[go: up one dir, main page]

JP4724038B2 - Dress gear manufacturing equipment - Google Patents

Dress gear manufacturing equipment Download PDF

Info

Publication number
JP4724038B2
JP4724038B2 JP2006103840A JP2006103840A JP4724038B2 JP 4724038 B2 JP4724038 B2 JP 4724038B2 JP 2006103840 A JP2006103840 A JP 2006103840A JP 2006103840 A JP2006103840 A JP 2006103840A JP 4724038 B2 JP4724038 B2 JP 4724038B2
Authority
JP
Japan
Prior art keywords
axis
laser beam
rotation
gear
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006103840A
Other languages
Japanese (ja)
Other versions
JP2007276034A (en
Inventor
智明 中筋
喬 秋山
正彦 長谷川
優作 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Mitsubishi Electric Corp
Original Assignee
Nachi Fujikoshi Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Mitsubishi Electric Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2006103840A priority Critical patent/JP4724038B2/en
Publication of JP2007276034A publication Critical patent/JP2007276034A/en
Application granted granted Critical
Publication of JP4724038B2 publication Critical patent/JP4724038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、歯車の高精度仕上げ加工に使用する歯車型砥石の目立て、整形を行うドレスギアの製造装置に関するものである。 The present invention, the gear-type grinding wheel dressing to be used for high precision finishing of the gear, to a manufacturing apparatus of Doresugi A performing shaping.

従来のドレスギアは、表面粗さの要求精度を満足させるため、砥粒を台金に電着した後、ダイヤモンド砥粒層を有するツルーイング工具で修正加工を行う(例えば、特許文献1、特許文献2参照)。   In the conventional dress gear, in order to satisfy the required accuracy of the surface roughness, after the abrasive grains are electrodeposited on the base metal, correction processing is performed with a truing tool having a diamond abrasive grain layer (for example, Patent Document 1 and Patent Document 2). reference).

また、ドレスギアの反転型に仮固定する反転電着によって製作している(例えば、特許文献3参照)。   Moreover, it manufactures by the reverse electrodeposition which temporarily fixes to the inversion type of a dress gear (for example, refer patent document 3).

特開平09−201721号公報(第4−5頁、図6)JP 09-201721 A (page 4-5, FIG. 6) 特開平06−106481号公報(第2−3頁、図3)Japanese Patent Laid-Open No. 06-106481 (page 2-3, FIG. 3) 特開平06−106481号公報(図7)Japanese Patent Laid-Open No. 06-106481 (FIG. 7)

上記のような従来のドレスギアは、ドレスギアに使用される砥粒自体がダイヤモンドや立方晶窒化硼素(cBN)が使用されるため、ダイヤモンド砥粒層を有するツルーイング工具で機械的なツルーイングを行うと、ツルーイング工具のダイヤモンドの摩耗及びツルーイング時の加工負荷により、理想的な形状精度を得るのが困難であり、かつ、ツルーイング時間も長時間かかるという問題点があった。   Since the conventional dress gear as described above uses diamond or cubic boron nitride (cBN) as the abrasive grains used in the dress gear, mechanical truing with a truing tool having a diamond abrasive layer Due to the wear of the diamond of the truing tool and the processing load during truing, it is difficult to obtain ideal shape accuracy, and the truing time is also long.

さらに、ツルーイングする加工機は高精度で多軸のNC制御機となるため設備費が高くなり、したがって、加工費用が高くなるという問題点があった。   Furthermore, the truing processing machine becomes a high-precision, multi-axis NC controller, so that the equipment cost is high, and therefore the processing cost is high.

また、反転電着法によるドレスギア製作も反転型の製作に長時間を要しコスト高となる問題点がある。   In addition, dressing gear production by the reversal electrodeposition method also has a problem that it takes a long time to produce the reversing type and the cost is high.

この発明は、上記のような問題点を解決するためになされたものであり、大粒で高硬度のダイヤモンド砥粒を高精度に、かつ短時間にツルーイングできる技術を提供し、長寿命のドレスギアの製造装置を得ることを目的としている。 The present invention has been made to solve the above problems, to provide a technique capable truing high hardness of diamond abrasive grains with large grain with high accuracy, and in a short time, Doresugi A long life It is intended to obtain a manufacturing apparatus.

本発明に係るドレスギアの製造装置は、歯車とほぼ同形状に加工された台金に固着されたダイヤモンドまたは立方晶窒化硼素にて成る砥粒をツルーイングするドレスギアの製造装置であって、
上記砥粒が固着された台金を回転駆動させる回転駆動部と、
レーザ光を発するレーザ光照射手段と、
上記レーザ光と上記回転駆動部とを相対的にX軸方向、Y軸方向及びZ軸方向に駆動する駆動手段と、
上記台金の歯車歯面における歯頂から歯底に向かう歯形方向で、かつ、上記台金の歯面の接線方向に上記レーザ光を常に照射し、かつ、上記台金の歯車歯面の全面にわたって上記レーザ光を走査するように上記駆動手段及び回転駆動部を制御する制御ユニットと、
を備えるものである。
A dressing gear manufacturing apparatus according to the present invention is a dressing gear manufacturing apparatus for truing abrasive grains made of diamond or cubic boron nitride fixed to a base metal processed in substantially the same shape as a gear,
A rotation drive unit that rotationally drives the base metal to which the abrasive grains are fixed;
Laser light irradiation means for emitting laser light;
Driving means for relatively driving the laser beam and the rotation driving unit in the X-axis direction, the Y-axis direction, and the Z-axis direction;
The laser beam is always irradiated in the tooth profile direction from the top to the bottom of the gear tooth surface of the base metal and in the tangential direction of the tooth surface of the base metal, and the entire surface of the gear tooth surface of the base metal A control unit for controlling the driving means and the rotation driving unit so as to scan the laser beam
Is provided.

本発明に係るドレスギアの製造装置によれば、大粒のダイヤモンドまたは立方晶窒化硼素にて成る砥粒を固着した台金を、レーザ光を用いて高精度に、かつ、短時間で加工でき、また、ダイヤモンドまたは立方晶窒化硼素にて成る砥粒を用いることができるので、ドレスギアの長寿命化を図ることができる。 According to the manufacturing apparatus of the engagement Ru de Resugia the present invention, a base metal which is fixed abrasive grains made by large diamond or cubic boron nitride, with high precision by using a laser beam, and can be processed in a short time Further, since the abrasive grains made of diamond or cubic boron nitride can be used, the life of the dress gear can be extended.

また、レーザ光で最終仕上げするため、台金の形状創成には歯面研削を高精度に施す必要はなく、また消耗品であるツルーイング工具も不要なため、安価なドレスギアを提供できる。   In addition, since the final finishing is performed with laser light, it is not necessary to perform tooth surface grinding with high precision for generating the shape of the base metal, and a truing tool, which is a consumable item, is also unnecessary, so that an inexpensive dress gear can be provided.

実施の形態1.
本発明の実施の形態を、歯車歯面部の研削(ホーニング)を行う砥石のドレッシング工具、すなわち、ドレスギアの製造に適用した場合について説明する。図1は、本発明の実施の形態1における台金を示す斜視図であり、図2は、本発明の実施の形態1における最終仕上前のドレスギアを示す斜視図であり、図3は、本発明の実施の形態1におけるドレスギアの最終仕上げの方法を示す斜視図である。
Embodiment 1 FIG.
A case will be described in which the embodiment of the present invention is applied to the manufacture of a dressing tool for a grindstone that grinds (hones) a gear tooth surface, that is, a dress gear. FIG. 1 is a perspective view showing a base metal in Embodiment 1 of the present invention, FIG. 2 is a perspective view showing a dress gear before final finishing in Embodiment 1 of the present invention, and FIG. It is a perspective view which shows the method of the final finishing of the dress gear in Embodiment 1 of invention.

まず、図1に示したように、ホーニングで最終製品として仕上られる歯車とほぼ同一形状に台金1を加工する。この時、熱処理を行った後、熱処理により生じた歪を歯面研削で除去する工程を追加してもよいし、熱処理のみを追加してもよい。   First, as shown in FIG. 1, the base metal 1 is processed into substantially the same shape as a gear finished as a final product by honing. At this time, after performing the heat treatment, a step of removing distortion caused by the heat treatment by tooth surface grinding may be added, or only the heat treatment may be added.

次に、図2に示したように、主として台金1の歯車歯面2aにダイヤモンドや立方晶窒化硼素(cBN)等の高硬度砥粒3を、例えば電着等により固着させる。   Next, as shown in FIG. 2, high-hardness abrasive grains 3 such as diamond and cubic boron nitride (cBN) are mainly fixed to the gear tooth surface 2a of the base metal 1 by, for example, electrodeposition.

さらに、図3に示したように、歯形方向8で、かつ、ドレスギア4の砥粒付歯車歯面2bの接線方向からレンズ5を通過したレーザ光6を照射し、歯筋方向7に走査して、ツルーイングを行い、さらに、レーザ光6を歯形方向8に一定ピッチで送り、レーザ光6の照射方向が、砥粒付歯車歯面2bの接線方向となるようにして、レーザ光6を歯筋方向7に走査する操作を歯形方向8に一定ピッチ送りで繰り返すことにより、砥粒付歯車歯面2bの全面をレーザ光6で走査してツルーイングすることにより、砥粒付歯車歯面2bの高硬度砥粒3の高さが均一な目標の歯車歯面形状が得られる。   Further, as shown in FIG. 3, the laser beam 6 that has passed through the lens 5 is irradiated in the tooth profile direction 8 and from the tangential direction of the gear tooth surface 2 b with the abrasive grains of the dress gear 4 to scan in the tooth trace direction 7. Then, truing is performed, and further, the laser beam 6 is sent at a constant pitch in the tooth profile direction 8 so that the irradiation direction of the laser beam 6 is the tangential direction of the gear tooth surface 2b with abrasive grains. By repeating the scanning operation in the line direction 7 at a constant pitch feed in the tooth profile direction 8, the entire surface of the gear tooth surface 2 b with abrasive grains is scanned with the laser beam 6 and truing is performed. A target gear tooth surface shape having a uniform height of the high hardness abrasive grains 3 is obtained.

本実施の形態1のドレスギア4によれば、大粒のダイヤモンドやcBN砥粒等の高硬度砥粒3を使用しても、レーザ光6を使用して、歯筋方向7に走査する操作を歯形方向8に一定ピッチ送りで繰り返すことにより、高硬度砥粒3の高さを揃えることができるので、ツルーイング後の砥粒付歯車歯面2bの表面粗さを短時間で高精度にすることができる。また、砥粒の径を大きくできるので、ドレスギアが目詰まりしにくくなり、また、摩滅体積も大きくなり、ドレスギア4の寿命が長くなる。   According to the dressing gear 4 of the first embodiment, even when a high-hardness abrasive grain 3 such as a large diamond or cBN abrasive grain is used, an operation for scanning in the tooth trace direction 7 using the laser beam 6 is performed. By repeating the feed in the direction 8 at a constant pitch, the height of the high-hardness abrasive grains 3 can be made uniform, so that the surface roughness of the toothed gear tooth surface 2b after truing can be made highly accurate in a short time. it can. Further, since the diameter of the abrasive grains can be increased, the dress gear is less likely to be clogged, the wear volume is increased, and the life of the dress gear 4 is increased.

また、レーザ光6で高硬度砥粒3の高さを揃えるため、台金1の形状創成を歯面研削で高精度に仕上る必要がなく、また、消耗品であるダイヤモンドのツルーイング工具も不要になるため、安価なドレスギア4を提供できる。   In addition, since the height of the high-hardness abrasive grains 3 is aligned with the laser beam 6, it is not necessary to finish the shape creation of the base metal 1 with high precision by tooth surface grinding, and there is no need for a diamond truing tool as a consumable item. Therefore, the inexpensive dress gear 4 can be provided.

実施の形態2.
図4は、本発明の実施の形態2におけるドレスギアの製造方法を示す斜視図である。上記実施の形態1では、レーザ光6を歯筋方向7に走査する操作を歯形方向8に一定ピッチ送りで繰り返したが、本実施の形態2では、図4に示したように、レーザ光6を歯形方向8に走査し歯筋方向7に一定ピッチ送りを繰り返して、砥粒付歯車歯面2b全面を走査して高硬度砥粒3の高さが均一な目標の歯車歯面形状を創成するものである。
Embodiment 2. FIG.
FIG. 4 is a perspective view showing a dress gear manufacturing method according to Embodiment 2 of the present invention. In the first embodiment, the operation of scanning the laser beam 6 in the tooth trace direction 7 is repeated at a constant pitch in the tooth profile direction 8, but in the second embodiment, as shown in FIG. Is scanned in the tooth profile direction 8 and a constant pitch feed is repeated in the tooth trace direction 7 to scan the entire surface of the gear tooth surface 2b with abrasive grains to create a target gear tooth surface shape in which the height of the high hardness abrasive grains 3 is uniform. To do.

図5は、本発明の実施の形態2におけるドレスギアの走査型電子顕微鏡(SEM)写真である。図5(a)は、レーザ光を照射する前のダイヤモンド砥粒面9のSEM写真であり、図5(b)は、レーザ光を照射してツルーイングした後の砥粒面9のSEM写真である。   FIG. 5 is a scanning electron microscope (SEM) photograph of the dress gear according to Embodiment 2 of the present invention. FIG. 5A is an SEM photograph of the diamond abrasive grain surface 9 before irradiation with laser light, and FIG. 5B is an SEM photograph of the abrasive grain surface 9 after truing with laser light irradiation. is there.

図5(a)では、ダイヤモンド砥粒面9の先端が突起になっており、その突起の高さは不均一であるが、図5(b)では、レーザ光が走査され、ダイヤモンド砥粒面9にレーザ光6を走査した方向の平行な筋状の溝10(写真の横方向の溝)が形成され、ダイヤモンド砥粒面9の高さが均一化されている。   5A, the tip of the diamond abrasive grain surface 9 is a projection, and the height of the projection is not uniform. In FIG. 5B, the laser beam is scanned and the diamond abrasive grain surface is In FIG. 9, parallel stripe-like grooves 10 (transverse grooves in the photograph) in the direction of scanning with the laser beam 6 are formed, and the height of the diamond abrasive grain surface 9 is made uniform.

本実施の形態2のドレスギア4によれば、大粒のダイヤモンドやcBN砥粒等の高硬度砥粒3を使用しても、レーザ光6を使用して、レーザ光6を歯形方向8に走査する操作を歯筋方向7に一定ピッチ送りで繰り返すことにより、高硬度砥粒3の高さを揃えることができるので、ドレス後の砥粒付歯車歯面2bの表面粗さを短時間で高精度にすることができる。また、高硬度砥粒3の径を大きくできるので、ドレスギアが目詰まりしにくくなり、また、摩滅体積も大きくなり、ドレスギア4の寿命が長くなる。   According to the dress gear 4 of the second embodiment, the laser beam 6 is scanned in the tooth profile direction 8 using the laser beam 6 even when the high-hardness abrasive grains 3 such as large diamonds and cBN abrasive grains are used. By repeating the operation at a constant pitch feed in the tooth trace direction 7, the height of the high-hardness abrasive grains 3 can be made uniform, so that the surface roughness of the gear tooth surface 2b with abrasive grains after dressing can be highly accurate in a short time. Can be. Further, since the diameter of the high-hardness abrasive grains 3 can be increased, the dress gear is less likely to be clogged, the wear volume is increased, and the life of the dress gear 4 is increased.

また、レーザ光6で高硬度砥粒3の高さを揃えるため、台金1の形状創成を歯面研削で高精度に仕上る必要がなく、また、消耗品であるダイヤモンドのツルーイング工具も不要になるため、安価なドレスギア4を提供できる。   In addition, since the height of the high-hardness abrasive grains 3 is aligned with the laser beam 6, it is not necessary to finish the shape creation of the base metal 1 with high precision by tooth surface grinding, and there is no need for a diamond truing tool as a consumable item. Therefore, the inexpensive dress gear 4 can be provided.

また、レーザ光6の走査方向を歯形方向8とするため、歯形方向8の形状精度を得るのが容易となる。   Further, since the scanning direction of the laser light 6 is the tooth profile direction 8, it is easy to obtain the shape accuracy of the tooth profile direction 8.

実施の形態3.
図6は、本発明の実施の形態3におけるドレスギアの製造装置を示す斜視図であり、ドレスギアの最終仕上げであるツルーイングを行う製造装置を示している。
Embodiment 3 FIG.
FIG. 6 is a perspective view showing a dressing gear manufacturing apparatus according to Embodiment 3 of the present invention, and shows a manufacturing apparatus that performs truing, which is the final finish of the dressing gear.

図6に示したように、本実施の形態3のドレスギアの製造装置は、一軸方向に移動するX軸ステージ11の上にX軸ステージ11と直交方向に移動するY軸ステージ12が搭載されており、さらに、Y軸ステージ12には、X軸ステージ11及びY軸ステージ12の移動方向と直交する方向に駆動されるZ軸ステージ13が搭載されており、さらに、Z軸ステージ13にはX軸ステージ11の移動軸と平行な回転軸を有し、最終仕上げ前のドレスギア4を回転する回転駆動部14が搭載されている。また、このドレスギアの製造装置にはレーザを発するレーザ光照射手段18が搭載されている。   As shown in FIG. 6, the dressing gear manufacturing apparatus of the third embodiment has a Y-axis stage 12 that moves in a direction orthogonal to the X-axis stage 11 mounted on an X-axis stage 11 that moves in one axis direction. Furthermore, the Y-axis stage 12 is equipped with an X-axis stage 11 and a Z-axis stage 13 that is driven in a direction orthogonal to the moving direction of the Y-axis stage 12. A rotation drive unit 14 that has a rotation axis parallel to the movement axis of the axis stage 11 and rotates the dress gear 4 before final finishing is mounted. The dress gear manufacturing apparatus is equipped with laser light irradiation means 18 for emitting a laser.

レーザ光照射手段18は、YAGレーザ等のレーザ発振機17、ビームエキスパンダー16、ベンディングミラー15、レンズ6で構成され、レーザ光6はレーザ発振機17から照射され、ビームエキスパンダー16で拡大され、ベンディングミラー15で加工点に曲げられ、レンズ6で集光されて加工点で焦点を結ぶ。さらに、レーザ光6のオン/オフの制御と、レーザ光6を常に歯車歯面の接線方向となるよう制御する制御ユニット19が備えられている。   The laser beam irradiation means 18 includes a laser oscillator 17 such as a YAG laser, a beam expander 16, a bending mirror 15, and a lens 6. The laser beam 6 is irradiated from the laser oscillator 17, expanded by the beam expander 16, and bent. It is bent to a processing point by the mirror 15, condensed by the lens 6, and focused at the processing point. Further, a control unit 19 is provided for controlling on / off of the laser beam 6 and controlling the laser beam 6 so as to always be in the tangential direction of the gear tooth surface.

次に、動作について説明する。
制御ユニット19は、X軸ステージ11、Y軸ステージ12、Z軸ステージ13及び回転駆動部14を制御して、歯形方向の所定位置でレーザ光6をドレスギア4(高硬度砥粒を固着した台金)の歯形方向で、かつ、歯車歯面の接線方向に照射する。X軸ステージ11の直線駆動と回転駆動部14の回転駆動を一定速度で行うことで、ドレスギア4をねじれ角一定のはすば歯車形状である歯筋方向に駆動することにより、レーザ光6を歯筋方向に走査して歯筋方向の高硬度砥粒のツルーイングを行う。
Next, the operation will be described.
The control unit 19 controls the X-axis stage 11, the Y-axis stage 12, the Z-axis stage 13, and the rotation drive unit 14 to direct the laser beam 6 at a predetermined position in the tooth profile direction to the dress gear 4 (a table on which high-hardness abrasive grains are fixed. Irradiation in the tooth profile direction of (gold) and the tangential direction of the gear tooth surface. By performing linear driving of the X-axis stage 11 and rotational driving of the rotation driving unit 14 at a constant speed, the dress gear 4 is driven in the direction of the tooth trace having a helical gear shape with a constant helix angle. Scanning in the tooth trace direction and truing high-hardness abrasive grains in the tooth trace direction.

次に、制御ユニット19は、Y軸ステージ12及び回転駆動部14を駆動して、歯形方向に一定ピッチ送りでドレスギア4を送るとともに、レーザ光6をドレスギア4の歯面の接線方向に照射し、X軸ステージ11の直線駆動と回転駆動部14の回転駆動を一定速度で行うことにより、ドレスギア4をねじれ角一定のはすば歯車形状である歯筋方向に移動することにより、レーザ光6を歯筋方向に走査して歯筋方向の高硬度砥粒のツルーイングを行う。   Next, the control unit 19 drives the Y-axis stage 12 and the rotation drive unit 14 to send the dress gear 4 at a constant pitch feed in the tooth profile direction, and irradiates the laser beam 6 in the tangential direction of the tooth surface of the dress gear 4. By performing linear driving of the X-axis stage 11 and rotational driving of the rotational driving unit 14 at a constant speed, the dress gear 4 is moved in the direction of the tooth trace having a helical gear shape with a constant helix angle, whereby the laser beam 6 Truing high-hardness abrasive grains in the tooth trace direction by scanning in the tooth trace direction.

歯形方向への一定ピッチ送り及び歯筋方向へのドレスギア4の移動によるレーザ光6の走査を繰り返し、歯車歯面全面を走査することによって、最終仕上げのツルーイングが行われる。   The final finishing truing is performed by repeatedly scanning the laser beam 6 by feeding a constant pitch in the tooth profile direction and moving the dress gear 4 in the tooth trace direction to scan the entire gear tooth surface.

本実施の形態3における、上記ドレスギアの製造装置の構成により、大きな砥粒径のダイヤモンドやcBN砥粒を使用しても、レーザ光6を使用して、ドレス後の砥粒付歯車歯面2bの表面粗さを短時間で高精度にすることができる。また、高硬度砥粒の径を大きくできるので、最終仕上げしたドレスギア4が目詰まりしにくくなり、また、摩滅体積も大きくなり、ドレスギア4の寿命が長くなる。   With the configuration of the dressing gear manufacturing apparatus in the third embodiment, even if diamond or cBN abrasive grains having a large abrasive grain size are used, the gear tooth surface 2b with abrasive grains after dressing using the laser beam 6 is used. The surface roughness can be made highly accurate in a short time. Further, since the diameter of the high-hardness abrasive grains can be increased, the finally finished dress gear 4 is less likely to be clogged, the wear volume is increased, and the life of the dress gear 4 is increased.

また、レーザ光で最終仕上げするため、台金1の形状創成には歯面研削を高精度に施す必要はなく、また、消耗品であるダイヤモンドのツルーイング工具も不要になるため、安価なドレスギアを得ることができる。   In addition, since the final finishing is performed with a laser beam, it is not necessary to perform tooth surface grinding with high precision to create the shape of the base metal 1 and a diamond truing tool, which is a consumable item, is not required. Obtainable.

なお、本実施の形態3での軸構成は、X軸ステージ11にY軸ステージ12、Y軸ステージ12にZ軸ステージ13、Z軸ステージ13に回転駆動部14が取り付けられているが、その取付順序は種々変更することができ、レーザ光照射手段18が発するレーザ光6とドレスギア4とのX,Y,Z軸方向の相対的な移動が行われるようにすればよい。   In the third embodiment, the X-axis stage 11 has a Y-axis stage 12, the Y-axis stage 12 has a Z-axis stage 13, and the Z-axis stage 13 has a rotation drive unit 14. The mounting order can be changed in various ways, and the laser beam 6 emitted from the laser beam irradiation means 18 and the dress gear 4 may be moved relative to each other in the X, Y, and Z axis directions.

実施の形態4.
図7は、本発明の実施の形態4におけるドレスギアの製造装置を示す斜視図であり、ドレスギアの最終仕上げであるツルーイングを行う製造装置を示している。図8は、本発明の実施の形態4におけるドレスギアの製造装置の操作状態を示す模式図である。
Embodiment 4 FIG.
FIG. 7 is a perspective view showing a dressing gear manufacturing apparatus according to Embodiment 4 of the present invention, and shows a manufacturing apparatus that performs truing, which is the final finish of the dressing gear. FIG. 8 is a schematic diagram showing an operation state of the dressing gear manufacturing apparatus according to Embodiment 4 of the present invention.

上記実施の形態3では、ドレスギア4を回転する回転駆動部14をX,Y,Z軸方向に駆動制御するようにしたが、本実施の形態4では、レーザ光照射手段18をX,Y,Z軸方向に駆動制御するようにしている。   In the third embodiment, the rotational drive unit 14 that rotates the dress gear 4 is driven and controlled in the X, Y, and Z axis directions. However, in the fourth embodiment, the laser beam irradiation means 18 is moved to the X, Y, and X directions. Drive control is performed in the Z-axis direction.

図7に示したように、一軸方向に移動するX軸ステージ11の上にX軸ステージ11と直交する方向に移動するY軸ステージ12が搭載されており、さらに、X軸ステージ11及びY軸ステージ12の移動軸と直交する方向に移動するZ軸ステージ13が搭載されており、さらに、Z軸ステージ13にレーザ光照射手段18が搭載されている。さらに、X軸ステージ11の移動軸と平行な回転軸を有する固定された回転駆動部14があり、回転駆動部14にはドレスギア4が取り付けられる。さらに、レーザ光6のオン/オフの制御と、レーザ光6を常に歯車歯面の接線方向となるように制御する制御ユニット19が備えられている。   As shown in FIG. 7, a Y-axis stage 12 that moves in a direction orthogonal to the X-axis stage 11 is mounted on the X-axis stage 11 that moves in one axis direction. A Z-axis stage 13 that moves in a direction orthogonal to the moving axis of the stage 12 is mounted, and a laser beam irradiation means 18 is mounted on the Z-axis stage 13. Further, there is a fixed rotation drive unit 14 having a rotation axis parallel to the movement axis of the X-axis stage 11, and the dressing gear 4 is attached to the rotation drive unit 14. Further, a control unit 19 is provided for controlling on / off of the laser beam 6 and controlling the laser beam 6 so as to always be in the tangential direction of the gear tooth surface.

次に、動作について説明する。
制御ユニット19は、X軸ステージ11を駆動し、所定のX軸方向位置において、Y軸ステージ12、Z軸ステージ13及び回転駆動部14を制御して、レーザ光6を、歯形方向で、かつ、歯車歯面の接線方向に照射し、Y軸ステージ12と回転駆動部14を同期駆動させてレーザ光6を常に歯車歯面の接線方向となるように制御する。
Next, the operation will be described.
The control unit 19 drives the X-axis stage 11 and controls the Y-axis stage 12, the Z-axis stage 13 and the rotation driving unit 14 at a predetermined position in the X-axis direction so that the laser beam 6 is transmitted in the tooth profile direction, and The Y axis stage 12 and the rotary drive unit 14 are driven synchronously by irradiating in the tangential direction of the gear tooth surface, and the laser light 6 is controlled to always be in the tangential direction of the gear tooth surface.

図8に示したように、砥粒付歯車歯面2bはインボリュート曲線であるため、基礎円20の高さにおいて常に砥粒付歯車歯面2bとZ軸は接線の位置関係となる。従って、Y軸方向の直線移動21と回転駆動部の回転移動22を一定速度で動かすことでインボリュート曲線を走査することができる。この時、レーザ光6には集光角23が数度(〜10度)存在するため、レーザ光6が高硬度砥粒によって遮断されないように、刃先から歯底に向けて移動させる。但し、この場合は基礎円20からレーザ照射位置までの距離によって走査速度が1次関数で比例し基礎円20上で速度0となる。インボリュート曲線上の走査速度を一定にするためには、回転速度を伸開角の逆数に比例する値で変化させればよい。   As shown in FIG. 8, since the gear tooth surface 2b with abrasive grains is an involute curve, the gear tooth surface 2b with abrasive grains and the Z axis are always in a tangential positional relationship at the height of the base circle 20. Accordingly, the involute curve can be scanned by moving the linear movement 21 in the Y-axis direction and the rotational movement 22 of the rotary drive unit at a constant speed. At this time, since the laser beam 6 has a converging angle 23 of several degrees (-10 degrees), the laser beam 6 is moved from the cutting edge toward the tooth bottom so as not to be blocked by the high-hardness abrasive grains. However, in this case, the scanning speed is proportional to a linear function depending on the distance from the basic circle 20 to the laser irradiation position, and the speed is zero on the basic circle 20. In order to keep the scanning speed on the involute curve constant, the rotational speed may be changed by a value proportional to the reciprocal of the spread angle.

また、レーザ光6には集光角23が数度(〜10度)存在するため、基礎円20が大きくインボリュート曲線の局率半径が大きい場合には、レーザ光6の中心線を接線より0〜10度大きい角度にして照射すると、レーザ光6が焦点位置から離れた高硬度砥粒に遮断されずにツルーイングできる。   Further, since the laser beam 6 has a converging angle 23 of several degrees (-10 degrees), when the basic circle 20 is large and the locality radius of the involute curve is large, the center line of the laser beam 6 is set to 0 from the tangent line. When irradiated at an angle larger by -10 degrees, the laser light 6 can be trued without being blocked by the high-hardness abrasive grains away from the focal position.

本実施の形態4によれば、上記ドレスギアの製造装置の構成により、大粒ダイヤモンド砥粒等の高硬度砥粒を固着したドレスギアを短時間で高精度に加工できる。また、大粒の高硬度砥粒を用いることができるので、ドレスギアが目詰まりしにくくなり、また、長寿命のドレスギアが得られる。   According to the fourth embodiment, with the configuration of the dress gear manufacturing apparatus, a dress gear to which high-hardness abrasive grains such as large diamond abrasive grains are fixed can be processed with high accuracy in a short time. Moreover, since a large-sized high-hardness abrasive grain can be used, the dress gear is less likely to be clogged, and a long-life dress gear can be obtained.

また、レーザ光で最終仕上げするため、台金の形状創成には歯面研削を高精度に施す必要はなく、また、消耗品であるダイヤモンドのツルーイング工具も不要なため、安価なドレスギアを得ることができる。   In addition, since the final finish is made with laser light, it is not necessary to perform tooth surface grinding with high precision to create the base metal shape, and there is no need for consumable diamond truing tools, so an inexpensive dress gear can be obtained. Can do.

さらに、Y軸ステージ12と回転駆動部14とを同期駆動することにより、インボリュート曲線を走査することができるので、歯形方向の形状が高精度に加工できる。   Further, since the involute curve can be scanned by synchronously driving the Y-axis stage 12 and the rotation driving unit 14, the shape in the tooth profile direction can be processed with high accuracy.

本実施の形態4における軸構成は、X軸ステージ11にY軸ステージ12、Y軸ステージ12にZ軸ステージ13が取り付けられているが、その取付順序は種々変更することができ、レーザ光照射手段18が発するレーザ光6とドレスギア4とのX,Y,Z軸方向の相対的な移動が行われるようにすればよい。   In the fourth embodiment, the Y-axis stage 12 is attached to the X-axis stage 11 and the Z-axis stage 13 is attached to the Y-axis stage 12, but the attachment order can be changed variously, and laser light irradiation is performed. The relative movement of the laser beam 6 emitted from the means 18 and the dress gear 4 in the X, Y, and Z axis directions may be performed.

例えば、各軸ステージを分解して、回転駆動部14をX軸ステージ11に取り付け、残りの軸ステージにレーザ光照射手段18を搭載する等、種々の組み合わせができる。   For example, various combinations such as disassembling each axis stage, attaching the rotation drive unit 14 to the X-axis stage 11, and mounting the laser beam irradiation means 18 on the remaining axis stages are possible.

実施の形態5.
図9は、本発明の実施の形態5におけるドレスギアの製造方法を示す斜視図であり、ドレスギアの最終仕上げであるツルーイングを行う製造装置を示している。
Embodiment 5 FIG.
FIG. 9 is a perspective view showing a dress gear manufacturing method according to Embodiment 5 of the present invention, and shows a manufacturing apparatus that performs truing, which is the final finish of the dress gear.

本実施の形態5では、一軸方向に移動するX軸ステージ11の上にX軸ステージ11と直交する方向に移動するY軸ステージ12が搭載されており、さらに、Y軸ステージ12の上にX軸ステージ11の移動軸と平行な回転軸を有する回転駆動部14が搭載されており、回転駆動部14にはドレスギア4が取り付けられている。さらに、X軸ステージ11及びY軸ステージ12の移動軸と直交する方向に移動するX軸ステージ11及びY軸ステージ12とは別体のZ軸ステージ13にレーザ光照射手段18が搭載されている。   In the fifth embodiment, a Y-axis stage 12 that moves in a direction orthogonal to the X-axis stage 11 is mounted on an X-axis stage 11 that moves in a uniaxial direction. A rotation drive unit 14 having a rotation axis parallel to the moving axis of the axis stage 11 is mounted, and the dressing gear 4 is attached to the rotation drive unit 14. Further, the laser beam irradiation means 18 is mounted on a Z-axis stage 13 that is separate from the X-axis stage 11 and the Y-axis stage 12 that moves in a direction orthogonal to the movement axes of the X-axis stage 11 and the Y-axis stage 12. .

レーザ光照射手段18は、レーザ発振機17、ビームエキスパンダー16、ベンディングミラー15、ベンデキングミラー15を回転駆動し、レーザ光6の照射角度を変える機能を有するモータ24、レンズ6で構成され、レーザ光6はレーザ発振機17から照射されてビームエキスパンダー16で拡大され、ベンディングミラー15で加工点に曲げられ、レンズ6で集光されて加工点で焦点を結ぶ。モータ24を駆動してレーザ光6の照射角度を変えることにより、レーザ光6の集点をX軸ステージ11と平行に移動させる。さらに、レーザ光6のオン/オフを制御し、Y軸ステージ12と回転駆動部14とモータ24の3軸を同期駆動させて、レーザ光6の照射が常に歯車歯面の接線方向であり、かつ、レーザ光6の焦点の移動が常にX軸ステージ11の移動軸と平行になるように制御する制御ユニット19が備えられている。   The laser beam irradiation means 18 includes a motor 24 and a lens 6 having a function of rotating the laser oscillator 17, the beam expander 16, the bending mirror 15, and the bending mirror 15 and changing the irradiation angle of the laser beam 6. The light 6 is irradiated from a laser oscillator 17, magnified by a beam expander 16, bent to a processing point by a bending mirror 15, condensed by a lens 6, and focused at the processing point. By driving the motor 24 and changing the irradiation angle of the laser beam 6, the focal point of the laser beam 6 is moved in parallel with the X-axis stage 11. Further, the on / off of the laser beam 6 is controlled, and the three axes of the Y-axis stage 12, the rotation drive unit 14, and the motor 24 are driven synchronously, and the irradiation of the laser beam 6 is always in the tangential direction of the gear tooth surface, In addition, a control unit 19 is provided for controlling the movement of the focal point of the laser beam 6 so as to be always parallel to the movement axis of the X-axis stage 11.

次に、動作について説明する。
制御ユニット19は、X軸ステージ11を駆動し、所定のX軸方向位置において、Y軸ステージ12、Z軸ステージ13及び回転駆動部14を制御して、レーザ光6を歯形方向で、かつ、歯車歯面の接線方向に照射し、Y軸ステージ12と回転駆動部14とモータ24とを同期駆動させてレーザ光6を常に歯面の接線方向となるように制御する。モータ24を駆動してレーザ光6の集点をX軸ステージ11と平行に移動させ、回転駆動部14の回転移動を一定速度で動かすことで、ドレスギア4を、ねじれ角一定のはすば歯車形状である歯筋方向に移動し、レーザ光6を走査することにより、レーザ光6による歯筋方向の高硬度砥粒のツルーイングを行う。
Next, the operation will be described.
The control unit 19 drives the X-axis stage 11, controls the Y-axis stage 12, the Z-axis stage 13 and the rotation driving unit 14 at a predetermined position in the X-axis direction so that the laser beam 6 is in the tooth profile direction, and Irradiation is performed in the tangential direction of the gear tooth surface, and the Y-axis stage 12, the rotational drive unit 14, and the motor 24 are driven synchronously to control the laser beam 6 so as to always be in the tangential direction of the tooth surface. By driving the motor 24 to move the converging point of the laser beam 6 parallel to the X-axis stage 11 and moving the rotational movement of the rotation driving unit 14 at a constant speed, the helical gear with a constant twist angle is obtained. By moving in the direction of the tooth trace, which is the shape, and scanning the laser beam 6, truing of the high-hardness abrasive grains in the tooth trace direction by the laser beam 6 is performed.

次に、制御ユニット19は、Y軸ステージ12及び回転駆動部14を駆動して、歯形方向に一定ピッチ送りで送るとともに、レーザ光6を歯車歯面の接線方向に照射し、モータ24の駆動によるレーザ光6のX軸ステージ11に平行な直線駆動と回転駆動部14の回転駆動により、ドレスギア4を、ねじれ角一定のはすば歯車形状である歯筋方向に移動してレーザ光6を走査することにより、レーザ光6による歯筋方向の高硬度砥粒のツルーイングを行う。   Next, the control unit 19 drives the Y-axis stage 12 and the rotation driving unit 14 to send the laser beam 6 in the tangential direction of the gear tooth surface while driving the motor 24 at a constant pitch in the tooth profile direction. By moving the laser beam 6 in a straight line parallel to the X-axis stage 11 and the rotational drive of the rotary drive unit 14, the dress gear 4 is moved in the direction of the tooth trace having a helical gear shape with a constant helix angle. By scanning, truing of high-hardness abrasive grains in the tooth trace direction by the laser beam 6 is performed.

歯形方向への一定ピッチ送り及び歯筋方向へのドレスギア4の移動によるレーザ光6の走査を繰り返し、歯車歯面の全面をレーザ光6で走査することにより、最終仕上げのツルーイングが行われる。   The final finishing truing is performed by repeatedly scanning the laser beam 6 by feeding a constant pitch in the tooth profile direction and moving the dress gear 4 in the tooth trace direction, and scanning the entire gear tooth surface with the laser beam 6.

本実施の形態5の装置構成により、大粒ダイヤモンド砥粒等の高硬度砥粒を固着したドレスギアを短時間で高精度に加工できる。また、大粒の高硬度砥粒を用いることができるため、長寿命のドレスギアが得られる。   According to the apparatus configuration of the fifth embodiment, a dress gear to which high-hardness abrasive grains such as large diamond abrasive grains are fixed can be processed with high accuracy in a short time. Moreover, since a large-sized high-hardness abrasive grain can be used, a long-life dress gear can be obtained.

また、レーザ光で最終仕上げするため、台金の形状創成には歯面研削を高精度に施す必要はなく、また消耗品であるダイヤモンドのツルーイング工具も不要なため、安価なドレスギアを得ることができる。   In addition, since the final finish is made with laser light, it is not necessary to perform tooth surface grinding with high precision to create the shape of the base metal, and no consumable diamond truing tool is required, so an inexpensive dress gear can be obtained. it can.

さらに、Y軸ステージ12と回転駆動部14とモータ25の3軸を同時駆動させてレーザ光6の照射方向を制御するので、歯形方向だけでなく歯筋方向の形状も高精度に加工できる。   Further, since the irradiation direction of the laser beam 6 is controlled by simultaneously driving the three axes of the Y-axis stage 12, the rotation driving unit 14, and the motor 25, the shape in the tooth trace direction as well as the tooth profile direction can be processed with high accuracy.

なお、本実施の形態5における軸構成は、X軸ステージ11にY軸ステージ12が取り付けられているが、その取付順序を変更しても同様の効果が得られる。さらに、各軸を分解して、回転駆動部14とレーザ光照射手段18それぞれに、各軸を分配してもよい。   In the shaft configuration in the fifth embodiment, the Y-axis stage 12 is attached to the X-axis stage 11, but the same effect can be obtained even if the attachment order is changed. Furthermore, each axis may be disassembled and distributed to each of the rotation drive unit 14 and the laser beam irradiation means 18.

また、X軸ステージ11とY軸ステージ12と回転駆動部14の3軸を同時駆動させることにより、本実施の形態5と同様、歯形方向だけでなく歯筋方向の形状も高精度に加工できる。   Further, by simultaneously driving the three axes of the X-axis stage 11, the Y-axis stage 12, and the rotation drive unit 14, the shape in the tooth trace direction as well as the tooth profile direction can be processed with high accuracy as in the fifth embodiment. .

なお、上記実施の形態1ないし5では、ドレスギアを対象に説明したが、歯車形状をした台金にダイヤモンドやcBN等の高硬度砥粒を固着した砥石を対象にしても、表面粗さの高精度化が行える等、本発明のドレスギアと同等の効果が得られる。   In the first to fifth embodiments described above, the dress gear has been described. However, even if the target is a grindstone in which high-hardness abrasive grains such as diamond and cBN are fixed to a gear-shaped base metal, the surface roughness is high. The same effects as the dress gear of the present invention can be obtained, for example, accuracy can be improved.

本発明に係るドレスギア並びにその製造方法及び製造装置は、歯車の高精度仕上げ加工に使用する歯車型砥石を長寿命化するとともに、歯車型砥石による目立て、整形を高精度にするのに有効に利用することができる。   The dressing gear and its manufacturing method and manufacturing apparatus according to the present invention are used effectively for extending the life of a gear-type grindstone used for high-precision finishing of gears, and for improving the precision and shaping of the gear-type grindstone. can do.

本発明の実施の形態1における台金を示す斜視図である。It is a perspective view which shows the base metal in Embodiment 1 of this invention. 本発明の実施の形態1による最終仕上前のドレスギアを示す斜視図である。It is a perspective view which shows the dress gear before the final finishing by Embodiment 1 of this invention. 本発明の実施の形態1におけるドレスギアの製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the dress gear in Embodiment 1 of this invention. 本発明の実施の形態2におけるドレスギアの製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the dress gear in Embodiment 2 of this invention. 本発明の実施の形態2におけるドレスギアのSEM写真である。It is a SEM photograph of the dress gear in Embodiment 2 of the present invention. 本発明の実施の形態3におけるドレスギアの製造装置を示す斜視図である。It is a perspective view which shows the manufacturing apparatus of the dressing gear in Embodiment 3 of this invention. 本発明の実施の形態4におけるドレスギアの製造装置を示す斜視図である。It is a perspective view which shows the manufacturing apparatus of the dressing gear in Embodiment 4 of this invention. 本発明の実施の形態4におけるドレスギアの製造方法の操作状態を示す模式図である。It is a schematic diagram which shows the operation state of the manufacturing method of the dressing gear in Embodiment 4 of this invention. 本発明の実施の形態5におけるドレスギアの製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the dress gear in Embodiment 5 of this invention.

1 台金、2a 歯車歯面、2b 砥粒付歯車歯面、3 高硬度砥粒、
4 ドレスギア、5 レンズ、6 レーザ光、7 歯筋方向、8 歯形方向、
9 ダイヤモンド砥粒面、10 溝、11 X軸ステージ、12 Y軸ステージ、
13 Z軸ステージ、14 回転駆動部、15 ベンディングミラー、
16 ビームイクスパンダー、17 レーザ発信機、18 レーザ光照射手段、
19 制御ユニット、20 基礎円、21 Y軸方向の直線移動、
22 回転駆動部の回転移動、23 集光角、24 モータ。
1 base metal, 2a gear tooth surface, 2b gear tooth surface with abrasive grains, 3 high hardness abrasive grains,
4 Dress gear, 5 Lens, 6 Laser light, 7 Tooth trace direction, 8 Tooth profile direction,
9 Diamond abrasive surface, 10 grooves, 11 X-axis stage, 12 Y-axis stage,
13 Z-axis stage, 14 Rotation drive, 15 Bending mirror,
16 beam expander, 17 laser transmitter, 18 laser beam irradiation means,
19 control unit, 20 base circle, 21 linear movement in the Y-axis direction,
22 Rotational movement of rotary drive unit, 23 Condensing angle, 24 motor.

Claims (6)

歯車とほぼ同形状に加工された台金に固着されたダイヤモンドまたは立方晶窒化硼素にて成る砥粒をツルーイングするドレスギアの製造装置であって、
上記砥粒が固着された台金を回転駆動させる回転駆動部と、
レーザ光を発するレーザ光照射手段と、
上記レーザ光と上記回転駆動部とを相対的にX軸方向、Y軸方向及びZ軸方向に駆動する駆動手段と、
上記台金の歯車歯面における歯頂から歯底に向かう歯形方向で、かつ、上記台金の歯面の接線方向に上記レーザ光を常に照射し、かつ、上記台金の歯車歯面の全面にわたって上記レーザ光を走査するように上記駆動手段及び回転駆動部を制御する制御ユニットと、
を備えることを特徴とするドレスギアの製造装置。
An apparatus for manufacturing a dress gear for truing abrasive grains made of diamond or cubic boron nitride fixed to a base metal processed into substantially the same shape as a gear,
A rotation drive unit that rotationally drives the base metal to which the abrasive grains are fixed;
Laser light irradiation means for emitting laser light;
Driving means for relatively driving the laser beam and the rotation driving unit in the X-axis direction, the Y-axis direction, and the Z-axis direction;
The laser beam is always irradiated in the tooth profile direction from the top to the bottom of the gear tooth surface of the base metal and in the tangential direction of the tooth surface of the base metal, and the entire surface of the gear tooth surface of the base metal A control unit for controlling the driving means and the rotation driving unit so as to scan the laser beam
An apparatus for manufacturing a dress gear.
上記X軸方向またはY軸方向のいずれか一方を上記走査のための移動軸とし、上記回転駆動部の回転軸が上記移動軸と平行または直交であり、上記制御ユニットは、上記X軸方向、Y軸方向及びZ軸方向の制御と上記回転駆動部の回転位置の制御とを行うことにより、上記レーザ光の照射が上記台金の歯車歯面の接線方向となるように制御し、上記移動軸の駆動制御と上記回転駆動部の回転制御とにより上記レーザ光を走査し、上記X軸方向またはY軸方向のうちの上記走査のための移動軸でない軸方向の位置制御と上記回転駆動部の回転制御により上記走査の位置を一定ピッチで移動させることを特徴とする請求項記載のドレスギアの製造装置。 Either the X-axis direction or the Y-axis direction is a moving axis for the scanning, and the rotation axis of the rotation drive unit is parallel or orthogonal to the moving axis, and the control unit has the X-axis direction, By controlling the Y-axis direction and the Z-axis direction and the rotational position of the rotational drive unit, the laser beam irradiation is controlled to be in the tangential direction of the gear tooth surface of the base metal, and the movement The laser beam is scanned by the drive control of the shaft and the rotation control of the rotation drive unit, and the position control in the axial direction that is not the moving axis for the scanning in the X-axis direction or the Y-axis direction and the rotation drive unit 2. The dress gear manufacturing apparatus according to claim 1 , wherein the scanning position is moved at a constant pitch by rotation control. 上記回転駆動部の回転軸が上記移動軸と平行であり、上記制御ユニットは、上記移動軸の移動制御と上記回転駆動部の回転位置の回転制御とを行うことにより、上記レーザ光を走査することを特徴とする請求項記載のドレスギアの製造装置。 The rotation axis of the rotation drive unit is parallel to the movement axis, and the control unit scans the laser beam by performing movement control of the movement axis and rotation control of the rotation position of the rotation drive unit. The dressing gear manufacturing apparatus according to claim 2 , wherein: 上記回転駆動部の回転軸が上記移動軸と直交し、上記制御ユニットは、上記移動軸の駆動制御と上記回転駆動部の回転位置の回転制御とを行うことにより、上記レーザ光を走査することを特徴とする請求項記載のドレスギアの製造装置。 The rotation axis of the rotation drive unit is orthogonal to the movement axis, and the control unit scans the laser beam by performing drive control of the movement axis and rotation control of the rotation position of the rotation drive unit. The dressing gear manufacturing apparatus according to claim 2 . 上記移動軸の駆動制御と上記回転駆動部の回転位置の回転制御とともに、上記X軸方向またはY軸方向の中の上記移動軸でない軸方向の位置制御を行うことにより、上記レーザ光を走査することを特徴とする請求項または記載のドレスギアの製造装置。 The laser beam is scanned by performing position control in the axial direction that is not the moving axis in the X-axis direction or the Y-axis direction, as well as driving control of the moving axis and rotation control of the rotational position of the rotary drive unit. The dress gear manufacturing apparatus according to claim 3 or 4, 上記レーザ光の照射角度を変えて上記レーザ光の焦点の位置を制御する機能を有することを特徴とする請求項記載のドレスギアの製造装置。 Apparatus for producing Doresugia according to claim 1, characterized in that it has a function of controlling the position of the focal point of the laser beam by changing the irradiation angle of the laser beam.
JP2006103840A 2006-04-05 2006-04-05 Dress gear manufacturing equipment Active JP4724038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103840A JP4724038B2 (en) 2006-04-05 2006-04-05 Dress gear manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103840A JP4724038B2 (en) 2006-04-05 2006-04-05 Dress gear manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2007276034A JP2007276034A (en) 2007-10-25
JP4724038B2 true JP4724038B2 (en) 2011-07-13

Family

ID=38678051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103840A Active JP4724038B2 (en) 2006-04-05 2006-04-05 Dress gear manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4724038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191344A (en) * 2014-08-08 2014-12-10 西北矿冶研究院 Alloy block surface polishing device and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768630B1 (en) 2011-10-19 2016-12-07 Walter Maschinenbau GmbH Method and device for machining a rotary tool with a plurality of cutting bodies
DE102011116974A1 (en) 2011-10-26 2013-05-02 Vollmer Werke Maschinenfabrik Gmbh Device and method for producing a Führungsfase on a workpiece, in particular on a cutting tool
CN103612013A (en) * 2013-11-21 2014-03-05 湖南大学 Detonation wave pressure and temperature based method for predicating quality of laser-trimmed grinding wheel
CN110722468B (en) * 2019-10-12 2021-01-22 郑州磨料磨具磨削研究所有限公司 Grinding wheel manufacturing device and method for orderly arranging abrasive particles based on laser trimming

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132462A (en) * 1982-01-28 1983-08-06 カツプ・ウント・カンパニ−・ヴエルクツオイクマシ−ネンフアブリ−ク Method and device for forming precise contour of tool covered with cemented material
JPH10202530A (en) * 1997-01-28 1998-08-04 Osaka Diamond Ind Co Ltd Diamond rotary dresser and manufacture thereof
JPH10291162A (en) * 1997-04-18 1998-11-04 Osaka Diamond Ind Co Ltd Diamond rotary dresser and manufacture thereof
JP2000218512A (en) * 1999-01-28 2000-08-08 Osaka Diamond Ind Co Ltd Cmp pad conditioner and manufacture thereof
JP2002321155A (en) * 2001-04-23 2002-11-05 Mitsubishi Electric Corp Non-contact tool adjusting method and apparatus therefor
JP2003305652A (en) * 2002-04-15 2003-10-28 Mitsubishi Electric Corp Grinding wheel
JP2005271127A (en) * 2004-03-24 2005-10-06 Mitsubishi Materials Kobe Tools Corp Diamond dressing gear and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132462A (en) * 1982-01-28 1983-08-06 カツプ・ウント・カンパニ−・ヴエルクツオイクマシ−ネンフアブリ−ク Method and device for forming precise contour of tool covered with cemented material
JPH10202530A (en) * 1997-01-28 1998-08-04 Osaka Diamond Ind Co Ltd Diamond rotary dresser and manufacture thereof
JPH10291162A (en) * 1997-04-18 1998-11-04 Osaka Diamond Ind Co Ltd Diamond rotary dresser and manufacture thereof
JP2000218512A (en) * 1999-01-28 2000-08-08 Osaka Diamond Ind Co Ltd Cmp pad conditioner and manufacture thereof
JP2002321155A (en) * 2001-04-23 2002-11-05 Mitsubishi Electric Corp Non-contact tool adjusting method and apparatus therefor
JP2003305652A (en) * 2002-04-15 2003-10-28 Mitsubishi Electric Corp Grinding wheel
JP2005271127A (en) * 2004-03-24 2005-10-06 Mitsubishi Materials Kobe Tools Corp Diamond dressing gear and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191344A (en) * 2014-08-08 2014-12-10 西北矿冶研究院 Alloy block surface polishing device and method

Also Published As

Publication number Publication date
JP2007276034A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5010389B2 (en) Dressing method and dressing apparatus for barrel-shaped worm-shaped tool and internal gear grinding machine
CN102806523B (en) The method of dressing tool and gear lapping machine
CN102947038B (en) For workpiece grinding tooth being carried out the shaping method of the hone of honing
JP5745754B2 (en) Method for manufacturing a bevel gear using a cradle-type bevel gear generator
JP4724038B2 (en) Dress gear manufacturing equipment
CN107848050B (en) Method for honing gear
JP2011079108A (en) Manufacturing method of barrel-shaped screw-like tool
JP4524159B2 (en) Method and apparatus for grinding tooth surface of round shaving cutter
JPH01252316A (en) Method of manufacturing and/or finishing crown gear
JP5383556B2 (en) Truing method for grinding wheel for gear grinding and gear grinding machine
JP2002144150A (en) Method and device for grinding gear utilizing ultrasonic wave
JP5892008B2 (en) Ball end mill and manufacturing method thereof
JP4724062B2 (en) Dress gear manufacturing method and manufacturing apparatus
JP3138053U (en) Shaping device for grinding surface of grinding wheel for gear grinding
JP4576255B2 (en) Tool whetstone shape creation method
JP2018001340A (en) Method of manufacturing gear
JP2005081472A (en) Shaping method of grinding surface of grinding wheel for grinding gear
JP7226818B2 (en) Dressing tool truing method and dressing tool truing program
JP2023552716A (en) Conditioning of superabrasive grinding tools
JP6354451B2 (en) Ball end mill and manufacturing method thereof
JP7024416B2 (en) Gear processing equipment equipped with a gear processing tool polishing device, a gear processing tool polishing method, and a gear processing tool polishing device.
JPH07266228A (en) Grinding wheel correcting device
JP2007160505A (en) Method for manufacturing grindstone
JP3612726B2 (en) On-machine forming method of internal gear type honing wheel in gear honing machine
JP2020069623A (en) Processing device and method for gear-cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4724038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250