JP4720114B2 - オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 - Google Patents
オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 Download PDFInfo
- Publication number
- JP4720114B2 JP4720114B2 JP2004191695A JP2004191695A JP4720114B2 JP 4720114 B2 JP4720114 B2 JP 4720114B2 JP 2004191695 A JP2004191695 A JP 2004191695A JP 2004191695 A JP2004191695 A JP 2004191695A JP 4720114 B2 JP4720114 B2 JP 4720114B2
- Authority
- JP
- Japan
- Prior art keywords
- gene
- strain
- activity
- pta
- succinic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
(1)コハク酸の生産能を有し、かつ、アセテートキナーゼ及びホスフォトランスアセチラーゼの両方の活性が非改変株に比べて低減化するように改変され、さらに、ラクテートデヒドロゲナーゼ活性が、該酵素の非改変株に比べて低減化するように改変されたコリネ型細菌またはその処理物を、嫌気的条件下で、有機原料と炭酸水素アンモニウムを含有する反応液中で有機原料に作用させて、該反応液中または菌体内にコハク酸を生成蓄積させ、該反応液または菌体内からコハク酸を採取することを特徴とする、コハク酸の製造方法。
(2)前記細菌が、さらに、ピルビン酸カルボキシラーゼ活性が該酵素の非改変株に比べて増強するように改変された細菌である、(1)に記載の製造方法。
(3)前記有機原料が、グルコース、フルクトース及びシュークロースからなる群より選ばれる1又は2以上の有機原料である、(1)又は(2)に記載の製造方法。
(4)(1)〜(3)のいずれか一項に記載の方法によりコハク酸を製造する工程、及び前記工程で得られたコハク酸を原料として重合反応を行う工程を含む、コハク酸を含有するポリマーの製造方法。
コリネバクテリウム・アセトアシドフィラム
コリネバクテリウム・アセトグルタミカム
コリネバクテリウム・アルカノリティカム
コリネバクテリウム・カルナエ
コリネバクテリウム・グルタミカム
コリネバクテリウム・リリウム
コリネバクテリウム・メラセコーラ
コリネバクテリウム・サーモアミノゲネス
コリネバクテリウム・ハーキュリス
ブレビバクテリウム・ディバリカタム
ブレビバクテリウム・フラバム
ブレビバクテリウム・インマリオフィラム
ブレビバクテリウム・ラクトファーメンタム
ブレビバクテリウム・ロゼウム
ブレビバクテリウム・サッカロリティカム
ブレビバクテリウム・チオゲニタリス
コリネバクテリウム・アンモニアゲネス
ブレビバクテリウム・アルバム
ブレビバクテリウム・セリヌム
ミクロバクテリウム・アンモニアフィラム
酢酸は、オキザロ酢酸及びオキザロ酢酸誘導体生合成経路の中間体であるアセチル-CoAからPTA及びACKを経て生成されるため、酢酸合成経路をブロックして酢酸の副生を低減させるためには、PTA又はACKのいずれか一方の活性を低下させればよいが、両方の活性を低下させることがより好ましい。
H. R., Meth Enzymol. 12, 381-386(1969))により、PTA活性を測定することによって確認することができる。
R反応を行うことによってクローニングできる。また、近年ゲノムプロジェクトにより、塩基配列が決定されているブレビバクテリウム・ラクトファーメンタム等のコリネ型細菌の配列も利用できる。染色体DNAは、DNA供与体である細菌から、例えば、斎藤、三浦の方法(H. Saito and K.Miura, Biochem.B iophys. Acta, 72, 619 (1963)、生物工学実験書、日本生物工学会編、97〜98頁、培風館、1992年参照)等により調製することができる。
145 (1994)69-73)。すなわち、コリネ型細菌では、レバンシュークラーゼを発現させると、シュークロースを資化することによって生成したレバンが致死的に働き、生育することが出来ない。従って、レバンシュークラーゼを搭載したベクターが染色体上に残ったままの菌株をシュークロース含有プレートで培養すると生育できず、ベクターが脱落した菌株のみシュークロース含有プレートで選択することが出来る。
バチルス・アミロリキュファシエンス:sacB GenBank Accession Number X52988
ザイモモナス・モビリス:sacB GenBank Accession Number L33402
バチルス・ステアロサーモフィラス:surB GenBank Accession Number U34874
ラクトバチルス・サンフランシセンシス:frfA GenBank Accession Number AJ508391
アセトバクター・キシリナス:lsxA GenBank Accession Number AB034152
グルコンアセトバクター・ジアゾトロフィカス:lsdA GenBank Accession Number L41732
、pHSG299(宝バイオ社製)pHSG399(宝バイオ社製)等が挙げられる。
ヒト [Biochem.Biophys.Res.Comm., 202, 1009-1014, (1994)]
マウス[Proc.Natl.Acad.Sci.USA., 90, 1766-1779, (1993)]
ラット[GENE, 165, 331-332, (1995)]
酵母;サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)
[Mol.Gen.Genet., 229, 307-315, (1991)]
シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)
[DDBJ Accession No.; D78170]
バチルス・ステアロサーモフィルス(Bacillus stearothermophilus)
[GENE, 191, 47-50, (1997)]
リゾビウム・エトリ(Rhizobium etli)
[J.Bacteriol., 178, 5960-5970, (1996)]
、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等を添加することによって調整することができる。本反応におけるpHは、通常、pH5〜10、好ましくはpH6〜9.5であることが好ましいので、反応中も必要に応じて反応液のpHはアルカリ性物質、炭酸塩、尿素などによって上記範囲内に調節する。
以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下のものには限定されない。
(A)枯草菌(バチルス・ズブチリス)ゲノムDNAの抽出
LB培地[組成:トリプトン10g、イーストエキストラクト5g、NaCl 5gを蒸留水1Lに溶解]10mLに、枯草菌(Bacillus subtilis ISW1214)を対数増殖期後期まで培養し、菌体を集めた。得られた菌体を10mg/mLの濃度にリゾチームを含む10mM NaCl/20mMトリス緩衝液(pH8.0)/1mM EDTA・2Na溶液0.15mLに懸濁した。
次に、上記懸濁液にプロテナーゼKを、最終濃度が100μg/mLになるように添加し、37℃で1時間保温した。さらにドデシル硫酸ナトリウムを最終濃度が0.5%になるように添加し、50℃で6時間保温して溶菌した。この溶菌液に、等量のフェノール/クロロフォルム溶液を添加し、室温で10分間ゆるやかに振盪した後、全量を遠心分離(5,000×g、20分間、10〜12℃)し、上清画分を分取し、酢酸ナトリウムを0.3Mとなるように添加した後、2倍量のエタノールを加え混合した。遠心分離(15,000×g、2分)により回収した沈殿物を70%エタノールで洗浄した後、風乾した。得られたDNAに10mMトリス緩衝液(pH7.5)−1mM EDTA・2Na溶液5mLを加え、4℃で一晩静置し、以後のPCRの鋳型DNAに使用した。
枯草菌SacB遺伝子の取得は、上記(A)で調製したDNAを鋳型とし、既に報告されている該遺伝子の塩基配列(GenBank Database Accession
No.X02730)を基に設計した合成DNA(配列番号1および配列番号2)を用いたPCRによって行った。
反応液組成:鋳型DNA1μL、PfxDNAポリメラーゼ(インビトロジェン社製) 0.2μL、1倍濃度添付バッファー、0.3μM各々プライマー、1mM MgSO4、0.25μMdNTPsを混合し、全量を20μLとした。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、68℃で2分からなるサイクルを35回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの68℃での保温は5分とした。
増幅産物の確認は、0.75%アガロース(SeaKem GTG agarose:FMCBioProducts製)ゲル電気泳動により分離後、臭化エチジウム染色により可視化することにより行い、約2kbの断片を検出した。ゲルからの目的DNA断片の回収は、QIAQuick Gel Extraction Kit(QIAGEN製)を用いて行った。
回収したDNA断片は、T4 ポリヌクレオチドキナーゼ(T4 Polynucleotide Kinase:宝酒造製)により5'末端をリン酸化した後、ライゲーションキットver.2(宝酒造製)を用いて大腸菌ベクター(pBluescriptII:STRATEGENE製)のEcoRV部位に結合し、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLアンピシリンおよび50μg/mLX-Galを含むLB寒天培地[トリプトン10g、イーストエキストラクト5g、NaCl 5g及び寒天15gを蒸留水1Lに溶解]に塗抹した
。
この培地上で白色のコロニーを形成したクローンを、次に50μg/mLアンピシリンおよび10%ショ糖を含むLB寒天培地に移し37℃24時間培養した。これらのクローンのうち、ショ糖を含む培地で生育できなかったものについて、常法により液体培養した後、プラスミドDNAを精製した。SacB遺伝子が大腸菌内で機能的に発現する株は、ショ糖含有培地にて生育不能となるはずである。得られたプラスミドDNAを制限酵素SalIおよびPstIで切断することにより、約2kbの挿入断片が認められ、該プラスミ
ドをpBS/SacBと命名した。
大腸菌プラスミドベクターpHSG396(宝酒造:クロラムフェニコール耐性マーカー)500ngに制限酵素PshBI10unitsを37℃で一時間反応させた後、フェノール/クロロフォルム抽出およびエタノール沈殿により回収した。これを、クレノウフラグメント(Klenow Fragment:宝酒造製)により両末端を平滑化した後、ライゲーションキットver.2(宝酒造製)を用いてMluIリンカー(宝酒造)を連結、環状化させ、大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を34μg/mLクロラムフェニコールを含むLB寒天培地に塗抹した。得られたクローンから常法によりプラスミドDNAを調製し、制限酵素MluIの切断部位を有するクローンを選抜し、pHSG396Mluと命名した。
一方、上記(B)にて構築したpBS/SacBを制限酵素SalIおよびPstIで切断した後、クレノウフラグメントにて末端を平滑化した。これにライゲーションキットver.2(宝酒造製)を用いてMluIリンカーを連結したのち、0.75%アガロースゲル電気泳動によりSacB遺伝子を含む約2.0kbのDNA断片を分離、回収した。このSacB遺伝子断片を、制限酵素MluI切断後、アルカリフォスファターゼ(Alkaline Phosphatase Calf intestine:宝酒造)にて末端を脱リン酸化したpHSG396Mlu断片とライゲーションキットver.2(宝酒造製)を用いて連結させ、大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を34μg/mLクロラムフェニコールを含むLB寒天培地に塗抹した。
こうして得られたコロニーを、次に34μg/mLクロラムフェニコールおよび10%ショ糖を含むLB寒天培地に移し37℃24時間培養した。これらのクローンのうち、ショ糖を含む培地で生育できなかったものについて、常法によりプラスミドDNAを精製した。こうして得られたプラスミドDNAをMluI切断により解析した結果、約2.0kbの挿入断片を持つことが確認され、これをpCMB1と命名した。
カナマイシン耐性遺伝子の取得は、大腸菌プラスミドベクターpHSG299(宝酒造:カナマイシン耐性マーカー)のDNAを鋳型とし、配列番号3および配列番号4で示した合成DNAをプライマーとしたPCR法によって行った。反応液組成:鋳型DNA1ng、PyrobestDNAポリメラーゼ(宝酒造) 0.1μL、1倍濃度添付バッファー、0.5μM各々プライマー、0.25μMdNTPsを混合し、全量を20μLとした。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、62℃で15秒、72℃で1分20秒からなるサイクルを20回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの72℃での保温は5分とした。
増幅産物の確認は、0.75%アガロース(SeaKem GTG agarose:FMCBioProducts製)ゲル電気泳動により分離後、臭化エチジウム染色により可視化することにより行い、約1.1kbの断片を検出した。ゲルからの目的DNA断片の回収は、QIAQuick Gel Extraction Kit(QIAGEN製)を用いて行った。回収したDNA断片は、T4 ポリヌクレオチドキナーゼ(T4 Polynucleotide Kinase:宝酒造製)により5'末端をリン酸化した。
上記(C)で構築したpCMB1を制限酵素Van91IおよびScaIで切断して得られた約3.5kbのDNA断片を0.75%アガロースゲル電気泳動により分離、回収した。これを上記(D)で調製したカナマイシン耐性遺伝子と混合し、ライゲーションキットver.2(宝酒造製)を用いて連結し、得られたプラスミドDNAで大腸菌(DH
5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLカナマイシンを含むLB寒天培地に塗抹した。
このカナマイシン含有培地上で生育した株は、ショ糖含有培地にて生育不能であることが確認された。また、同株から調製したプラスミドDNAは、制限酵素HindIII消化により354、473、1807、1997bpの断片を生じたことから、図1に示した構造に間違いがないと判断し、該プラスミドをpKMB1と命名した。
(A)ブレビバクテリウム・フラバムMJ233−ES株ゲノムDNAの抽出
A培地[尿素 2g、(NH4)2SO4 7g、KH2PO40.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、FeSO4・7H2O 6mg、MnSO4・4−5H2O6mg、ビオチン 200μg、チアミン 100μg、イーストエキストラクト 1g、カザミノ酸 1g、グルコース 20g、蒸留水1Lに溶解]10mLに、ブレビバクテリウム・フラバムMJ−233株を対数増殖期後期まで培養し、得られた菌体を上記実施例1の(A)に示す方法にてゲノムDNAを調製した。
MJ233株ラクテートデヒドロゲナーゼ遺伝子の取得は、上記(A)で調製したDNAを鋳型とし、特開平11−206385に記載の該遺伝子の塩基配列を基に設計した合成DNA(配列番号5および配列番号6)を用いたPCRによって行った。反応液組成:鋳型DNA1μL、TaqDNAポリメラーゼ(宝酒造) 0.2μL、1倍濃度添付バッファー、0.2μM各々プライマー、0.25μMdNTPsを混合し、全量を20μLとした。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、55℃で20秒、72℃で1分からなるサイクルを30回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの72℃での保温は5分とした。
増幅産物の確認は、0.75%アガロース(SeaKem GTG agarose:FMCBioProducts製)ゲル電気泳動により分離後、臭化エチジウム染色により可視化することにより行い、約0.95kbの断片を検出した。ゲルからの目的DNA断片の回収は、QIAQuick Gel Extraction Kit(QIAGEN製
)を用いて行った。
回収したDNA断片を、PCR産物クローニングベクターpGEM−TEasy(Promega製)と混合し、ライゲーションキットver.2(宝酒造製)を用いて連結後、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLアンピシリンおよび50μg/mLX-Galを含むLB寒天培地に塗抹した。
この培地上で白色のコロニーを形成したクローンを、常法により液体培養した後、プラスミドDNAを精製した。得られたプラスミドDNAを制限酵素SacIおよびSphIで切断することにより、約1.0kbの挿入断片が認められ、これをpGEMT/CgLDHと命名した。
上記(B)で作製したpGEMT/CgLDHを制限酵素EcoRVおよびXbaIで切断することにより約0.25kbからなるラクテートデヒドロゲナーゼのコーディング領域を切り出した。残った約3.7kbのDNA断片の末端をクレノウフラグメントにて平滑化し、ライゲーションキットver.2(宝酒造製)を用いて環状化させ、大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLアンピシリンを含むLB寒天培地に塗抹した。
この培地上で生育した株を、常法により液体培養した後、プラスミドDNAを精製した。得られたプラスミドDNAを制限酵素SacIおよびSphIで切断することにより、約0.75kbの挿入断片が認められたクローンを選抜し、これをpGEMT/ΔLDHと命名した。
次に、上記pGEMT/ΔLDHを制限酵素SacIおよびSphIにて切断して生じる約0.75kbのDNA断片を、0.75%アガロースゲル電気泳動により分離、回収し、欠損領域を含むラクテートデヒドロゲナーゼ遺伝子断片を調製した。このDNA断片を、制限酵素SacIおよびSphIにて切断した実施例1にて構築したpKMB1と混合し、ライゲーションキットver.2(宝酒造製)を用いて連結後、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mLカナマイシンおよび50μg/mLX-Galを含むLB寒天培地に塗抹した。
この培地上で白色のコロニーを形成したクローンを、常法により液体培養した後、プラスミドDNAを精製した。得られたプラスミドDNAを制限酵素SacIおよびSphIで切断することにより、約0.75kbの挿入断片が認められたものを選抜し、これをpKMB1/ΔLDHと命名した(図2)。
ブレビバクテリウム・フラバムMJ−233株の形質転換に用いるプラスミドDNAは、pKMB1/ΔLDHを用いて塩化カルシウム法(Journal of Molecular Biology,53,159,1970)により形質転換した大腸菌JM110株から調製した。
ブレビバクテリウム・フラバムMJ233−ES株の形質転換は、電気パルス法(Res.
Microbiol., Vol.144, p.181-185, 1993)によって行い、得られた形質転換体をカナマイシン 50μg/mLを含むLBG寒天培地[トリプトン10g、イーストエキストラクト5g、NaCl 5g、グルコース 20g、及び寒天15gを蒸留水1Lに溶解]に塗抹した。
この培地上に生育した株は、pKMB1/ΔLDHがブレビバクテリウム・フラバムMJ233−ES株菌体内で複製不可能なプラスミドであるため、該プラスミドのラクテートデヒドロゲナーゼ遺伝子とブレビバクテリウム・フラバムMJ−233株ゲノム上の同遺伝子との間で相同組み換えを起こした結果、同ゲノム上に該プラスミドに由来するカナマイシン耐性遺伝子およびSacB遺伝子が挿入されているはずである。
次に、上記相同組み換え株をカナマイシン50μg/mLを含むLBG培地にて液体培養した。この培養液の菌体数約100万相当分を10%ショ糖含有LBG培地に塗抹にした。結果、2回目の相同組み換えによりSacB遺伝子が脱落しショ糖非感受性となったと考えられる株約10個得た。
この様にして得られた株の中には、そのラクテートデヒドロゲナーゼ遺伝子がpKMB1/ΔLDHに由来する変異型に置き換わったものと野生型に戻ったものが含まれる。ラクテートデヒドロゲナーゼ遺伝子が変異型であるか野生型であるかの確認は、LBG培地にて液体培養して得られた菌体を直接PCR反応に供し、ラクテートデヒドロゲナーゼ遺伝子の検出を行うことによって容易に確認できる。ラクテートデヒドロゲナーゼ遺伝子をPCR増幅するためのプライマー(配列番号7および配列番号8)を用いて分析すると、野生型では720bp、欠失領域を持つ変異型では471bpのDNA断片を認めるはずである。
上記方法にてショ糖非感受性となった菌株を分析した結果、変異型遺伝子のみを有する株を選抜し、該株をブレビバクテリウム・フラバムMJ233/ΔLDHと命名した。
上記(D)で作製したブレビバクテリウム・フラバムMJ233/ΔLDH株をA培地に植菌し、30℃で15時間好気的に振とう培養した。得られた培養物を遠心分離(3,
000×g、4℃、20分間)して菌体を回収後、ナトリウム−リン酸緩衝液[組成:50mMリン酸ナトリウム緩衝液(pH7.3)]で洗浄した。
次いで、洗浄菌体0.5g(湿重量)を上記ナトリウム−リン酸緩衝液2mLに懸濁し、氷冷下で超音波破砕器(ブランソン社製)にかけ菌体破砕物を得た。該破砕物を遠心分離(10,000×g,4℃,30分間)し、上清を粗酵素液として得た。対照として、ブレビバクテリウム・フラバム MJ233−ES株の粗酵素液を同様に調製し、以下の活性測定に供した。
ラクテートデヒドロゲナーゼ酵素活性の確認は、両粗酵素液について、ピルビン酸を基質とした乳酸の生成に伴い、補酵素NADHがNAD+に酸化されるのを、340nmの吸光度変化として測定した[L.Kanarek and R.L.Hill, J. Biol. Chem.239, 4202 (1964)]。反応は、50mM カリウム−リン酸緩衝液(pH7.2)、10mM ピルビン酸、0.4mMNADH存在下、37℃にて行った。その結果、ブレビバクテリウム・フラバム MJ233−ES株から調製された粗酵素液におけるラクテートデヒドロゲナーゼ活性に対し、ブレビバクテリウム・フラバムMJ233/ΔLDH株から調製された粗酵素液におけるラクテートデヒドロゲナーゼ活性は、10分の1以下であった。
(A)pta−ack遺伝子オペロン破壊用プラスミドの構築
MJ233株pta遺伝子の取得は、実施例2(A)で調製したDNAを鋳型とし、全ゲノム配列が報告されているコリネバクテリウム・グルタミカム ATCC13032株の該遺伝子の配列(GenBank Database Accession No. NC_003450 のNCgl2657)を基に設計した合成DNA(配列番号9および配列番号10)を用いたPCRによって行った。
反応液組成:鋳型DNA1μL、PfxDNAポリメラーゼ(インビトロジェン社製) 0.2μL、1倍濃度添付バッファー、0.3μM各々プライマー、1mM MgSO4、
0.25μMdNTPsを混合し、全量を20μLとした。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、60℃で20秒、72℃で50秒からなるサイクルを35回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの72℃での保温は5分とした。
増幅産物の確認は、0.75%アガロース(SeaKem GTG agarose:FMCBioProducts製)ゲル電気泳動により分離後、臭化エチジウム染色により可視化することにより行い、約1.7kbの断片を検出した。ゲルからの目的DNA断片の回収は、QIAQuick Gel Extraction Kit(QIAGEN製)を用いて行った。
回収したDNA断片は、T4 ポリヌクレオチドキナーゼ(T4 Polynucleotide Kinase:宝酒造製)により5’末端をリン酸化した後、ライゲーションキットver.2(宝酒造製)を用いて大腸菌ベクターpHSG299(宝酒造製)のHincII部位に結合し、得られたプラスミドDNAで大腸菌(DH5α株)を形質転換した。この様にして得られた組換え大腸菌を50μg/mL カナマイシンおよび50μg/mL X−Galを含むLB寒天培地に塗抹した。
この培地上で白色のコロニーを形成したクローンを、常法により液体培養した後、プラスミドDNAを精製した。得られたプラスミドDNAを、配列番号9および配列番号11で示した合成DNAをプライマーとしたPCR反応に供した。
反応液組成:上記プラスミド1ng、Ex−TaqDNAポリメラーゼ(宝酒造社製) 0.2μL、1倍濃度添付バッファー、0.2μM各々プライマー、 0.25μMdNTPsを混合し、全量を20μLとした。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、60℃で20秒、72℃で50秒からなるサイクルを20回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの72
℃での保温は5分とした。
このようにして挿入DNA断片の有無および方向を確認した結果、約0.64kbの増幅産物を認めるプラスミドを選抜し、これをpTA/299と命名した(図3)。
ブレビバクテリウム・フラバムMJ−233株の形質転換に用いるプラスミドDNAは、pTA/299を用いて塩化カルシウム法(Journal of Molecular Biology,53,159,1970)により形質転換した大腸菌JM110株から調製した。
pta−ack遺伝子オペロン破壊の供試菌株は、実施例2で作製したブレビバクテリウム・フラバムMJ233/ΔLDH株とし、実施例2に記載の方法に従って形質転換することによりカナマイシン耐性株を得た。
この様にして得られたカナマイシン耐性株そのゲノム上に存在するpta遺伝子とプラスミドpTA/299に存在する該遺伝子との間で相同組み換えを起こしたものであるか否かの確認は、配列番号11および配列番号12を用いたコロニーPCRにより行った(図4)。鋳型DNAは、コロニーを50μLの滅菌水に研濁した後、5分間煮沸処理した上清とした。
反応液組成:鋳型DNA1μL、Ex−TaqDNAポリメラーゼ(宝酒造社製) 0.2μL、1倍濃度添付バッファー、0.2μM各々プライマー、 0.25μMdNTPsを混合し、全量を20μLとした。
反応温度条件:DNAサーマルサイクラー PTC−200(MJResearch社製)を用い、94℃で20秒、60℃で20秒、72℃で50秒からなるサイクルを20回繰り返した。但し、1サイクル目の94℃での保温は1分20秒、最終サイクルの72℃での保温は5分とした。
上記方法にてカナマイシン耐性菌株を分析した結果、約0.77kbのPCR増幅産物を得る株、即ちpta遺伝子と相同組換えを起こした株を選抜し、これをブレビバクテリウム・フラバムMJ233/ΔptaΔLDHと命名した。この株をpta−ack遺伝子オペロン破壊株とも呼ぶ。
上記ブレビバクテリウム・フラバムMJ233/ΔptaΔLDHのpta−ack遺伝子オペロンが破壊されたか否かの確認は、ホスホアセチルトランスフェラーゼ活性やアセテートキナーゼの酵素活性を測定することにより行うことができる他、酢酸を唯一炭素源とした最少培地を用いた生育試験においても行うことができる(Microbiology (1999),145,503-513、参照)。
A最少培培地[尿素 2g、(NH4)2SO4 7g、KH2PO4 0.5g、K2HPO40.5g、MgSO4・7H2O 0.5g、FeSO4・7H2O 6mg、MnSO4・4−5H2O6mg、ビオチン 200μg、チアミン 100μg、寒天15g、蒸留水1Lに溶解]に2%グルコースまたは2%酢酸カリウムを加えた培地を用いた生育試験を行った結果、ブレビバクテリウム・フラバムMJ233/ΔptaΔLDH株は、グルコース培地では親株であるブレビバクテリウム・フラバムMJ233/ΔLDHと同等の生育を示したのに対して、酢酸培地では全く生育しなかった。
従って、ブレビバクテリウム・フラバムMJ233/ΔptaΔLDH株ではpta遺伝子が破壊されたことにより酢酸資化能力が喪失されたと考えられ、同酵素反応の逆反応である酢酸生成能も減少することが期待された。
100mLの種培養培地(尿素:4g、硫酸アンモニウム:14g、リン酸1カリウム
:0.5g、リン酸2カリウム0.5g、硫酸マグネシウム・7水和物:0.5g、硫酸第一鉄・7水和物:20mg、硫酸マンガン・水和物:20mg、D−ビオチン:200μg、塩酸チアミン:200μg、酵母エキス:1g、カザミノ酸:1g、及び蒸留水:1000ml)を500mLの三角フラスコにいれ、120℃、20分加熱滅菌した。これを室温まで冷却し、あらかじめ滅菌した50%グルコース水溶液を4ml、無菌濾過した0.1%クロラムフェニコール水溶液を5ml添加し、前述のブレビバクテリウム・フラバムMJ233/ΔptaΔLDH株を接種して24時間30℃にて種培養した。得られた全培養液を10000g,5分の遠心分離により集菌し、菌体懸濁培地(硫酸マグネシウム・7水和物:0.5g、硫酸第一鉄・7水和物:20mg、硫酸マンガン・水和物:20mg、D−ビオチン:200μg、塩酸チアミン:200μg、及び蒸留水:1000ml)にOD660の吸光度が80になるように懸濁液した。2ml反応器に前記の懸濁液を1ml、基質溶液(グルコース:100g、炭酸マグネシウム:97g、炭酸アンモニウム:9.4g及び蒸留水を加えて1000ml)を1mlを加えて、20%炭酸ガス、80%窒素の雰囲気下、30℃で4時間反応させた。反応結果を表1に示す。
炭酸マグネシウムを含む培地中で対照株ブレビバクテリウム・フラバムMJ233/ΔLDH株を培養することによりコハク酸の発酵生産を行った。菌株をブレビバクテリウム・フラバムMJ233/ΔLDHに変えた以外は実施例4と同様に行った。反応結果を表1に示す。
炭酸水素ナトリウムを含む培地中で対照株ブレビバクテリウム・フラバムMJ233/ΔLDH株を培養することによりコハク酸の発酵生産を行った。菌株をブレビバクテリウム・フラバムMJ233/ΔLDHに変えた以外は実施例5と同様に行った。反応結果を表1に示す。
炭酸水素アンモニウムを含む培地中で対照株ブレビバクテリウム・フラバムMJ233/ΔLDH株を培養することによりコハク酸の発酵生産を行った。菌株をブレビバクテリウム・フラバムMJ233/ΔLDHに変えた以外は実施例6と同様に行った。反応結果を表1に示す。
Claims (4)
- コハク酸の生産能を有し、かつ、アセテートキナーゼ及びホスフォトランスアセチラーゼの両方の活性が非改変株に比べて低減化するように改変され、さらに、ラクテートデヒドロゲナーゼ活性が、該酵素の非改変株に比べて低減化するように改変されたコリネ型細菌またはその処理物を、嫌気的条件下で、有機原料と炭酸水素アンモニウムを含有する反応液中で有機原料に作用させて、該反応液中または菌体内にコハク酸を生成蓄積させ、該反応液または菌体内からコハク酸を採取することを特徴とする、コハク酸の製造方法。
- 前記細菌が、さらに、ピルビン酸カルボキシラーゼ活性が該酵素の非改変株に比べて増強するように改変された細菌である、請求項1に記載の製造方法。
- 前記有機原料が、グルコース、フルクトース及びシュークロースからなる群より選ばれる1又は2以上の有機原料である、請求項1又は2に記載の製造方法。
- 請求項1〜3のいずれか一項に記載の方法によりコハク酸を製造する工程、及び前記工程で得られたコハク酸を原料として重合反応を行う工程を含む、コハク酸を含有するポリマーの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191695A JP4720114B2 (ja) | 2004-05-20 | 2004-06-29 | オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004150580 | 2004-05-20 | ||
JP2004150580 | 2004-05-20 | ||
JP2004191695A JP4720114B2 (ja) | 2004-05-20 | 2004-06-29 | オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006000091A JP2006000091A (ja) | 2006-01-05 |
JP4720114B2 true JP4720114B2 (ja) | 2011-07-13 |
Family
ID=35769016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004191695A Expired - Lifetime JP4720114B2 (ja) | 2004-05-20 | 2004-06-29 | オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4720114B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5157180B2 (ja) * | 2006-01-27 | 2013-03-06 | 味の素株式会社 | L−アミノ酸の製造法 |
JP5034630B2 (ja) * | 2007-04-12 | 2012-09-26 | 三菱化学株式会社 | 有機酸生産微生物の菌体の調製法及び有機酸の製造法 |
JP2009065972A (ja) | 2007-08-23 | 2009-04-02 | Mitsubishi Chemicals Corp | コハク酸の製造方法 |
BR112012022486A2 (pt) | 2010-03-09 | 2015-10-06 | Mitsubishi Chem Corp | método de produção de ácido sucínico |
EP2687591B1 (en) | 2011-03-18 | 2021-01-06 | Mitsubishi Chemical Corporation | Method for producing polymer, method for producing organic acid, and organic acid-producing microorganism |
WO2013069786A1 (ja) | 2011-11-11 | 2013-05-16 | 三菱化学株式会社 | コハク酸の製造方法 |
KR20150112575A (ko) | 2014-03-28 | 2015-10-07 | 삼성전자주식회사 | GlnD 또는 GlnK의 활성이 증가되도록 유전적으로 조작된 박테리아 세포 및 그를 이용하여 유기산을 생산하는 방법 |
WO2020208842A1 (ja) * | 2019-04-12 | 2020-10-15 | Green Earth Institute 株式会社 | 遺伝子組換え微生物及びこれを用いた目的物質の生産方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001516574A (ja) * | 1997-09-19 | 2001-10-02 | メタボリックス,インコーポレイテッド | 4−ヒドロキシ酸を含むポリヒドロキシアルカノエートポリマー製造のための生物学的システム |
JP2002511250A (ja) * | 1998-04-13 | 2002-04-16 | ザ ユニバーシティ オブ ジョージア リサーチファウンデーション,インコーポレイティド | 微生物におけるオキサロ酢酸由来生化学物質の生産増強のためのピルビン酸カルボキシラーゼの過剰発現 |
JP2003511067A (ja) * | 1999-10-13 | 2003-03-25 | ザ ユニバーシティ オブ ジョージア リサーチ ファウンデーション インコーポレイティド | 高い収量のタンパク質発現系および方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07298891A (ja) * | 1994-05-06 | 1995-11-14 | Shin Etsu Chem Co Ltd | ポリエステルの製造法およびポリエステル製造用触媒 |
US5478910A (en) * | 1995-03-01 | 1995-12-26 | Bayer Corporation | Process for the production of polyesters using enzymes and supercritical fluids |
JPH11196887A (ja) * | 1998-01-16 | 1999-07-27 | Mitsubishi Chemical Corp | ホスホエノールピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法 |
JP3967812B2 (ja) * | 1998-01-16 | 2007-08-29 | 三菱化学株式会社 | ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法 |
JP4074365B2 (ja) * | 1998-01-28 | 2008-04-09 | 三菱化学株式会社 | ラクテートデヒドロゲナーゼ遺伝子及び該遺伝子破壊株 |
-
2004
- 2004-06-29 JP JP2004191695A patent/JP4720114B2/ja not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001516574A (ja) * | 1997-09-19 | 2001-10-02 | メタボリックス,インコーポレイテッド | 4−ヒドロキシ酸を含むポリヒドロキシアルカノエートポリマー製造のための生物学的システム |
JP2002511250A (ja) * | 1998-04-13 | 2002-04-16 | ザ ユニバーシティ オブ ジョージア リサーチファウンデーション,インコーポレイティド | 微生物におけるオキサロ酢酸由来生化学物質の生産増強のためのピルビン酸カルボキシラーゼの過剰発現 |
JP2003511067A (ja) * | 1999-10-13 | 2003-03-25 | ザ ユニバーシティ オブ ジョージア リサーチ ファウンデーション インコーポレイティド | 高い収量のタンパク質発現系および方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2006000091A (ja) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5572279B2 (ja) | コハク酸生産菌及びコハク酸の製造方法 | |
US7972823B2 (en) | Succinic acid-producing bacterium and process for producing succinic acid | |
JP4619291B2 (ja) | 非アミノ有機酸の製造方法 | |
JP5180060B2 (ja) | 有機酸生産菌及び有機酸の製造法 | |
JP4575086B2 (ja) | コハク酸の製造方法 | |
US7763447B2 (en) | Method of producing succinic acid with bacterium comprising a modified fumarate reductase gene or a modified succinate dehydrogenase gene | |
JP5034630B2 (ja) | 有機酸生産微生物の菌体の調製法及び有機酸の製造法 | |
JP4760121B2 (ja) | コハク酸の製造方法 | |
JP4720114B2 (ja) | オキザロ酢酸またはオキザロ酢酸誘導体の製造方法 | |
JP2009065972A (ja) | コハク酸の製造方法 | |
JP5602982B2 (ja) | コハク酸の製造方法 | |
JP2008067623A (ja) | 非アミノ有機酸の製造方法 | |
JP4428999B2 (ja) | 非アミノ有機酸の製造方法 | |
JP5034395B2 (ja) | 有機酸生産菌及び有機酸の製造方法 | |
JP5663859B2 (ja) | 非アミノ有機酸生産菌および非アミノ有機酸の製造方法 | |
JP2008067624A (ja) | 非アミノ有機酸の製造方法 | |
US20150031101A1 (en) | Bacterial cell having enhanced succinic acid production and a method for producing the succinic acid using the same | |
JP2007175016A (ja) | L−グルタミン酸生産菌及びl−グルタミン酸の製造方法 | |
JP2008067627A (ja) | 非アミノ有機酸生産菌および非アミノ有機酸の製造方法 | |
BRPI0510919B1 (pt) | Methods for the production of succinitic acid and polymer containing it | |
BRPI0510921B1 (pt) | Succinic acid production bacteria and process for producing succinic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100614 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101214 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110321 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4720114 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |