or the like.
Patent Document 3 discloses a ceramic superconducting composite in which an intermediate layer made of a mixture containing silver and magnesia is interposed between an Inconel 600 plate and a ceramic superconductor layer.
In Patent Document 4, the degree of processing in one rolling of the nickel alloy base material is set to 20% or less, the nickel alloy base material is annealed at 1000 to 1050 ° C. before the rolling process, and the total nickel alloy base material is further reduced. A method for producing a substrate for a superconducting tape conductor having a degree of processing of 60% or less is disclosed.
従来、金属テープ材などの金属基材として、ハステロイなどのNi−Cr−Mo系合金が多く用いられている。このハステロイの一例として、ハステロイC276の組成を例示すれば、Cr14.5〜16.5%、Mo15〜17%、Fe4〜7%、W3〜4.5%、Ni残部である。
このハステロイC276のようにMoの量が多いNi基合金は熱処理が難しく、熱処理によってMoに富む化合物が析出してしまうことが多い(応用金属学大系6 128〜145頁)。さらに、その析出物近傍は、Moが欠乏してしまう組成変化を生じる。Moに富む化合物は貴であり、析出物近傍のMoが欠乏した基質部は卑である。そのため電解研磨のような、酸性溶液中で金属を溶解させ、平滑化させる方法を用いると、貴である部位と卑である部位における溶出の速度が異なり、平滑化できず、成膜用の基板として良好な成膜表面を得ることができない。
Conventionally, Ni—Cr—Mo based alloys such as Hastelloy are often used as metal substrates such as metal tape materials. As an example of this Hastelloy, the composition of Hastelloy C276 is exemplified by Cr 14.5 to 16.5%, Mo 15 to 17%, Fe 4 to 7%, W 3 to 4.5%, and Ni balance.
Ni-based alloys with a large amount of Mo, such as Hastelloy C276, are difficult to heat-treat, and Mo-rich compounds often precipitate by heat treatment (Applied Metallurgy 6 pages 128-145). Further, in the vicinity of the precipitate, a composition change that causes Mo deficiency occurs. The compound rich in Mo is noble, and the substrate portion lacking Mo in the vicinity of the precipitate is base. For this reason, if a method of dissolving and smoothing a metal in an acidic solution, such as electrolytic polishing, the elution rate at the noble part and the base part is different, and smoothing cannot be performed. As a result, a good film formation surface cannot be obtained.
本発明は前記事情に鑑みてなされ、電解研磨または化学研磨によって金属基材の表面粗さを改善し、優れた超電導特性を有する酸化物超電導導体の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an oxide superconductor having excellent superconducting properties by improving the surface roughness of a metal substrate by electrolytic polishing or chemical polishing.
前記目的を達成するため、本発明は、Moを含まないNi−Cr合金であるNCF600、NCF601、NCF750、Ni−Cr合金690、Ni−Cr合金610、Ni−Cr合金705、50Cr−50Ni合金、60Cr−40Ni合金のいずれかからなり、その表面が電解研磨されて、その表面の平均表面粗さRa(JIS B0601)が1.2〜3.5nmである金属基材上にイオンビームアシスト法によって面内配向された多結晶中間薄膜が設けられ、該多結晶中間薄膜上に酸化物超電導体薄膜が設けられてなることを特徴とする酸化物超電導導体を提供する。
本発明は更に、前記Moを含まないNi−Cr合金がNCF600であることが好ましい。
In order to achieve the above object, the present invention provides NCF600, NCF601, NCF750, Ni-Cr alloy 690, Ni-Cr alloy 610, Ni-Cr alloy 705, 50Cr-50Ni alloy, which are Ni-Cr alloys not containing Mo , It is made of any one of 60Cr-40Ni alloy , the surface thereof is electropolished, and an ion beam assist method is used on a metal substrate whose average surface roughness Ra (JIS B0601) is 1.2 to 3.5 nm . Provided is an oxide superconducting conductor characterized in that an in - plane oriented polycrystalline intermediate thin film is provided, and an oxide superconductor thin film is provided on the polycrystalline intermediate thin film.
In the present invention, it is further preferable that the Ni-Cr alloy containing no Mo is NCF600.
本発明は、Moを含まないNi−Cr合金であるNCF600、NCF601、NCF750、Ni−Cr合金690、Ni−Cr合金610、Ni−Cr合金705、50Cr−50Ni合金、60Cr−40Ni合金のいずれかからなる金属基材の表面を電解研磨してその表面の平均表面粗さRa(JIS B0601)を1.2〜3.5nmとした金属基材上にイオンビームアシスト法によって面内配向された多結晶中間薄膜を設け、該多結晶中間薄膜上に酸化物超電導体薄膜を設けることを特徴とする酸化物超電導導体の製造方法に関する。
本発明において、Moを含まないNi−Cr合金としてNCF600を用いることが好ましい。
The present invention is any one of NCF600, NCF601, NCF750, Ni-Cr alloy 690, Ni-Cr alloy 610, Ni-Cr alloy 705, 50Cr-50Ni alloy, 60Cr-40Ni alloy which are Ni-Cr alloys not containing Mo. A surface of a metal base material made of the above-described material is subjected to electropolishing, and an average surface roughness Ra (JIS B0601) of the surface is 1.2 to 3.5 nm. The present invention relates to a method for producing an oxide superconducting conductor, characterized in that a crystalline intermediate thin film is provided and an oxide superconductor thin film is provided on the polycrystalline intermediate thin film.
In the present invention, NCF600 is preferably used as the Ni—Cr alloy containing no Mo.
本発明によれば、Moを含まないNi−Cr合金であるNCF600、NCF601、NCF750、Ni−Cr合金690、Ni−Cr合金610、Ni−Cr合金705、50Cr−50Ni合金、60Cr−40Ni合金のいずれかからなる金属基材を用いたことによって、金属基材に電解研磨を施す前に圧延や熱処理を伴う平滑化処理を施しても、Moに富む貴な析出部とその周囲の卑な部位との分離を生じることがなく、電解研磨によってその表面の平均表面粗さRa(JIS B0601)が1.2〜3.5nmであって、平均表面粗さRaが極めて小さい平滑な金属基材を得ることができ、この金属基材上にイオンビームアシスト法により面内配向された多結晶中間薄膜を形成し、その上に酸化物超電導薄膜を成膜することにより、臨界電流密度が高い高性能な酸化物超電導導体を提供することができる。
前記電解研磨前の平均表面粗さRaが9.3〜15.8nmであることが好ましい。
本発明によれば、Moを含まないNi−Cr合金であるNCF600、NCF601、NCF750、Ni−Cr合金690、Ni−Cr合金610、Ni−Cr合金705、50Cr−50Ni合金、60Cr−40Ni合金のいずれかからなる金属基材の表面を電解研磨してその表面の平均表面粗さRa(JIS B0601)を1.2〜3.5nmとした金属基材上にイオンビームアシスト法によって面内配向された多結晶中間薄膜を設け、該多結晶中間薄膜上に酸化物超電導体薄膜を設けることができる。
前記金属基材を用いることによって、金属基材に電解研磨を施す前に圧延や熱処理を伴う平滑化処理を施しても、Moに富む貴な析出部とその周囲の卑な部位との分離を生じることがなく、電解研磨によってその表面の平均表面粗さRa(JIS B0601)が1.2〜3.5nmであって、平均表面粗さRaが極めて小さい平滑な金属基材を得ることができ、この金属基材上にイオンビームアシスト法により面内配向された多結晶中間薄膜を介して酸化物超電導薄膜を成膜することにより、臨界電流密度が高い高性能な酸化物超電導導体を提供することができる。
前記電解研磨前の平均表面粗さRaが9.3〜15.8nmであることが好ましい。
According to the present invention, the Mo-free Ni—Cr alloys NCF600, NCF601, NCF750, Ni—Cr alloy 690, Ni—Cr alloy 610, Ni—Cr alloy 705, 50Cr-50Ni alloy, 60Cr-40Ni alloy by using a metal substrate consisting of either, it is subjected to a smoothing process with the rolling and heat treatment prior to applying the electrolyte Migaku Ken the metal substrate, and a less noble surrounding noble deposit part rich in Mo without causing separation of the site, the average surface roughness Ra of the electrolytic Migaku Ken Therefore the surface (JIS B0601) is a 1.2~3.5Nm, average surface roughness Ra is extremely small smooth metal A substrate can be obtained, and an in - plane oriented polycrystalline intermediate thin film is formed on this metal substrate by an ion beam assist method , and an oxide superconducting thin film is formed thereon . Thus, a high-performance oxide superconductor having a high critical current density can be provided.
The average surface roughness Ra before the electropolishing is preferably 9.3 to 15.8 nm.
According to the present invention, the Mo-free Ni—Cr alloys NCF600, NCF601, NCF750, Ni—Cr alloy 690, Ni—Cr alloy 610, Ni—Cr alloy 705, 50Cr-50Ni alloy, 60Cr-40Ni alloy The surface of a metal substrate made of any one of the above is electropolished to be in-plane oriented by an ion beam assist method on the metal substrate having an average surface roughness Ra (JIS B0601) of 1.2 to 3.5 nm. A polycrystalline intermediate thin film can be provided, and an oxide superconductor thin film can be provided on the polycrystalline intermediate thin film.
By using the metal base material, even if the metal base material is subjected to a smoothing treatment with rolling or heat treatment before electropolishing, separation of the precipitating portion rich in Mo and the surrounding base portion can be performed. It is possible to obtain a smooth metal substrate having an average surface roughness Ra (JIS B0601) of 1.2 to 3.5 nm and an extremely small average surface roughness Ra by electropolishing. An oxide superconducting thin film is formed on this metal substrate through an in-plane oriented polycrystalline intermediate thin film by an ion beam assist method, thereby providing a high-performance oxide superconducting conductor having a high critical current density be able to.
The average surface roughness Ra before the electropolishing is preferably 9.3 to 15.8 nm.
図1は、本発明の酸化物超電導導体の一実施形態を示す図である。この酸化物超電導導体1は、Moを含まないNi−Cr合金からなり、その表面が電解研磨または化学研磨されたテープ状の金属基材2上にイオンビームアシスト法によって多結晶中間薄膜3が設けられ、該多結晶中間薄膜3上に酸化物超電導体薄膜4が設けられた構成になっている。 FIG. 1 is a diagram showing an embodiment of the oxide superconducting conductor of the present invention. The oxide superconducting conductor 1 is made of a Ni—Cr alloy containing no Mo, and a polycrystalline intermediate thin film 3 is provided on a tape-like metal substrate 2 whose surface is electrolytically or chemically polished by an ion beam assist method. The oxide superconductor thin film 4 is provided on the polycrystalline intermediate thin film 3.
金属基材2の材料としては、NiとCrを主成分とし、Moを含んでいない各種の合金を使用することができ、例えば、NCF600(Ni76%、Cr15.5%、Fe8.0%、Mn0.50%、Si0.25%、C0.08%)、NCF601(Ni60.5%、Cr23%、Fe14%、Mn0.50%、Si0.25%、C0.05%、Al1.35%)、NCF750(Ni73%、Cr15.5%、Fe7.0%、Mn0.50%、Si0.25%、C0.04%、Al0.70%、Ti2.50%、Nb+Ta0.95%)、Ni−Cr合金690(Ni60%、Cr30%、Fe9.5%、Mn0.90%、Si0.20%、C0.03%)、Ni−Cr合金610(Ni71%、Cr15.5%、Fe9.0%、Mn0.90%、Si2.0%、C0.20%)、Ni−Cr合金705(Ni69.5%、Cr15.5%、Fe8.0%、Mn0.90%、Si5.5%、C0.30%)、50Cr−50Ni合金(Ni48.5%、Cr50%、Fe<1%、Mn<0.30%、Si<1%、C0.06%、Ti1.0%)、60Cr−40Ni合金(Ni39%、Cr60%、Fe<1%、Mn<0.30%、Si<1%、C0.05%、)などが挙げられる。前記Ni−Cr合金のうち、NCF600は、インコネル600(Inconel 600)の名称で知られる合金である。 As the material of the metal substrate 2, various alloys containing Ni and Cr as main components and not containing Mo can be used. For example, NCF600 (Ni 76%, Cr 15.5%, Fe 8.0%, Mn 0 .50%, Si 0.25%, C 0.08%), NCF601 (Ni 60.5%, Cr 23%, Fe 14%, Mn 0.50%, Si 0.25%, C 0.05%, Al 1.35%), NCF 750 (Ni 73%, Cr 15.5%, Fe 7.0%, Mn 0.50%, Si 0.25%, C 0.04%, Al 0.70%, Ti 2.50%, Nb + Ta 0.95%), Ni-Cr alloy 690 (Ni 60%, Cr 30%, Fe 9.5%, Mn 0.90%, Si 0.20%, C 0.03%), Ni-Cr alloy 610 (Ni 71%, Cr 15.5%, Fe 9.0%, Mn 0 90%, Si 2.0%, C 0.20%), Ni-Cr alloy 705 (Ni 69.5%, Cr 15.5%, Fe 8.0%, Mn 0.90%, Si 5.5%, C 0.30%) 50Cr-50Ni alloy (Ni48.5%, Cr50%, Fe <1%, Mn <0.30%, Si <1%, C0.06%, Ti1.0%), 60Cr-40Ni alloy (Ni39%, Cr 60%, Fe <1%, Mn <0.30%, Si <1%, C0.05%). Among the Ni—Cr alloys, NCF600 is an alloy known by the name of Inconel 600.
上述したNi−Cr合金の中でも、金属基材2として特に好ましい材料は、線膨張係数がY1Ba2Cu3Ox系酸化物超電導体の線膨張係数に近く、酸化物超電導薄膜4の成膜時又は成膜後の熱処理時に、線膨張係数の格差による応力が生じ難く、酸化物超電導薄膜4にダメージを与え難い点から、インコネル600、NCF601及びNi−Cr合金690が挙げられる。因みに、Y1Ba2Cu3Ox系酸化物超電導体の線膨張係数は、11×10−6/℃程度であり、一方、インコネル600の線膨張係数は、13.3×10−6/℃程度、NCF610の線膨張係数は、13.6×10−6/℃程度、Ni−Cr合金690の線膨張係数は、13.5×10−6/℃程度、ハステロイの線膨張係数は、11.2×10−6/℃程度である。 Among the Ni—Cr alloys described above, a particularly preferable material for the metal substrate 2 has a linear expansion coefficient close to that of the Y 1 Ba 2 Cu 3 O x- based oxide superconductor, and the oxide superconducting thin film 4 is formed. Inconel 600, NCF 601 and Ni—Cr alloy 690 are mentioned because stress due to the difference in linear expansion coefficient hardly occurs during film formation or heat treatment after film formation, and the oxide superconducting thin film 4 is hardly damaged. Incidentally, the linear expansion coefficient of the Y 1 Ba 2 Cu 3 O x- based oxide superconductor is about 11 × 10 −6 / ° C., whereas the linear expansion coefficient of Inconel 600 is 13.3 × 10 −6 / The linear expansion coefficient of NCF610 is about 13.6 × 10 −6 / ° C., the linear expansion coefficient of Ni—Cr alloy 690 is about 13.5 × 10 −6 / ° C., and the linear expansion coefficient of Hastelloy is It is about 11.2 × 10 −6 / ° C.
このように、Moを含まないNi−Cr合金からなる金属基材2を用いたことによって、金属基材2に電解研磨または化学研磨を施す前に圧延や熱処理を伴う平滑化処理を施しても、Moに富む貴な析出部とその周囲の卑な部位との分離を生じることがなく、電解研磨や化学研磨によって平均表面粗さRaが極めて小さい平滑な金属基材2を得ることができる。一方、Moを含むハステロイなどの合金では、圧延や熱処理を伴う平滑化処理を施すと、Moに富む貴な析出部とその周囲の卑な部位との分離を生じ、これを電解研磨や化学研磨すると、Moに富む貴な析出部が凸部となり、周囲の卑の部位が凹部となって電解研磨後に表面に凹凸が残り、平均表面粗さRaが大きくなってしまう。 As described above, by using the metal base 2 made of the Ni—Cr alloy not containing Mo, the metal base 2 can be subjected to a smoothing process involving rolling or heat treatment before being subjected to electrolytic polishing or chemical polishing. The smooth metal substrate 2 having an extremely small average surface roughness Ra can be obtained by electrolytic polishing or chemical polishing without causing separation of the noble precipitates rich in Mo and the surrounding base portions. On the other hand, in an alloy such as Hastelloy containing Mo, when a smoothing process accompanied by rolling or heat treatment is performed, separation occurs between the precipitating portion rich in Mo and the surrounding base portion, which is electropolished or chemically polished. Then, the noble precipitation part rich in Mo becomes a convex part, the surrounding base part becomes a concave part, and unevenness remains on the surface after electrolytic polishing, and the average surface roughness Ra becomes large.
本実施形態においては、電解研磨または化学研磨によって表面を平滑化処理したテープ状の金属基材2を用いているが、金属基材2の形状や寸法は本例示に限定されず、種々の形状及び寸法の金属基材を用いることができる。使用する金属基材2は、電解研磨または化学研磨を施す前に、複数回の圧延加工や機械研磨によってその表面をできるだけ平滑にしておくことが望ましい。 In the present embodiment, the tape-shaped metal substrate 2 whose surface has been smoothed by electrolytic polishing or chemical polishing is used, but the shape and dimensions of the metal substrate 2 are not limited to this example, and various shapes are possible. And sized metal substrates can be used. It is desirable that the surface of the metal substrate 2 to be used be made as smooth as possible by performing a plurality of rolling processes and mechanical polishing before electrolytic polishing or chemical polishing.
この金属基材2の表面を平滑化するための電解研磨または化学研磨の方法としては、従来より、金属の表面処理等で行われている電解研磨法や化学研磨法と同等の手法や条件を用いて、或いは金属基材2の材質に応じて、研磨液組成やpH、印加電圧等を適宜変更して実施することができる。一例として、前記金属基材2を電解研磨するのに好適な条件を例示すれば、リン酸と硫酸を主成分とする混合液を電解液として用い、参照電極を銀−塩化銀として、1.2V以上の電位を印加することによって金属基材2の表面を電解研磨する方法が挙げられる。 As a method of electrolytic polishing or chemical polishing for smoothing the surface of the metal substrate 2, a method and conditions equivalent to those of an electrolytic polishing method and a chemical polishing method conventionally performed in metal surface treatment or the like are used. Depending on the material used or the material of the metal substrate 2, the polishing composition, pH, applied voltage and the like can be changed as appropriate. As an example, if conditions suitable for electropolishing the metal substrate 2 are exemplified, a mixed solution containing phosphoric acid and sulfuric acid as main components is used as an electrolytic solution, and a reference electrode is silver-silver chloride. A method of electropolishing the surface of the metal substrate 2 by applying a potential of 2 V or more can be mentioned.
本実施形態において、金属基材2の平均表面粗さRa(JIS B0601)は、9nm以下であることが好ましい。金属基材2の平均表面粗さRaが9nmを超えると、得られる酸化物超電導導体の臨界電流密度向上効果が十分に得られなくなり、従来のハステロイなどのMoを含む合金からなる金属基材に電解研磨を施した場合と同様の臨界電流密度となる。 In the present embodiment, the average surface roughness Ra (JIS B0601) of the metal substrate 2 is preferably 9 nm or less. When the average surface roughness Ra of the metal substrate 2 exceeds 9 nm, the effect of improving the critical current density of the obtained oxide superconductor cannot be sufficiently obtained, and the conventional metal substrate made of an alloy containing Mo such as Hastelloy The critical current density is the same as when electrolytic polishing is performed.
本実施形態において、この金属基材2上には、結晶配向性に優れた多結晶中間薄膜3が成膜され、該多結晶中間薄膜3上には、酸化物超電導体薄膜4が成膜される。この多結晶中間薄膜3は、スパッタ装置により多結晶中間薄膜を形成する際に、スパッタリングと同時に基材成膜面の斜め方向からイオンビームを照射しながらGd2Zr2O7、CeO2、YSZなどからなる結晶配向性の優れた1層又は2層以上の多結晶中間薄膜3を形成するイオンビームアシスト法(IBAD法)等によって成膜される。 In this embodiment, a polycrystalline intermediate thin film 3 excellent in crystal orientation is formed on the metal substrate 2, and an oxide superconductor thin film 4 is formed on the polycrystalline intermediate thin film 3. The When the polycrystalline intermediate thin film 3 is formed by a sputtering apparatus, the polycrystalline intermediate thin film 3 is irradiated with an ion beam from an oblique direction of the substrate film forming surface simultaneously with sputtering, while Gd 2 Zr 2 O 7 , CeO 2 , YSZ. The film is formed by an ion beam assist method (IBAD method) or the like for forming one or more polycrystalline intermediate thin films 3 having excellent crystal orientation.
この多結晶中間薄膜3は、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなるものであり、各結晶粒の結晶軸のc軸は金属基材2の上面(成膜面)に対してほぼ直角に向けられ、各結晶粒の結晶軸のa軸どうしおよびb軸どうしは、互いに同一方向に向けられて面内配向されている。多結晶中間薄膜3の厚みは、0.1〜1.0μmとされる。多結晶中間薄膜3の厚みを1.0μmを超えて厚くしても、もはやその配向による酸化物超電導薄膜4の超電導特性改善効果の増大は期待できず、経済的にも不利となる。一方、多結晶中間薄膜3の厚みが0.1μm未満であると、薄すぎて酸化物超電導薄膜4を十分支持できない恐れがある。この多結晶中間薄膜3の構成材料としてはGd2Zr2O7、CeO2、YSZの他に、Sm2Zr2O7、MgO、SrTiO3等を用いることができる。 This polycrystalline intermediate thin film 3 is formed by joining and integrating a large number of fine crystal grains in which crystals having a cubic crystal structure are aggregated together via a crystal grain boundary. The c-axis of each crystal grain is oriented substantially perpendicular to the upper surface (film formation surface) of the metal substrate 2, and the a-axis and the b-axis of each crystal grain are oriented in the same direction so as to be in-plane orientation Has been. The thickness of the polycrystalline intermediate thin film 3 is 0.1 to 1.0 μm. Even if the thickness of the polycrystalline intermediate thin film 3 exceeds 1.0 μm, the orientation can no longer be expected to increase the effect of improving the superconducting characteristics of the oxide superconducting thin film 4, which is economically disadvantageous. On the other hand, if the thickness of the polycrystalline intermediate thin film 3 is less than 0.1 μm, the oxide superconducting thin film 4 may not be sufficiently supported because it is too thin. As a constituent material of the polycrystalline intermediate thin film 3, Sm 2 Zr 2 O 7 , MgO, SrTiO 3 or the like can be used in addition to Gd 2 Zr 2 O 7 , CeO 2 , YSZ.
酸化物超電導薄膜4は、Y1Ba2Cu3Ox、Y2Ba4Cu8Ox、Y3Ba3Cu6Ox、Gd1Ba2Cu3Ox、Yb1Ba2Cu3Ox、Ho1Ba2Cu3Oxなる組成、(Bi,Pb)2Ca2Sr2Cu3Ox、(Bi,Pb)2Ca2Sr3Cu4Oxなる組成、あるいはTl2Ba2Ca2Cu3Ox、Tl1Ba2Ca2Cu3Ox、Tl1Ba2Ca3Cu4Oxなる組成などに代表される臨界温度の高い酸化物超電導体からなるものである。この酸化物超電導薄膜4の厚みは、0.5〜5μm程度で、かつ均一な厚みとなっている。また、酸化物超電導薄膜4の膜質は均一となっており、酸化物超電導薄膜4の結晶のc軸とa軸とb軸も多結晶中間薄膜3の結晶に整合するようにエピタキシャル成長して結晶化しており、結晶配向性が優れたものとなっている。 Oxide superconductor thin film 4, Y 1 Ba 2 Cu 3 O x, Y 2 Ba 4 Cu 8 O x, Y 3 Ba 3 Cu 6 O x, Gd 1 Ba 2 Cu 3 O x, Yb 1 Ba 2 Cu 3 O x, Ho 1 Ba 2 Cu 3 O x having a composition, (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O x, (Bi, Pb) 2 Ca 2 Sr 3 Cu 4 O x having a composition or Tl 2 Ba 2, It is made of an oxide superconductor having a high critical temperature typified by a composition such as Ca 2 Cu 3 O x , Tl 1 Ba 2 Ca 2 Cu 3 O x , or Tl 1 Ba 2 Ca 3 Cu 4 O x . The oxide superconducting thin film 4 has a thickness of about 0.5 to 5 μm and a uniform thickness. Further, the film quality of the oxide superconducting thin film 4 is uniform, and the c-axis, a-axis and b-axis of the crystal of the oxide superconducting thin film 4 are epitaxially grown and crystallized so as to match the crystal of the polycrystalline intermediate thin film 3. The crystal orientation is excellent.
この酸化物超電導薄膜4の成膜方法は限定されないが、レーザ蒸着法などが好ましい。そのレーザ蒸着法に用いるレーザ光源としては特に限定されず、例えば、Ar−F(193nm)、Kr−F(248nm)などのエキシマレーザ、YAGレーザ、CO2レーザなどのいずれのものを用いても良い。 The method for forming the oxide superconducting thin film 4 is not limited, but a laser deposition method or the like is preferable. The laser light source used for the laser vapor deposition method is not particularly limited, and for example, any of excimer lasers such as Ar-F (193 nm) and Kr-F (248 nm), YAG lasers, and CO 2 lasers may be used. good.
本実施形態の酸化物超電導導体1は、Moを含まないNi−Cr合金からなる金属基材2を用いたことによって、金属基材2に電解研磨または化学研磨を施す前に圧延や熱処理を伴う平滑化処理を施しても、Moに富む貴な析出部とその周囲の卑な部位との分離を生じることがなく、電解研磨や化学研磨によって平均表面粗さRaが極めて小さい平滑な金属基材2を得ることができ、この金属基材2上に多結晶中間薄膜3を介して酸化物超電導薄膜4を成膜することにより、臨界電流密度が高い高性能な酸化物超電導導体1を提供することができる。 The oxide superconducting conductor 1 of the present embodiment uses rolling and heat treatment before the metal substrate 2 is subjected to electrolytic polishing or chemical polishing by using the metal substrate 2 made of a Ni—Cr alloy not containing Mo. Smooth metal substrate that does not cause separation of noble deposits rich in Mo and the surrounding base parts even when smoothing is performed, and has an extremely small average surface roughness Ra by electrolytic polishing or chemical polishing 2 is obtained, and an oxide superconducting thin film 4 is formed on the metal substrate 2 via a polycrystalline intermediate thin film 3, thereby providing a high-performance oxide superconducting conductor 1 having a high critical current density. be able to.
比較例として、ハステロイ(Ni−Cr−Mo系合金)製のテープ状金属基材を用い、実施例としてインコネル600(Ni−Cr合金)製のテープ状金属基材を用いた。比較例及び実施例とも、金属基材の寸法は、幅10mm、長さ50mm、厚さ100μmの短テープ状とした。 As a comparative example, a tape-shaped metal substrate made of Hastelloy (Ni-Cr-Mo alloy) was used, and a tape-shaped metal substrate made of Inconel 600 (Ni-Cr alloy) was used as an example. In both the comparative example and the example, the dimensions of the metal substrate were in the form of a short tape having a width of 10 mm, a length of 50 mm, and a thickness of 100 μm.
比較例、実施例の金属基材にそれぞれ圧延上がりの基板に電解研磨を施した。この電解研磨は、リン酸と硫酸を主成分とする混合液を電解液として用い、参照電極を銀−塩化銀として、1.2V以上の電位を印加する条件とした。 Electrolytic polishing was performed on the rolled substrates on the metal substrates of Comparative Examples and Examples. In this electropolishing, a mixed liquid mainly composed of phosphoric acid and sulfuric acid was used as an electrolytic solution, and a reference electrode was silver-silver chloride, and a potential of 1.2 V or higher was applied.
電解研磨後、比較例、実施例のそれぞれの金属基材について、パシフィックナノテクノロジー社製の原子間力顕微鏡を用い、JIS 0601に記載された平均表面粗さRaを測定した。
その結果、比較例(ハステロイ製金属基材)の表面はMoに富む貴な析出物が基材表面に凸部として多く現れ、電解研磨前の平均表面粗さRaが9.9〜16.8nmの範囲、電解研磨後の平均表面粗さRaが3.4〜45nmであり、電解研磨後の方が粗くなる部位もあった。
一方、実施例(インコネル600製金属基材)は、電解研磨前の平均表面粗さRaが9.3〜15.8nmの範囲、電解研磨後の平均表面粗さRaが1.2〜3.5nmであり、電解研磨によって極めて平滑な表面を形成することができた。
After the electrolytic polishing, the average surface roughness Ra described in JIS 0601 was measured for each of the metal substrates of Comparative Examples and Examples using an atomic force microscope manufactured by Pacific Nanotechnology.
As a result, the surface of the comparative example (Hastelloy metal substrate) has many Mo-rich noble precipitates appearing as convex portions on the substrate surface, and the average surface roughness Ra before electropolishing is 9.9 to 16.8 nm. In this range, the average surface roughness Ra after electropolishing was 3.4 to 45 nm, and there were also sites that became rougher after electropolishing.
On the other hand, in the examples (Inconel 600 metal substrate), the average surface roughness Ra before electropolishing is in the range of 9.3 to 15.8 nm, and the average surface roughness Ra after electropolishing is 1.2 to 3. It was 5 nm, and an extremely smooth surface could be formed by electropolishing.
次に、比較例、実施例のそれぞれの金属基材上に、イオンビームアシスト法によって厚さ1μmのGd2Zr2O7中間層とその上に厚さ0.6μmのCeO2中間層を順に成膜し、CeO2中間層上にレーザ蒸着法によって厚さ0.5μmのY1Ba2Cu3Ox酸化物超電導薄膜を成膜し、酸化物超電導導体を製造し、それぞれ臨界電流密度を測定した。
その結果、比較例(ハステロイ製金属基材)で製造した酸化物超電導導体の臨界電流密度は1.4MA/cm2であり、実施例(インコネル600製金属基材)で製造した酸化物超電導導体の臨界電流密度は1.8MA/cm2であった。従って、本発明によれば、金属基材の改良により、得られる酸化物超電導導体の臨界電流密度を向上し得ることが実証された。
Next, a Gd 2 Zr 2 O 7 intermediate layer having a thickness of 1 μm and a CeO 2 intermediate layer having a thickness of 0.6 μm are sequentially formed on the respective metal substrates of the comparative example and the example by an ion beam assist method. A 0.5 μm thick Y 1 Ba 2 Cu 3 O x oxide superconducting thin film is formed on the CeO 2 intermediate layer by laser vapor deposition to produce an oxide superconducting conductor. It was measured.
As a result, the critical current density of the oxide superconductor manufactured in the comparative example (Hastelloy metal base material) is 1.4 MA / cm 2 , and the oxide superconductor manufactured in the example (Inconel 600 metal base material). The critical current density was 1.8 MA / cm 2 . Therefore, according to the present invention, it was demonstrated that the critical current density of the obtained oxide superconducting conductor can be improved by improving the metal substrate.
1…酸化物超電導導体、2…金属基材、3…多結晶中間薄膜、4…酸化物超電導薄膜。 DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting conductor, 2 ... Metal base material, 3 ... Polycrystalline intermediate | middle thin film, 4 ... Oxide superconducting thin film.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005258927A JP4741326B2 (en) | 2005-09-07 | 2005-09-07 | Oxide superconducting conductor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005258927A JP4741326B2 (en) | 2005-09-07 | 2005-09-07 | Oxide superconducting conductor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007073327A JP2007073327A (en) | 2007-03-22 |
JP4741326B2 true JP4741326B2 (en) | 2011-08-03 |
Family
ID=37934618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005258927A Expired - Fee Related JP4741326B2 (en) | 2005-09-07 | 2005-09-07 | Oxide superconducting conductor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4741326B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4411265B2 (en) * | 2005-10-21 | 2010-02-10 | 財団法人国際超電導産業技術研究センター | Rare earth tape-shaped oxide superconductor and method for producing the same |
DE102007024166B4 (en) * | 2007-05-24 | 2011-01-05 | Zenergy Power Gmbh | A method of processing a metal substrate and using it for a high temperature superconductor |
JP5297770B2 (en) * | 2008-11-21 | 2013-09-25 | 株式会社フジクラ | Manufacturing method of base material for oxide superconducting conductor, manufacturing method of oxide superconducting conductor, and apparatus for forming cap layer for oxide superconducting conductor |
JP5448425B2 (en) * | 2008-11-21 | 2014-03-19 | 公益財団法人国際超電導産業技術研究センター | Superconducting film deposition substrate, superconducting wire, and method for producing them |
JP2013149345A (en) * | 2010-05-14 | 2013-08-01 | Furukawa Electric Co Ltd:The | Tape substrate for superconducting wire rod, manufacturing method therefor, and superconducting wire rod |
JP5624802B2 (en) * | 2010-05-24 | 2014-11-12 | 古河電気工業株式会社 | Method for manufacturing substrate for oxide superconducting wire |
EP2592632A4 (en) * | 2011-06-30 | 2014-12-10 | Furukawa Electric Co Ltd | Superconducting thin film substrate and superconducting thin film, and superconducting thin film substrate manufacturing method |
KR101449101B1 (en) * | 2012-04-25 | 2014-10-08 | 주식회사 포스코 | Method for Manufacturing Fe-Ni substrate for OLED with Improved Lifetime |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001266666A (en) * | 2000-02-01 | 2001-09-28 | Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gmbh | Superconducting element |
JP2001518681A (en) * | 1997-10-01 | 2001-10-16 | アメリカン スーパーコンダクター コーポレイション | Substrate with improved oxidation resistance |
-
2005
- 2005-09-07 JP JP2005258927A patent/JP4741326B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001518681A (en) * | 1997-10-01 | 2001-10-16 | アメリカン スーパーコンダクター コーポレイション | Substrate with improved oxidation resistance |
JP2001266666A (en) * | 2000-02-01 | 2001-09-28 | Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gmbh | Superconducting element |
Also Published As
Publication number | Publication date |
---|---|
JP2007073327A (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5074083B2 (en) | Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof | |
JP5324763B2 (en) | Alignment substrate for epitaxial film formation and surface modification method for alignment substrate for epitaxial film formation | |
JPH113620A (en) | Oxide superconducting wire and manufacture thereof | |
JP4716324B2 (en) | Superconductor substrate and method for producing the same | |
US10748678B2 (en) | Substrate for superconducting wire, production method therefor, and superconducting wire | |
JP4741326B2 (en) | Oxide superconducting conductor and manufacturing method thereof | |
US8426344B2 (en) | Method for producing metal substrates for HTS coating arrangements | |
JP5274473B2 (en) | RE123 oxide superconductor manufacturing method | |
JP4694965B2 (en) | Method for producing metal substrate for oxide superconducting wire and method for producing oxide superconducting wire | |
JP2009503269A (en) | Electrodeposition of biaxially textured layers on substrates | |
JP2007115561A (en) | Rare earth tape-shaped oxide superconductor and method for producing the same | |
JP2003055095A (en) | Thin film formation method | |
JP2006286212A (en) | High-strength polycrystalline metallic board for oxide superconductivity, and oxide superconductivity wire rod using the same | |
JP4804993B2 (en) | Oxide superconducting conductor | |
JP4739015B2 (en) | Method for producing metal substrate for oxide superconductor, method for producing oxide superconductor | |
JP4619475B2 (en) | Oxide superconducting conductor | |
JP3565881B2 (en) | Stabilizer composite superconductor and method of manufacturing the same | |
JP5763718B2 (en) | Alignment substrate for epitaxial film formation and manufacturing method thereof | |
JP4732162B2 (en) | Oxide superconducting conductor and manufacturing method thereof | |
JP5531065B2 (en) | Alignment substrate for epitaxial film formation | |
KR20080052562A (en) | Improvement of Superconducting Materials and Their Associated | |
WO2020064505A1 (en) | Process for producing highly oriented metal tapes | |
JP5481180B2 (en) | Base material for oxide superconductor and oxide superconductor | |
JP2019125436A (en) | Oxide superconducting wire | |
JP2004273246A (en) | Substrate for oxide superconducting wire and oxide superconducting wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110506 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |