[go: up one dir, main page]

JP4725437B2 - Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate - Google Patents

Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate Download PDF

Info

Publication number
JP4725437B2
JP4725437B2 JP2006181727A JP2006181727A JP4725437B2 JP 4725437 B2 JP4725437 B2 JP 4725437B2 JP 2006181727 A JP2006181727 A JP 2006181727A JP 2006181727 A JP2006181727 A JP 2006181727A JP 4725437 B2 JP4725437 B2 JP 4725437B2
Authority
JP
Japan
Prior art keywords
less
thick steel
steel plate
slab
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006181727A
Other languages
Japanese (ja)
Other versions
JP2008007841A (en
Inventor
徹 加藤
章裕 山中
伸彰 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006181727A priority Critical patent/JP4725437B2/en
Publication of JP2008007841A publication Critical patent/JP2008007841A/en
Application granted granted Critical
Publication of JP4725437B2 publication Critical patent/JP4725437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、厚鋼板用連続鋳造鋳片及びその製造方法並びに厚鋼板に関する。詳しくは、ラインパイプ、海洋構造物や圧力容器などに用いられる耐水素誘起割れ性(以下、「耐HIC性」という。)に優れた高強度の厚鋼板並びにその素材として好適な厚鋼板用連続鋳造鋳片及びその製造方法に関する。   The present invention relates to a continuous cast slab for a thick steel plate, a method for producing the same, and a thick steel plate. Specifically, high-strength steel plates with excellent resistance to hydrogen-induced cracking (hereinafter referred to as “HIC resistance”) used in line pipes, offshore structures, pressure vessels, etc. The present invention relates to a cast slab and a manufacturing method thereof.

本明細書でいう「厚鋼板」とは、厚さ12.7〜38.1mm(0.5〜1.5インチ)の鋼板を指す。   As used herein, “thick steel plate” refers to a steel plate having a thickness of 12.7 to 38.1 mm (0.5 to 1.5 inches).

なお、本明細書においては、上記の「連続鋳造鋳片」を単に「鋳片」ということがある。   In the present specification, the “continuous cast slab” may be simply referred to as “slab”.

近年、エネルギー枯渇のため、硫化水素を多量に含む過酷な環境下にある天然ガス井及び油井の開発が盛んに行われるようになった。そして、上記の硫化水素を多量に含む天然ガスや原油の採取、精整、貯蔵、輸送などに用いられるラインパイプ、油井管、海洋構造物や圧力容器用の鋼材に対しては、採取・輸送効率の増大や敷設費用低減の目的から、高強度材が要求されている。   In recent years, due to energy depletion, the development of natural gas wells and oil wells under harsh environments containing a large amount of hydrogen sulfide has been actively conducted. For line pipes, oil wells, marine structures and pressure vessels used for the extraction, refining, storage and transportation of natural gas and crude oil containing a large amount of hydrogen sulfide, the sampling and transportation High-strength materials are required for the purpose of increasing efficiency and reducing laying costs.

その結果、上記の硫化水素を多量に含む天然ガスや原油の採取、精整、貯蔵、輸送などに用いられるラインパイプ、油井管、海洋構造物や圧力容器などに油漏れや破壊、爆発事故がしばしば発生している。   As a result, oil leaks, destruction, and explosions have occurred in line pipes, oil well pipes, offshore structures and pressure vessels used for the extraction, refining, storage, and transportation of natural gas and crude oil containing a large amount of hydrogen sulfide. It often occurs.

こうした事故の発生原因の1つに、腐食反応によって発生した水素ガスが鋼材中に浸入、拡散して鋼材中のMnSや酸化物系介在物の周囲に集積し、これが分子化してその内圧により割れを生ずる水素誘起割れ(以下「HIC」という。)があることが知られている。   One of the causes of such accidents is that hydrogen gas generated by the corrosion reaction enters and diffuses into the steel material and accumulates around MnS and oxide inclusions in the steel material, which is molecularized and cracked by its internal pressure. It is known that there are hydrogen-induced cracks (hereinafter referred to as “HIC”) that cause

そこで、従来から、ラインパイプ、海洋構造物や圧力容器、なかでもラインパイプにおけるHICを抑止するための技術が種々検討され、例えば、特許文献1〜7に提案されている。   Therefore, various techniques for suppressing HIC in line pipes, offshore structures and pressure vessels, especially line pipes have been studied, and for example, proposed in Patent Documents 1-7.

すなわち、特許文献1に、ラインパイプ用鋼を溶製するにあたりCaの単独添加又はCa、Ceの複合添加を特定の式を満足するように調整した「耐水素誘起割れ性の優れたラインパイプ用鋼の製造方法」が開示されている。   That is, in the case of melting a pipe pipe steel in Patent Document 1, a single addition of Ca or a combined addition of Ca and Ce was adjusted so as to satisfy a specific formula “for a line pipe with excellent resistance to hydrogen-induced cracking” Steel manufacturing method "is disclosed.

特許文献2に、Niを0.20%を超え3.0%以下の範囲内で含有するとともに、5.0%以下のCrと2.0%以下のMoの1種又は2種をCr+Mo合計量が0.5%以上の範囲で含有することによって、耐HIC性と耐硫化物応力腐食割れ性の両者を高めた「耐サワー性に優れたラインパイプ用鋼」が開示されている。   Patent Document 2 contains Ni in the range of more than 0.20% and less than 3.0%, and includes one or two of 5.0% or less of Cr and 2.0% or less of Mo in total Cr + Mo. By including the amount in the range of 0.5% or more, “steel for line pipes excellent in sour resistance” is disclosed, in which both HIC resistance and sulfide stress corrosion cracking resistance are improved.

特許文献3に、特に厚板素材において、靱性の低下やHICの原因となる鋼鋳片の厚み方向中心部(最終凝固部)でC、S、P及びMnなどの溶鋼成分が正偏析する現象である中心偏析を防止する方法、具体的には、鋳型直下から引き抜き方向に配列されたガイドロールの鋳片厚さ方向の間隔を段階的に増加させて、鋳片の中心部の固相率(fs)が0.1以下の位置でバルジングを生ぜしめ、鋳片の最大厚さを前記鋳型の短辺長さよりも20〜100mm厚くし、凝固完了点直前にて少なくとも1対の圧下ロールによりその1対あたり20mm以上の圧下を与え、前記バルジング量相当分を圧下する鋼の「連続鋳造方法」が開示されている。   Patent Document 3 discloses a phenomenon in which molten steel components such as C, S, P, and Mn are positively segregated in the center portion (final solidified portion) in the thickness direction of a steel slab that causes toughness reduction and HIC, particularly in thick plate materials. The method of preventing center segregation, specifically, by increasing the interval in the slab thickness direction of the guide rolls arranged in the drawing direction from directly under the mold, the solid fraction of the center part of the slab (Fs) causes bulging at a position of 0.1 or less, the maximum thickness of the slab is 20 to 100 mm thicker than the short side length of the mold, and at least one pair of rolling rolls immediately before the solidification completion point A “continuous casting method” of steel is disclosed in which a reduction of 20 mm or more per pair is applied and the amount corresponding to the bulging amount is reduced.

特許文献4に、未凝固鋳片を効率よく圧下し、鋳片の厚さ方向中心部の偏析を低減できる連続鋳造方法及び鋳片、具体的には、未凝固部を含む鋳片をバルジングさせた後に、圧下ロール対を用いて圧下する連続鋳造方法であって、連続鋳造機内において、圧下ロール対の下部ロールを鋳片の下側パスラインよりも突出させて圧下する鋼の「連続鋳造方法」及び、鋳片の厚さ方向中心部におけるMnの中心偏析比C/Coが、特定の式で表される幅Wにわたって特定の式で表される関係を満たす上記の「連続鋳造方法」で製造された「鋳片」が開示されている。   Patent Document 4 discloses a continuous casting method and slab that can efficiently reduce unsolidified slabs and reduce segregation at the center of the slab in the thickness direction, specifically, bulging slabs including unsolidified parts. A continuous casting method in which the rolling is performed by using a pair of rolling rolls, and the lower roll of the pair of rolling rolls protrudes from the lower pass line of the slab in the continuous casting machine. And the above-described “continuous casting method” in which the center segregation ratio C / Co of Mn in the thickness direction center portion of the slab satisfies the relationship expressed by the specific formula over the width W expressed by the specific formula A manufactured “slab” is disclosed.

特許文献5に、耐HIC特性に優れた高張力鋼及びその製造方法、具体的には、特定の化学組成からなるとともに鋼中平均Mn含有量M0に対する偏析部のMn含有量Mの比M/M0が1.20以下である「耐HIC特性に優れた高張力鋼板」及び、特定の化学組成からなる溶鋼を、連続鋳造したのち、熱間圧延を施すことからなる高張力鋼板の製造方法において、上記溶鋼の連続鋳造に際し、鋳片の内部溶鋼が凝固を完了するクレーターエンド近傍にて、鋳片中央部のMn含有量Mと溶鋼平均Mn含有量M0との比M/M0が1.20以下となる鍛圧加工を施す「耐HIC性に優れた高張力鋼の製造方法」が開示されている。   Patent Document 5 discloses a high-strength steel excellent in HIC resistance and a method for producing the same, specifically, a ratio M / M of the segregation portion M to the average Mn content M0 in the steel while having a specific chemical composition. In a method for producing a high-strength steel sheet comprising continuous casting of molten steel having a specific chemical composition and hot rolling after “high-tensile steel sheet having excellent HIC resistance” with M0 of 1.20 or less. In the continuous casting of the molten steel, the ratio M / M0 of the Mn content M at the center of the slab and the average Mn content M0 of the molten steel is 1.20 in the vicinity of the crater end where the internal molten steel of the slab completes solidification. A “manufacturing method of high-strength steel excellent in HIC resistance” that performs the following forging work is disclosed.

特許文献6に、特定の化学成分を含有し、Cuの含有量を0.05%以下に制限した鋼のスラブを、1000〜1250℃に加熱し、Ar3温度以上の温度域で圧延を終了し、5〜20℃/secの冷却速度で、600℃以下で450℃以上の温度域まで加速冷却を施す「耐HIC性に優れた高強度ラインパイプ用鋼板の製造方法」が開示されている。 In Patent Document 6, a steel slab containing a specific chemical component and limiting the Cu content to 0.05% or less is heated to 1000 to 1250 ° C., and rolling is finished in a temperature range of Ar 3 temperature or higher. In addition, “a method for producing a steel sheet for high-strength line pipe excellent in HIC resistance” that performs accelerated cooling to a temperature range of 600 ° C. or less and 450 ° C. or more at a cooling rate of 5 to 20 ° C./sec is disclosed. .

特許文献7に、APIのX65グレード以上の高強度鋼板であって中央偏析部のHIC及び表面近傍や介在物から発生するHICに対して優れた耐HIC性を示すとともに溶接部靱性の優れた高強度鋼板の製造方法、具体的には、特定の化学成分を含有する鋼を、加熱温度:1000〜1250℃、圧延終了温度:750〜950℃の条件で熱間圧延した後、2℃/s以上の冷却速度で600〜700℃まで冷却し、次いで600〜700℃の温度まで1回以上の加熱を行い、鋼板の平均温度が600〜700℃である時間を3分以上とする「耐HIC性に優れた高強度鋼板の製造方法」が開示されている。   Patent Document 7 is a high strength steel of API X65 grade or higher, and exhibits excellent HIC resistance against HIC in the central segregation part and HIC generated from the vicinity of the surface and inclusions, and excellent toughness in the welded part. A method of manufacturing a strength steel plate, specifically, steel containing a specific chemical component is hot-rolled under conditions of a heating temperature of 1000 to 1250 ° C. and a rolling end temperature of 750 to 950 ° C., and then 2 ° C./s. Cool to 600-700 ° C. at the above cooling rate, then heat at least once to a temperature of 600-700 ° C., and the time for the average temperature of the steel sheet to be 600-700 ° C. is 3 minutes or more. A method for producing a high-strength steel sheet having excellent properties ”is disclosed.

特開昭54−110119号公報Japanese Patent Laid-Open No. 54-110119 特開昭61−60866号公報JP 61-60866 A 特開平9−57410号公報JP-A-9-57410 特開2004−1079号公報JP 2004-1079 A 特開平6−220577号公報Japanese Patent Laid-Open No. 6-220577 特開平9−209037号公報Japanese Patent Laid-Open No. 9-209037 特開2003−226922号公報JP 2003-226922 A

ラインパイプ、海洋構造物や圧力容器、なかでもラインパイプに用いられる厚鋼板の強度を高めるために、NbとTiを複合して含有させることが多い。   In order to increase the strength of thick steel plates used for line pipes, offshore structures and pressure vessels, especially line pipes, Nb and Ti are often contained in combination.

しかしながら、こうしたNbとTiを複合して含有する厚鋼板をラインパイプ、海洋構造物や圧力容器、なかでもラインパイプに用いた場合には、前述の特許文献1〜7で開示された技術では必ずしも良好な耐HIC性が得られるというものではなかった。   However, when such a thick steel plate containing a composite of Nb and Ti is used for a line pipe, an offshore structure or a pressure vessel, especially a line pipe, the techniques disclosed in the aforementioned Patent Documents 1 to 7 are not necessarily used. It was not that good HIC resistance was obtained.

そこで、本発明の目的は、NbとTiを複合して含有させた場合にもHIC試験における割れ面積率CARが4%以下の耐HIC性に優れる厚鋼板並びにその素材として好適な厚鋼板用連続鋳造鋳片及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a thick steel plate excellent in HIC resistance having a crack area ratio CAR of 4% or less in the HIC test even when Nb and Ti are contained in combination, and a continuous steel plate suitable as a material thereof. It is to provide a cast slab and a manufacturing method thereof.

なお、上記のHIC試験における「割れ面積率CAR」とは、観察面に対する割れの面積率(%)を指す。   The “crack area ratio CAR” in the above HIC test refers to the crack area ratio (%) with respect to the observation surface.

本発明者は、前記した課題を解決するために、種々の検討を行い、その結果、先ず下記(a)の知見を得た。   In order to solve the above-mentioned problems, the present inventor made various studies, and as a result, first, the following knowledge (a) was obtained.

(a)NbとTiを複合して含有させた場合には、HICの発生抑止のためにMnSやマクロ偏析について提案された従来の対策を実施しても、鋼中の粗大な介在物を起点としてHICが発生することがある。   (A) In the case where Nb and Ti are contained in combination, even if the conventional measures proposed for MnS and macrosegregation for suppressing the generation of HIC are implemented, coarse inclusions in the steel are the starting point. HIC may occur.

そこで、種々の成分元素を含むNbとTiの複合含有鋼を用いて、鋼中の粗大な介在物について調査し、その結果、下記(b)の知見を得た。   Thus, using Nb and Ti composite-containing steel containing various component elements, coarse inclusions in the steel were investigated, and as a result, the following knowledge (b) was obtained.

(b)NbとTiを複合して含有させた場合の鋼中の粗大な介在物の生成に対して、Ti、Nb、C、N及びSiが大きな役割を果たしている。   (B) Ti, Nb, C, N, and Si play a major role in the formation of coarse inclusions in the steel when Nb and Ti are contained in combination.

そこで次に、本発明者は、各種成分元素の相互作用と凝固時の偏析挙動を考慮した上で成分設計を行えば上記粗大な介在物の発生を防止できるのではないかとの着想の下に、厚さ20mmに熱間圧延した厚鋼板から試験片を採取して、NACEのTM−02−84で規定される方法でHIC試験を行い、割れの発生した試験片について割れ発生部の詳細な調査を行った。   Then, the present inventor is based on the idea that the generation of the coarse inclusions can be prevented if the component design is performed in consideration of the interaction of various component elements and the segregation behavior during solidification. Then, a specimen is taken from a thick steel plate hot rolled to a thickness of 20 mm, and a HIC test is performed by a method specified by NACE TM-02-84. We conducted a survey.

その結果、下記の(c)及び(d)の事項が明らかになった。   As a result, the following items (c) and (d) became clear.

(c)厚鋼板の厚さ方向の中心部分に長径が10μm以上の粗大な介在物(炭化物、窒化物或いはそれらの複合した炭窒化物)が生成する場合がある。   (C) Coarse inclusions (carbides, nitrides, or composite carbonitrides thereof) having a major axis of 10 μm or more may be generated in the central portion in the thickness direction of the thick steel plate.

(d)エネルギー分散型X線検出器(EDS)を装備した走査電子顕微鏡(SEM)によって分析したところ、割れの起点となった粗大な介在物は、含有量は種々変化する場合があるもののTi及びNbを含有し(Ti、Nb)(C、N)と表記される炭窒化物(以下、「(Ti、Nb)(C、N)系介在物」という。)である。   (D) When analyzed by a scanning electron microscope (SEM) equipped with an energy dispersive X-ray detector (EDS), the content of coarse inclusions from which cracks originate may change in various ways. And Nb-containing (Ti, Nb) (C, N) carbonitride (hereinafter referred to as “(Ti, Nb) (C, N) -based inclusions”).

そこで更に、圧延前の連続鋳造鋳片からミクロ試料を採取しその中心偏析部を観察したところ、前記厚さ20mmに熱間圧延した厚鋼板と同様の粗大な(Ti、Nb)(C、N)系介在物が生成している場合があることが判明し、次の重要な知見(e)を得た。   Therefore, when a micro sample was taken from the continuous cast slab before rolling and the central segregation portion was observed, the same coarse (Ti, Nb) (C, N) as the thick steel plate hot-rolled to the thickness of 20 mm was observed. ) It was found that system inclusions might be generated, and the following important findings (e) were obtained.

(e)NbとTiを複合して含有させた場合のHIC発生の低減のためには、製鋼段階で(Ti、Nb)(C、N)系介在物の生成を防止する必要がある。   (E) In order to reduce the generation of HIC when Nb and Ti are contained in combination, it is necessary to prevent the formation of (Ti, Nb) (C, N) inclusions at the steelmaking stage.

上記(e)の知見から、本発明者は、製鋼段階で上記粗大な(Ti、Nb)(C、N)系介在物が生成する機構について検討することとし、先ず、連続鋳造鋳片からミクロ試料を採取し、光学顕微鏡観察して連続鋳造鋳片内の(Ti、Nb)(C、N)系介在物の生成状況を調査した。   From the knowledge of (e) above, the present inventor will examine the mechanism by which the coarse (Ti, Nb) (C, N) inclusions are generated in the steelmaking stage. A sample was taken and observed with an optical microscope to examine the state of formation of (Ti, Nb) (C, N) inclusions in the continuous cast slab.

その結果、下記(f)の事項が明らかになった。   As a result, the following item (f) became clear.

(f)連続鋳造鋳片にはその厚さ方向の全域に亘って(Ti、Nb)(C、N)系介在物が生成しており、特に、中心偏析部では、その数が著しく多くなるとともに長径が10μm以上の粗大なものも生成している。   (F) In the continuous cast slab, (Ti, Nb) (C, N) inclusions are generated over the entire region in the thickness direction, and the number thereof is remarkably increased particularly in the central segregation portion. At the same time, coarse particles having a major axis of 10 μm or more are also produced.

そこで次に、(Ti、Nb)(C、N)系介在物の生成機構を、ミクロ偏析モデルにより検討した。   Then, next, the formation mechanism of (Ti, Nb) (C, N) inclusions was examined using a microsegregation model.

以下に、その検討手法と得られた知見について説明する。   Below, the examination method and the knowledge obtained are explained.

〔1〕図1は、凝固過程における固相(つまり凝固部分)内の着目成分元素含有量Csと液相(つまり、溶鋼中)内の着目成分元素含有量Clの分布状況を模式的に示す図である。なお、図1においては、成分元素含有量を示す縦軸を「溶質濃度」と表記した。以下、図1を参照しながら説明する。   [1] FIG. 1 schematically shows a distribution state of a target component element content Cs in a solid phase (that is, a solidified portion) and a target component element content Cl in a liquid phase (that is, in molten steel) in a solidification process. FIG. In FIG. 1, the vertical axis indicating the content of component elements is represented as “solute concentration”. Hereinafter, a description will be given with reference to FIG.

凝固が一次元的に進行すると仮定すると、固液界面では局所平衡が成り立ち平衡分配係数kに従って溶質(着目成分元素)が分配される。また、液相内は十分な拡散速度があることから均一な組成となり、固相内では拡散係数に従い固液界面から凝固の中心方向に拡散する。   Assuming that solidification proceeds one-dimensionally, local equilibrium is established at the solid-liquid interface, and the solute (component element of interest) is distributed according to the equilibrium distribution coefficient k. Further, since the liquid phase has a sufficient diffusion rate, it has a uniform composition, and in the solid phase, it diffuses from the solid-liquid interface toward the center of solidification according to the diffusion coefficient.

次いで、凝固が進行すると、固液界面で平衡分配係数kに従う分配比を維持しながら、すなわち「Cs=k×Cl」の関係を維持しながら、固液界面が右側に進行する。このため固液界面部分で溶質(着目成分元素)が液相側に排出され、残溶鋼中の溶質(着目成分元素)の含有量が増加していく。これがミクロ偏析の原因であり、凝固過程の残溶鋼におけるTiとNの含有量が下記(2)式で表されるTiNの活量積を超えたときにTiNが、また、凝固過程の残溶鋼におけるNbとCの含有量が下記(3)式で表されるNbCの活量積を超えたときにNbCが晶出するものとすると、TiNとNbCは相互に固溶して(Ti、Nb)(C、N)系介在物を形成し、それぞれの溶解度積を超えるタイミングとそのときの含有量により(Ti、Nb)(C、N)系介在物の組成が変化して行くものと考えられる。
Log[Ti][N]=−19800/T+7.78・・・(2)式、
Log[Nb][C]=−4530/T+2.39・・・(3)式。
Next, when solidification proceeds, the solid-liquid interface proceeds to the right while maintaining the distribution ratio according to the equilibrium distribution coefficient k at the solid-liquid interface, that is, maintaining the relationship of “Cs = k × Cl”. For this reason, the solute (target component element) is discharged to the liquid phase side at the solid-liquid interface, and the content of the solute (target component element) in the residual molten steel increases. This is the cause of micro-segregation. When the content of Ti and N in the residual molten steel in the solidification process exceeds the activity product of TiN represented by the following formula (2), TiN is also present in the residual molten steel in the solidification process. Assuming that NbC crystallizes when the content of Nb and C in NbC exceeds the activity product of NbC represented by the following formula (3), TiN and NbC are dissolved in each other (Ti, Nb ) (C, N) inclusions are formed, and the composition of (Ti, Nb) (C, N) inclusions changes depending on the timing at which the respective solubility products are exceeded and the content at that time. It is done.
Log [Ti] [N] = − 19800 / T + 7.78 (2) Formula
Log [Nb] [C] = − 4530 / T + 2.39 (3).

〔2〕以下、具体的なミクロ偏析状況の計算結果の一例について説明する。計算では鋼の主要元素であるC、Si、Mn、P及びS並びにTiN及びNbCの構成元素であるTi、Nb及びNも考慮した表1に示す成分系を用いて、TiN及びNbCの晶出開始を判定するためにそれぞれの成分元素の相互作用を考慮して検討した。   [2] Hereinafter, an example of a specific calculation result of the micro-segregation situation will be described. In the calculation, TiN and NbC were crystallized by using the component system shown in Table 1 in consideration of C, Si, Mn, P and S which are main elements of steel and Ti, Nb and N which are constituent elements of TiN and NbC. In order to determine the start, the interaction of each component element was considered.

なお、伝熱及び凝固解析により連続鋳造時の連続鋳造鋳片内の温度分布を計算し、この温度履歴に合わせて先の〔1〕で述べたモデルに従って凝固が進行するものとした。   The temperature distribution in the continuous cast slab during continuous casting was calculated by heat transfer and solidification analysis, and solidification proceeded according to the model described in [1] above in accordance with this temperature history.

Figure 0004725437
Figure 0004725437

図2に、表1の成分系について行ったミクロ偏析状況の計算結果の一例としてC、P、Ti及びNについての結果を示す。なお、図2においては、成分元素含有量を示す縦軸を「溶質濃度(mass%)」と表記した。   In FIG. 2, the result about C, P, Ti, and N is shown as an example of the calculation result of the microsegregation situation performed about the component system of Table 1. FIG. In FIG. 2, the vertical axis indicating the component element content is represented as “solute concentration (mass%)”.

図2から、固相率fsの増加(すなわち、凝固の進行)に伴って成分元素含有量が増加していくことが認められる。また、成分元素毎に固液平衡分配係数や拡散速度が異なるため偏析の進行状況が異なることも認められる。   From FIG. 2, it is recognized that the content of the component elements increases as the solid fraction fs increases (that is, the progress of solidification). In addition, it is recognized that the progress of segregation is different because the solid-liquid equilibrium distribution coefficient and diffusion rate are different for each component element.

凝固の末期には、残溶鋼におけるTi、N、Nb及びCの含有量が、それぞれ前記(2)式で表されるTiNの活量積及び前記(3)式で表されるNbCの活量積を超える。なお、このミクロ偏析モデルの計算では、固相率fsが0.91でTiNが晶出を開始するのに対して、NbCは固相率fsが0.99まで晶出しない。   At the end of solidification, the contents of Ti, N, Nb, and C in the residual molten steel are the activity product of TiN represented by the formula (2) and the activity of NbC represented by the formula (3), respectively. The product is exceeded. In the calculation of this microsegregation model, TiN starts to crystallize when the solid fraction fs is 0.91, whereas NbC does not crystallize until the solid fraction fs is 0.99.

なお、既に事項(f)として述べたように、連続鋳造鋳片にはその厚さ方向の全域に亘って(Ti、Nb)(C、N)系介在物が生成しており、特に、中心偏析部では、その数が著しく多くなるとともに長径が10μm以上の粗大なものも生成している。   In addition, as already described as matter (f), (Ti, Nb) (C, N) inclusions are generated in the continuous cast slab over the entire region in the thickness direction. In the segregation part, the number thereof is remarkably increased, and a coarse part having a major axis of 10 μm or more is also generated.

上記のことから、下記の事項(g)が明らかになった。   From the above, the following item (g) became clear.

(g)NbとTiを複合して含有させた場合の製鋼段階での(Ti、Nb)(C、N)系介在物の生成については、マクロ偏析についても検討する必要がある。   (G) Regarding the generation of (Ti, Nb) (C, N) inclusions in the steelmaking stage when Nb and Ti are contained in combination, it is necessary to consider macro segregation.

なお、連続鋳造におけるマクロ偏析とは、連続鋳造鋳片のバルジング、圧下や凝固収縮などによりデンドライト樹間の溶質(成分元素)が濃化した溶鋼が動き、中心部に集積する現象である。すなわち、マクロ偏析とは、いわゆる「中心偏析」であって、或る固相率fsに相当する成分元素含有量の溶鋼が集積し凝固しているものである。   Macro segregation in continuous casting is a phenomenon in which molten steel in which solutes (component elements) between dendritic trees are concentrated due to bulging, reduction or solidification shrinkage of continuous cast slabs moves and accumulates in the center. That is, macrosegregation is so-called “center segregation”, in which molten steel having a component element content corresponding to a certain solid phase ratio fs is accumulated and solidified.

そこで、本発明者は、種々の連続鋳造鋳片について中心偏析部の成分元素含有量を調査した。その結果、下記(h)の知見を得た。   Then, this inventor investigated the component element content of the center segregation part about various continuous cast slabs. As a result, the following knowledge (h) was obtained.

(h)中心偏析部は固相率fsが0.6の溶鋼が凝固したものに相当する。   (H) The central segregation portion corresponds to a solidified molten steel having a solid phase ratio fs of 0.6.

そこで、本発明者は、マクロ偏析とミクロ偏析挙動について再度計算することとした。   Therefore, the present inventor decided to calculate macro segregation and micro segregation behavior again.

以下に、その検討手法と得られた知見について説明する。   Below, the examination method and the knowledge obtained are explained.

〔3〕NbとTiを複合して含有させた場合の例として表1に示す成分系を用い、初期成分系に対して固相率fsで0.6まで凝固したときの残溶鋼中の各溶質(成分元素)の含有量を計算し、更に、このようにして求めた含有量を初期含有量としてミクロ偏析挙動を計算した。   [3] Using the component system shown in Table 1 as an example in the case of containing Nb and Ti in combination, each in the residual molten steel when solidified to a solid fraction fs of 0.6 with respect to the initial component system The content of the solute (component element) was calculated, and the microsegregation behavior was calculated using the content thus obtained as the initial content.

その結果、中心偏析部では固相率fsが0.68でTiNが晶出を開始し、また、固相率fsが0.94でNbCが晶出するという結果が得られた。   As a result, in the central segregation part, TiN started to crystallize at a solid fraction fs of 0.68, and NbC crystallized at a solid fraction fs of 0.94.

既に述べたように、TiNとNbCは相互に固溶する。また、一般に、凝固過程で何らかの化合物が晶出する場合、晶出を開始する時の固相率fsが低いほど粗大な化合物が生成することが知られている。   As already mentioned, TiN and NbC are dissolved in each other. In general, it is known that when a compound is crystallized during the solidification process, a coarser compound is generated as the solid phase ratio fs at the start of crystallization is lower.

このため、上記TiNとNbCの晶出計算結果から、次の事項(i)及び(j)が明らかになった。   For this reason, the following matters (i) and (j) were clarified from the crystallization calculation results of TiN and NbC.

(i)先に晶出したTiNを核としてNbCの晶出が誘発される。   (I) NbC crystallization is induced by using the previously crystallized TiN as a nucleus.

(j)粗大な(Ti、Nb)(C、N)系介在物の生成は、凝固過程の早期の段階でのTiNの晶出と関係する。   (J) Formation of coarse (Ti, Nb) (C, N) inclusions is related to TiN crystallization at an early stage of the solidification process.

〔4〕そこで次に、連続鋳造により製造した連続鋳造鋳片の化学組成を初期成分系として、上記〔3〕の方法によりミクロ偏析挙動について計算するとともに、20mmに圧延した厚鋼板から試験片を採取して、NACEのTM−02−84で規定される方法でHIC試験を行ってHIC発生状況を調査した。   [4] Then, using the chemical composition of the continuous cast slab produced by continuous casting as the initial component system, the microsegregation behavior is calculated by the method of [3] above, and the test piece is taken from the thick steel plate rolled to 20 mm. The HIC test was conducted by the method defined by NACE TM-02-84 and the state of occurrence of HIC was investigated.

その結果、先ず、計算に用いた全ての連続鋳造鋳片の場合において、NbCより先にTiNが晶出を開始することが判明し、下記(k)の結論に達した。   As a result, first, it was found that TiN started to crystallize before NbC in all the continuous cast slabs used in the calculation, and the following conclusion (k) was reached.

(k)粗大な(Ti、Nb)(C、N)系介在物の生成は、TiNが晶出を開始する固相率fsによって整理すればよい。   (K) The generation of coarse (Ti, Nb) (C, N) inclusions may be arranged by the solid phase rate fs at which TiN starts to crystallize.

そこで、図3に、各連続鋳造鋳片について、上記のようにして計算から求めたTiNの晶出開始固相率fsとHIC試験における割れ面積率CAR(%)、つまり、観察面に対する割れの面積率の関係を整理した。   Therefore, in FIG. 3, for each continuous cast slab, the TiN crystallization start solid phase ratio fs obtained by calculation as described above and the crack area ratio CAR (%) in the HIC test, that is, the crack of the observation surface The relationship of area ratio was arranged.

なお、図3においては、HIC試験における割れ面積率CARを示す縦軸を単に「CAR」と表記し、また、計算から求めたTiNの晶出開始固相率fsを示す横軸を「fscal.」と表記した。   In FIG. 3, the vertical axis indicating the crack area ratio CAR in the HIC test is simply represented as “CAR”, and the horizontal axis indicating the TiN crystallization starting solid fraction fs obtained from the calculation is “fscal. ".

図3から、中心偏析部におけるTiNの晶出開始固相率fsの計算値とHIC発生の状況には明白な相関が認められ、その結果、下記(l)の知見を得た。   From FIG. 3, a clear correlation was found between the calculated value of the TiN crystallization initiation solid fraction fs in the central segregation part and the state of HIC generation, and as a result, the following knowledge (1) was obtained.

(l)中心偏析部のTiNの晶出開始固相率fsの計算値が0.72以下の場合に、HIC試験における割れ面積率CARが4%を超える。   (L) The crack area ratio CAR in the HIC test exceeds 4% when the calculated value of the TiN crystallization initiation solid phase ratio fs in the central segregation part is 0.72 or less.

なお、本発明者が、各連続鋳造鋳片について、HIC発生部分を光学顕微鏡及びEDSを装備したSEMを使用して詳細に調査したところ、長径が10μm以上の粗大な(Ti、Nb)(C、N)系介在物の生成が認められた。   In addition, when this inventor investigated the HIC generation | occurrence | production part in detail using SEM equipped with an optical microscope and EDS about each continuous cast slab, it is coarse (Ti, Nb) (C , N) Formation of system inclusions was observed.

一般に、鋼の凝固過程においてデンドライト樹間の溶鋼が流動する限界は固相率fs0.7程度といわれており、これ以下の固相率fsでTiNが晶出を開始した場合に、凝固時の残溶鋼の流動によりTiNが凝集・合体して粗大なTiNが生成し、これを核としてNbCの晶出が誘発され、中心偏析部において長径が10μm以上の粗大な(Ti、Nb)(C、N)系介在物が生成したものと考えられる。   In general, the limit of flow of molten steel between dendrite trees in the solidification process of steel is said to be about a solid phase rate of about fs 0.7, and when TiN starts to crystallize at a solid phase rate of less than this, TiN agglomerates and coalesces by the flow of the residual molten steel to generate coarse TiN, which causes crystallization of NbC to be induced, and in the central segregation portion, coarse (Ti, Nb) (C, N) It is considered that system inclusions were generated.

次いで、本発明者は、NbとTiを複合して含有させた鋼において、C、Si、Mn、P、S、Nb、Ti、Al、Ca、N、Cu、Ni、Cr、Mo及びVの含有量を種々変化させて、上記〔3〕の方法によりミクロ偏析挙動について計算し、上記〔4〕で述べた連続鋳造鋳片の中心偏析部におけるTiNの晶出開始固相率fsに及ぼす各元素の影響を検討した。   Next, the present inventor, in steel containing a composite of Nb and Ti, C, Si, Mn, P, S, Nb, Ti, Al, Ca, N, Cu, Ni, Cr, Mo and V By varying the content, the microsegregation behavior was calculated by the method of [3] above, and each of the effects on the crystallization start solid fraction fs of TiN in the central segregation part of the continuous cast slab described in [4] above. The influence of elements was examined.

その結果、下記(m)及び(n)の知見を得た。   As a result, the following findings (m) and (n) were obtained.

(m)C:0.03〜0.10%、Si:0.05〜0.4%、Mn:0.8〜1.8%、P:0.010%以下、S:0.002%以下、Nb:0.01〜0.10%、Ti:0.005〜0.03%、Al:0.005〜0.06%、Ca:0.0005〜0.0060%、N:0.0015〜0.007%、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下の範囲では、上記の元素のうちで、TiNの晶出開始固相率fsに影響を及ぼすのはSiとTiNの構成元素であるTi及びNだけであり、TiとNの影響が大きい。   (M) C: 0.03-0.10%, Si: 0.05-0.4%, Mn: 0.8-1.8%, P: 0.010% or less, S: 0.002% Hereinafter, Nb: 0.01-0.10%, Ti: 0.005-0.03%, Al: 0.005-0.06%, Ca: 0.0005-0.0060%, N: 0.00. In the ranges of 0015 to 0.007%, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V: 0.2% or less, Among the above elements, only Ti and N, which are constituent elements of Si and TiN, affect the crystallization initiation solid phase ratio fs of TiN, and the influence of Ti and N is large.

(n)上記Ti、N及びSiのうちで、Siは脱酸剤として添加されるものであり、他の脱酸元素による置き換えが可能のため、TiやNと比べて含有量の幅が大きい。このため、Siは、HICの発生原因となる粗大なTiN、したがって、粗大な(Ti、Nb)(C、N)系介在物の生成に関しては無視できない影響を及ぼす。   (N) Of the above Ti, N and Si, Si is added as a deoxidizer and can be replaced with other deoxidizers, so the content range is larger than Ti and N . For this reason, Si has a non-negligible effect on the formation of coarse TiN that causes HIC generation, and hence coarse (Ti, Nb) (C, N) inclusions.

図4に、N、Ti及びSiの質量%での含有量の減少量とTiNの晶出開始固相率fsの増加度との関係を示す。なお、図4においては、(計算から求めた)TiNの晶出開始固相率fsの増加度を示す縦軸を単に「TiN晶出開始fs増加度」と表記し、また、各元素の質量%での含有量の減少量を示す横軸を「成分減少量(mass%)」と表記した。   FIG. 4 shows the relationship between the decrease in the content of N, Ti and Si in mass% and the degree of increase in the crystallization starting solid fraction fs of TiN. In FIG. 4, the vertical axis indicating the degree of increase in the crystallization start solid phase fraction fs of TiN (calculated from calculation) is simply expressed as “TiN crystallization start fs increase degree”, and the mass of each element. The horizontal axis indicating the amount of decrease in content in% was expressed as “component decrease (mass%)”.

TiNの構成元素でないにも拘わらずSiが連続鋳造鋳片の中心偏析部におけるTiNの晶出開始固相率fsに対して影響を及ぼすのは、TiとSiの間の相互作用助係数が他の成分元素間のそれと比較して極端に大きいことに起因しているものと考えられる。   Although Si is not a constituent element of TiN, Si has an effect on the solidification rate fs of TiN crystallization in the central segregation part of the continuous cast slab. This is considered to be caused by the fact that it is extremely large compared with that between the constituent elements of.

上記の知見(m)及び(n)をベースに、本発明者は、Ti、N及びSiのそれぞれの含有量と中心偏析部のTiNの晶出開始固相率fsの相関に線形性があると仮定して、下記の(1)式を導出し、下記(o)の結論に達した。   Based on the above findings (m) and (n), the present inventor has linearity in the correlation between the content of Ti, N, and Si and the crystallization start solid fraction fs of TiN in the central segregation part. As a result, the following equation (1) was derived and the following conclusion (o) was reached.

(o)式中の元素記号を、その元素の質量%での鋼中含有量として、(1)式を満足すれば、理論上は粗大な(Ti、Nb)(C、N)系介在物の生成を阻止することができる。
1.48−1.5×Si−14.3×Ti−73×N>0.72・・・(1)式。
If the element symbol in the formula (o) is the content in steel in mass% of the element and the formula (1) is satisfied, theoretically coarse (Ti, Nb) (C, N) inclusions Can be prevented.
1.48-1.5 * Si-14.3 * Ti-73 * N> 0.72 ... (1) Formula.

なお、上記の(1)式は理論上の算出式である。このため、実際に製造した連続鋳造鋳片において、粗大な(Ti、Nb)(C、N)系介在物を完全に除去することは困難であることが想定される。   The above formula (1) is a theoretical calculation formula. For this reason, it is assumed that it is difficult to completely remove coarse (Ti, Nb) (C, N) inclusions in the continuously cast slab actually produced.

しかしながら、本発明者の更なる検討によって、実際に製造した連続鋳造鋳片の中心偏析部から採取した試験片に粗大な(Ti、Nb)(C、N)系介在物が存在する場合でも、特定の条件を満たす場合には、HICの発生を低減できることが明らかとなり、下記(p)の重要な知見が得られた。   However, even when coarse (Ti, Nb) (C, N) -based inclusions are present in the test piece collected from the center segregation part of the continuously cast slab that was actually produced by further study by the present inventors, It became clear that the occurrence of HIC can be reduced when a specific condition is satisfied, and the following important knowledge (p) was obtained.

(p)連続鋳造鋳片の中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が2〜200個/mm2であれば、この連続鋳造鋳片を圧延して得た厚鋼板のHICの発生を低減できる。上記の条件を満たす場合に、HICの発生を低減できるのは、連続鋳造鋳片中に長径10μmを超える粗大な(Ti、Nb)(C、N)系介在物が十分少なく、長径1〜10μmの(Ti、Nb)(C、N)系介在物が面密度で2〜200個/mm2存在することになるため、介在物にかかる応力が分散されるためと推測される。 (P) In the central segregation portion of the continuous cast slab, the surface density of (Ti, Nb) (C, N) -based inclusions having a major axis exceeding 10 μm is 2 pieces / mm 2 or less, and the major axis is 1 to 10 μm (Ti, If the surface density of Nb) (C, N) inclusions is 2 to 200 / mm 2 , the occurrence of HIC in the thick steel plate obtained by rolling this continuous cast slab can be reduced. When the above conditions are satisfied, the occurrence of HIC can be reduced because there are sufficiently few coarse (Ti, Nb) (C, N) inclusions having a major axis exceeding 10 μm in the continuous cast slab and the major axis is 1 to 10 μm. (Ti, Nb) (C, N) -based inclusions are present in an area density of 2 to 200 / mm 2 , and it is assumed that the stress applied to the inclusions is dispersed.

なお、上記(Ti、Nb)(C、N)系介在物の面密度は、連続鋳造鋳片におけるものであり、その連続鋳造鋳片を圧延して厚鋼板にした場合には、その中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が0.5〜20個/mm2となる。 The surface density of the (Ti, Nb) (C, N) inclusions is that in a continuous cast slab, and when the continuous cast slab is rolled into a thick steel plate, its center segregation. in part, greater than the major diameter 10μm (Ti, Nb) (C , N) based surface density of inclusions with two / mm 2 or less, the diameter 1~10μm (Ti, Nb) (C , N) type inclusions The surface density is 0.5 to 20 pieces / mm 2 .

本発明者は、更に、実際の連続鋳造プロセスをモデル化して、凝固シェルの成長と連続鋳造鋳片内の3次元溶鋼流動を計算し、HICの発生状況と比較することも行った。   The present inventor further modeled the actual continuous casting process, calculated the growth of the solidified shell and the three-dimensional molten steel flow in the continuous cast slab, and compared it with the occurrence of HIC.

以下に、その検討手法と得られた知見について説明する。   Below, the examination method and the knowledge obtained are explained.

〔5〕先ず、鋳型内及び2次冷却における抜熱条件を境界条件として2次元伝熱凝固計算を行い、ローラーエプロンにおけるロールキャビティの変化に伴う凝固シェルの変形及び凝固収縮も考慮したえで、凝固シェルの成長について検討した。   [5] First, a two-dimensional heat transfer solidification calculation is performed with the heat removal conditions in the mold and in the secondary cooling as boundary conditions, taking into account the deformation and solidification shrinkage of the solidified shell accompanying the change of the roll cavity in the roller apron, The growth of the solidified shell was studied.

次いで、上記検討結果を基にして、浸漬ノズルから鋳型に注入された溶鋼の凝固シェル内での流動挙動を計算した。なお、固液共存範囲では固相率fsの増加に伴い流動抵抗が増加し、固相率fsが0.8を超えた段階で流動しなくなるものとして計算を実施した。   Next, based on the above examination results, the flow behavior of the molten steel injected into the mold from the immersion nozzle in the solidified shell was calculated. In the solid-liquid coexistence range, the flow resistance increased with an increase in the solid phase ratio fs, and the calculation was performed assuming that the solid phase ratio fs stopped flowing when the solid phase ratio fs exceeded 0.8.

なお、上記の計算モデルでは、凝固の末期における溶鋼流動がマクロ偏析の原因となり、粗大な(Ti、Nb)(C、N)系介在物の生成につながってHICが発生することになる。   In the above calculation model, the molten steel flow at the end of solidification causes macro segregation, leading to the formation of coarse (Ti, Nb) (C, N) inclusions, and HIC is generated.

そこで更に、連続鋳造鋳片中心部の凝固過程での最大流速について調査し、HIC試験における割れ面積率CAR(%)、つまり、観察面に対する割れの面積率との関係を整理した。   Therefore, the maximum flow velocity during the solidification process at the center of the continuous cast slab was investigated, and the relationship between the crack area ratio CAR (%) in the HIC test, that is, the crack area ratio with respect to the observation surface was arranged.

すなわち、表2に示す成分範囲の同一成分系の鋼を表3に示す種々の条件で連続鋳造し、前記仮定の下での連続鋳造鋳片中心部の凝固過程での最大流速の計算値と、20mmに圧延した厚鋼板から採取した試験片を用いたHIC試験における割れ面積率CAR(%)との関係を調査した。   That is, the steel of the same component system in the component range shown in Table 2 is continuously cast under various conditions shown in Table 3, and the calculated maximum flow velocity in the solidification process of the central portion of the continuous cast slab under the above assumptions The relationship with the crack area ratio CAR (%) in the HIC test using a test piece taken from a thick steel plate rolled to 20 mm was investigated.

表3には、上記の連続鋳造鋳片中心部の凝固過程での最大流速の計算結果及びHIC試験における割れ面積率CARを併せて示した。   Table 3 also shows the calculation result of the maximum flow velocity in the solidification process of the center part of the continuous cast slab and the crack area ratio CAR in the HIC test.

Figure 0004725437
Figure 0004725437

Figure 0004725437
Figure 0004725437

表3に示すように、凝固過程で1.2mm/mの鋳片圧下勾配を付与し、二次冷却比水量を1.47L/kgにした試験番号1における鋳片中心部の凝固過程での最大流速の計算値は1.2cm/sである。そして、この試験番号1の場合には、HIC試験における割れ面積率CARは0%で、HICは発生しなかった。   As shown in Table 3, in the solidification process at the center of the slab in Test No. 1 where a slab pressure gradient of 1.2 mm / m was applied in the solidification process and the secondary cooling specific water amount was 1.47 L / kg. The calculated maximum flow rate is 1.2 cm / s. In the case of this test number 1, the crack area ratio CAR in the HIC test was 0%, and no HIC was generated.

これに対して、鋳片圧下勾配が試験番号1と同じ1.2mm/mであっても、二次冷却比水量を0.67L/kgに低減した試験番号2の場合、鋳片中心部の凝固過程での最大流速の計算値は1.6cm/sに増加した。そして、この試験番号2の場合には、HIC試験における割れ面積率CARは2.3%に増加した。なお、一般に、HIC試験における割れ面積率CARが4%以下であれば、実操業面での問題がないことが知られているので、上記の割れ面積率CARの2.3%という値は許容範囲内の数値である。   On the other hand, even if the slab pressure gradient is 1.2 mm / m, which is the same as test number 1, in the case of test number 2 in which the secondary cooling specific water amount is reduced to 0.67 L / kg, The calculated maximum flow rate during the solidification process increased to 1.6 cm / s. And in the case of this test number 2, the crack area ratio CAR in the HIC test increased to 2.3%. In general, it is known that if the crack area ratio CAR in the HIC test is 4% or less, there is no problem in actual operation. Therefore, the value of 2.3% of the crack area ratio CAR is acceptable. A numeric value within the range.

また、二次冷却比水量が試験番号と同じ1.47L/kgであっても、鋳片圧下勾配を設定しなかった試験番号3の場合、鋳片中心部の凝固過程での最大流速の計算値が6.3cm/sに増加した。そして、HIC試験における割れ面積率CARは14.2%と大きく増加した。   Moreover, even if the secondary cooling specific water amount is 1.47 L / kg which is the same as the test number, in the case of test number 3 where the slab pressure gradient is not set, calculation of the maximum flow velocity in the solidification process of the slab center is calculated. The value increased to 6.3 cm / s. The crack area ratio CAR in the HIC test increased greatly to 14.2%.

一方、異なる連続鋳造設備を用いた試験番号4及び試験番号5の場合についても、表3から、鋳片中心部の凝固過程での最大流速の計算値が大きい場合には、HIC試験における割れ面積率CARが増加することが認められた。   On the other hand, in the case of Test No. 4 and Test No. 5 using different continuous casting equipment, if the calculated value of the maximum flow velocity in the solidification process of the slab center is large from Table 3, the crack area in the HIC test It was observed that the rate CAR increased.

そこで更に、同様な検討を行った結果、用いる連続鋳造設備に拘わらず、下記(q)の事項が成り立つことが判明した。   Therefore, as a result of the same examination, it has been found that the following item (q) holds regardless of the continuous casting equipment used.

(q)鋳片中心部の凝固過程での最大流速の計算値が3cm/s未満であれば、HIC試験における割れ面積率CARは4%以下の低い値であり、実操業面で問題を生じることはない。   (Q) If the calculated value of the maximum flow velocity in the solidification process of the slab center is less than 3 cm / s, the crack area ratio CAR in the HIC test is a low value of 4% or less, causing a problem in actual operation. There is nothing.

そこで更に、NbとTiを複合して含有させた鋼を種々の条件で連続鋳造し、前記と同様にして、鋳片中心部の凝固過程での最大流速の計算値と、連続鋳造鋳片の中心部から採取した試験片を用いたHIC試験における割れ面積率CARとの関係を調査するとともに、連続鋳造時の種々の因子が上記の鋳片中心部の凝固過程での最大流速の計算値に及ぼす影響について詳細な検討を行った
その結果、上記(q)に示した、鋳片中心部の凝固過程での最大流速の計算値が3cm/s未満であれば、HIC試験における割れ面積率CARは4%以下の低い値であるということが確認でき、更に、下記の知見(r)が得られた。
Therefore, steel containing Nb and Ti in combination is continuously cast under various conditions, and in the same manner as described above, the calculated value of the maximum flow velocity in the solidification process of the slab center and the continuous cast slab In addition to investigating the relationship with the crack area ratio CAR in the HIC test using specimens taken from the center, various factors during continuous casting are the calculated values of the maximum flow velocity during the solidification process in the center of the slab. As a result, if the calculated value of the maximum flow velocity in the solidification process at the center of the slab shown in (q) is less than 3 cm / s, the crack area ratio CAR in the HIC test Was found to be a low value of 4% or less, and the following findings (r) were obtained.

(r)鋳片中心部の凝固過程での最大流速の計算値に対して、鋳片表面温度(℃)とロールピッチ(m)が大きな影響を及ぼし、ローラーエプロンに凝固収縮に相当する圧下勾配を付与したような条件では、図5に示されるように、両者の積が400未満であれば、上記の最大流速の計算値が3cm/s未満となる。   (R) The slab surface temperature (° C) and roll pitch (m) have a large effect on the calculated maximum flow velocity during the solidification process at the center of the slab, and the rolling gradient corresponding to the solidification shrinkage on the roller apron. As shown in FIG. 5, if the product of both is less than 400, the calculated value of the maximum flow velocity is less than 3 cm / s.

なお、図5においては、鋳片中心部の凝固過程での最大流速の計算値を示す縦軸を単に「中心部流速(cm/s)」と表記し、また、鋳片表面温度(℃)とロールピッチ(m)の積を示す横軸を「ロールピッチ×表面温度」と表記した。   In FIG. 5, the vertical axis indicating the calculated value of the maximum flow velocity in the solidification process of the slab center is simply expressed as “center flow velocity (cm / s)”, and the slab surface temperature (° C.). The horizontal axis indicating the product of the roll pitch (m) is expressed as “roll pitch × surface temperature”.

既に述べたように、連続鋳造におけるマクロ偏析(つまり、中心偏析)とは、連続鋳造鋳片のバルジング、圧下や凝固収縮などによりデンドライト樹間の溶質(成分元素)が濃化した溶鋼が動き、中心部に集積する現象、すなわち、ミクロ偏析による濃化溶鋼が流動することにより生成する現象である。そして、溶鋼の流動が凝固の初期に生じても中心偏析には影響せず、一方、凝固が進んで連続鋳造鋳片の中心部の固相率fsが大きくなると溶鋼の流動が生じなくなる。   As already mentioned, macrosegregation in continuous casting (that is, center segregation) is the movement of molten steel in which the solute (component element) between dendritic trees is concentrated due to bulging, reduction or solidification shrinkage of continuous cast slabs, It is a phenomenon that accumulates in the center, that is, a phenomenon that occurs when concentrated molten steel flows by microsegregation. And even if the flow of molten steel occurs in the early stage of solidification, it does not affect the center segregation. On the other hand, when solidification progresses and the solid phase ratio fs at the center of the continuous cast slab increases, the molten steel does not flow.

このため、鋳片の中心部の固相率fsが特定の領域で連続鋳造条件を制御すればよいとの結論に達し、更なる検討を加えた結果、下記の知見(s)を得た。   For this reason, it reached the conclusion that the solid phase rate fs at the center of the slab should be controlled in a specific region, and as a result of further studies, the following knowledge (s) was obtained.

(s)鋳片の中心部の固相率fsが0.4〜0.8の位置において、鋳片表面温度(℃)とロールのピッチ(m)との積を400未満として連続鋳造することによって、鋳片中心部の凝固過程での最大流速の計算値を3cm/s未満に制御することができる。   (S) Continuous casting with the product of the slab surface temperature (° C.) and the roll pitch (m) being less than 400 at a position where the solid phase ratio fs in the center of the slab is 0.4 to 0.8. By this, the calculated value of the maximum flow velocity in the solidification process of the slab center can be controlled to be less than 3 cm / s.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)及び(2)に示す厚鋼板用連続鋳造鋳片、(3)及び(4)に示す厚鋼板用連続鋳造鋳片の製造方法、並びに(5)及び(6)に示す厚鋼板にある。   The present invention has been completed based on the above findings, and the gist of the present invention is the continuous cast slab for thick steel plates shown in the following (1) and (2), and the thick steel plates shown in (3) and (4). And a thick steel plate shown in (5) and (6).

(1)質量%で、C:0.03〜0.10%、Si:0.05〜0.4%、Mn:0.8〜1.8%、P:0.010%以下、S:0.002%以下、Nb:0.01〜0.10%、Ti:0.005〜0.03%、Al:0.005〜0.06%、Ca:0.0005〜0.0060%及びN:0.0015〜0.007%を含有し、残部はFe及び不純物からなるとともに下記(1)式を満たす化学組成を有し、更に、中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が2〜200個/mm2であることを特徴とする厚鋼板用連続鋳造鋳片。
1.48−1.5×Si−14.3×Ti−73×N>0.72・・・(1)式。
但し、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(1) By mass%, C: 0.03-0.10%, Si: 0.05-0.4%, Mn: 0.8-1.8%, P: 0.010% or less, S: 0.002% or less, Nb: 0.01-0.10%, Ti: 0.005-0.03%, Al: 0.005-0.06%, Ca: 0.0005-0.0060% and N: 0.0015 to 0.007% is contained, the balance is composed of Fe and impurities, and has a chemical composition satisfying the following formula (1). Further, in the central segregation part, the major axis exceeds 10 μm (Ti, Nb ) The surface density of (C, N) -based inclusions is 2 pieces / mm 2 or less, and the surface density of (Ti, Nb) (C, N) -based inclusions having a major axis of 1 to 10 μm is 2 to 200 pieces / mm 2. A continuous cast slab for thick steel plate, characterized in that
1.48-1.5 * Si-14.3 * Ti-73 * N> 0.72 ... (1) Formula.
However, the element symbol in the formula (1) represents the steel content in mass% of the element.

(2)化学組成が、Feの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有する上記(1)に記載の厚鋼板用連続鋳造鋳片。   (2) In place of a part of Fe, the chemical composition is Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V: 0 The continuous cast slab for thick steel plates according to (1) above, containing one or more of 2% or less.

(3)質量%で、C:0.03〜0.10%、Si:0.05〜0.4%、Mn:0.8〜1.8%、P:0.010%以下、S:0.002%以下、Nb:0.01〜0.10%、Ti:0.005〜0.03%、Al:0.005〜0.06%、Ca:0.0005〜0.0060%及びN:0.0015〜0.007%を含有し、残部はFe及び不純物からなるとともに下記(1)式を満たす化学組成を有する鋼の連続鋳造方法であって、連続鋳造鋳片の中心部の固相率fsが0.4〜0.8の位置において、連続鋳造鋳片表面温度(℃)とロールのピッチ(m)との積を400未満として連続鋳造することを特徴とする厚鋼板用連続鋳造鋳片の製造方法。
1.48−1.5×Si−14.3×Ti−73×N>0.72・・・(1)式。
但し、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(3) By mass%, C: 0.03-0.10%, Si: 0.05-0.4%, Mn: 0.8-1.8%, P: 0.010% or less, S: 0.002% or less, Nb: 0.01-0.10%, Ti: 0.005-0.03%, Al: 0.005-0.06%, Ca: 0.0005-0.0060% and N: 0.0015 to 0.007% is contained, and the balance is a continuous casting method of steel having a chemical composition satisfying the following formula (1) while being composed of Fe and impurities, For thick steel sheets, characterized in that the product of continuous cast slab surface temperature (° C.) and roll pitch (m) is less than 400 at a position where the solid phase ratio fs is 0.4 to 0.8. Manufacturing method of continuous cast slab.
1.48-1.5 * Si-14.3 * Ti-73 * N> 0.72 ... (1) Formula.
However, the element symbol in the formula (1) represents the steel content in mass% of the element.

(4)鋼の化学組成が、Feの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有する上記(3)に記載の厚鋼板用連続鋳造鋳片の製造方法。   (4) The chemical composition of the steel is replaced with a part of Fe, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V : The manufacturing method of the continuous cast slab for thick steel plates as described in said (3) containing 1 type or 2 types or more of 0.2% or less.

(5)質量%で、C:0.03〜0.10%、Si:0.05〜0.4%、Mn:0.8〜1.8%、P:0.010%以下、S:0.002%以下、Nb:0.01〜0.10%、Ti:0.005〜0.03%、Al:0.005〜0.06%、Ca:0.0005〜0.0060%及びN:0.0015〜0.007%を含有し、残部はFe及び不純物からなるとともに下記(1)式を満たす化学組成を有し、更に、中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が0.5〜20個/mm2であることを特徴とする厚鋼板。
1.48−1.5×Si−14.3×Ti−73×N>0.72・・・(1)式。
但し、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(5) By mass%, C: 0.03-0.10%, Si: 0.05-0.4%, Mn: 0.8-1.8%, P: 0.010% or less, S: 0.002% or less, Nb: 0.01-0.10%, Ti: 0.005-0.03%, Al: 0.005-0.06%, Ca: 0.0005-0.0060% and N: 0.0015 to 0.007% is contained, the balance is composed of Fe and impurities, and has a chemical composition satisfying the following formula (1). Further, in the central segregation part, the major axis exceeds 10 μm (Ti, Nb ) The surface density of (Ti, Nb) (C, N) inclusions having a surface density of (C, N) -based inclusions of 2 pieces / mm 2 or less and a major axis of 1 to 10 μm is 0.5 to 20 pieces / mm 2. Thick steel plate characterized by being mm 2 .
1.48-1.5 * Si-14.3 * Ti-73 * N> 0.72 ... (1) Formula.
However, the element symbol in the formula (1) represents the steel content in mass% of the element.

(6)化学組成が、Feの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有する上記(5)に記載の厚鋼板。   (6) Instead of a part of Fe, the chemical composition is Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V: 0 The thick steel plate according to (5) above, containing one or more of 2% or less.

以下、上記 (1)及び(2)の厚鋼板用連続鋳造鋳片に係る発明、(3)及び(4)の厚鋼板用連続鋳造鋳片の製造方法に係る発明、並びに(5)及び(6)の厚鋼板に係る発明を、それぞれ、「本発明(1)」〜「本発明(6)」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions related to the continuous cast slabs for thick steel plates (1) and (2) above, the inventions related to the continuous cast slab for thick steel plates (3) and (4), and (5) and ( The inventions related to the thick steel plate of 6) are referred to as “present invention (1)” to “present invention (6)”, respectively. Also, it may be collectively referred to as “the present invention”.

本発明(1)及び本発明(2)における「中心偏析部」とは、マクロ偏析の中心線から連続鋳造鋳片の厚さ方向に±1mmの範囲を指す。また、本発明(5)及び本発明(6)における「中心偏析部」とは、マクロ偏析の中心線から厚鋼板の厚さ方向に±1mmの範囲を指す。   The “center segregation part” in the present invention (1) and the present invention (2) refers to a range of ± 1 mm in the thickness direction of the continuous cast slab from the center line of macro segregation. Further, the “center segregation portion” in the present invention (5) and the present invention (6) refers to a range of ± 1 mm from the center line of macro segregation in the thickness direction of the thick steel plate.

本発明(3)及び本発明(4)における「ロール」とは、例えば、鋳片のバルジングを抑制しながら支持するためのガイドロール、鋳片を引き抜くためのピンチロール、鋳片を圧下するための圧下ロールを指す。   The “roll” in the present invention (3) and the present invention (4) is, for example, a guide roll for supporting the slab while suppressing bulging, a pinch roll for pulling out the slab, and for rolling down the slab. Refers to the rolling roll.

本発明の厚鋼板は、高強度化のためにNbとTiを複合して含有させたものであるにも拘わらず、HIC試験における割れ面積率CARが4%以下という優れた耐HIC性を有するので、ラインパイプ、海洋構造物や圧力容器に用いることができる。この厚鋼板の素材として本発明の厚鋼板用連続鋳造鋳片は好適であり、その厚鋼板用連続鋳造鋳片は本発明の方法によって容易に製造することができる。   The thick steel plate of the present invention has excellent HIC resistance with a crack area ratio CAR of 4% or less in the HIC test, even though it contains Nb and Ti combined for high strength. So it can be used for line pipes, offshore structures and pressure vessels. The continuous cast slab for thick steel plate of the present invention is suitable as a material for the thick steel plate, and the continuous cast slab for thick steel plate can be easily manufactured by the method of the present invention.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.

(A)厚鋼板用連続鋳造鋳片及び厚鋼板の化学組成
C:0.03〜0.10%
Cは、鋼の強度を高める作用を有する。しかしながら、その含有量が0.03%未満では、ラインパイプなどの用途に対して所定の強度を得ることが困難となる。一方、Cの含有量が0.10%を超えると、連続鋳造時に鋳片の厚み中心部にマクロ偏析部を形成してHICの発生原因となる、更に、Mnを1.0%以上含有する場合にはδ相を初晶として凝固を開始し、凝固過程で包晶反応が生じ、凝固終了時にもδ相が残る亜包晶鋼となってしまう。そして、連続鋳造鋳片の場合には、亜包晶鋼は包晶反応に伴う応力によって不均一凝固や縦割れをが生じることがあるため、他の鋼種と比べて鋳造速度を下げる必要があって、生産性が阻害される。したがって、Cの含有量を0.03〜0.10%と規定した。
(A) Chemical composition of continuous cast slab for thick steel plate and thick steel plate C: 0.03 to 0.10%
C has the effect | action which raises the intensity | strength of steel. However, if the content is less than 0.03%, it is difficult to obtain a predetermined strength for applications such as line pipes. On the other hand, if the content of C exceeds 0.10%, a macro segregation part is formed at the center of the thickness of the slab during continuous casting, which causes generation of HIC, and further contains 1.0% or more of Mn. In some cases, solidification starts with the δ phase as the primary crystal, and a peritectic reaction occurs during the solidification process, resulting in a subperitectic steel in which the δ phase remains even when solidification is completed. In the case of continuous cast slabs, hypoperitectic steel may cause non-uniform solidification and vertical cracking due to stress associated with the peritectic reaction, so it is necessary to lower the casting speed compared to other steel types. Productivity is hindered. Therefore, the C content is defined as 0.03 to 0.10%.

Si:0.05〜0.4%
Siは、脱酸元素として鋼中の酸素含有量を低減するために有効な元素の一つであり、鋼を強化する効果もある。なお、溶鋼が十分に脱酸されていない状態で連続鋳造すると鋼中に気泡が生成し、製品の欠陥となるばかりでなく、時にブレークアウトを誘発し操業できなくなることも生じる。しかしながら、Siの含有量が0.05%未満では、上記の効果を得ることが困難である。一方、その含有量が0.4%を超えると、縞状マルテンサイトが生成するようになって溶接熱影響部靱性の低下を招く。また、Tiとの間に強い相互作用を有することから、TiN構成元素でないにも拘わらず粗大なTiN、ひいては、粗大な(Ti、Nb)(C、N)系介在物の生成をきたす。したがって、Siの含有量を0.05〜0.4%と規定した。
Si: 0.05-0.4%
Si is one of the elements effective for reducing the oxygen content in steel as a deoxidizing element, and also has an effect of strengthening steel. If the molten steel is continuously cast in a state where it has not been sufficiently deoxidized, bubbles are generated in the steel, resulting in product defects, and sometimes breakout is induced and operation becomes impossible. However, if the Si content is less than 0.05%, it is difficult to obtain the above effects. On the other hand, when the content exceeds 0.4%, striped martensite is generated and the weld heat affected zone toughness is lowered. In addition, since it has a strong interaction with Ti, it produces coarse TiN, and thus coarse (Ti, Nb) (C, N) inclusions although it is not a TiN constituent element. Therefore, the Si content is specified to be 0.05 to 0.4%.

Mn:0.8〜1.8%
Mnは、鋼の強度を高める作用をい有する。しかしながら、その含有量が、0.8%未満では十分な強度を得ることが困難である。一方、Mnの含有量が1.8%を超えると、中心偏析部で濃化して耐HIC性を低下させてしまう。したがって、Mnの含有量を0.8〜1.8%と規定した。
Mn: 0.8 to 1.8%
Mn has the effect of increasing the strength of the steel. However, if the content is less than 0.8%, it is difficult to obtain sufficient strength. On the other hand, if the content of Mn exceeds 1.8%, it concentrates at the center segregation part and lowers the HIC resistance. Therefore, the Mn content is defined as 0.8 to 1.8%.

P:0.010%以下
Pは、鋼中の不純物元素の一つである。Pは、凝固時の固液界面における分配係数が小さいため偏析する傾向が大きく、特に、その含有量が多くなって0.010%を超えると、中心偏析部における著しい濃化のために耐HIC性の大きな低下を招く。したがって、Pの含有量を0.010%以下とした。なお、中心偏析部における耐HIC性の劣化を防止するためには、Pの含有量は0.008%未満とすることが好ましい。耐HIC性の十分な確保という観点からは、Pの含有量は、できるだけ低くするのがよい。
P: 0.010% or less P is one of impurity elements in steel. P has a large tendency to segregate due to a small distribution coefficient at the solid-liquid interface at the time of solidification. Particularly, when the content increases and exceeds 0.010%, HIC resistance is increased due to remarkable concentration in the central segregation part. It causes a great decline in sex. Therefore, the content of P is set to 0.010% or less. In order to prevent deterioration of the HIC resistance at the center segregation part, the P content is preferably less than 0.008%. From the viewpoint of ensuring sufficient HIC resistance, the P content should be as low as possible.

S:0.002%以下
Sも、鋼中の不純物元素の一つである。Sは、凝固時の固液界面における分配係数が小さいため偏析する傾向が大きく、しかも、偏析部ではMnSを生成してHICの発生起点となる。特に、Sの含有量が大きくなって0.002%を超えると、耐HIC性の大きな低下を招く。したがって、Sの含有量を0.002%以下とした。高強度鋼などより要求レベルの高い条件で安定して耐HIC性を得るためには、Sの含有量は0.001%以下とすることが好ましい。耐HIC性の十分な確保という観点からは、Sの含有量は、できるだけ低くするのがよい。
S: 0.002% or less S is one of the impurity elements in steel. Since S has a small distribution coefficient at the solid-liquid interface at the time of solidification, it tends to segregate. In addition, MnS is generated at the segregation part and becomes the starting point of HIC generation. In particular, when the S content is increased and exceeds 0.002%, the HIC resistance is greatly reduced. Therefore, the content of S is set to 0.002% or less. In order to stably obtain HIC resistance under conditions that require a higher level than high-strength steel and the like, the S content is preferably 0.001% or less. From the viewpoint of ensuring sufficient HIC resistance, the S content should be as low as possible.

Nb:0.01〜0.10%
Nbは、鋼中で炭窒化物を形成し、鋼の強度を高めるとともに靱性も向上させる作用を有する。Nbは、また、特に熱加工制御(TMCP)法において、固溶・析出を通じて、鋼板のミクロ組織を制御する作用を有する。これらの効果を得るためには、Nbの含有量を0.01%以上とする必要がある。しかしながら、その含有量が0.10%を超えると、加熱時に固溶しないため組織制御ができなくなる。したがって、Nbの含有量を0.01〜0.10%と規定した。なお、Nbの含有量は0.015〜0.075%とすることが好ましい。
Nb: 0.01 to 0.10%
Nb has the effect of forming carbonitrides in the steel, increasing the strength of the steel and improving the toughness. Nb also has the effect of controlling the microstructure of the steel sheet through solid solution and precipitation, particularly in the thermal processing control (TMCP) method. In order to obtain these effects, the Nb content needs to be 0.01% or more. However, if its content exceeds 0.10%, the structure cannot be controlled because it does not dissolve at the time of heating. Therefore, the Nb content is defined as 0.01 to 0.10%. Note that the Nb content is preferably 0.015 to 0.075%.

Ti:0.005〜0.03%
Tiは、鋼の強度を向上させる作用を有する。Tiには、鋼中のNをTiNとして固定し、NがNbやAlと結合したNbNやAlNの析出量を減少することから、連続鋳造に伴う鋳片の曲げ及び矯正の際に、オーステナイト粒界にNbNやAlNが動的析出することに起因した鋳片の表面割れを防止する作用もある。このような効果を得るためには、Tiの含有量を0.005%以上とする必要がある。しかしながら、その含有量が0.03%を超えると、炭化物が多数生成して溶接熱影響部の靱性低下を招き、また、粗大なTiNが生成する原因ともなる。したがって、Tiの含有量を0.005〜0.03%と規定した。なお、Tiの含有量は0.010〜0.025%とすることが好ましい。
Ti: 0.005 to 0.03%
Ti has the effect | action which improves the intensity | strength of steel. In Ti, N in the steel is fixed as TiN, and the amount of precipitation of NbN or AlN combined with Nb or Al is reduced. Therefore, when bending and straightening the slab accompanying continuous casting, austenite grains It also has an effect of preventing surface cracks of the slab due to the dynamic precipitation of NbN and AlN at the boundary. In order to obtain such an effect, the Ti content needs to be 0.005% or more. However, if its content exceeds 0.03%, a large number of carbides are produced, leading to a reduction in the toughness of the weld heat affected zone, and also causing coarse TiN to be produced. Therefore, the Ti content is specified to be 0.005 to 0.03%. The Ti content is preferably 0.010 to 0.025%.

Al:0.005〜0.06%
Alは、脱酸元素として鋼中の酸素含有量を低減するために有効な元素の一つであり、そのために必要なAlの含有量は0.005%以上である。なお、Alの含有量が0.005%を下回ると、脱酸に加えて脱硫が不十分になるし、添加するCaの歩留まりが低下するので後述するCaの効果が十分には得られなくなって、鋼中の硫化物やSの偏析に起因してHICが発生する。しかしながら、Alの含有量が多くなると、脱酸に伴い生成するアルミナがHICの原因となり、特に、Alの含有量が0.06%を超えると、アルミナに起因したHICの発生が著しくなる。したがって、Alの含有量を0.005〜0.06%と規定した。
Al: 0.005-0.06%
Al is one of the elements effective for reducing the oxygen content in steel as a deoxidizing element, and the Al content necessary for this purpose is 0.005% or more. If the Al content is less than 0.005%, desulfurization becomes insufficient in addition to deoxidation, and the yield of Ca to be added decreases, so the effect of Ca described later cannot be sufficiently obtained. , HIC occurs due to segregation of sulfides and S in the steel. However, when the Al content increases, the alumina produced by deoxidation causes HIC. In particular, when the Al content exceeds 0.06%, the generation of HIC due to alumina becomes remarkable. Therefore, the Al content is specified to be 0.005 to 0.06%.

Ca:0.0005〜0.0060%
Caは、脱硫元素として鋼中のS含有量を低減させてMnSの生成を防止するとともに、硫化物の形態を制御する作用を有する。こうした効果を得るためには、Caの含有量を0.0005%以上とする必要がある。しかしながら、Caの含有量が0.0060%を超えてもその効果は飽和し、製造コストの増加を招くばかりである。したがって、Caの含有量を0.0005〜0.0060%と規定した。
Ca: 0.0005 to 0.0060%
Ca acts as a desulfurization element to reduce the S content in steel to prevent the formation of MnS and to control the form of sulfide. In order to obtain such an effect, the Ca content needs to be 0.0005% or more. However, even if the Ca content exceeds 0.0060%, the effect is saturated and the production cost is increased. Therefore, the content of Ca is defined as 0.0005 to 0.0060%.

N:0.0015〜0.007%
Nは、Nb及びCとともに、鋼中で炭窒化物を形成し、鋼の強度を高めるとともに靱性を向上させる作用を有する。Nには、AlやTiなどと窒化物を形成し、ミクロ組織を微細化し、また、機械特性を向上させる作用もある。前記の効果を得るためには、Nの含有量を0.0015%以上とする必要がある。しかしながら、Nの含有量が多くなり、特に0.007%を超えると、連続鋳造に伴う鋳片の曲げ及び矯正の際に、オーステナイト粒界にAlNやTiNが動的析出して鋳片に表面割れが生じてしまう。したがって、Nの含有量を0.0015〜0.007%とした。
N: 0.0015 to 0.007%
N, together with Nb and C, forms carbonitrides in the steel and has the effect of increasing the strength of the steel and improving the toughness. N also has a function of forming a nitride with Al, Ti, etc., miniaturizing the microstructure, and improving mechanical properties. In order to acquire the said effect, it is necessary to make content of N 0.0015% or more. However, if the N content increases, especially exceeding 0.007%, during bending and straightening of the slab accompanying continuous casting, AlN and TiN dynamically precipitate at the austenite grain boundaries, and the surface of the slab Cracks will occur. Therefore, the N content is set to 0.0015 to 0.007%.

「1.48−1.5×Si−14.3×Ti−73×N」の値:0.72超
式中の元素記号を、その元素の質量%での鋼中含有量として、「1.48−1.5×Si−14.3×Ti−73×N」の値が0.72以下の場合には、理論上は粗大な(Ti、Nb)(C、N)系介在物の生成を阻止することができ、粗大な(Ti、Nb)(C、N)系介在物の生成に起因したHICの発生を抑止することができる。したがって、「1.48−1.5×Si−14.3×Ti−73×N」の値が0.72を超える、つまり(1)式を満たすことと規定した。
Value of “1.48-1.5 × Si-14.3 × Ti-73 × N”: more than 0.72 The element symbol in the formula is the content in steel in mass% of the element, and “1 .48-1.5 × Si-14.3 × Ti-73 × N ”is 0.72 or less, the theoretically large (Ti, Nb) (C, N) inclusions Generation | occurrence | production can be blocked | prevented and generation | occurrence | production of HIC resulting from the production | generation of a coarse (Ti, Nb) (C, N) type inclusion can be suppressed. Therefore, it is defined that the value of “1.48−1.5 × Si−14.3 × Ti−73 × N” exceeds 0.72, that is, the expression (1) is satisfied.

上記の理由から、本発明(1)に係る厚鋼板用連続鋳造鋳片及び本発明(5)に係る厚鋼板は、C、Si、Mn、P、S、Nb、Ti、Al、Ca及びNを上述した範囲で含有し、残部はFe及び不純物からなるとともに、前記の(1)式を満たす化学組成を有することと規定した。   For the above reason, the continuous cast slab for thick steel plate according to the present invention (1) and the thick steel plate according to the present invention (5) are C, Si, Mn, P, S, Nb, Ti, Al, Ca and N. In the above-mentioned range, and the balance is defined as having a chemical composition satisfying the above formula (1) while being composed of Fe and impurities.

本発明に係る厚鋼板用連続鋳造鋳片及び厚鋼板には、必要に応じて、Feの一部に代えて、後述するCu、Ni、Cr、Mo及びVのうちから選択される1種又は2種以上の元素を任意添加元素として添加し、含有させてもよい。   The continuous cast slab for thick steel plate and the thick steel plate according to the present invention may be selected from Cu, Ni, Cr, Mo and V, which will be described later, instead of a part of Fe, if necessary. Two or more elements may be added and added as optional additional elements.

以下、上記の任意添加元素に関して説明する。   Hereinafter, the above optional additive elements will be described.

Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下
Cu、Ni、Cr、Mo及びVは、いずれも、鋼の強度を高める作用を有する。このため、強度をより一層向上させたい場合には以下の範囲で含有してもよい。
Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less and V: 0.2% or less Cu, Ni, Cr, Mo and V are All have the effect | action which raises the intensity | strength of steel. For this reason, when it is desired to further improve the strength, it may be contained in the following range.

Cu:0.5%以下
Cuは、鋼の焼入れ性を向上させ、これによって強度を高める作用を有する。この効果を得るには、Cuの含有量を0.1%以上とすることが好ましい。一方、0.5%を超えて含有させると鋼の熱間加工性や被削性が低下する。したがって、含有させる場合のCuの含有量を0.5%以下とした。
Cu: 0.5% or less Cu has the effect of improving the hardenability of steel and thereby increasing the strength. In order to obtain this effect, the Cu content is preferably 0.1% or more. On the other hand, when it contains exceeding 0.5%, the hot workability and machinability of steel will fall. Therefore, when Cu is included, the content of Cu is set to 0.5% or less.

なお、Cuは、連続鋳造時に「カッパー割れ」と称する表面割れを誘発することから、Cuを0.2%以上含有させる場合には、その1/3以上の量のNiを複合して含有させることが好ましい。   Since Cu induces surface cracks called “copper cracks” during continuous casting, when Cu is contained in an amount of 0.2% or more, Ni is contained in a composite amount of 1/3 or more. It is preferable.

Ni:1.0%以下
Niは、固溶強化によって鋼の強度を向上させる作用を有する。Niには、靱性を改善する作用もある。これらの効果を得るには、Niの含有量を0.1%以上とすることが好ましい。一方、1.0%超えて含有させてもその効果が飽和してコストが嵩むし、溶接性も低下する。したがって、含有させる場合のNiの含有量を1.0%以下とした。
Ni: 1.0% or less Ni has an effect of improving the strength of steel by solid solution strengthening. Ni also has the effect of improving toughness. In order to obtain these effects, the Ni content is preferably 0.1% or more. On the other hand, even if it contains exceeding 1.0%, the effect will be saturated and cost will increase, and weldability will also fall. Therefore, the Ni content when contained is set to 1.0% or less.

Cr:1.5%以下
Crは、鋼の強度を高める作用を有する。Crには、靱性を高める作用もある。これらの効果を得るには、Crの含有量を0.05%以上とすることが好ましい。一方、1.5%を超えて含有させると溶接割れの発生を招く。したがって、含有させる場合のCrの含有量を1.5%以下とした。
Cr: 1.5% or less Cr has an effect of increasing the strength of steel. Cr also has the effect of increasing toughness. In order to obtain these effects, the Cr content is preferably 0.05% or more. On the other hand, if it exceeds 1.5%, welding cracks are caused. Therefore, the Cr content when contained is set to 1.5% or less.

Mo:1.0%以下
Moは、焼入れ性を向上させ、これによって強度を高める作用を有する。また、ミクロ偏析し難い元素であるため、中心偏析に起因するHICの発生を抑制する作用も有する。これらの効果を得るには、Moの含有量を0.02%以上とすることが好ましい。一方、Moは高価な元素であるのでその多量添加はコスト増加につながるし、特に、1.0%を超えて含有させると、ベイナイトやマルテンサイトなどの硬化相が生成して耐HIC性の低下をきたす。したがって、含有させる場合のMoの含有量を1.0%以下とした。
Mo: 1.0% or less Mo has an effect of improving hardenability and thereby increasing strength. In addition, since it is an element that hardly segregates microscopically, it also has an effect of suppressing the generation of HIC due to center segregation. In order to obtain these effects, the Mo content is preferably 0.02% or more. On the other hand, since Mo is an expensive element, its addition in large amounts leads to an increase in cost. In particular, when it exceeds 1.0%, a hardened phase such as bainite and martensite is generated, resulting in a decrease in HIC resistance. Bring Therefore, the Mo content in the case of inclusion is set to 1.0% or less.

V:0.2%以下
Vは、フェライト中に固溶するとともに炭窒化物を形成して強度を高める作用を有する。この効果を得るには、Vの含有量を0.01%以上とすることが好ましい。一方、0.2%を超えて含有させると溶接熱影響部での析出状況が変化して靱性が低下する。したがって、含有させる場合のVの含有量を0.2%以下とした。
V: 0.2% or less V has the effect of increasing the strength by forming a carbonitride and forming a solid solution in ferrite. In order to obtain this effect, the V content is preferably 0.01% or more. On the other hand, if the content exceeds 0.2%, the precipitation state in the weld heat affected zone changes and the toughness decreases. Therefore, when V is included, the content of V is set to 0.2% or less.

上記のCu、Ni、Cr、Mo及びVは、いずれか1種のみ、或いは2種以上の複合で含有させることができる。   Said Cu, Ni, Cr, Mo, and V can be contained only in 1 type, or 2 or more types of composites.

上述の理由から、本発明(2)に係る厚鋼板用連続鋳造鋳片の化学組成を、本発明(1)に係る厚鋼板用連続鋳造鋳片のFeの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有するものと規定した。   For the reasons described above, the chemical composition of the continuous cast slab for thick steel plate according to the present invention (2) is replaced with a part of Fe of the continuous cast slab for thick steel plate according to the present invention (1), Cu: 0 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V: containing one or more of 0.2% or less Stipulated.

また、本発明(6)に係る厚鋼板の化学組成を、本発明(5)に係る厚鋼板のFeの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有するものと規定した。   Further, the chemical composition of the thick steel plate according to the present invention (6) is replaced with a part of Fe of the thick steel plate according to the present invention (5), Cu: 0.5% or less, Ni: 1.0% or less, It was specified to contain one or more of Cr: 1.5% or less, Mo: 1.0% or less, and V: 0.2% or less.

(B)厚鋼板用連続鋳造鋳片及び厚鋼板の各中心偏析部における(Ti、Nb)(C、N)系介在物の面密度
前記(A)項で述べた化学組成を有する場合であっても、厚鋼板用連続鋳造鋳片の中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、しかも、長径1〜10μmの(Ti、Nb)(C、N)系介在物が面密度で2〜200個/mm2でなければ、その連続鋳造鋳片を圧延して得た厚鋼板のHIC試験における割れ面積率CARが4%を超え、良好な耐HIC性を確保することができない。
(B) Surface density of (Ti, Nb) (C, N) inclusions in each central segregation part of continuous cast slabs for thick steel plates and thick steel plates This is the case of having the chemical composition described in the above section (A). However, in the center segregation part of the continuous cast slab for thick steel plate, the surface density of (Ti, Nb) (C, N) inclusions having a major axis exceeding 10 μm is 2 pieces / mm 2 or less, and the major axis 1 to If the 10 μm (Ti, Nb) (C, N) inclusions are not in the area density of 2 to 200 / mm 2 , the crack area ratio in the HIC test of the thick steel plate obtained by rolling the continuous cast slab CAR exceeds 4%, and good HIC resistance cannot be ensured.

したがって、本発明(1)及び本発明(2)に係る厚鋼板用連続鋳造鋳片は、その中心偏析部における長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が2〜200個/mm2であることと規定した。 Therefore, the continuous cast slab for thick steel plates according to the present invention (1) and the present invention (2) has a surface density of (Ti, Nb) (C, N) inclusions having a major axis exceeding 10 μm at the center segregation portion. The surface density of (Ti, Nb) (C, N) inclusions having a major axis of 1 to 10 μm at 2 pieces / mm 2 or less was defined as 2 to 200 pieces / mm 2 .

なお、既に述べたように、上記本発明(1)及び本発明(2)に係る厚鋼板用連続鋳造鋳片の「中心偏析部」とは、マクロ偏析の中心線から連続鋳造鋳片の厚さ方向に±1mmの範囲を指す。   In addition, as already stated, the "center segregation part" of the continuous cast slab for thick steel plates according to the present invention (1) and the present invention (2) is the thickness of the continuous cast slab from the center line of macro segregation. It indicates the range of ± 1mm in the vertical direction.

また、前記(A)項で述べた化学組成を有する場合であっても、厚鋼板の中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、しかも、長径1〜10μmの(Ti、Nb)(C、N)系介在物が面密度で0.5〜20個/mm2でなければ、その厚鋼板のHIC試験における割れ面積率CARが4%を超え、良好な耐HIC性を確保することができない。 Even in the case of having the chemical composition described in the above section (A), the surface density of (Ti, Nb) (C, N) inclusions having a major axis exceeding 10 μm is 2 at the center segregation portion of the thick steel plate. pieces / mm 2 or less, moreover, the major axis 1~10μm (Ti, Nb) (C , N) type inclusions are 0.5 to 20 pieces at a surface density / mm 2 Otherwise, HIC test of the steel plate The crack area ratio CAR at 4 exceeds 4%, and good HIC resistance cannot be ensured.

したがって、本発明(5)及び本発明(6)に係る厚鋼板は、その中心偏析部における長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が0.5〜20個/mm2であることと規定した。 Therefore, in the thick steel plates according to the present invention (5) and the present invention (6), the surface density of (Ti, Nb) (C, N) -based inclusions having a major axis exceeding 10 μm at the center segregation portion is 2 / mm 2. In the following, it was specified that the surface density of (Ti, Nb) (C, N) inclusions having a major axis of 1 to 10 μm was 0.5 to 20 pieces / mm 2 .

なお、既に述べたように、上記本発明(5)及び本発明(6)に係る厚鋼板の「中心偏析部」とは、マクロ偏析の中心線から厚鋼板の厚さ方向に±1mmの範囲を指す。   In addition, as already stated, the “center segregation part” of the thick steel plate according to the present invention (5) and the present invention (6) is a range of ± 1 mm from the center line of macro segregation in the thickness direction of the thick steel plate. Point to.

なお、厚鋼板用連続鋳造鋳片の中心偏析部に上記のような寸法と面密度で(Ti、Nb)(C、N)系介在物を存在させるためには、例えば、本発明(3)や本発明(4)で規定する方法で、鋼の連続鋳造を行えばよい。   In order to allow (Ti, Nb) (C, N) inclusions to exist in the center segregation portion of the continuous cast slab for thick steel plate with the above dimensions and surface density, for example, the present invention (3) Alternatively, the steel may be continuously cast by the method defined in the present invention (4).

また、厚鋼板の中心偏析部に上記のような寸法と面密度で(Ti、Nb)(C、N)系介在物を存在させるためには、例えば、本発明(3)や本発明(4)で規定する方法によって鋼を連続鋳造して得た厚鋼板用連続鋳造鋳片に対して、通常の熱間圧延やTMCP法による処理を施せばよい。   In order to allow (Ti, Nb) (C, N) inclusions to exist in the center segregation part of the thick steel plate with the above dimensions and surface density, for example, the present invention (3) and the present invention (4 The continuous cast slab for thick steel plate obtained by continuous casting of steel by the method specified in (3) may be subjected to treatment by ordinary hot rolling or TMCP method.

(C)連続鋳造方法
前記(A)項で述べた化学組成を有する鋼を、連続鋳造鋳片の中心部の固相率fsが0.4〜0.8の位置において、連続鋳造鋳片表面温度(℃)とロールのピッチ(m)との積を400未満として連続鋳造することによって得られる連続鋳造鋳片を圧延して得た厚鋼板は、HIC試験における割れ面積率CARが4%以下という優れた耐HIC性を有する。
(C) Continuous casting method The steel having the chemical composition described in the above section (A) is subjected to continuous casting slab surface at a position where the solid phase ratio fs at the center of the continuous casting slab is 0.4 to 0.8. Thick steel plates obtained by rolling continuous cast slabs obtained by continuous casting with the product of temperature (° C.) and roll pitch (m) less than 400 have a crack area ratio CAR of 4% or less in the HIC test. Excellent HIC resistance.

したがって、本発明(3)及び本発明(4)に係る厚鋼板用連続鋳造鋳片の製造方法においては、前記(A)項で述べた化学組成を有する鋼を、連続鋳造鋳片の中心部の固相率fsが0.4〜0.8の位置において、連続鋳造鋳片表面温度(℃)とロールのピッチ(m)との積を400未満として連続鋳造することと規定した。   Therefore, in the method for producing a continuous cast slab for a thick steel plate according to the present invention (3) and the present invention (4), the steel having the chemical composition described in the above section (A) is used in the central portion of the continuous cast slab. When the solid phase ratio fs is 0.4 to 0.8, the product of the continuous cast slab surface temperature (° C.) and the pitch (m) of the roll is set to be less than 400, and it is defined that continuous casting is performed.

なお、既に述べたように、上記本発明(3)及び本発明(4)に係る厚鋼板用連続鋳造鋳片の製造方法における「ロール」とは、例えば、鋳片のバルジングを抑制しながら支持するためのガイドロール、鋳片を引き抜くためのピンチロール、鋳片を圧下するための圧下ロールを指す。   As already described, the “roll” in the method for producing a continuous cast slab for a thick steel plate according to the present invention (3) and the present invention (4) is, for example, supported while suppressing bulging of the slab. A guide roll for pulling out, a pinch roll for pulling out the slab, and a reduction roll for reducing the slab.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表4に示す化学組成を有する鋼1〜20を連続鋳造して鋳片を製造した。なお、連続鋳造は、厚さ300mm、幅2300mmの垂直曲げ型スラブ連続鋳造設備を用いて、0.7〜0.8m/minの鋳造速度で行った。   The steel 1-20 which has the chemical composition shown in Table 4 was continuously cast, and the slab was manufactured. The continuous casting was performed at a casting speed of 0.7 to 0.8 m / min using a vertical bending slab continuous casting facility having a thickness of 300 mm and a width of 2300 mm.

表5に、連続鋳造時のその他の条件として、二次冷却比水量、鋳片圧下勾配及び鋳片の中心部の固相率fsが0.4〜0.8の位置における鋳片表面温度(℃)とロールのピッチ(m)との積(表5では「表面温度(℃)×ロールピッチ(m)」と表記した。)を示す。   In Table 5, as other conditions at the time of continuous casting, the secondary cooling specific water amount, the slab pressure gradient, and the slab surface temperature at the position where the solid phase ratio fs at the center of the slab is 0.4 to 0.8 ( (° C.) and roll pitch (m) (in Table 5, “surface temperature (° C.) × roll pitch (m)”).

なお、表4中の鋼1〜12、鋼14及び鋼15は、化学組成が本発明で規定する範囲内にある鋼である。一方、表4中の鋼13及び鋼16〜20は、化学組成が本発明で規定する条件から外れた比較例の鋼である。   In addition, the steel 1-12 in Table 4, the steel 14, and the steel 15 are steel which has a chemical composition in the range prescribed | regulated by this invention. On the other hand, steel 13 and steels 16 to 20 in Table 4 are steels of comparative examples whose chemical compositions deviate from the conditions specified in the present invention.

Figure 0004725437
Figure 0004725437

Figure 0004725437
Figure 0004725437

このようにして得た連続鋳造鋳片からサンプルを採取して中心偏析部における析出物の調査を行った。   A sample was collected from the continuous cast slab thus obtained, and the precipitates in the central segregation part were investigated.

また、連続鋳造して得た鋳片を、1100〜1200℃に加熱し、仕上げ圧延温度を850〜750℃として、厚さ15〜25mmの厚鋼板に熱間圧延した。熱間圧延後は直ちに水冷を行い、470〜420℃で冷却を停止し、その後は大気中で放冷した。   Moreover, the slab obtained by continuous casting was heated to 1100-1200 degreeC, the finish rolling temperature was 850-750 degreeC, and it hot-rolled to the thick steel plate of thickness 15-25mm. Immediately after hot rolling, water cooling was performed, cooling was stopped at 470 to 420 ° C., and then the mixture was allowed to cool in the air.

このようにして得た厚鋼板からサンプルを採取して中心偏析部における析出物の調査を行った。また、引張試験片及びHIC試験片を採取して、室温で引張試験及びHIC試験を実施した。   A sample was collected from the thick steel plate thus obtained, and the precipitate in the central segregation portion was investigated. In addition, a tensile test piece and an HIC test piece were collected and subjected to a tensile test and an HIC test at room temperature.

以下、その具体的内容について説明する。   The specific contents will be described below.

1.連続鋳造鋳片の析出物調査
連続鋳造設備の出側で連続鋳造鋳片の横断面試料を採取し、その試料の中心偏析部を含むようにミクロ試料を作製し、機械研磨した後、10%の塩酸水溶液で腐食して、マクロ偏析状況を調査した。
1. Investigation of precipitates in continuous cast slabs After taking a cross-sectional sample of the continuous cast slab on the outlet side of the continuous casting facility, making a micro sample to include the center segregation part of the sample, mechanically polishing, 10% The state of macrosegregation was investigated by corroding with an aqueous hydrochloric acid solution.

次いで、上記の試料を樹脂埋めしてから鏡面研磨し、倍率を1000倍として光学顕微鏡で観察して(Ti、Nb)(C、N)系介在物の生成状況を調査した。   Next, the above sample was filled with resin, mirror-polished, and observed with an optical microscope at a magnification of 1000 to investigate the state of formation of (Ti, Nb) (C, N) inclusions.

なお、中心偏析部における調査を行うために、腐食した面でマクロ偏析の中心線を決定し、その中心線から連続鋳造鋳片の厚さ方向に±1mmの範囲内で(Ti、Nb)(C、N)系介在物の寸法(長径)と生成数(面密度)を計測した。   In order to investigate the central segregation portion, the center line of macro segregation is determined on the corroded surface, and within the range of ± 1 mm from the center line to the thickness direction of the continuous cast slab (Ti, Nb) ( C, N) The size (major axis) and the number of generations (surface density) of the inclusions were measured.

2.厚鋼板の調査
2.1.厚鋼板の析出物調査
厚鋼板から横断面試料を採取し、その試料の中心偏析部を含むようにミクロ試料を作製し、機械研磨した後、10%の塩酸水溶液で腐食して、マクロ偏析状況を調査した。
2. Thick steel plate survey 2.1. Precipitation investigation of thick steel plate Take a cross-section sample from the thick steel plate, make a micro sample to include the center segregation part of the sample, mechanically polish it, then corrode with 10% hydrochloric acid aqueous solution, macro segregation situation investigated.

次いで、上記の試料を樹脂埋めしてから鏡面研磨し、倍率を1000倍として光学顕微鏡で観察して(Ti、Nb)(C、N)系介在物の生成状況を調査した。   Next, the above sample was filled with resin, mirror-polished, and observed with an optical microscope at a magnification of 1000 to investigate the state of formation of (Ti, Nb) (C, N) inclusions.

なお、中心偏析部における調査を行うために、腐食した面でマクロ偏析の中心線を決定し、その中心線から厚鋼板の厚さ方向に±1mmの範囲内で(Ti、Nb)(C、N)系介在物の寸法(長径)と生成数(面密度)を計測した。   In order to investigate the center segregation portion, the center line of macro segregation is determined on the corroded surface, and within the range of ± 1 mm from the center line to the thickness direction of the thick steel plate (Ti, Nb) (C, N) The size (major axis) and the number of generations (surface density) of the system inclusions were measured.

2.2.引張試験
厚鋼板から圧延方向に垂直に引張試験片を採取し、室温で引張試験を行って耐力(YP)を測定した。
2.2. Tensile test Tensile test specimens were taken from a thick steel plate perpendicular to the rolling direction and subjected to a tensile test at room temperature to measure the yield strength (YP).

2.3.HIC試験
厚鋼板の両表皮から1mmを除去した位置から試験片を採取して、NACEのTM−02−84で規定される方法でHIC試験を行い、割れ面積率CARを測定した。
2.3. HIC Test A test piece was taken from a position where 1 mm was removed from both skins of a thick steel plate, and an HIC test was performed by a method defined by NACE TM-02-84 to measure a crack area ratio CAR.

表6に、上記の各試験及び調査の結果を示す。   Table 6 shows the results of the above tests and investigations.

Figure 0004725437
Figure 0004725437

表6から、本発明の条件を満たす試験番号E1〜E12の場合、強度及び耐HIC性に優れていることが明らかである。   From Table 6, it is clear that the test numbers E1 to E12 that satisfy the conditions of the present invention are excellent in strength and HIC resistance.

上記のうちでも、特に試験番号E3〜E12は、耐力が高く、例えば、APIで規定されたX70(YP:482MPaクラス(70ksiクラス))以上の高グレードラインパイプ用途に適していることが明らかである。   Among the above, the test numbers E3 to E12 are particularly high in proof stress, and for example, it is apparent that they are suitable for high-grade line pipe applications of X70 (YP: 482 MPa class (70 ksi class)) or higher as defined by API. is there.

これに対して、本発明で規定する条件から外れた比較例の試験番号E13〜E20の場合、耐HIC性が低く、ラインパイプなどに使用する場合には十分な特性を有さないものである。   On the other hand, in the case of test numbers E13 to E20 of comparative examples that deviate from the conditions specified in the present invention, the HIC resistance is low, and the characteristics are not sufficient when used for a line pipe or the like. .

以上、実施例によって本発明を具体的に説明したが、本発明はこれらの実施例に限定されるものではない。実施例として開示のないものも本発明の要件を満たしさえすれば当然に本発明に含まれる。   As mentioned above, although the present invention was concretely explained with the example, the present invention is not limited to these examples. Those not disclosed as examples are also included in the present invention as long as they satisfy the requirements of the present invention.

本発明は、割れ発生の起因となるMnS生成の防止や中心偏析部起因となるC、Mn及びPの含有量の低減、或いは中心偏析の軽減策と相反するものでなく、これらの対策と併用して実施すれば、HIC発生の防止に効果的であることはいうまでもない。   The present invention does not conflict with the prevention of MnS generation that causes cracking, the reduction of the content of C, Mn, and P that causes central segregation or the mitigation of central segregation. Needless to say, this is effective in preventing the occurrence of HIC.

なお、中心偏析を軽減する方法としては、鋳片の中心部が凝固する際に凝固収縮量に相当する程度、或いはそれをやや上回る程度に鋳片に圧下勾配を付与することが行われている。近年、油圧で位置制御することが可能なローラーエプロンを備えた連続鋳造設備が使用されるようになり、鋼種に応じて、或いは鋳造中の鋳造速度変更など鋳造条件に対応して、迅速にアライメントを変更することが可能となり、全長に亘って安定して中心偏析を軽減することができるようになっている。   In addition, as a method of reducing the center segregation, when the central part of the slab solidifies, a reduction gradient is applied to the slab to a degree corresponding to the solidification shrinkage amount or slightly higher than that. . In recent years, continuous casting equipment equipped with a roller apron that can be position controlled by hydraulic pressure has been used, and it is quickly aligned according to the casting conditions such as changing the casting speed according to the steel type or casting. The center segregation can be reduced stably over the entire length.

本発明の厚鋼板は、強度を高めるためにNbとTiを複合して含有させたものであるにも拘わらず、HIC試験における割れ面積率CARが4%以下という優れた耐HIC性を有するので、ラインパイプ、海洋構造物や圧力容器に用いることができる。この厚鋼板の素材として本発明の厚鋼板用連続鋳造鋳片は好適であり、その厚鋼板用連続鋳造鋳片は本発明の方法によって容易に製造することができる。   The thick steel plate of the present invention has excellent HIC resistance with a crack area ratio CAR of 4% or less in the HIC test, even though it contains Nb and Ti combined to increase the strength. Can be used for line pipes, offshore structures and pressure vessels. The continuous cast slab for thick steel plate of the present invention is suitable as a material for the thick steel plate, and the continuous cast slab for thick steel plate can be easily manufactured by the method of the present invention.

凝固過程における固相(つまり凝固部分)内の着目成分元素含有量Csと液相(つまり、溶鋼中)内の着目成分元素含有量Clの分布状況を模式的に示す図である。It is a figure which shows typically the distribution condition of the target component element content Cs in the solid phase (namely, solidification part) in the solidification process, and the target component element content Cl in the liquid phase (namely, in molten steel). 表1の成分系の凝固時残溶鋼中におけるC、P、Ti及びNの含有量の変化についての計算結果を示す図である。It is a figure which shows the calculation result about the change of content of C, P, Ti, and N in the residual molten steel of the component system of Table 1. 連続鋳造により製造した連続鋳造鋳片のTiNの晶出開始固相率fsの計算値とHIC試験における割れ面積率CAR(%)の関係を示す図である。It is a figure which shows the relationship between the calculated value of the crystallization start solid phase fraction fs of the continuous cast slab manufactured by continuous casting, and the crack area ratio CAR (%) in a HIC test. N、Ti及びSiの含有量の減少量とTiNの晶出開始固相率fsの計算値の増加度との関係を示す図である。It is a figure which shows the relationship between the decreasing amount of content of N, Ti, and Si, and the increase degree of the calculated value of the crystallization start solid phase ratio fs of TiN. 連続鋳造鋳片中心部の凝固過程での最大流速の計算値に及ぼす連続鋳造鋳片表面温度(℃)とロールピッチ(m)の積の影響を示す図である。It is a figure which shows the influence of the product of continuous cast slab surface temperature (degreeC) and roll pitch (m) on the calculated value of the maximum flow velocity in the solidification process of a continuous cast slab center part.

Claims (6)

質量%で、C:0.03〜0.10%、Si:0.05〜0.4%、Mn:0.8〜1.8%、P:0.010%以下、S:0.002%以下、Nb:0.01〜0.10%、Ti:0.005〜0.03%、Al:0.005〜0.06%、Ca:0.0005〜0.0060%及びN:0.0015〜0.007%を含有し、残部はFe及び不純物からなるとともに下記(1)式を満たす化学組成を有し、更に、中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が2〜200個/mm2であることを特徴とする厚鋼板用連続鋳造鋳片。
1.48−1.5×Si−14.3×Ti−73×N>0.72・・・(1)式
但し、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.03-0.10%, Si: 0.05-0.4%, Mn: 0.8-1.8%, P: 0.010% or less, S: 0.002 %, Nb: 0.01-0.10%, Ti: 0.005-0.03%, Al: 0.005-0.06%, Ca: 0.0005-0.0060% and N: 0 .0015-0.007%, the balance is composed of Fe and impurities, and has a chemical composition satisfying the following formula (1). Further, in the central segregation part, the major axis exceeds 10 μm (Ti, Nb) (C , N) The surface density of the inclusions is 2 pieces / mm 2 or less, and the surface density of the (Ti, Nb) (C, N) inclusions having a major axis of 1 to 10 μm is 2 to 200 pieces / mm 2. A continuous cast slab for thick steel plates.
1.48-1.5 × Si-14.3 × Ti-73 × N> 0.72 (1) where the element symbol in the formula (1) is steel in mass% of the element. Represents the medium content.
化学組成が、Feの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有する請求項1に記載の厚鋼板用連続鋳造鋳片。   In place of a part of Fe, the chemical composition is Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V: 0.2% The continuous cast slab for thick steel plates according to claim 1, comprising one or more of the following. 質量%で、C:0.03〜0.10%、Si:0.05〜0.4%、Mn:0.8〜1.8%、P:0.010%以下、S:0.002%以下、Nb:0.01〜0.10%、Ti:0.005〜0.03%、Al:0.005〜0.06%、Ca:0.0005〜0.0060%及びN:0.0015〜0.007%を含有し、残部はFe及び不純物からなるとともに下記(1)式を満たす化学組成を有する鋼の連続鋳造方法であって、連続鋳造鋳片の中心部の固相率fsが0.4〜0.8の位置において、連続鋳造鋳片表面温度(℃)とロールのピッチ(m)との積を400未満として連続鋳造することを特徴とする厚鋼板用連続鋳造鋳片の製造方法。
1.48−1.5×Si−14.3×Ti−73×N>0.72・・・(1)式
但し、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.03-0.10%, Si: 0.05-0.4%, Mn: 0.8-1.8%, P: 0.010% or less, S: 0.002 %, Nb: 0.01-0.10%, Ti: 0.005-0.03%, Al: 0.005-0.06%, Ca: 0.0005-0.0060% and N: 0 .0015 to 0.007%, and the balance is a continuous casting method of steel having a chemical composition satisfying the following formula (1), which consists of Fe and impurities, and has a solid phase ratio at the center of the continuous cast slab Continuous casting for thick steel plate, characterized in that, at a position where fs is 0.4 to 0.8, continuous casting is performed by setting the product of continuous cast slab surface temperature (° C.) and roll pitch (m) to less than 400. A manufacturing method of a piece.
1.48-1.5 × Si-14.3 × Ti-73 × N> 0.72 (1) where the element symbol in the formula (1) is steel in mass% of the element. Represents the medium content.
鋼の化学組成が、Feの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有する請求項3に記載の厚鋼板用連続鋳造鋳片の製造方法。   Instead of a part of Fe, the chemical composition of steel is Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V: 0.00. The manufacturing method of the continuous cast slab for thick steel plates of Claim 3 containing 1 type or 2 types or more of 2% or less. 質量%で、C:0.03〜0.10%、Si:0.05〜0.4%、Mn:0.8〜1.8%、P:0.010%以下、S:0.002%以下、Nb:0.01〜0.10%、Ti:0.005〜0.03%、Al:0.005〜0.06%、Ca:0.0005〜0.0060%及びN:0.0015〜0.007%を含有し、残部はFe及び不純物からなるとともに下記(1)式を満たす化学組成を有し、更に、中心偏析部において、長径10μmを超える(Ti、Nb)(C、N)系介在物の面密度が2個/mm2以下で、長径1〜10μmの(Ti、Nb)(C、N)系介在物の面密度が0.5〜20個/mm2であることを特徴とする厚鋼板。
1.48−1.5×Si−14.3×Ti−73×N>0.72・・・(1)式
但し、(1)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.03-0.10%, Si: 0.05-0.4%, Mn: 0.8-1.8%, P: 0.010% or less, S: 0.002 %, Nb: 0.01-0.10%, Ti: 0.005-0.03%, Al: 0.005-0.06%, Ca: 0.0005-0.0060% and N: 0 .0015-0.007%, the balance is composed of Fe and impurities, and has a chemical composition satisfying the following formula (1). Further, in the central segregation part, the major axis exceeds 10 μm (Ti, Nb) (C , N) The surface density of the inclusions is 2 pieces / mm 2 or less, and the surface density of the (Ti, Nb) (C, N) inclusions having a major axis of 1 to 10 μm is 0.5 to 20 pieces / mm 2 . Thick steel plate characterized by being.
1.48-1.5 × Si-14.3 × Ti-73 × N> 0.72 (1) where the element symbol in the formula (1) is steel in mass% of the element. Represents the medium content.
化学組成が、Feの一部に代えて、Cu:0.5%以下、Ni:1.0%以下、Cr:1.5%以下、Mo:1.0%以下及びV:0.2%以下のうちの1種又は2種以上を含有する請求項5に記載の厚鋼板。

In place of a part of Fe, the chemical composition is Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, and V: 0.2% The thick steel plate according to claim 5 containing one or more of the following.

JP2006181727A 2006-06-30 2006-06-30 Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate Expired - Fee Related JP4725437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181727A JP4725437B2 (en) 2006-06-30 2006-06-30 Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181727A JP4725437B2 (en) 2006-06-30 2006-06-30 Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate

Publications (2)

Publication Number Publication Date
JP2008007841A JP2008007841A (en) 2008-01-17
JP4725437B2 true JP4725437B2 (en) 2011-07-13

Family

ID=39066305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181727A Expired - Fee Related JP4725437B2 (en) 2006-06-30 2006-06-30 Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate

Country Status (1)

Country Link
JP (1) JP4725437B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010104165A1 (en) * 2009-03-12 2012-09-13 住友金属工業株式会社 HIC thick steel plate and UOE steel pipe
WO2011027900A1 (en) * 2009-09-02 2011-03-10 新日本製鐵株式会社 High-strength steel plate and high-strength steel pipe with superior low-temperature toughness for use in line pipes
CN102482744B (en) * 2009-09-09 2014-09-10 新日铁住金株式会社 Steel sheet for high-strength line pipe having excellent low-temperature toughness, and steel pipe for high-strength line pipe
JP2011063840A (en) * 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd Steel sheet having excellent hic resistance and uoe steel pipe
JP5246280B2 (en) * 2011-02-15 2013-07-24 新日鐵住金株式会社 Steel sheet for high strength steel pipe and high strength steel pipe
KR101615842B1 (en) 2012-03-30 2016-04-26 신닛테츠스미킨 카부시키카이샤 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP5824401B2 (en) 2012-03-30 2015-11-25 株式会社神戸製鋼所 Steel sheet with excellent resistance to hydrogen-induced cracking and method for producing the same
CN102732784B (en) * 2012-06-15 2016-08-03 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of 590L steel for automobile crossbeam and CSP preparation method thereof
JP6169025B2 (en) * 2013-03-29 2017-07-26 株式会社神戸製鋼所 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
CN103320693B (en) * 2013-06-19 2015-11-18 宝山钢铁股份有限公司 Anti-zinc fracturing line steel plate and manufacture method thereof
CA2970271C (en) * 2014-12-12 2020-02-18 Nippon Steel & Sumitomo Metal Corporation Low-alloy steel for oil well pipe and method of manufacturing low-alloy steel oil well pipe
JP6447426B2 (en) * 2015-09-04 2019-01-09 Jfeスチール株式会社 Extra-thick steel plate and manufacturing method thereof
JP6648647B2 (en) * 2016-07-20 2020-02-14 日本製鉄株式会社 Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
KR101889189B1 (en) * 2016-12-22 2018-08-16 주식회사 포스코 Ts 450mpa grade heavy guage steel sheet having excellent resistance to hydrogen induced cracking and method of manufacturing the same
CN113828745B (en) * 2021-08-31 2023-03-21 南京钢铁股份有限公司 Bloom continuous casting production method of high-strength steel for motor car brake disc
CN118076758A (en) * 2021-12-03 2024-05-24 日本制铁株式会社 Steel plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119759A (en) * 1980-02-28 1981-09-19 Nippon Kokan Kk <Nkk> High tensile steel with superior sulfide corrosion crack resistance
JPS61119360A (en) * 1984-11-16 1986-06-06 Sumitomo Metal Ind Ltd Continuous casting method of steel
JPS63134647A (en) * 1986-11-26 1988-06-07 Kobe Steel Ltd High-strength steel plate excellent in hydrogen-induced cracking resistance
JPS63252655A (en) * 1987-04-08 1988-10-19 Nkk Corp Method for casting under light draft
JP3835185B2 (en) * 2001-03-19 2006-10-18 住友金属工業株式会社 Steel continuous casting method
JP3633515B2 (en) * 2001-06-12 2005-03-30 住友金属工業株式会社 Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP3846233B2 (en) * 2001-06-27 2006-11-15 住友金属工業株式会社 Steel with excellent resistance to hydrogen-induced cracking
EP1719821B2 (en) * 2004-02-04 2017-11-08 Nippon Steel & Sumitomo Metal Corporation Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
JP4802450B2 (en) * 2004-03-17 2011-10-26 Jfeスチール株式会社 Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe

Also Published As

Publication number Publication date
JP2008007841A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
US8221562B2 (en) Compact strip or thin slab processing of boron/titanium steels
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP2020509197A (en) Steel for pressure vessel excellent in resistance to hydrogen-induced cracking and method for producing the same
JP6409598B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
JP6584912B2 (en) Steel plate and line pipe steel pipe with excellent hydrogen-induced crack resistance
JP2011063840A (en) Steel sheet having excellent hic resistance and uoe steel pipe
JP7406177B1 (en) Steel suitable for use in sour environments
JP6951060B2 (en) Manufacturing method of slabs
CN115398018B (en) Steel plate and manufacturing method thereof
JP2006206967A (en) Continuous casting method of free-cutting steel for machine structure
JP2007302908A (en) High-tensile steel plate and manufacturing method thereof
TWI326714B (en) Low-carbon resulfurized free-machining steel excellent in machinability
JP4325497B2 (en) Continuous casting method of low carbon sulfur free cutting steel
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP6390813B2 (en) Low-temperature H-section steel and its manufacturing method
JP5223720B2 (en) Continuous casting slab of steel for B-containing high-strength thick steel plate and method for producing the same
JP7027858B2 (en) Manufacturing method of carbon steel slabs and carbon steel slabs
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP7126077B2 (en) Method for producing high-manganese steel billet, method for producing high-manganese steel billet and high-manganese steel plate
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
WO2016104527A1 (en) Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe
JP6086036B2 (en) Steel plate with excellent weld heat-affected zone toughness and its melting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Ref document number: 4725437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees