[go: up one dir, main page]

JP4739819B2 - Light flux array density conversion method, light flux array density conversion member, and light source device - Google Patents

Light flux array density conversion method, light flux array density conversion member, and light source device Download PDF

Info

Publication number
JP4739819B2
JP4739819B2 JP2005160553A JP2005160553A JP4739819B2 JP 4739819 B2 JP4739819 B2 JP 4739819B2 JP 2005160553 A JP2005160553 A JP 2005160553A JP 2005160553 A JP2005160553 A JP 2005160553A JP 4739819 B2 JP4739819 B2 JP 4739819B2
Authority
JP
Japan
Prior art keywords
light beam
light
parallel
conversion
transparent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005160553A
Other languages
Japanese (ja)
Other versions
JP2006337594A (en
Inventor
茂 梅木
勝弥 日下
高橋  彰
貴幸 石亀
雅春 小田嶋
健一 石塚
光洋 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2005160553A priority Critical patent/JP4739819B2/en
Publication of JP2006337594A publication Critical patent/JP2006337594A/en
Application granted granted Critical
Publication of JP4739819B2 publication Critical patent/JP4739819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Semiconductor Lasers (AREA)

Description

この発明は、光束配列密度変換方法および光束配列密度変換部材および光源装置に関する。   The present invention relates to a light beam array density conversion method, a light beam array density conversion member, and a light source device.

レーザ加工には「加工に必要な光エネルギをもつレーザ光」が必要であり、このような高エネルギを持つレーザ光を得るために、光源として複数の半導体レーザを用い、これら半導体レーザから得られるレーザ光を個別的にコリメートして互いに平行なレーザ光束を得、これら複数のレーザ光束を集光手段により同一の光ファイバの入射端面に集光して入射させ「光ファイバの出力として複数のレーザ光束のエネルギを合成」する方法が意図されている。   Laser processing requires “laser light with light energy necessary for processing”, and in order to obtain such high-energy laser light, a plurality of semiconductor lasers are used as a light source, and the laser light can be obtained from these semiconductor lasers. The laser beams are individually collimated to obtain parallel laser beams, and the plurality of laser beams are collected and incident on the incident end face of the same optical fiber by the condensing means. A method of “combining the energy of the luminous flux” is contemplated.

このような場合、集光手段に入力する複数レーザ光束の「配列領域」が大きいと、集光手段も大型化し、コスト的にもコンパクト化の面からも好ましくない。このような問題を解消するため、互いに平行な複数の光束の光束配列密度を高めることが求められている。   In such a case, if the “arrangement region” of the plurality of laser light beams input to the light converging means is large, the light converging means is also increased in size, which is not preferable in terms of cost and compactness. In order to solve such a problem, it is required to increase the light beam arrangement density of a plurality of light beams parallel to each other.

場合によっては上記と逆に「互いに近接している複数の光束の配列密度を低くし、光束相互の間隔を大きくする必要」が生じる場合もある。   In some cases, contrary to the above, there is a case where “the arrangement density of a plurality of light beams close to each other needs to be lowered and the interval between the light beams needs to be increased”.

互いに平行な複数の光束の配列密度を変換する方法としては、光通信で用いられる光スイッチの入出力部に関連して特許文献1に記載のものが知られている。   As a method for converting the arrangement density of a plurality of light beams parallel to each other, a method described in Patent Document 1 is known in relation to an input / output unit of an optical switch used in optical communication.

特許文献1に記載のものは、プリズムを用いて配列密度の変換を用いて行う方法であり、高価なプリズムを必要とする。   The method described in Patent Document 1 is a method that uses a conversion of array density using a prism, and requires an expensive prism.

特開2003−262822JP2003-262822

この発明は、プリズム等の高価な光学素子を用いることなく、複数光束の光束配列密度の変換を実現することを課題とする。   An object of the present invention is to realize conversion of the light beam arrangement density of a plurality of light beams without using an expensive optical element such as a prism.

初めに、光束配列密度変換の基本原理となる4種の変換方法を説明する
第1の光束配列密度変換方法は「互いに平行なN(≧2)本の光束の、光束に直交する所定の変換方向の配列密度を変換する方法」である。
N本の光束は互いに平行で、光束方向から見ると「1次元もしくは2次元」に配列している。1次元に配列している場合はN光束が1列に配列する場合であり、2次元に配列する場合は「N光束が複数列に配列」する場合や「放射状等のパターンに従って配列」する場合等である。
First, four types of conversion methods that are the basic principle of the light beam array density conversion will be described .
The first light beam array density conversion method is “a method of converting the array density of N (≧ 2) light beams parallel to each other in a predetermined conversion direction orthogonal to the light beam”.
The N light beams are parallel to each other and are arranged “one-dimensional or two-dimensional” when viewed from the light beam direction. When arranged in one dimension, N beams are arranged in one row. When arranged in two dimensions, “N beams are arranged in a plurality of rows” or “array according to a radial pattern”. Etc.

上記第1の光束配列密度変換方法においては「光束に直交する所定の変換方向の配列密度」が変換される。例えば、N光束が1列に配列している場合であれば、その配列方向を「所定の変換方向」とすることにより、N光束の配列間隔の拡大もしくは縮小により配列密度が変換される。 In the first light flux array density conversion method, “array density in a predetermined conversion direction orthogonal to the light flux” is converted. For example, in the case where N light beams are arranged in a line, the arrangement density is converted by increasing or reducing the arrangement interval of the N light beams by setting the arrangement direction to a “predetermined conversion direction”.

あるいはまた、N光束が2次元マトリックス状に配列する場合であれば、配列マトリックスの行方向あるいは列方向、さらには対角方向等を「所定の変換方向」として、この変換方向における配列密度が変換される。   Alternatively, if the N light beams are arranged in a two-dimensional matrix, the array density in this conversion direction is converted by setting the row direction or column direction of the array matrix, and further the diagonal direction, etc. as the “predetermined conversion direction”. Is done.

上記第1の光束配列密度変換方法は、以下の如き特徴を有する。
即ち、両面が互いに平行な透明板部材を1枚、光束の方向と変換方向とに平行な面内で、光束の方向に対して傾けて配置し、この透明板部材にM(1≦M<N)本の光束を透過させ、透明板部材の厚さと屈折率と傾き角とに応じて、M本の光束を変換方向に平行変位させることにより、M本の光束と、透明板部材を透過しないN−M本の光束との変換方向における間隔を変換する。
The first light beam arrangement density conversion method has the following characteristics.
That is, one transparent plate member whose both surfaces are parallel to each other is arranged in a plane parallel to the direction of the light beam and the conversion direction and inclined with respect to the direction of the light beam, and M (1 ≦ M < N) Transmits the M light beams and transmits the M light beams and the transparent plate member by translating the M light beams in parallel in the conversion direction according to the thickness, refractive index, and tilt angle of the transparent plate member. The interval in the conversion direction with the N−M luminous fluxes not to be converted is converted.

透明板部材が「光束の方向と変換方向とに平行な面内で、光束の方向に対して傾けて配置される」とは、透明板部材の両面の法線が、光束の方向と変換方向とに平行な面内で、光束の方向に対して傾くように配置されることを意味する。   The transparent plate member is "inclined with respect to the direction of the light beam in a plane parallel to the direction of the light beam and the conversion direction". The normal line on both sides of the transparent plate member is the direction of the light beam and the conversion direction. It is arranged so as to be inclined with respect to the direction of the light beam in a plane parallel to.

上記第1の方法で配列密度を変換する場合の1例を挙げれば、N=6として、6本の平行光束が1列に配列し、これら6本の平行光束が3本ずつのグループをなし、各グループにおける3本の光束は間隔:dで配列し、グループ間は間隔:D(>d)で開いているような場合に、1枚の透明板部材に「1方のグループの3本の光束」を透過させることにより、透過した3本の光束が、他方のグループの側へ変位するようにし、透過側において、2つのグループの間隔がdになるようにできる。このようにすると、6本の光束を1方向において互いに間隔:dで配列することができ、変換前の状態からすると光束の配列密度が高まる。 For example, when the arrangement density is converted by the first method , N = 6, six parallel light beams are arranged in a line, and these six parallel light beams form a group of three. When three light fluxes in each group are arranged at an interval: d, and between the groups are opened at an interval: D (> d), one transparent plate member has “three in one group”. By transmitting the “light beam”, the transmitted three light beams can be displaced to the other group side, and the distance between the two groups can be d on the transmission side. In this way, the six light beams can be arranged at an interval d in one direction, and the arrangement density of the light beams increases from the state before conversion.

第2の光束配列密度変換方法は、上記第1の方法における、M本の光束を透過させる透明板部材を第1の透明板部材とし、両面が互いに平行な第2の透明板部材を、光束の方向と変換方向とに平行な面内で第1の透明板部材と逆向きに傾けて配置する。
そして、第2の透明板部材にL(1≦L≦N−M)本の光束を透過させ、第2の透明板部材の厚さと屈折率とに応じて、L本の光束を変位させることにより、L本の光束と、第2の透明板部材を透過しないN−L本の光束との間隔を変換する。
In the second light flux array density conversion method, the transparent plate member that transmits M light beams in the first method is used as the first transparent plate member, and the second transparent plate member whose both surfaces are parallel to each other is used as the light flux. In a plane parallel to the direction and the conversion direction, the first transparent plate member is tilted in the opposite direction.
Then, L (1 ≦ L ≦ N−M) light beams are transmitted through the second transparent plate member, and the L light beams are displaced according to the thickness and refractive index of the second transparent plate member. Thus, the interval between the L luminous fluxes and the NL luminous fluxes that do not pass through the second transparent plate member is converted.

例えば、上に説明した例でいえば、第1の透明板部材には一方のグループの3光束を透過させ、第2の透明板部材には他方のグループの3光束を透過させ、透過後の各グループの光束が互いに近づくようにすることにより、6本の光束を1方向において互いに間隔:dで配列することができる。   For example, in the example described above, the first transparent plate member transmits the three light beams of one group, and the second transparent plate member transmits the three light beams of the other group. By allowing the light beams of each group to approach each other, it is possible to arrange the six light beams at a distance d in one direction.

第2の光束配列密度変換方法は、第1および第2の透明板部材として同じものを用い、これら第1および第2の透明板部材を「光束方向と変換方向とに平行な面内で、光束方向に対して対称的に傾けて配置する」ことができる(第3の光束配列密度変換方法)。 The second light flux array density conversion method uses the same first and second transparent plate members, and these first and second transparent plate members are “in a plane parallel to the light beam direction and the conversion direction, It can be arranged symmetrically with respect to the light beam direction "( third light beam arrangement density conversion method ).

上記第2、第3の光束配列密度変換方法においては、第1及び第2の透明板部材を、変換方向に所定間隔を隔して配置し、この所定間隔部分に「変換方向に関して1本の光束を通過させる」構成とすることができる(第4の光束配列密度変換方法)。
「変換方向に関して1本の光束を通過させる」とは、光束方向と変換方向とに直交する方向においては複数の光束が通過できることを意味する。例えば、N本の光束が光束方向から見て2次元マトリックス状に配列している場合に、行方向を変換方向とすれば、上記所定間隔部分を「列方向の1列を構成する複数の光束」が通過することになる。
In the second and third light flux array density conversion methods, the first and second transparent plate members are arranged with a predetermined interval in the conversion direction, and “one piece with respect to the conversion direction is provided in the predetermined interval portion”. It is possible to adopt a configuration that allows a light beam to pass ( fourth light beam arrangement density conversion method ).
“Passing one light beam with respect to the conversion direction” means that a plurality of light beams can pass in a direction orthogonal to the light beam direction and the conversion direction. For example, when N light beams are arranged in a two-dimensional matrix when viewed from the light beam direction, if the row direction is the conversion direction, the predetermined interval portion is “a plurality of light beams constituting one column in the column direction”. "Will pass.

請求項1記載の光束配列密度変換方法は「互いに平行なN(≧2)本の光束の、光束に直交する所定の変換方向の配列密度を変換する方法」であって以下の如き特徴を有する。 The light beam array density conversion method according to claim 1 is a “method for converting the array density of N (≧ 2) light beams parallel to each other in a predetermined conversion direction orthogonal to the light beam”, and has the following characteristics. .

即ち、両面が互いに平行で厚みが複数段に異なる「段差透明板部材」を1枚、光束の方向と変換方向とに平行な面内で、光束の方向に対して傾けて上記厚みが上記面内で複数段に変化するように配置する。
この段差透明板部材にM(1≦M≦N)本の光束を透過させ、段差透明板部材の厚さと屈折率と傾き角とに応じて、M本の光束を上記変換方向に平行変位させるとともに、各厚み部を透過する光束の変換方向の間隔を変化させることにより、M本の光束の間隔変換方向における配列密度を変換する。
That is, one “step transparent plate member” whose both surfaces are parallel to each other and different in thickness in a plurality of stages is inclined with respect to the direction of the light beam in a plane parallel to the direction of the light beam and the conversion direction, and the above thickness is It arrange | positions so that it may change in multiple steps.
M (1 ≦ M ≦ N) light beams are transmitted through the step transparent plate member, and the M light beams are displaced in parallel in the conversion direction according to the thickness, refractive index, and inclination angle of the step transparent plate member. At the same time, the arrangement density in the interval conversion direction of the M light beams is converted by changing the interval in the conversion direction of the light beams that pass through each thickness portion.

第1〜第4の光束配列密度変換方法で用いられる透明板部材は、両面が平行であって全体が均一な厚さを有するから、透明板部材を透過した複数の光束は、変換方向には平行移動するが、光束間の間隔は投下前と同じである。 Since the transparent plate member used in the first to fourth light flux array density conversion methods has both surfaces parallel to each other and a uniform thickness, a plurality of light beams transmitted through the transparent plate member are not converted in the conversion direction. Although it moves in parallel, the interval between the light beams is the same as before the drop.

これに対し、請求項1記載の光束配列密度変換方法で用いられる段差透明板部材は、厚さが段階的に異なるので、異なる厚みの部分を透過した光束は、変換方向への平行変位の変位量が異なる。したがって、このことを利用して、段差透明板部材の透過の前後において「光束相互の間隔」を変換方向において変化させることができる。 On the other hand, since the stepped transparent plate member used in the light beam array density conversion method according to claim 1 has different thicknesses in steps, the light beams transmitted through the portions having different thicknesses are displaced in parallel displacement in the conversion direction. The amount is different. Therefore, by utilizing this, the “interval between light beams” can be changed in the conversion direction before and after transmission through the stepped transparent plate member.

従って、例えば、N光束が1列方向に配列している場合に、この配列方向を変換方向として、N光束を1枚の段差透明板部材に入射させることにより、透過したN光束の光束間隔を変換方向において変化させることができ、このようにして光束配列密度を変換することができる。   Therefore, for example, when N light beams are arranged in one row direction, the light beam interval of the transmitted N light beams can be reduced by making the N light beams incident on one step transparent plate member with this arrangement direction as the conversion direction. It can be changed in the conversion direction, and the light beam arrangement density can be converted in this way.

請求項2記載の光束配列密度変換方法は「互いに平行なN(≧2)本の光束の、光束に直交する所定の変換方向の配列密度を変換する方法」で、以下の如き特徴を有する。 The light beam array density conversion method according to claim 2 is a “method of converting the array density of N (≧ 2) light beams parallel to each other in a predetermined conversion direction orthogonal to the light beam” and has the following characteristics.

即ち、両面が互いに平行で厚みが複数段に異なる段差透明板部材を2枚、光束の方向と変換方向とに平行な面内で、光束の方向に対して互いに逆向きに傾けて厚みが上記面内で複数段に変化するように配置し、これら段差透明板部材にK(2≦K≦N)本の光束を透過させ、段差透明板部材の厚さと屈折率と傾き角とに応じて、K本の光束を変換方向に変位させるとともに、各厚み部を透過する光束の変換方向の間隔を変化させることにより、N本の光束の変換方向における間隔を変換する。   That is, two step transparent plate members whose both surfaces are parallel to each other and whose thickness is different in multiple steps are inclined in directions opposite to each other with respect to the direction of the light beam in a plane parallel to the direction of the light beam and the conversion direction. It is arranged so as to change in a plurality of steps in the plane, and K (2 ≦ K ≦ N) light beams are transmitted through these step transparent plate members, depending on the thickness, refractive index and inclination angle of the step transparent plate member. The distances in the conversion direction of the N light fluxes are converted by displacing the K light fluxes in the conversion direction and changing the distance in the conversion direction of the light fluxes transmitted through the respective thickness portions.

この請求項2記載の光束配列密度変換方法においては、2枚の段差透明板部材を同じものとし、これらを光束方向と変換方向とに平行な面内で「光束方向に対して対称的に傾けて配置」することができる(請求項3)。 In the light beam array density conversion method according to claim 2 , the two step transparent plate members are made the same, and they are inclined symmetrically with respect to the light beam direction in a plane parallel to the light beam direction and the conversion direction. Can be arranged "( Claim 3 ).

請求項2または3記載の光束配列密度変換方法においては、2枚の段差透明板部材を、変換方向に所定間隔を隔して配置し、所定間隔部分に、変換方向に関して1本の光束を通過させることができる(請求項4)。「所定間隔部分に、変換方向に関して1本の光束を通過させる。」ことの意味は、先に第4の光束配列密度変換方法に関連して説明したところと同じである。 4. The light flux array density conversion method according to claim 2 or 3 , wherein two step transparent plate members are arranged at a predetermined interval in the conversion direction, and one light beam is passed through the predetermined interval portion in the conversion direction. ( Claim 4 ). The meaning of “one light beam is allowed to pass through the predetermined interval portion in the conversion direction” is the same as described above in relation to the fourth light beam array density conversion method .

請求項5記載の光束配列密度変換方法は「互いに平行な複数本の光束の配列密度を変換する方法」であって、以下の如き特徴を有する。
即ち、両面が互いに平行な透明板部材を角錐状に組み合わせて配置してなる配列密度変換部材を、その角錐軸方向が光束方向となるようにして配置して複数光束を透過させ、透明板部材の厚さと屈折率と傾き角とに応じて、透過光束を平行変位させて、光束の配列密度を変換する。
The light beam array density conversion method according to claim 5 is a “method for converting the array density of a plurality of light beams parallel to each other” and has the following characteristics.
That is, an arrangement density conversion member formed by combining transparent plate members whose both surfaces are parallel to each other in a pyramid shape is arranged so that the direction of the pyramid axis is a light beam direction to transmit a plurality of light beams. The transmitted light flux is displaced in parallel according to the thickness, the refractive index, and the tilt angle, and the arrangement density of the light flux is converted.

請求項5記載の光束配列密度変換方法に用いられる配列密度変換部材として「角錐状に組み合わせられる透明板部材が、角錐軸方向に厚さが複数段に変化するもの」を用いることができる(請求項6)。 As array density converting member used for the optical flux arrangement density converting method according to claim 5 wherein "transparent plate member which is combined to the pyramidal shape, which thickness pyramid axis direction changes in a plurality of stages" can be used (according Item 6 ).

請求項5または6に記載の角錐状の配列密度変換部材は「切頭角錐状」とすることもでき、その切頭部を「1光束を通過させる部分」とすることができる。また、角錐の角錐軸に直交する断面の形状は正多角形形状であることもあれば、そうでない場合もある。例えば、4角錐状に形成する場合であれば、角錐軸に直交する断面形状は正方形であることも矩形形状や菱形形状であることもできる。   The pyramid-shaped arrangement density conversion member according to claim 5 or 6 may be a “truncated pyramid shape”, and the truncated portion may be a “portion through which one light beam passes”. Further, the shape of the cross section of the pyramid perpendicular to the pyramid axis may or may not be a regular polygon. For example, in the case of forming in a quadrangular pyramid shape, the cross-sectional shape orthogonal to the pyramid axis may be a square shape, a rectangular shape or a rhombus shape.

請求項7記載の光束配列密度変換方法は「互いに平行な複数本の光束の配列密度を変換する方法」であって、以下の如き特徴を有する。
即ち、透明材料により形成され、外周面と内周面とが互いに平行な円錐状の配列密度変換部材を、その円錐軸方向が光束方向となるようにして配置して複数光束を透過させ、配列密度変換部材の厚さと屈折率と傾き角とに応じて、透過光束を平行変位させて、光束の配列密度を変換する。「外周面と内周面とが互いに平行な円錐状」は、外周面の円錐角と内周面の円錐角とが等しいことを意味する。
The light beam array density conversion method according to claim 7 is a “method for converting the array density of a plurality of light beams parallel to each other” and has the following characteristics.
That is, a conical array density conversion member formed of a transparent material and having an outer peripheral surface and an inner peripheral surface parallel to each other is arranged so that the direction of the conical axis is the direction of the light beam, and transmits a plurality of light beams. Depending on the thickness, refractive index, and tilt angle of the density conversion member, the transmitted light beam is displaced in parallel to convert the arrangement density of the light beam. “Conical shape in which the outer peripheral surface and the inner peripheral surface are parallel to each other” means that the cone angle of the outer peripheral surface is equal to the cone angle of the inner peripheral surface.

請求項7記載の光束配列密度変換方法において用いられる配列密度変換部材としては「円錐軸方向に厚さが複数段に変化するもの」を用いることができる(請求項8)。 As the arrangement density conversion member used in the light beam arrangement density conversion method according to claim 7 , “a member whose thickness changes in a plurality of stages in the direction of the cone axis” can be used ( claim 8 ).

請求項7または8に記載の円錐状の配列密度変換部材は「切頭円錐状」とすることもでき、その切頭部は「1光束を通過させる部分」とすることができる。また、円錐もしくは切頭楕円錐は「楕円錐や切頭楕円錐」を含むものとする。従って、円錐の軸に直交する断面の形状は円形状であることもできるし楕円形状であることもできる。 The conical arrangement density conversion member according to claim 7 or 8 may be a “conical truncated cone”, and the truncated portion may be a “portion through which one light beam passes”. The cone or truncated elliptical cone includes “elliptical cone and truncated elliptical cone”. Therefore, the shape of the cross section perpendicular to the axis of the cone can be circular or elliptical.

請求項7、8に記載の光束配列密度変換方法では、配列密度変換部材の入・射出面が軸に直交する方向に曲率を有するので、これを用いることにより、配列密度変換の前後で「光束断面形状を変化」させることができる。 In the light flux array density conversion method according to claims 7 and 8 , the entrance / exit surface of the array density conversion member has a curvature in a direction orthogonal to the axis. The cross-sectional shape can be changed.

請求項9記載の「光束配列密度変換部材」は、請求項1記載の光束配列密度変換方法の実施に用いられる光束配列密度変換部材であって、1枚の段差透明板部材により構成される光束配列密度変換部材である。また、請求項10記載の「光束配列密度変換部材」は請求項2または3または4記載の光束配列密度変換方法の実施に用いられる光束配列密度変換部材であって、2枚の段差透明板部材を一体化してなる。 The “light beam array density conversion member” according to claim 9 is a light beam array density conversion member used for carrying out the light beam array density conversion method according to claim 1, wherein the light beam is constituted by a single step transparent plate member. It is an array density conversion member. Further, the “light flux array density converting member” according to claim 10 is a light beam array density converting member used for carrying out the light beam array density converting method according to claim 2, 3 or 4, wherein two step transparent plate members Are integrated.

請求項11記載の光束配列密度変換部材は、請求項5または6記載の光束配列密度変換方法の実施に用いられる角錐状の配列密度変換部材であり、請求項12記載の光束配列密度変換部材は、請求項7または8記載の光束配列密度変換方法の実施に用いられる円錐状の配列密度変換部材である。
また、請求項13〜15記載の「光束配列密度変換部材」は、前記第2または第3または第4の光束配列密度変換方法の実施に用いられる光束配列密度変換部材であって、第1及び第2の透明板部材を一体化してなる
Light beam arrangement density conversion member according to claim 11 is a pyramidal array density conversion member used in the embodiment of the light beam arrangement density converting method according to claim 5 or 6, wherein the light beam array density conversion member according to claim 12, wherein the A conical arrangement density conversion member used for carrying out the light beam arrangement density conversion method according to claim 7 or 8 .
Further, the “light flux array density conversion member” according to claims 13 to 15 is a light beam array density conversion member used for carrying out the second, third, or fourth light beam array density conversion method. The second transparent plate member is integrated .

この発明の光源装置は、互いに平行な複数の光束を放射する光源部と、この光源部からの複数光束の光束配列密度を変換する光束配列密度変換部材とを有し、光束配列密度変換部材が、請求項9〜15の任意の1に記載のものであることを特徴とする。 The light source device of the present invention includes a light source unit that emits a plurality of light beams parallel to each other, and a light beam array density conversion member that converts a light beam array density of the plurality of light beams from the light source unit. And any one of claims 9 to 15 .

なお、上に説明した光束配列密度変換部材は、配列密度を変換すべき光束の方向において、同種のものや異種のものを複数段に配列し、配列密度変換を複数段に行うことができる。例えば、請求項13記載の光束配列密度変換部材は、光束に直交する所定の変換方向の配列密度を変換するものであるから、配列密度の変換は1方向に限られるが、かかる光束配列密度変換部材を、光束方向に2段に配列し、各光束配列密度変換部材による変換方向を直交させるようにすると、2次元マトリックス状に配列する光束の配列密度を、行方向と列方向とについて変換することができる。   Note that the light beam arrangement density conversion member described above can arrange the same type or different types of light in the direction of the light beam whose arrangement density is to be converted, and can perform arrangement density conversion in a plurality of stages. For example, since the light beam array density conversion member according to claim 13 converts the array density in a predetermined conversion direction orthogonal to the light beam, the conversion of the array density is limited to one direction. When the members are arranged in two stages in the light beam direction and the conversion directions of the respective light beam arrangement density conversion members are orthogonal, the arrangement density of the light beams arranged in a two-dimensional matrix is converted in the row direction and the column direction. be able to.

上記の如く、この発明の光束配列密度変換方法によれば、プリズム等の高価な光学素子に対して安価な光束配列密度変換部材を用い、光束配列密度を容易に変換することができる。   As described above, according to the light beam array density conversion method of the present invention, the light beam array density can be easily converted using an inexpensive light beam array density conversion member for an expensive optical element such as a prism.

以下、具体的な実施の形態を説明する。
図1は、前記第1の光束配列密度変換方法の1形態を説明図的に示している。
Hereinafter, specific embodiments will be described.
FIG. 1 illustrates one form of the first light flux array density conversion method .

図1において符号10、11は光源を示す。光源10、11は、この実施の形態においては半導体レーザである。符号20、21は集光レンズを示す。集光レンズ20、21はこの実施の形態においてはコリメート作用を有し、対応する半導体レーザ10、11からの光束を平行光束化する。符号31は「透明板部材」を示す。   In FIG. 1, reference numerals 10 and 11 denote light sources. The light sources 10 and 11 are semiconductor lasers in this embodiment. Reference numerals 20 and 21 denote condensing lenses. In this embodiment, the condensing lenses 20 and 21 have a collimating action, and collimate the light beams from the corresponding semiconductor lasers 10 and 11 into parallel light beams. Reference numeral 31 denotes a “transparent plate member”.

図1に示すように、半導体レーザ10、11からは、その光軸光線(破線で示す)が互いに平行な発散光束が放射される。上記光軸光線は図の上下方向において間隔:Dを隔している。半導体レーザ10から放射された光束は集光レンズ20により平行光束化されて平行光束L0となり、半導体レーザ11から放射された光束は集光レンズ21により平行光束化されて平行光束L1となる。   As shown in FIG. 1, the semiconductor lasers 10 and 11 emit divergent light beams whose optical axis rays (shown by broken lines) are parallel to each other. The optical axis rays are separated by a distance D in the vertical direction of the figure. The light beam emitted from the semiconductor laser 10 is converted into a parallel light beam L0 by the condenser lens 20, and the light beam emitted from the semiconductor laser 11 is converted into a parallel light beam by the condenser lens 21 to become a parallel light beam L1.

このようにして、互いに平行な2本の平行光束L0、L1が得られる。これら2本の平行光束L0、L1は図の上下方向に間隔:D(光軸光線の間隔)を隔している。
図1における上下方向は「変換方向」である。
集光レンズ20から射出した平行光束L0はそのまま直進するのに対し、集光レンズ21から射出した平行光束L1は透明板部材31に入射する。透明板部材31は、両面(入射側面と射出側面)が互いに平行な透明板であって、光束L0、L1の方向(図の左右方向)と変換方向(図の上下方向)とに平行な面内で、光束L1の方向に対して傾けて配置されている。
In this way, two parallel light beams L0 and L1 that are parallel to each other are obtained. These two parallel light beams L0 and L1 are spaced apart from each other by a distance D (the distance between the optical axis rays) in the vertical direction in the figure.
The vertical direction in FIG. 1 is the “conversion direction”.
The parallel light beam L0 emitted from the condensing lens 20 goes straight as it is, whereas the parallel light beam L1 emitted from the condensing lens 21 enters the transparent plate member 31. The transparent plate member 31 is a transparent plate whose both surfaces (incident side surface and exit side surface) are parallel to each other, and is a surface parallel to the direction of light beams L0 and L1 (left and right direction in the figure) and the conversion direction (up and down direction in the figure). Are inclined with respect to the direction of the light beam L1.

このため、平行光束L1は透明板部材31の入射面で屈折され、さらに射出面で屈折し、入射時とは変換方向にずれ、光束径を保ったまま、平行光束L0に平行な平行光束L11となる。平行光束L11と平行光束L0との「変換方向における間隔」は、間隔:dに縮小される。   For this reason, the parallel light beam L1 is refracted on the incident surface of the transparent plate member 31, and further refracted on the exit surface, deviating in the conversion direction from the incident surface, and the parallel light beam L11 parallel to the parallel light beam L0 while maintaining the light beam diameter. It becomes. The “interval in the conversion direction” between the parallel light beam L11 and the parallel light beam L0 is reduced to an interval: d.

即ち、図1においては、互いに平行なN(=2)本の光束L0、L1の、光束に直交する所定の変換方向(図の上下方向)の配列密度を変換する方法であって、両面が互いに平行な透明板部材31を1枚、光束の方向と変換方向とに平行な面内で、光束L0、L1の方向に対して傾けて配置し、透明板部材31にM(=1)本の光束を透過させ、透明板部材31の厚さと屈折率と傾き角とに応じて、1本の光束L1を変換方向に平行変位させることにより、1本の光束L1(L11)と、透明板部材31を透過しない1本の光束L0との変換方向における間隔をDからdに変換する「第1の光束配列密度変換方法」が実施される。 That is, in FIG. 1, a method of converting the arrangement density of N (= 2) light beams L0 and L1 parallel to each other in a predetermined conversion direction (vertical direction in the figure) orthogonal to the light beams, One transparent plate member 31 parallel to each other is disposed in a plane parallel to the direction of the light beam and the conversion direction, and is inclined with respect to the directions of the light beams L0 and L1, and M (= 1) pieces are provided on the transparent plate member 31. Of the transparent plate member 31 and parallel displacement of the single light beam L1 in the conversion direction according to the thickness, refractive index, and tilt angle of the transparent plate member 31, and thereby the single light beam L1 (L11) and the transparent plate A “first light beam array density conversion method” is performed in which the distance in the conversion direction with respect to one light beam L0 that does not pass through the member 31 is converted from D to d.

上の説明では、光源である半導体レーザ10、11がそれぞれ1個の場合を説明したが、勿論、半導体レーザ10に相当する部分が図面に直交する方向へ1列に複数個配列し、半導体レーザ11に相当する部分も図面に直交する方向へ複数個配列していてもよい。   In the above description, the case where the number of the semiconductor lasers 10 and 11 as the light source is one has been described. Of course, a plurality of portions corresponding to the semiconductor lasers 10 are arranged in a line in a direction orthogonal to the drawing. A plurality of portions corresponding to 11 may be arranged in a direction orthogonal to the drawing.

例えば、半導体レーザ10に相当する10個の半導体レーザを図面に直交する方向へ1列に配列し、半導体レーザ11に相当する10個の半導体レーザを図面に直交する方向へ1列に配列し、各半導体レーザからの光束を半導体レーザごとに対応する集光レンズで平行光束化すれば、互いに平行な20本の平行光束が得られる。   For example, 10 semiconductor lasers corresponding to the semiconductor laser 10 are arranged in a row in a direction orthogonal to the drawing, 10 semiconductor lasers corresponding to the semiconductor laser 11 are arranged in a row in a direction orthogonal to the drawing, If the light flux from each semiconductor laser is converted into a parallel light flux by a condenser lens corresponding to each semiconductor laser, 20 parallel light fluxes parallel to each other can be obtained.

これら20本の平行光束は、光束方向(図1の左右方向)から見て、変換方向に重なり合うように配列していてもよいし、千鳥状にずれて配列されていてもよい。そして、半導体レーザ11に相当する10個の半導体レーザからの10本の平行光束を、透明板部材31により変換方向へ平行変位させることにより、透明板部材31を透過しない10本の平行光束の配列に対する変換方向の間隔を間隔:Dから間隔:dへ変換することができる。   These 20 parallel light beams may be arranged so as to overlap in the conversion direction when viewed from the light beam direction (left-right direction in FIG. 1), or may be arranged in a staggered manner. Then, 10 parallel light beams from 10 semiconductor lasers corresponding to the semiconductor laser 11 are displaced in parallel in the conversion direction by the transparent plate member 31, thereby arranging 10 parallel light beams that do not pass through the transparent plate member 31. The interval in the conversion direction with respect to can be converted from the interval D to the interval d.

ここで、透明板部材30による光束の平行変位量を説明する。
図2において、符号300は両面が平行な透明材料の板であり、透明板部材31として用い得るものである。光線が板300に入射角:θで入射すると、入射面で屈折し、屈折角:θの方向へ進み、射出面で再び屈折して、入射光線と平行な光線となって進む。
Here, the parallel displacement amount of the light beam by the transparent plate member 30 will be described.
In FIG. 2, reference numeral 300 denotes a transparent material plate whose both surfaces are parallel and can be used as the transparent plate member 31. When a light beam enters the plate 300 at an incident angle: θ 1 , it is refracted at the incident surface, proceeds in the direction of the refraction angle: θ 2 , is refracted again at the exit surface, and proceeds as a light beam parallel to the incident light beam.

このとき板300から射出する光線は、板300に入射する光線に対して距離:Δだけ平行変位する。   At this time, the light beam emitted from the plate 300 is displaced in parallel by a distance: Δ with respect to the light beam incident on the plate 300.

板300の屈折率をn、空気の屈折率を1とすると
n=sinθ/sinθ
であり、板300内の屈折光線の機械的な光路長:Xは、
Xcosθ=t
から、
X=t/cosθ
である。従って、入射光線と射出光線との平行変位量:Δは、
Δ=X・sin(θ−θ
=t・sin{θ−sin-1(sinθ/n)}/cos{sin-1(sinθ/n)}
となる。
When the refractive index of the plate 300 is n and the refractive index of air is 1 ,
n = sin θ 1 / sin θ 2
And the mechanical optical path length of the refracted light beam in the plate 300: X is
X cos θ 2 = t
From
X = t / cos θ 2
It is. Therefore, the parallel displacement amount Δ between the incident light beam and the outgoing light beam is
Δ = X · sin (θ 1 −θ 2 )
= T · sin {θ 1 −sin −1 (sin θ 1 / n)} / cos {sin −1 (sin θ 1 / n)}
It becomes.

即ち、平行変位量:Δは、板300の屈折率:n、厚さ、傾き角:θで定まる。屈折率:n、厚さ:t、傾き角:θが大きくなれば、平行変位量:Δも大きくなる。いずれにしても、板300の厚さ:tと屈折率:nと傾き角:θとを調整することにより、平行変位量:Δを調整できる。即ち、図1において、透明板部材31の「厚さと屈折率と傾き角とを調整する」ことにより平行変位量:(D−d)を調整できることになる。 That is, the parallel displacement amount Δ is determined by the refractive index n of the plate 300, the thickness, and the tilt angle θ 1 . Refractive index: n, thickness: t, tilt angle: The greater theta 1 is parallel displacement: delta increases. In any case, the parallel displacement amount Δ can be adjusted by adjusting the thickness 300 of the plate 300, the refractive index n, and the tilt angle θ 1 . That is, in FIG. 1, the parallel displacement amount (D−d) can be adjusted by “adjusting the thickness, refractive index, and inclination angle” of the transparent plate member 31.

なお、傾き角は、全反射角を越えて設定できないことは言うまでもなく、反射による光エネルギの損失を少なくするためには、傾き角をなるべく小さく、10〜30度程度の範囲内とし、透明板部材の屈折率・厚さの調整により平行変位量を設定するのが良い。   Needless to say, the tilt angle cannot be set beyond the total reflection angle, and in order to reduce the loss of light energy due to reflection, the tilt angle should be as small as possible and within a range of about 10 to 30 degrees. It is preferable to set the amount of parallel displacement by adjusting the refractive index and thickness of the member.

図3は、請求項13記載の発明の実施の1形態を説明図的に示している。繁雑を避けるため、混同の虞がないと思われるものについては、図1におけると同一の符号を付している。 FIG. 3 is an explanatory diagram showing an embodiment of the invention described in claim 13 . In order to avoid confusion, the same reference numerals as those in FIG.

図3の実施の形態は、図1の実施の形態に対して、光源として半導体レーザ12、この半導体レーザ12からの光束をコリメートする集光レンズ22、透明板部材32を付加したものである。即ち、半導体レーザ12からの光束L2は集光レンズ22により平行光束化される。平行光束L2は光束L0、L1と互いに平行であり、光束L0に対して間隔:Dを隔している。   In the embodiment of FIG. 3, a semiconductor laser 12 as a light source, a condensing lens 22 for collimating a light beam from the semiconductor laser 12, and a transparent plate member 32 are added to the embodiment of FIG. That is, the light beam L 2 from the semiconductor laser 12 is converted into a parallel light beam by the condenser lens 22. The parallel light beam L2 is parallel to the light beams L0 and L1, and is spaced from the light beam L0 by an interval D.

透明板部材32は、透明板部材31と同一構成のものであって、光束L0の光束方向に対し、変換方向(図3の上下方向)において、光束L0の光軸光線に対し対称的に(即ち、透明板部材31と逆向きに傾けて)配置されている。また、透明板部材31と32との間は所定間隔を有し「平行光束L0を通過させる」ようになっている。この平行光束L0が通過する部分(破線で示す部分)は「単なる空間」であってもよいが、透明材料(透明板部材31、32と同一材料でよい)による連結部30として透明板部材31、32を一体化しても良い。即ち、透明板部材31、32と連結部30とを一体として形成することができる。   The transparent plate member 32 has the same configuration as the transparent plate member 31, and is symmetrical with respect to the optical axis ray of the light beam L0 in the conversion direction (vertical direction in FIG. 3) with respect to the light beam direction of the light beam L0 ( That is, it is disposed (tilted in the opposite direction to the transparent plate member 31). Further, the transparent plate members 31 and 32 have a predetermined interval so as to “pass the parallel light beam L0”. A portion (a portion indicated by a broken line) through which the parallel light beam L0 passes may be a “simple space”, but the transparent plate member 31 serves as a connecting portion 30 made of a transparent material (may be the same material as the transparent plate members 31 and 32). , 32 may be integrated. That is, the transparent plate members 31 and 32 and the connecting portion 30 can be integrally formed.

図3に示すように、半導体レーザ11からの光束L1は透明板部材31により変換方向に平行変位させられ、光束L11となって平行光束L0との間隔を狭め、半導体レーザ12からの光束L2は透明板部材32により変換方向に平行変位させられ、光束L22となって平行光束L0との間隔を狭める。   As shown in FIG. 3, the light beam L1 from the semiconductor laser 11 is parallel-displaced in the conversion direction by the transparent plate member 31, becomes the light beam L11, and the interval between the parallel light beam L0 is narrowed, and the light beam L2 from the semiconductor laser 12 is It is displaced in parallel in the conversion direction by the transparent plate member 32 and becomes a light beam L22 to narrow the distance from the parallel light beam L0.

このようにして、変換方向において互いに間隔:Dを隔して配列する3本の光束L0、L1、L2を、互いに間隔:dを隔して配列する3本の平行光束L0、L11、L22として光束配列密度を変換し、変換方向における光束配列密度を高めることができる。   In this way, the three light beams L0, L1, and L2 arranged at a distance D from each other in the conversion direction are converted into three parallel light beams L0, L11, and L22 arranged at a distance d from each other. The light beam arrangement density can be converted to increase the light beam arrangement density in the conversion direction.

即ち、図3の形態においては、M(=1)本の光束を透過させる透明板部材31を第1の透明板部材とし、両面が互いに平行な第2の透明板部材32を、光束の方向と変換方向とに平行な面内で第1の透明板部材31と逆向きに傾けて配置し、第2の透明板部材32にL(=1)本の光束L2を透過させ、第2の透明板部材32の厚さと屈折率とに応じて、L(=1)本の光束L2を変位させることにより、L(=1)本の光束と、第2の透明板部材32を透過しない光束L0との間隔:Dを間隔:dに変換する「第2の光束配列密度変換方法」が実施される。 That is, in the embodiment of FIG. 3, the transparent plate member 31 that transmits M (= 1) light beams is the first transparent plate member, and the second transparent plate member 32 whose both surfaces are parallel to each other is the direction of the light beam. In the plane parallel to the conversion direction, the first transparent plate member 31 is tilted in the opposite direction, and L (= 1) light beams L2 are transmitted through the second transparent plate member 32. By displacing L (= 1) light beams L2 in accordance with the thickness and refractive index of the transparent plate member 32, L (= 1) light beams and a light beam that does not pass through the second transparent plate member 32. A “second light beam array density conversion method” is performed in which the distance D from the L0: D is converted into the distance d.

図3の形態においてはまた、第1および第2の透明板部材31、32が同じものであり、光束方向と変換方向とに平行な面内で、光束方向に対して対称的に傾けて配置されており、第1及び第2の透明板部材31、32は、変換方向に所定間隔を隔して配置され、所定間隔部分(破線で示す部分)に、変換方向に関して1本の光束L0を通過させるようになっている。 In the embodiment of FIG. 3 , the first and second transparent plate members 31 and 32 are the same, and are disposed symmetrically with respect to the light beam direction in a plane parallel to the light beam direction and the conversion direction. are, first and second transparent plate member 31 and 32, disposed intervals a predetermined interval in the transducing direction at a predetermined pitch area (indicated by a broken line), the light beam L0 of one with respect to the transducing direction It is designed to pass through .

また、透明板部材31、32を連結部30により一体化したものは、請求項13記載の光束配列密度変換部材の実施の1形態となっている。   Further, the transparent plate members 31 and 32 integrated by the connecting portion 30 is an embodiment of the luminous flux array density conversion member according to claim 13.

図3に即しての上の説明では、光源である半導体レーザ10、11、12がそれぞれ1個の場合を説明したが、勿論、半導体レーザ10に相当する部分が図面に直交する方向へ1列に複数個配列し、半導体レーザ11、12に相当する部分も図面に直交する方向へそれぞれ複数個配列していてもよい。   In the above description with reference to FIG. 3, the case where the number of the semiconductor lasers 10, 11, and 12 as the light source is one has been described. Of course, the portion corresponding to the semiconductor laser 10 is 1 in the direction orthogonal to the drawing. A plurality of rows may be arranged in a row, and a plurality of portions corresponding to the semiconductor lasers 11 and 12 may be arranged in a direction orthogonal to the drawing.

例えば、半導体レーザ10に相当する10個の半導体レーザを図面に直交する方向へ1列に配列し、半導体レーザ11に相当する10個の半導体レーザを図面に直交する方向へ1列に配列し、半導体レーザ12に相当する10個の半導体レーザを図面に直交する方向へ1列に配列し、各半導体レーザからの光束を半導体レーザごとに対応する集光レンズで平行光束化すれば、互いに平行な30本の平行光束が得られる。   For example, 10 semiconductor lasers corresponding to the semiconductor laser 10 are arranged in a row in a direction orthogonal to the drawing, 10 semiconductor lasers corresponding to the semiconductor laser 11 are arranged in a row in a direction orthogonal to the drawing, If ten semiconductor lasers corresponding to the semiconductor lasers 12 are arranged in a line in a direction orthogonal to the drawing, and the light beams from the respective semiconductor lasers are converted into parallel light beams by a condensing lens corresponding to each semiconductor laser, they are parallel to each other. 30 parallel light fluxes are obtained.

これら30本の平行光束は、光束方向(図3の左右方向)から見て、変換方向に重なり合うように配列していてもよいし、千鳥状にずれて配列されていてもよい。そして、半導体レーザ11、12にそれぞれ相当する20個の半導体レーザからの20本の平行光束を、透明板部材31、32により変換方向へ平行変位させることにより、透明板部材31、32を透過しない10本の平行光束の配列に対する変換方向の間隔を間隔:Dから間隔:dへ変換することができる。   These 30 parallel light beams may be arranged so as to overlap in the conversion direction when viewed from the light beam direction (left-right direction in FIG. 3), or may be arranged in a staggered manner. Then, 20 parallel light beams from 20 semiconductor lasers respectively corresponding to the semiconductor lasers 11 and 12 are displaced in parallel in the conversion direction by the transparent plate members 31 and 32 so as not to pass through the transparent plate members 31 and 32. The interval in the conversion direction with respect to the arrangement of 10 parallel light beams can be converted from the interval: D to the interval: d.

なお、図3の状態から半導体レーザ10、集光レンズ20、連結部30を取りさり、半導体レーザ11、集光レンズ21、透明板部材31の部分と、半導体レーザ12、集光レンズ22、透明板部材32の部分とを近接させて、透明板部材31と32とを直接的に一体化しても良い。このとき、透明板部材31による平行変位量はD−d、透明板部材32による平行変位量もD−dであるから、半導体レーザ11、21からの光束の変換方向における間隔をD1とすれば、透明板部材31、32により平行変位させられた光束L11、L22の間隔は、D1−2(D−d)となる。   3, the semiconductor laser 10, the condensing lens 20, and the connecting portion 30 are removed, and the semiconductor laser 11, the condensing lens 21, and the transparent plate member 31, the semiconductor laser 12, the condensing lens 22, and the transparent The transparent plate members 31 and 32 may be directly integrated by bringing the plate member 32 into close proximity. At this time, since the parallel displacement amount by the transparent plate member 31 is Dd and the parallel displacement amount by the transparent plate member 32 is also Dd, if the interval in the conversion direction of the light flux from the semiconductor lasers 11 and 21 is D1. The distance between the light beams L11 and L22 that have been displaced in parallel by the transparent plate members 31 and 32 is D1-2 (Dd).

図4は、請求項2〜4、10記載の発明の実施の1形態を説明図的に示している。繁雑を避けるため、混同の虞がないと思われるものについては、図1におけると同一の符号を付している。 FIG. 4 is an explanatory view showing one embodiment of the second to fourth aspects of the invention. In order to avoid confusion, the same reference numerals as those in FIG.

符号10〜16で示す光源としての半導体レーザは、変換方向である図の上下方向へ所定の間隔(間隔:Dとする。)で配列し、光軸光線が互いに平行となる発散光束を放射する、これら発散光束は光源と個別的に対応する集光レンズ20〜26によりそれぞれコリメートされ、互いに平行な平行光束L0〜L6となる。   Semiconductor lasers as light sources denoted by reference numerals 10 to 16 are arranged at a predetermined interval (interval: D) in the vertical direction of the drawing, which is a conversion direction, and emit divergent light beams in which optical axis rays are parallel to each other. These divergent light beams are collimated by condensing lenses 20 to 26 individually corresponding to the light sources, and become parallel light beams L0 to L6 parallel to each other.

符号41および42は、段差透明板部材を示す。
この実施の形態において、2枚の段差透明板部材41、42は「同一構成のもの」であり、光束方向(図の左右方向)と変換方向(図の上下方向)とに平行な面内で、光束方向に対して対称的に傾けて配置される。
Reference numerals 41 and 42 denote step transparent plate members.
In this embodiment, the two step transparent plate members 41 and 42 have the same configuration, and are in a plane parallel to the light beam direction (left-right direction in the figure) and the conversion direction (up-down direction in the figure). Are arranged symmetrically with respect to the light beam direction.

段差透明板部材41と42との間の符号40で示す部分は、半導体レーザ10からの光束L0を通過させる部分である。段差透明板部材41、42は、両面が互いに平行で、厚みが複数段(図の例では3段)に異なる。平行光束L1、L3、L5は段差透明板部材41の互いに厚さの異なる部分に入射する。平行光束L2、L4、L6は段差透明板部材42の互いに厚さの異なる部分に入射する。   A portion indicated by reference numeral 40 between the step transparent plate members 41 and 42 is a portion through which the light beam L0 from the semiconductor laser 10 passes. The step transparent plate members 41 and 42 are parallel to each other on both surfaces and have different thicknesses in a plurality of steps (three steps in the example in the figure). The parallel light beams L1, L3, and L5 are incident on portions of the step transparent plate member 41 having different thicknesses. The parallel light beams L2, L4, and L6 enter the portions of the step transparent plate member 42 having different thicknesses.

そしてこれら光束は、段差透明板部材41、42を透過することにより、変換方向において光束L0に近づく向きに平行変位する。このとき段差透明板部材41の「異なる厚みの作用」により平行光束L1、L3、L5の平行変位量は、平行光束L1、L3、L5の順に大きくなる。即ち、段差透明板部材41を透過した平行光束L11、L33、L55の相互の間隔(間隔:dとする)は、透過前の平行光束L1、L3、L5の間隔(D)より小さくなる。   Then, these light beams pass through the step transparent plate members 41 and 42, and are thus displaced in parallel in a direction approaching the light beam L0 in the conversion direction. At this time, the amount of parallel displacement of the parallel light beams L1, L3, and L5 increases in the order of the parallel light beams L1, L3, and L5 due to the “effect of different thickness” of the step transparent plate member 41. That is, the interval between the parallel light beams L11, L33, L55 transmitted through the step transparent plate member 41 (interval: d) is smaller than the interval (D) between the parallel light beams L1, L3, L5 before transmission.

同様に、段差透明板部材42の「異なる厚みの作用」により平行光束L2、L4、L6の平行変位量は、平行光束L2、L4、L6の順に大きくなる。即ち、段差透明板部材42を透過した平行光束L22、L44、L66の相互の間隔(間隔:dとする)は、透過前の平行光束L1、L3、L5の間隔(D)より小さくなる。   Similarly, the amount of parallel displacement of the parallel light beams L2, L4, and L6 increases in the order of the parallel light beams L2, L4, and L6 due to the “effect of different thicknesses” of the step transparent plate member 42. That is, the interval between the parallel light beams L22, L44 and L66 transmitted through the step transparent plate member 42 (interval: d) is smaller than the interval (D) between the parallel light beams L1, L3 and L5 before transmission.

このようにして、互いに平行な平行光束L0〜L6の配列密度を、変換方向において変換して、より配列密度の高い平行光束L0、L11〜L66の配列にすることができる。   In this way, the arrangement density of parallel light beams L0 to L6 that are parallel to each other can be converted in the conversion direction to obtain an arrangement of parallel light beams L0 and L11 to L66 with higher arrangement density.

段差透明板部材における厚みの異なる部分の厚さの関係を調整することにより、変換後の光束L11〜L66の「光束相互の間隔」を所望の間隔に調整することもできる。   By adjusting the relationship between the thicknesses of the portions having different thicknesses in the step transparent plate member, the “interval between light beams” of the converted light beams L11 to L66 can be adjusted to a desired interval.

平行光束L0が通過する部分(破線で示す部分)は、単なる空間であってもよいが、透明材料(透明板部材41、42と同一材料でよい)による連結部40として、透明板部材41、42を一体化しても良い。即ち、透明板部材41、42と連結部40とを一体として形成することができる。   The portion through which the parallel light beam L0 passes (portion indicated by a broken line) may be a simple space, but as the connecting portion 40 made of a transparent material (which may be the same material as the transparent plate members 41 and 42), the transparent plate member 41, 42 may be integrated. That is, the transparent plate members 41 and 42 and the connecting portion 40 can be integrally formed.

即ち、図4に示す実施の形態においては、互いに平行なN(=7)本の光束の、光束に直交する所定の変換方向(図の上下方向)の配列密度を変換する方法であって、両面が互いに平行で厚みが複数段に異なる段差透明板部材41、42を、光束の方向と変換方向とに平行な面内で、光束の方向に対して互いに逆向きに傾けて「厚みが上記面内で複数段に変化する」ように配置し、これら段差透明板部材41、42にK(=6)本の光束を透過させ、段差透明板部材41、42の「厚さと屈折率と傾き角とに応じ」て、K(=6)本の光束を上記変換方向に変位させるとともに、各厚み部を透過する光束の変換方向の間隔を変化させることにより、N(=7)本の光束の変換方向における間隔を変換する光束配列密度変換方法が実施される。   That is, the embodiment shown in FIG. 4 is a method for converting the arrangement density of N (= 7) light beams parallel to each other in a predetermined conversion direction (vertical direction in the figure) perpendicular to the light beam, The transparent plate members 41 and 42 having both surfaces parallel to each other and having different thicknesses are inclined in directions opposite to each other with respect to the direction of the light beam in a plane parallel to the direction of the light beam and the conversion direction. It arrange | positions so that it may change in multiple steps within a surface, K (= 6) light beams are permeate | transmitted to these level | step difference transparent plate members 41 and 42, "Thickness, refractive index, and inclination of level difference transparent plate members 41 and 42" Depending on the angle, K (= 6) light fluxes are displaced in the conversion direction, and N (= 7) light fluxes are changed by changing the distance in the conversion direction of the light fluxes transmitted through each thickness portion. A light beam array density conversion method for converting the interval in the conversion direction is implemented.

また、2枚の段差透明板部材41、42は「同一構成のもの」であり、光束方向と変換方向とに平行な面内で「光束方向に対して対称的に傾けて配置」され(請求項3)、2枚の段差透明板部材41は変換方向(図の上下方向)に所定間隔を隔して配置され、所定間隔部分(破線で示す部分)に、変換方向に関して1本の光束L0が通過する(請求項4)。また、段差透明板部材41、42を連結部40により互いに一体化したものは、請求項10記載の光束配列密度変換部材の実施の1形態をなす。 Further, the two step transparent plate members 41 and 42 are of the “same configuration” and are “arranged symmetrically with respect to the light beam direction” in a plane parallel to the light beam direction and the conversion direction ( claimed). Item 3 ) The two step transparent plate members 41 are arranged at a predetermined interval in the conversion direction (vertical direction in the figure), and one light beam L0 in the predetermined interval portion (a portion indicated by a broken line) with respect to the conversion direction. ( Claim 4 ). Further, the step transparent plate members 41 and 42 integrated with each other by the connecting portion 40 constitute one embodiment of the light flux array density conversion member according to claim 10 .

上の説明は、光源である半導体レーザ10〜16がそれぞれ1個の場合であるが、勿論、半導体レーザ10に相当する部分が図面に直交する方向へ1列に複数個配列し、半導体レーザ11〜16に相当する部分も図面に直交する方向へ複数個配列していてもよい。   The above description is for the case where each of the semiconductor lasers 10 to 16 as the light source is one, but of course, a plurality of portions corresponding to the semiconductor laser 10 are arranged in a line in a direction orthogonal to the drawing, and the semiconductor laser 11 A plurality of portions corresponding to ˜16 may be arranged in a direction orthogonal to the drawing.

例えば、半導体レーザ10に相当する10個の半導体レーザを図面に直交する方向へ1列に配列し、半導体レーザ11〜16にそれぞれ相当する10個の半導体レーザを図面に直交する方向へ1列に配列し、各半導体レーザからの光束を半導体レーザごとに対応する集光レンズで平行光束化すれば、互いに平行な70本の平行光束が得られる。   For example, ten semiconductor lasers corresponding to the semiconductor lasers 10 are arranged in one row in a direction orthogonal to the drawing, and ten semiconductor lasers corresponding to the semiconductor lasers 11 to 16 are arranged in one row in a direction orthogonal to the drawing. If the light beams from the respective semiconductor lasers are arranged and converted into parallel light beams by a condensing lens corresponding to each semiconductor laser, 70 parallel light beams parallel to each other can be obtained.

これら70本の平行光束は、光束方向(図1の左右方向)から見て、変換方向に重なり合うように配列していてもよいし、千鳥状にずれて配列されていてもよい。そして、半導体レーザ11、13、15に相当する30個の半導体レーザからの30本の平行光束を、段差透明板部材41により変換方向へ平行変位させ、半導体レーザ12、14、16に相当する30個の半導体レーザからの30本の平行光束を、段差透明板部材42により変換方向へ平行変位させることにより、連結部30を通過する10本の平行光束とともに、変換方向の光束配列間隔を間隔:Dから間隔:dへ変換して、変換方向における配列密度を高めることができる。
勿論、段差透明板部材41と42とを、図4に符号40で示す連結部を介さずに直接に接合一体化するようにしてもよい。また、段差透明板部材41と42とを「互いに材料や厚みの段差の異なる部材」として構成しても良く、このようにすれば、段差透明板部材を透過した後の光束の配列間隔を「個々の段差透明板部材ごとに異なったもの」とすることができる。
These 70 parallel light beams may be arranged so as to overlap in the conversion direction when viewed from the light beam direction (left-right direction in FIG. 1), or may be arranged in a staggered manner. Then, 30 parallel light beams from 30 semiconductor lasers corresponding to the semiconductor lasers 11, 13 and 15 are displaced in parallel in the conversion direction by the step transparent plate member 41, and 30 corresponding to the semiconductor lasers 12, 14 and 16. Thirty parallel light beams from the semiconductor lasers are displaced in parallel in the conversion direction by the step transparent plate member 42, and together with the ten parallel light beams passing through the connecting portion 30, the light beam arrangement interval in the conversion direction is spaced: The arrangement density in the conversion direction can be increased by converting from D to the interval: d.
Needless to say, the step transparent plate members 41 and 42 may be directly joined and integrated without using the connecting portion indicated by reference numeral 40 in FIG. Further, the step transparent plate members 41 and 42 may be configured as “members having different steps in material and thickness”, and in this way, the arrangement interval of the light fluxes after passing through the step transparent plate member is set to “ It can be defined as “different for each stepped transparent plate member”.

ここで、図4において、光源11、13、15、集光レンズ21、23、25と、段差透明板部材41の部分を見ると、この部分では、半導体レーザ11、13、15からの光束L1、L3、L5の配列密度が、段差透明板部材41により「より配列密度の高い平行光束L11、L33、L55」に変換されている。   Here, in FIG. 4, when the portions of the light sources 11, 13, 15, the condenser lenses 21, 23, 25 and the step transparent plate member 41 are viewed, the light flux L <b> 1 from the semiconductor lasers 11, 13, 15 is observed in this portion. , L3, and L5 are converted into “parallel luminous fluxes L11, L33, and L55 having higher arrangement density” by the step transparent plate member 41.

即ち、この部分においては、互いに平行なN(=3)本の光束の、光束に直交する所定の変換方向の配列密度を変換する方法であって、両面が互いに平行で厚みが複数段に異なる段差透明板部材41を1枚、光束の方向と上記変換方向とに平行な面内で、光束の方向に対して傾けて厚みが上記面内で複数段に変化するように配置し、段差透明板部材41にM(=3)本の光束を透過させ、段差透明板部材41の厚さと屈折率と傾き角とに応じて、M(=3)本の光束を変換方向に平行変位させるとともに、各厚み部を透過する光束の変換方向の間隔を変化させることにより、M(=3)本の光束の間隔変換方向における配列密度を変換する光束間隔変換方法(請求項1)が実施される。
即ち、段差透明板部材41や42は、それぞれ単独で「1枚の段差透明板部材により構成される光束配列密度変換部材(請求項10)」を構成する。
That is, in this part, a method of converting the arrangement density of N (= 3) light beams parallel to each other in a predetermined conversion direction orthogonal to the light beams, both surfaces are parallel to each other and the thicknesses are different in a plurality of stages. One step transparent plate member 41 is arranged in a plane parallel to the direction of the light beam and the conversion direction so as to be inclined with respect to the direction of the light beam so that the thickness changes in a plurality of steps within the surface. M (= 3) light beams are transmitted through the plate member 41, and M (= 3) light beams are displaced in parallel in the conversion direction in accordance with the thickness, refractive index, and tilt angle of the step transparent plate member 41. Then, a light beam interval conversion method ( Claim 1 ) is performed in which the arrangement density in the interval conversion direction of M (= 3) light beams is changed by changing the interval in the conversion direction of the light beams transmitted through each thickness part. .
That is, each of the step transparent plate members 41 and 42 independently constitutes “a light beam arrangement density conversion member constituted by one step transparent plate member” ( claim 10 ).

図5は、図4の実施の形態の変形例を示す図である。繁雑を避けるため、混同の虞がないと思われるものについては、図4におけると同一の符号を付した。
図5の実施の形態では、段差透明板部材410、420の構成に特徴がある。図4の実施の形態では、段差透明板部材41、42は「厚みが段差をもって変化する単一部材」として構成されているが、図5の実施の形態では段差透明板部材410(420)は、サイズの異なる3枚の透明平行平板411、412、413(423、422、423)を重ねて一体化することにより形成されている。
FIG. 5 is a diagram showing a modification of the embodiment of FIG. In order to avoid confusion, the same symbols as in FIG.
The embodiment of FIG. 5 is characterized by the structure of the step transparent plate members 410 and 420. In the embodiment of FIG. 4, the step transparent plate members 41 and 42 are configured as “a single member whose thickness changes with steps”, but in the embodiment of FIG. 5, the step transparent plate members 410 (420) , Three transparent parallel plates 411, 412, 413 (423, 422, 423) of different sizes are stacked and integrated.

このように、段差透明板部材は「異なる透明平行平板を重ねて一体化」するように複合的に構成しても良い。この場合、互いに重ねられる透明平行平板は、互いに異なる材料で構成されたものであってもよい。
なお、図4、図5の例では、段差透明板部材の「厚みによる段差」は、光束の入射側に形成されているが、射出側に形成してもよいし、入射側と射出側とに段差を形成して、厚みが段階的に変化するようにしても良い。
Thus, the step transparent plate member may be configured in a composite manner so that “different transparent parallel flat plates are stacked and integrated”. In this case, the transparent parallel plates stacked on each other may be made of different materials.
In the example of FIGS. 4 and 5, the “step due to thickness” of the step transparent plate member is formed on the incident side of the light beam, but may be formed on the exit side, A thickness difference may be formed in a stepwise manner.

図6は、請求項5、11記載の記載の実施の1形態を説明図的に示している。
図6(a)は、側面図的表現、図6(b)は、図6(a)の状態を図の右側から見た状態を示している。
FIG. 6 illustrates one embodiment of the fifth and eleventh embodiments in an explanatory manner.
6A shows a side view representation, and FIG. 6B shows the state of FIG. 6A viewed from the right side of the figure.

図6において、符号101、102、103、11、12は光源としての半導体レーザ、符号201、202、203、21、22は上記半導体レーザに個別的に対応する集光レンズ、符号50は配列密度変換部材を示す。   In FIG. 6, reference numerals 101, 102, 103, 11, and 12 are semiconductor lasers as light sources, reference numerals 201, 202, 203, 21, and 22 are condensing lenses that individually correspond to the semiconductor lasers, and reference numeral 50 is an array density. The conversion member is shown.

半導体レーザ11、102、12は、図6(a)の上下方向に等間隔で1列に配列しており、半導体レーザ101、102、103は、図6(a)の図面に直交する方向へ等間隔で1列に配列している。これら半導体レーザから放射される発散性の光束は対応する集光レンズによりコリメートされ、平行光束L01、L02、L03、L1、L2に変換される。これら平行光束L01、L02、L03、L1、L2は互いに平行である。そして、図6(b)に示すように、平行光束L01、L03、L1、L2は平行光束L02を中心とする正方形の各頂点を占めるように位置する。   The semiconductor lasers 11, 102, and 12 are arranged in a line at equal intervals in the vertical direction of FIG. 6A, and the semiconductor lasers 101, 102, and 103 are in a direction orthogonal to the drawing of FIG. They are arranged in a line at equal intervals. The divergent light beams emitted from these semiconductor lasers are collimated by the corresponding condenser lenses, and converted into parallel light beams L01, L02, L03, L1, and L2. These parallel light beams L01, L02, L03, L1, and L2 are parallel to each other. As shown in FIG. 6B, the parallel light beams L01, L03, L1, and L2 are positioned so as to occupy each vertex of a square centering on the parallel light beam L02.

配列密度変換部材50は、図6(a)、(b)に示されたように、切頭4角錐形状であり「両面が互いに平行な透明板部材」を切頭4角錐状に組み合わせて配置し、一体化したものである。   As shown in FIGS. 6A and 6B, the array density conversion member 50 has a truncated quadrangular pyramid shape and is arranged by combining “transparent plate members whose both surfaces are parallel to each other” in a truncated quadrangular pyramid shape. And integrated.

半導体レーザ102から放射され集光レンズ202によりコリメートされた平行光束L02は、配列密度変換部材50の切頭部500をそのまま通過する。半導体レーザ101、103、11、12から放射され、対応する集光レンズによりコリメートされた平行光束L01、L03、L1、L2は、配列密度変換部材50を透過する際に、透明板部材の厚さと屈折率と傾き角とに応じて平行変位され、平行光束L011、L013、L11、L12となり、平行光束L02とともに、配列密度を図6(b)の縦横方向に高められた光束配列となる。   The parallel light beam L02 emitted from the semiconductor laser 102 and collimated by the condenser lens 202 passes through the truncated portion 500 of the array density conversion member 50 as it is. The parallel light beams L01, L03, L1, and L2 emitted from the semiconductor lasers 101, 103, 11, and 12 and collimated by the corresponding condensing lenses pass through the arrangement density conversion member 50 and the thickness of the transparent plate member. The parallel displacement is made according to the refractive index and the inclination angle, and the parallel light beams L011, L013, L11, and L12 are obtained. Together with the parallel light beam L02, the light beam array has an array density increased in the vertical and horizontal directions in FIG.

即ち、図6に示す実施の形態では、互いに平行な複数本(5本)の光束の配列密度を変換する方法であって、両面が互いに平行な透明板部材を角錐状に組み合わせて配置してなる配列密度変換部材50を、その角錐軸方向が光束方向となるようにして配置して複数光束L01、L02、L03、L1、L2を透過させ、透明板部材の厚さと屈折率と傾き角とに応じて、透過光束L01、L03、L1、L2を平行変位させて、光束の配列密度を変換する光束配列密度変換方法が実施される。 That is, the embodiment shown in FIG. 6 is a method for converting the arrangement density of a plurality of (five) light beams parallel to each other, in which transparent plate members whose both surfaces are parallel to each other are arranged in combination in a pyramid shape. The arrangement density conversion member 50 is arranged so that the direction of the pyramid axis is the light beam direction, and transmits the plurality of light beams L01, L02, L03, L1, and L2, and the thickness, refractive index, and inclination angle of the transparent plate member Accordingly, a light beam array density conversion method is performed in which the transmitted light beams L01, L03, L1, and L2 are displaced in parallel to convert the array density of the light beams.

従って、配列密度変換部材50は、請求項16記載の光束配列密度変換部材の実施の1形態となっている。上の実施の形態では、4角錐形状の配列密度変換部材を説明したが、配列密度変換部材の角錐形状は、これに限らず、3角錐や切頭3角錐、5角錐や切頭5角錐、6角錐や切頭6角錐等、種々の形状のものが可能である。   Therefore, the arrangement density conversion member 50 is an embodiment of the light beam arrangement density conversion member according to claim 16. In the above embodiment, an array density conversion member having a quadrangular pyramid shape has been described. However, the pyramid shape of the array density conversion member is not limited to this, and a triangular pyramid, a truncated triangular pyramid, a five pyramid, a truncated pyramid, Various shapes such as a hexagonal pyramid and a truncated hexagonal pyramid are possible.

さらに、配列密度変換部材として「角錐状に組み合わせられる透明板部材が、角錐軸方向に厚さが複数段に変化するもの(この場合の断面形状は、例えば、図4の配列密度変換部材の断面形状と同様のものになる。)」を用いることもでき、そのような配列密度変換部材は、請求項11記載の光束配列密度変換部材の実施の1形態となる。 Further, as the arrangement density conversion member, “a transparent plate member combined in a pyramid shape, whose thickness changes in a plurality of steps in the direction of the pyramid axis (the cross-sectional shape in this case is, for example, the cross section of the arrangement density conversion member of FIG. becomes similar to the shape.) "can also be used, such arrangement density conversion member is 1 embodiment of the light beam arrangement density conversion member according to claim 11, wherein.

図7は、請求項7の記載の実施の1形態を説明図的に示している。
図7(a)は、側面図、図7(b)は、図7(a)の状態を図の右側から見た状態を示している。
FIG. 7 illustrates one embodiment of the seventh aspect in an explanatory manner.
FIG. 7A shows a side view, and FIG. 7B shows the state of FIG. 7A viewed from the right side of the figure.

図7において、符号101、102、103、11、12は光源としての半導体レーザ、符号201、202、203、21、22は上記半導体レーザに個別的に対応する集光レンズ、符号60は配列密度変換部材を示す。   In FIG. 7, reference numerals 101, 102, 103, 11, and 12 are semiconductor lasers as light sources, reference numerals 201, 202, 203, 21, and 22 are condensing lenses that individually correspond to the semiconductor lasers, and reference numeral 60 is an array density. The conversion member is shown.

半導体レーザ11、102、12は、図7(a)の上下方向に等間隔で1列に配列しており、半導体レーザ101、102、103は、図7(a)の図面に直交する方向へ等間隔で1列に配列している。これら半導体レーザから放射される発散性の光束は対応する集光レンズによりコリメートされ、平行光束L01、L02、L03、L1、L2に変換される。これら平行光束L01、L02、L03、L1、L2は互いに平行である。そして、図7(b)に示すように、平行光束L01、L03、L1、L2は平行光束L02を中心とする正方形の各頂点を占めるように位置する。   The semiconductor lasers 11, 102, and 12 are arranged in a line at equal intervals in the vertical direction of FIG. 7A, and the semiconductor lasers 101, 102, and 103 are in a direction orthogonal to the drawing of FIG. They are arranged in a line at equal intervals. The divergent light beams emitted from these semiconductor lasers are collimated by the corresponding condenser lenses, and converted into parallel light beams L01, L02, L03, L1, and L2. These parallel light beams L01, L02, L03, L1, and L2 are parallel to each other. Then, as shown in FIG. 7B, the parallel light beams L01, L03, L1, and L2 are positioned so as to occupy each vertex of a square centering on the parallel light beam L02.

配列密度変換部材60は図7(a)、(b)に示されたように、透明材料により形成され「外周面と内周面とが互いに平行な切頭円錐状」であり、その円錐軸方向が光束方向となるようにして配置される。   As shown in FIGS. 7A and 7B, the array density conversion member 60 is formed of a transparent material and has a “conical truncated cone shape in which the outer peripheral surface and the inner peripheral surface are parallel to each other”. It arrange | positions so that a direction may turn into a light beam direction.

半導体レーザ102から放射され集光レンズ202によりコリメートされた平行光束L02は、配列密度変換部材60の切頭部600をそのまま通過する。半導体レーザ101、103、11、12から放射され、対応する集光レンズによりコリメートされた平行光束L01、L03、L1、L2は、配列密度変換部材60を透過する際に、配列密度変換部材の厚さと屈折率と傾き角とに応じて平行変位され、平行光束L011、L013、L11、L12となり、平行光束L02とともに、配列密度を図7(b)の縦横方向に高められた光束配列となる。   The parallel light beam L02 emitted from the semiconductor laser 102 and collimated by the condenser lens 202 passes through the truncated portion 600 of the array density conversion member 60 as it is. The parallel light beams L01, L03, L1, and L2 emitted from the semiconductor lasers 101, 103, 11, and 12 and collimated by the corresponding condenser lenses pass through the arrangement density conversion member 60, and the thickness of the arrangement density conversion member. In parallel with the parallel light beam L011, L013, L11, and L12, the parallel light beam L02 and the light beam array with the array density increased in the vertical and horizontal directions in FIG. 7B are obtained.

即ち、図7に示す実施の形態では、互いに平行な複数本(5本)の光束の配列密度を変換する方法であって、透明材料により形成され、外周面と内周面とが互いに平行な円錐状の配列密度変換部材60を、その円錐軸方向が光束方向となるようにして配置して複数光束L01、L02、L03、L1、L2を透過させ、配列密度変換部材60の厚さと屈折率と傾き角とに応じて、透過光束を平行変位させて、光束の配列密度を変換する光束配列密度変換方法(請求項7)が実施される。 That is, the embodiment shown in FIG. 7 is a method for converting the arrangement density of a plurality of (5) light beams parallel to each other, which is formed of a transparent material, and the outer peripheral surface and the inner peripheral surface are parallel to each other. The conical array density conversion member 60 is disposed so that the direction of the cone axis is the light beam direction, and allows the plurality of light beams L01, L02, L03, L1, and L2 to pass therethrough. In accordance with the angle of inclination and the tilt angle, a light beam arrangement density conversion method ( Claim 7 ) is performed in which the transmitted light beam is displaced in parallel to change the arrangement density of the light beam.

従って、配列密度変換部材60は、請求項12記載の光束配列密度変換部材の実施の1形態となっている。上の実施の形態では、切頭円錐形状の配列密度変換部材60を説明したが、配列密度変換部材形状は、これに限らず、切頭部600の無い円錐形状でも良い。 Therefore, the arrangement density conversion member 60 is an embodiment of the light beam arrangement density conversion member according to claim 12 . In the above embodiment, the truncated cone-shaped array density conversion member 60 has been described. However, the array density conversion member shape is not limited to this, and may be a cone shape without the truncated head 600.

さらに、配列密度変換部材として「円錐軸方向に厚さが複数段に変化するもの(この場合の断面形状は、例えば、図4の配列密度変換部材の断面形状と同様のものになる。)」を用いることもでき、そのような配列密度変換部材は、請求項12記載の光束配列密度変換部材の実施の1形態となる。 Furthermore, as the arrangement density conversion member, “the one whose thickness changes in a plurality of stages in the direction of the cone axis (the cross-sectional shape in this case is the same as the cross-sectional shape of the arrangement density conversion member in FIG. 4, for example)” also can be used, such arrangement density conversion member is 1 embodiment of the light beam arrangement density conversion member according to claim 12, wherein.

ここで若干説明を補足すると、円錐形状の配列密度変換素子を用いる場合、円錐面は、円錐軸に直交する面内において曲率を有するから、円錐面に入射する光束は、上記曲率によるレンズ作用を受けることになる。このため、平行変位した後の光束の光束断面形状は平行変位前の光束断面形状と異なるものとなる。   Here, to supplement a little explanation, when a conical array density conversion element is used, the conical surface has a curvature in a plane orthogonal to the conical axis, so that the light beam incident on the conical surface has the lens action due to the curvature. Will receive. For this reason, the cross-sectional shape of the light beam after the parallel displacement is different from the cross-sectional shape of the light beam before the parallel displacement.

具体的な実施例として、図7に示した実施の形態の場合において、光束配列密度変換部材である配列密度変換部材60を以下の如きものとする。   As a specific example, in the case of the embodiment shown in FIG. 7, the arrangement density conversion member 60 which is a light beam arrangement density conversion member is as follows.

入射側内径(切頭部600の直径):4mm
射出側内径:11.16mm
肉厚:3mm
円錐軸方向の長さ:10mm
屈折率:1.52
このような配列密度変換部材に対して、図7の平行光束L1とL2とを相互の間隔(図7における間隔:2D)を14mmとして入射させた。光束の波長は587.56nmであり、入射側における光束断面形状は、図7(a)の上下方向を短軸方向、図面に直交する方向を長軸方向とする楕円形状で、長軸径:1mm、短軸径:0.8mmである。このとき、配列密度変換部材60から射出する光束L11、L12の光束断面形状は、直径:0.8の円形状に変換された。
Incident-side inner diameter (diameter of the truncated head 600): 4 mm
Injection side inner diameter: 11.16mm
Thickness: 3mm
Length in conical axis direction: 10mm
Refractive index: 1.52
The parallel light beams L1 and L2 in FIG. 7 were incident on such an array density conversion member with a mutual interval (interval: 2D in FIG. 7) being 14 mm. The wavelength of the light beam is 587.56 nm, and the cross-sectional shape of the light beam on the incident side is an elliptical shape in which the vertical direction in FIG. 7A is the short axis direction and the direction orthogonal to the drawing is the long axis direction. 1 mm, minor axis diameter: 0.8 mm. At this time, the cross-sectional shapes of the light beams L11 and L12 emitted from the arrangement density conversion member 60 were converted into a circular shape having a diameter of 0.8.

上に説明した実施の各形態における半導体レーザ10、11等と、これらに対応する集光レンズ20、21等により「互いに平行な複数の光束L0、L1等を放射する光源部」を構成し、この光源部からの複数光束の光束配列密度を変換する光束配列密度変換部材として上記実施の各形態のものを用いることにより、光源部から放射される複数光束の配列密度を所望の配列密度に変換した複数光束を外部に放射する光源装置(請求項16)を実現することができる。
The semiconductor lasers 10 and 11 in each of the embodiments described above and the condensing lenses 20 and 21 corresponding thereto constitute a “light source unit that emits a plurality of light beams L0 and L1 parallel to each other” By using the light beam array density conversion member that converts the light beam array density of the plurality of light beams from the light source unit in the above embodiments, the array density of the plurality of light beams emitted from the light source unit is converted to a desired array density. multiple light beam can realize a light source device for emitting to the outside (claim 16).

上には、配列密度を変換される複数光束が平行光束である場合を説明したが、配列密度を変換される光束は互いに光軸光線が平行であれば良く、個々の光束は平行光束に限らず収束性の光束でもよいし発散性の光束でもよい。   In the above, the case where a plurality of light beams whose array density is converted is a parallel light beam has been described. However, the light beams whose array density is converted need only be parallel to each other on the optical axis, and each light beam is limited to a parallel light beam. Instead, a convergent light beam or a divergent light beam may be used.

また、上に説明した実施の各形態において「光束配列密度を高める場合」を説明したが、光束配列密度変換部材への「光束の入射方向」を逆にすれば、光束配列密度変換部材から射出する光束間隔を広げ、配列密度を低くするような配列密度変換が行われることは明らかであり、光束配列密度変換は配列密度を高める変換でも低くする変換でもよい。   Further, in each of the embodiments described above, “in the case of increasing the luminous flux array density” has been described. However, if the “incident direction of the luminous flux” to the luminous flux array density conversion member is reversed, the light beam is emitted from the luminous flux array density conversion member. It is clear that the array density conversion is performed so as to widen the light flux interval and lower the array density. The light beam array density conversion may be a conversion that increases or decreases the array density.

光束配列密度変換方法の実施の1形態を説明するための図である。It is a figure for demonstrating one Embodiment of the light beam arrangement density conversion method. 屈折による光束の平行変位を説明するための図である。It is a figure for demonstrating the parallel displacement of the light beam by refraction. 光束配列密度変換方法の実施の別形態を説明するための図である。It is a figure for demonstrating another form of implementation of the light beam arrangement density conversion method. 光束配列密度変換方法の実施の他の形態を説明するための図である。It is a figure for demonstrating the other form of implementation of the light beam arrangement density conversion method. 光束配列密度変換方法の実施の他の形態を説明するための図である。It is a figure for demonstrating the other form of implementation of the light beam arrangement density conversion method. 光束配列密度変換方法の実施の他の形態を説明するための図である。It is a figure for demonstrating the other form of implementation of the light beam arrangement density conversion method. 光束配列密度変換方法の実施の他の形態を説明するための図である。It is a figure for demonstrating the other form of implementation of the light beam arrangement density conversion method.

符号の説明Explanation of symbols

10、11 半導体レーザ(光源)
20、21 集光レンズ
31 透明板部材
L1、L2 光束
10, 11 Semiconductor laser (light source)
20, 21 Condensing lens 31 Transparent plate member L1, L2 Light flux

Claims (16)

互いに平行なN(≧2)本の光束の、光束に直交する所定の変換方向の配列密度を変換する方法であって、A method of converting an array density of N (≧ 2) light beams parallel to each other in a predetermined conversion direction orthogonal to the light beams,
両面が互いに平行で厚みが複数段に異なる段差透明板部材を1枚、光束の方向と上記変換方向とに平行な面内で、上記光束の方向に対して傾けて上記厚みが上記面内で複数段に変化するように配置し、  One step transparent plate member whose both surfaces are parallel to each other and different in thickness in a plurality of steps, in a plane parallel to the direction of the light beam and the conversion direction, and tilted with respect to the direction of the light beam, the thickness is within the surface Arranged to change in multiple stages,
上記段差透明板部材にM(1≦M≦N)本の光束を透過させ、上記段差透明板部材の厚さと屈折率と傾き角とに応じて、上記M本の光束を上記変換方向に平行変位させるとともに、各厚み部を透過する光束の変換方向の間隔を変化させることにより、上記M本の光束の上記間隔変換方向における配列密度を変換することを特徴とする光束間隔変換方法。  M (1 ≦ M ≦ N) light beams are transmitted through the step transparent plate member, and the M light beams are parallel to the conversion direction according to the thickness, refractive index, and tilt angle of the step transparent plate member. A light beam interval conversion method characterized in that the arrangement density of the M light beams in the interval conversion direction is converted by changing the distance in the conversion direction of the light beams that pass through each thickness portion.
互いに平行なN(≧2)本の光束の、光束に直交する所定の変換方向の配列密度を変換する方法であって、
両面が互いに平行で厚みが複数段に異なる段差透明板部材を2枚、光束の方向と変換方向とに平行な面内で、上記光束の方向に対して互いに逆向きに傾けて上記厚みが上記面内で複数段に変化するように配置し、
これら段差透明板部材にK(2≦K≦N)本の光束を透過させ、上記段差透明板部材の厚さと屈折率と傾き角とに応じて、上記K本の光束を上記変換方向に変位させるとともに、各厚み部を透過する光束の変換方向の間隔を変化させることにより、上記N本の光束の上記変換方向における間隔を変換することを特徴とする光束配列密度変換方法
A method of converting an array density of N (≧ 2) light beams parallel to each other in a predetermined conversion direction orthogonal to the light beams,
Two step transparent plate members having both sides parallel to each other and having a plurality of thicknesses are inclined in directions opposite to each other with respect to the direction of the light beam in a plane parallel to the direction of the light beam and the conversion direction. Arrange it to change in multiple steps in the plane,
K (2 ≦ K ≦ N) light beams are transmitted through these step transparent plate members, and the K light beams are displaced in the conversion direction in accordance with the thickness, refractive index, and tilt angle of the step transparent plate member. And changing the intervals in the conversion direction of the N light beams by changing the intervals in the conversion direction of the light beams transmitted through the respective thickness portions .
請求項2記載の光束配列密度変換方法において、  In the light beam array density conversion method according to claim 2,
2枚の段差透明板部材が同じものであり、光束方向と変換方向とに平行な面内で、光束方向に対して対称的に傾けて配置されることを特徴とする光束配列密度変換方法。  A light flux array density conversion method characterized in that the two step transparent plate members are the same, and are arranged symmetrically and inclined with respect to the light flux direction in a plane parallel to the light flux direction and the conversion direction.
請求項2または3記載の光束配列密度変換方法において、In the light beam arrangement density conversion method according to claim 2 or 3,
2枚の段差透明板部材を、変換方向に所定間隔を隔して配置し、上記所定間隔部分に、変換方向に関して1本の光束を通過させることを特徴とする光束間隔変換方法。  A light flux interval conversion method comprising: arranging two step transparent plate members at a predetermined interval in the conversion direction, and allowing one light beam to pass through the predetermined interval portion in the conversion direction.
互いに平行な複数本の光束の配列密度を変換する方法であって、
両面が互いに平行な透明板部材を角錐状に組み合わせて配置してなる配列密度変換部材を、その角錐軸方向が光束方向となるようにして配置して複数光束を透過させ、透明板部材の厚さと屈折率と傾き角とに応じて、透過光束を平行変位させて、光束の配列密度を変換することを特徴とする光束配列密度変換方法
A method for converting the arrangement density of a plurality of light beams parallel to each other,
An arrangement density conversion member formed by combining transparent plate members whose both surfaces are parallel to each other in a pyramid shape is arranged so that the direction of the pyramid axis is a light beam direction to transmit a plurality of light beams, and the thickness of the transparent plate member A method for converting the arrangement density of luminous flux, wherein the arrangement density of the luminous flux is converted by parallel displacement of the transmitted luminous flux in accordance with the refractive index and the inclination angle .
請求項5記載の光束配列密度変換方法において、
配列密度変換部材として、角錐状に組み合わせられる透明板部材が、角錐軸方向に厚さが複数段に変化するものを用いることを特徴とする光束配列密度変換方法
In the light beam array density conversion method according to claim 5,
A light beam array density conversion method characterized in that, as the array density conversion member, a transparent plate member combined in a pyramid shape is used whose thickness changes in a plurality of stages in the pyramid axis direction .
互いに平行な複数本の光束の配列密度を変換する方法であって、
透明材料により形成され、外周面と内周面とが互いに平行な円錐状の配列密度変換部材を、その円錐軸方向が光束方向となるようにして配置して複数光束を透過させ、配列密度変換部材の厚さと屈折率と傾き角とに応じて、透過光束を平行変位させて、光束の配列密度を変換することを特徴とする光束配列密度変換方法
A method for converting the arrangement density of a plurality of light beams parallel to each other,
A conical array density conversion member formed of a transparent material and having an outer peripheral surface and an inner peripheral surface parallel to each other is arranged so that the direction of the cone axis is the direction of the light beam to transmit a plurality of light beams, thereby converting the array density. A light beam array density conversion method characterized by converting the array density of a light beam by parallelly displacing the transmitted light beam according to the thickness, refractive index, and tilt angle of the member .
請求項7記載の光束配列密度変換方法において、
円錐状の配列密度変換部材として、円錐軸方向に厚さが複数段に変化するものを用いることを特徴とする光束配列密度変換方法
In the light beam array density conversion method according to claim 7,
A light beam array density conversion method characterized by using a conical array density conversion member whose thickness changes in a plurality of stages in the direction of the cone axis .
請求項1記載の光束配列密度変換方法の実施に用いられる光束配列密度変換部材であって、
1枚の段差透明板部材により構成される光束配列密度変換部材
A light beam arrangement density conversion member used for carrying out the light beam arrangement density conversion method according to claim 1,
A luminous flux density conversion member constituted by a single stepped transparent plate member .
請求項2または3または4記載の光束配列密度変換方法の実施に用いられる光束配列密度変換部材であって、
2枚の段差透明板部材を一体化してなる光束配列密度変換部材
A light beam arrangement density conversion member used for carrying out the light beam arrangement density conversion method according to claim 2, 3 or 4,
A light flux density conversion member formed by integrating two stepped transparent plate members .
請求項5または6記載の光束配列密度変換方法の実施に用いられる角錐状の配列密度変換部材である光束配列密度変換部材 A light beam array density conversion member, which is a pyramid-shaped array density conversion member used for carrying out the light beam array density conversion method according to claim 5 . 請求項7または8記載の光束配列密度変換方法の実施に用いられる円錐状の配列密度変換部材である光束配列密度変換部材 9. A light beam arrangement density conversion member which is a conical arrangement density conversion member used for carrying out the light beam arrangement density conversion method according to claim 7 or 8 . 互いに平行なN(≧2)本の光束の、光束に直交する所定の変換方向の配列密度を変換する光束配列密度変換部材であって、A light beam array density conversion member that converts the array density of N (≧ 2) light beams parallel to each other in a predetermined conversion direction orthogonal to the light beam,
両面が互いに平行な透明板部材で、光束の方向と変換方向とに平行な面内で、上記光束の方向に対して傾けて配置され、M(1≦M<N)本の光束を透過させ、その厚さと屈折率と傾き角とに応じて、上記M本の光束を上記変換方向に平行変位させ、上記M本の光束と、上記透明板部材を透過しないN−M本の光束との上記変換方向における間隔を変換する第1の透明板部材と、  The transparent plate members whose both surfaces are parallel to each other are arranged to be inclined with respect to the direction of the light beam in a plane parallel to the direction of the light beam and the conversion direction, and transmit M (1 ≦ M <N) light beams. Depending on the thickness, refractive index, and tilt angle, the M light beams are displaced in parallel in the conversion direction, and the M light beams and NM light beams that do not pass through the transparent plate member. A first transparent plate member for converting the interval in the conversion direction;
両面が互いに平行な他の透明板部材で、光束の方向と変換方向とに平行な面内で、上記第1の透明板部材と逆向きに傾けて配置され、L(1≦L≦N−M)本の光束を透過させ、その厚さと屈折率とに応じて、上記L本の光束を平行変位させ、上記L本の光束と、上記第2の透明板部材を透過しないN−L本の光束との間隔を変換する第2の透明板部材とを一体化してなる光束配列密度変換部材。  It is another transparent plate member whose both surfaces are parallel to each other, and is disposed so as to be inclined in the direction opposite to the first transparent plate member in a plane parallel to the direction of the light beam and the conversion direction, and L (1 ≦ L ≦ N− M) Transmits the light fluxes, translates the L light fluxes in parallel according to the thickness and the refractive index, and does not transmit the L light fluxes and the second transparent plate member. A light flux density conversion member formed by integrating a second transparent plate member that converts the distance between the light flux and the light flux.
請求項13記載の光束配列密度変換部材において、
互いに一体化された第1および第2の透明板部材が同じものであり、光束方向と変換方向とに平行な面内で、光束方向に対して対称的に傾けて配置されたことを特徴とする光束配列密度変換方法
In the light beam arrangement density conversion member according to claim 13,
The first and second transparent plate members integrated with each other are the same, and are arranged so as to be inclined symmetrically with respect to the light beam direction in a plane parallel to the light beam direction and the conversion direction. To convert the luminous flux array density .
請求項13または14記載の光束配列密度変換部材において、
互いに一体化された第1及び第2の透明板部材が、変換方向に所定間隔を隔して配置され、上記所定間隔部分に、変換方向に関して1本の光束を通過させる構成であることを特徴とする光束配列密度変換部材。
In the light beam arrangement density conversion member according to claim 13 or 14,
The first and second transparent plate members integrated with each other are arranged at a predetermined interval in the conversion direction, and one light beam is passed through the predetermined interval portion with respect to the conversion direction. A luminous flux array density conversion member.
互いに平行な複数の光束を放射する光源部と、この光源部からの複数光束の光束配列密度を変換する光束配列密度変換部材とを有し、
光束配列密度変換部材が、請求項9〜15の任意の1に記載のものであることを特徴とする光源装置
A light source unit that emits a plurality of light beams parallel to each other, and a light beam array density conversion member that converts a light beam array density of the plurality of light beams from the light source unit,
The light source device, wherein the light flux density conversion member is any one of claims 9 to 15 .
JP2005160553A 2005-05-31 2005-05-31 Light flux array density conversion method, light flux array density conversion member, and light source device Expired - Fee Related JP4739819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160553A JP4739819B2 (en) 2005-05-31 2005-05-31 Light flux array density conversion method, light flux array density conversion member, and light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160553A JP4739819B2 (en) 2005-05-31 2005-05-31 Light flux array density conversion method, light flux array density conversion member, and light source device

Publications (2)

Publication Number Publication Date
JP2006337594A JP2006337594A (en) 2006-12-14
JP4739819B2 true JP4739819B2 (en) 2011-08-03

Family

ID=37558216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160553A Expired - Fee Related JP4739819B2 (en) 2005-05-31 2005-05-31 Light flux array density conversion method, light flux array density conversion member, and light source device

Country Status (1)

Country Link
JP (1) JP4739819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082673B2 (en) 2015-01-23 2018-09-25 Mitsubishi Electric Corporation Laser light source device and video display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2061122B1 (en) * 2007-11-16 2014-07-02 Fraunhofer USA, Inc. A high power laser diode array comprising at least one high power diode laser, laser light source comprising the same and method for production thereof
US8804246B2 (en) 2008-05-08 2014-08-12 Ii-Vi Laser Enterprise Gmbh High brightness diode output methods and devices
DE102010044875A1 (en) * 2010-09-09 2012-03-15 Limo Patentverwaltung Gmbh & Co. Kg Illumination device for producing a linear intensity distribution in a working plane
CN102891436A (en) * 2011-07-21 2013-01-23 奥兰若技术有限公司 Optical system and method for improving same
WO2013031836A1 (en) * 2011-09-01 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Coupling optical system and coupling method
WO2015145608A1 (en) * 2014-03-26 2015-10-01 株式会社島津製作所 Laser device
KR20170020315A (en) * 2014-06-20 2017-02-22 기가포톤 가부시키가이샤 Laser system
JP6440469B2 (en) * 2014-11-27 2018-12-19 三菱電機株式会社 Laser synthesis optical device
US20190162975A1 (en) * 2016-08-26 2019-05-30 Panasonic Intellectual Property Management Co., Ltd. Laser module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134188A (en) * 1984-12-04 1986-06-21 Toshiba Corp Semiconductor device for picking up image
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
JPH09139340A (en) * 1995-11-13 1997-05-27 Nikon Corp Positional discrepancy correcting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262822A (en) * 2002-03-12 2003-09-19 Nippon Telegr & Teleph Corp <Ntt> Arraying intervals transformation optical system of two-dimensionally arrayed light beams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134188A (en) * 1984-12-04 1986-06-21 Toshiba Corp Semiconductor device for picking up image
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
JPH09139340A (en) * 1995-11-13 1997-05-27 Nikon Corp Positional discrepancy correcting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082673B2 (en) 2015-01-23 2018-09-25 Mitsubishi Electric Corporation Laser light source device and video display device

Also Published As

Publication number Publication date
JP2006337594A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US6700709B1 (en) Configuration of and method for optical beam shaping of diode laser bars
US7110183B2 (en) Device for the optical beam transformation of a linear arrangement of several light sources
US6493148B1 (en) Increasing laser beam power density
JP4381460B2 (en) Laser photosynthesis device
JP2000137139A (en) Optical luminous flux converter
KR102181434B1 (en) Laser device
JPH10510933A (en) Apparatus for focusing and shaping emitted light of multiple diode laser arrays
JP4739819B2 (en) Light flux array density conversion method, light flux array density conversion member, and light source device
JP2012243900A (en) Fiber forwarding laser optical system
JP2000098191A (en) Semiconductor laser beam source device
JP5507837B2 (en) Apparatus for forming a laser beam
CN100427995C (en) Device for homogenizing light and arrangement for illuminating or focussing with said device
JP4264231B2 (en) Concentrator
JP5935465B2 (en) Optical device
KR101769653B1 (en) Laser apparatus for producing a linear intensity distribution in a working plane
CN105093430A (en) Optical coupling element and optical module using the optical coupling element
JP2008064994A (en) Light source device and optical device
CN112505983B (en) Microprism optical element for realizing laser dot matrix and projection module
JP4010950B2 (en) Device for collimating a light beam emitted from a laser light source and a light beam conversion device for the device
RU2648976C2 (en) Device for formation of laser radiation
JP4040934B2 (en) Concentrator
US11874476B1 (en) Metalens collimators and condensers
CN115524711A (en) Line array projectors for 3D ranging systems
CN114815298A (en) Waveguide type high-uniformity directional backlight system for naked eye three-dimensional display
JP4740221B2 (en) Light source module and light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees