JP4719873B2 - Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium - Google Patents
Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium Download PDFInfo
- Publication number
- JP4719873B2 JP4719873B2 JP2004267845A JP2004267845A JP4719873B2 JP 4719873 B2 JP4719873 B2 JP 4719873B2 JP 2004267845 A JP2004267845 A JP 2004267845A JP 2004267845 A JP2004267845 A JP 2004267845A JP 4719873 B2 JP4719873 B2 JP 4719873B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- cold
- hot water
- flow
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 38
- 230000007797 corrosion Effects 0.000 title claims description 36
- 238000005260 corrosion Methods 0.000 title claims description 36
- 230000002401 inhibitory effect Effects 0.000 title claims description 11
- 238000010438 heat treatment Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 title claims description 3
- 239000012530 fluid Substances 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 239000003093 cationic surfactant Substances 0.000 claims description 18
- RBRXPPLNXDVMKG-GMFCBQQYSA-M bis(2-hydroxyethyl)-methyl-[(z)-octadec-9-enyl]azanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC[N+](C)(CCO)CCO RBRXPPLNXDVMKG-GMFCBQQYSA-M 0.000 claims description 7
- 150000001558 benzoic acid derivatives Chemical class 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 5
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 claims description 4
- 230000005764 inhibitory process Effects 0.000 claims description 2
- 239000013556 antirust agent Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 description 16
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 239000003112 inhibitor Substances 0.000 description 11
- 238000004378 air conditioning Methods 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 8
- XRHGYUZYPHTUJZ-UHFFFAOYSA-N 4-chlorobenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C=C1 XRHGYUZYPHTUJZ-UHFFFAOYSA-N 0.000 description 7
- 239000000693 micelle Substances 0.000 description 7
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000003449 preventive effect Effects 0.000 description 6
- 239000008399 tap water Substances 0.000 description 6
- 235000020679 tap water Nutrition 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 235000015393 sodium molybdate Nutrition 0.000 description 5
- 239000011684 sodium molybdate Substances 0.000 description 5
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 4
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- 229960004025 sodium salicylate Drugs 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000005711 Benzoic acid Substances 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- -1 halogen ions Chemical class 0.000 description 3
- 239000013529 heat transfer fluid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- LULAYUGMBFYYEX-UHFFFAOYSA-N 3-chlorobenzoic acid Chemical compound OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IKCLCGXPQILATA-UHFFFAOYSA-N 2-chlorobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1Cl IKCLCGXPQILATA-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- VJLOFJZWUDZJBX-UHFFFAOYSA-N bis(2-hydroxyethyl)azanium;chloride Chemical compound [Cl-].OCC[NH2+]CCO VJLOFJZWUDZJBX-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- BIOOACNPATUQFW-UHFFFAOYSA-N calcium;dioxido(dioxo)molybdenum Chemical compound [Ca+2].[O-][Mo]([O-])(=O)=O BIOOACNPATUQFW-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- IDNHOWMYUQKKTI-UHFFFAOYSA-M lithium nitrite Chemical compound [Li+].[O-]N=O IDNHOWMYUQKKTI-UHFFFAOYSA-M 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- PDSVZUAJOIQXRK-UHFFFAOYSA-N trimethyl(octadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)C PDSVZUAJOIQXRK-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
本発明は、閉路循環系、地域冷暖房システム、各種工場の循環系、コージェネレーションシステムなどに使用する水などの熱媒流体中に粘弾性特性を持たせる添加剤を添加することによって抗力減少効果を誘起させ、乱流を層流化させるようにした冷温水用腐食抑制性流れ促進剤に関する。 The present invention has a drag reduction effect by adding an additive that imparts viscoelastic properties to a heat transfer fluid such as water used in closed circuit circulation systems, district cooling and heating systems, circulation systems of various factories, cogeneration systems, etc. The present invention relates to a corrosion-inhibiting flow promoter for cold / hot water that is induced to turbulently laminarize.
パイプなどの管内を流れる流体には、流体相互や該流体と管の壁面との境界のところで生ずる摩擦抵抗や、その抵抗に伴う乱流などが生ずることが知られ、それにより該流体の管内での流れに抗する力が働くこと、そしてそうした流体の中に僅かな量の特定の物質を添加することにより、該流体の管内での流れがよりスムーズになるあるいは該流体の管内での流れに抗する力を低下せしめることができることが知られている。こうした作用効果を持つ物質は、当該分野では、配管内流体用、「流れ促進剤」、「抗力減少剤」、「摩擦抵抗低減剤」、「DR剤」などと呼ばれている。オフィスビル、工場、病院、デパート、ホテル、公共施設等では空調設備が欠かせない。そうした空調などには、冷暖房用熱媒移送システムが使用される。こうした熱媒移送システム等においては、普通、配管の長さは長距離にわたり、配管内を流れる流体にかかる管内抵抗なども大きなものとなり、流体搬送動力も大きなものが必要となり、配管設備コストも膨大なものになる。さらにはランニングコストも増大する。 It is known that a fluid flowing in a pipe such as a pipe has a frictional resistance generated at the fluid and at the boundary between the fluid and the wall of the pipe, and a turbulent flow associated with the resistance. By adding a small amount of a specific substance to the fluid, the flow of the fluid in the pipe becomes smoother or the flow of the fluid in the pipe is reduced. It is known that the ability to resist can be reduced. Substances having such action and effects are referred to in the art as pipe fluids, “flow promoters”, “drag reduction agents”, “friction resistance reduction agents”, “DR agents”, and the like. Air conditioning is indispensable in office buildings, factories, hospitals, department stores, hotels and public facilities. For such air conditioning, a heat transfer system for air conditioning is used. In such a heat transfer system, etc., the length of the pipe is usually long, the resistance in the pipe acting on the fluid flowing in the pipe is large, the fluid conveyance power is also large, and the piping equipment cost is enormous. It will be something. Furthermore, the running cost increases.
設備コストを削減し、流体搬送動力を低減させる有利な方法として、配管内を流れる水などの流体の配管抵抗を低減させる「流れ促進剤」を使用することが提案されてきている(例えば、特許文献1)。 As an advantageous method for reducing the equipment cost and reducing the fluid conveyance power, it has been proposed to use a “flow promoter” that reduces the pipe resistance of fluid such as water flowing in the pipe (for example, patents). Reference 1).
ところで、空調設備等の冷温水配管は、防錆剤等を使用して水管理をしないと、管内に錆等を生じさせ、配管内部を閉塞させたり、配管自体を破損させて、トラブルを生じさせる恐れがあることから、従来より、様々な防錆、管理手段が取られている。特に大規模な空調施設(例えば、地域冷暖房、高層ビル空調など)、半導体工場での空調設備では、配管の延命が重要視されており、そうした目的で腐食抑制剤が多く利用されているのも事実である。密閉冷温水経路内に防錆として−般的に多く利用されている防錆剤としては、亜硝酸塩系の防錆剤が多いと言われている。 By the way, cold / hot water pipes for air conditioning equipment, etc., if water management is not performed using a rust inhibitor, etc., will cause rust etc. in the pipes, block the inside of the pipes, damage the pipes themselves, and cause trouble. In the past, various rust prevention and management measures have been taken. Especially in large-scale air-conditioning facilities (such as district cooling and heating, high-rise building air-conditioning) and air-conditioning facilities in semiconductor factories, life extension of piping is regarded as important, and corrosion inhibitors are often used for such purposes. It is a fact. It is said that there are many nitrite-based rust preventives as rust preventives generally used in the sealed cold / hot water path.
しかし、上記したように、近年、棒状ミセルを形成する界面活性剤を添加した冷温水を冷熱媒移送管及び放熱器内に流通せしめ、省エネルギーを図る手段が注目を浴び、その利用の一層の促進が求められているが、そういった流れ促進剤は、空調設備等の冷温水配管系は鋼管やその亜鉛メッキ管、ステンレス管を含み、さらに熱交換装置には銅管が使用されることが多い。これらの金属の腐食を抑えるためには個々の金属の腐食を抑える添加剤を混合添加することがなされている。 However, as described above, in recent years, attention has been paid to a means for energy saving by circulating cold / hot water added with a surfactant that forms rod-like micelles in the cooling medium transfer pipe and the radiator, and further promoting its use. However, in such a flow promoter, a cold / hot water piping system such as an air conditioner includes a steel pipe, a galvanized pipe, a stainless pipe, and a copper pipe is often used for a heat exchange device. In order to suppress the corrosion of these metals, an additive for suppressing the corrosion of each metal is mixed and added.
これらの防食剤は水中でイオンの形で存在する。一方、流れ促進剤として使用される界面活性剤と対イオン剤もイオン性の物質であり、これが複数の防錆剤と混合されることによって、流れ促進効果が低下したり、流れ促進効果が得られる上限温度が低下したり、場合によっては腐食が進むといった問題があった。また、流れ促進剤を単独で使用した場合では、パイプ内の腐食は不可避であると予想され、錆等の発生により、パイプ壁面が凹凸となる恐れがある。パイブの内壁に生じた凹凸で流れが乱されることとなり、パイプ内を流れる流体と管壁との間の摩擦抵抗が増大し、流量が低下することが考えられる。 These anticorrosives exist in the form of ions in water. On the other hand, surfactants and counter-ionic agents used as flow accelerators are also ionic substances, and when this is mixed with a plurality of rust inhibitors, the flow promotion effect is reduced or the flow promotion effect is obtained. However, there is a problem that the upper limit temperature to be lowered is lowered or corrosion is advanced in some cases. In addition, when the flow accelerator is used alone, corrosion in the pipe is expected to be inevitable, and the pipe wall surface may become uneven due to the occurrence of rust or the like. It is conceivable that the flow is disturbed by the irregularities generated on the inner wall of the pipe, the frictional resistance between the fluid flowing in the pipe and the pipe wall increases, and the flow rate decreases.
また、パイプ内を流れる流体の流動抵抗低減には、熱媒に添加される流れ促進剤が、棒状ミセルを形成することがひとつの鍵であると考えられるが、こうした配管内の汚れ、錆などは、流動抵抗低減に対しそれを阻害する大きな要因の一つとなる。 In addition, it is thought that the flow accelerator added to the heat medium is one of the keys to reducing the flow resistance of the fluid flowing in the pipe, but forming rod-like micelles. Is one of the major factors that hinder the reduction of flow resistance.
本発明は、従来の問題点に鑑みてなされたものであり、本発明の目的は、対イオン剤の存在下で棒状ミセルを形成するカチオン系界面活性剤に対し、金属の腐食の原因となるオルト位に基を持つベンゼン環型対イオン剤ではなく、メタ位やパラ位に基を持つ対イオン剤を使用することによって、腐食を抑制するとともに、高温域での棒状ミセルの形成を安定せしめることによって、広範囲で使用可能な冷温水用腐食抑制性流れ促進剤を提供することにある。 The present invention has been made in view of conventional problems, and an object of the present invention is to cause metal corrosion with respect to a cationic surfactant that forms rod-like micelles in the presence of a counterionic agent. By using a counter ion agent with a meta or para group instead of a benzene ring type counter ion agent with an ortho group, the corrosion is suppressed and the formation of rod-like micelles at high temperatures is stabilized. Accordingly, it is an object to provide a corrosion-inhibiting flow promoter for cold / hot water that can be used in a wide range.
上記目的を達成するために、第1の発明では、ステアリルトリメチルアンモニウムクロライドまたはオレイルビスヒドロキシエチルメチルアンモニウムクロライドからなるカチオン系界面活性剤と対イオン剤のパラハロゲン化安息香酸とよりなるようにした。 In order to achieve the above object, in the first invention, a cationic surfactant composed of stearyltrimethylammonium chloride or oleylbishydroxyethylmethylammonium chloride and a counter- ion agent para-halogenated benzoic acid are used.
第2の発明は、第1発明の流れ促進剤に防錆剤を添加することを特徴とする冷温水用腐食抑制流れ促進剤に関する。また、第3の発明は、第1の発明および第2の発明の流れ促進剤に消泡剤を添加することを特徴とする冷温水用腐食抑制流れ促進剤に関する。さらに、第4の発明では、ステアリルトリメチルアンモニウムクロライドまたはオレイルビスヒドロキシエチルメチルアンモニウムクロライドからなるカチオン系界面活性剤50〜1500ppm、対イオン剤のパラハロゲン化安息香酸50〜5000ppmを流体に添加混合することにより冷温水熱媒における腐食抑制流れを促進するようにした。 2nd invention is related to the corrosion inhibitory flow accelerator for cold / hot water characterized by adding a rust preventive agent to the flow accelerator of 1st invention. Moreover, 3rd invention is related with the corrosion suppression flow promoter for cold / hot water characterized by adding a defoamer to the flow promoter of 1st invention and 2nd invention. Furthermore, in the fourth invention, 50 to 1500 ppm of a cationic surfactant composed of stearyltrimethylammonium chloride or oleylbishydroxyethylmethylammonium chloride, and 50 to 5000 ppm of a counter-ion agent, para-halogenated benzoic acid, are added to and mixed with the fluid. This promotes the corrosion-inhibiting flow in the cold / warm water heating medium.
閉路循環系、地域冷暖房システム、各種工場の循環系、コージェネレーションシステムなどに使用する水などの熱媒流体中に、カチオン系界面活性剤にメタ位またはパラ位にある対イオン剤を添加混合することにより、高温域での棒状ミセルの形成を安定せしめ、乱流を層流化させることにより、長期的に安定した抗力減少効果を誘起させ、広範囲で使用可能な熱媒流体を得ることができる。 Addition and mixing of a cationic surfactant with a counter ion agent in the meta or para position into a heat transfer fluid such as water used in closed circuit systems, district heating and cooling systems, circulation systems in various factories, cogeneration systems, etc. By stabilizing the formation of rod-like micelles at high temperatures and laminating turbulent flow, a long-term stable drag reduction effect can be induced, and a heat transfer fluid that can be used in a wide range can be obtained. .
本明細書中、「流体用流れ促進剤」とは、流体の管内での流れがよりスムーズになるあるいは該流体の管内での流れに抗する力を低下せしめることができる機能を有する物質あるいは組成物を指し、公知のもののうちから選ばれることができるが、好ましくは界面活性剤を成分として含有するものが挙げられ、より好ましくは少なくとも界面活性剤と対イオン剤とを含有するものが挙げられる。該界面活性剤としては、カチオン系界面活性剤として当業者に知られたもののうちから選ばれることができ、特に好ましくは流体中で棒状ミセルを形成する界面活性剤が挙げられ、例えば、長鎖を有する第4アンモニウム塩等である。これらのうち、特に、炭素数16〜18のアルキル基を有する第4アンモニウム塩が好ましい。 In the present specification, the “fluid flow promoter” means a substance or composition having a function of making the flow of fluid in the pipe smoother or reducing the force against the flow of the fluid in the pipe. It can be selected from among known ones, preferably those containing a surfactant as a component, more preferably those containing at least a surfactant and a counter ion agent. . The surfactant may be selected from those known to those skilled in the art as a cationic surfactant, and particularly preferably includes a surfactant that forms rod-like micelles in a fluid. For example, a long chain A quaternary ammonium salt having Among these, a quaternary ammonium salt having an alkyl group having 16 to 18 carbon atoms is particularly preferable.
好適に使用されるカチオン系界面活性剤としては、ステアリルトリメチルアンモニウウクロライド、オレイルビスヒドロキシエチルメチルアンモニウムクロライドなどが挙げられる。 Examples of the cationic surfactants are preferably used, scan stearyl trimethylammonium monitor Uu chloride, etc. Oh Rail bis-hydroxyethyl ammonium chloride.
また、第4級アンモニウム塩を構成するマイナスイオンは、特に限定されず、塩素、臭素、ヨウ素などのハロゲンイオン、硫酸イオン、硝酸イオン、リン酸イオン等であってもよいが、塩素イオンが一般的である。次に、対イオン剤としては、メタまたはパラ位に置換基を有する安息香酸である。特に、メタハロゲン化安息香酸あるいはパラハロゲン化安息香酸が有利であり、なかでもパラクロロ安息香酸が優れた効果を示す。
本発明の特徴の一つは、該対イオン剤として用いられる安息香酸は、オルト位に置換基を持たないことにある。
The negative ions constituting the quaternary ammonium salt are not particularly limited, and may be halogen ions such as chlorine, bromine and iodine, sulfate ions, nitrate ions, phosphate ions, etc., but chlorine ions are generally used. Is. Next, the counter ion agent is benzoic acid having a substituent at the meta or para position. In particular, metahalogenated benzoic acid or parahalogenated benzoic acid is advantageous, and parachlorobenzoic acid exhibits excellent effects.
One of the features of the present invention is that the benzoic acid used as the counter ion agent has no substituent at the ortho position.
本発明において、カチオン系界面活性剤と対イオン剤との使用割合は、特に厳密ではないが、好適な範囲として重量比で1〜3対1〜10の割合で用いられる。また、本発明の流体用流れ促進剤は対象となる熱媒、特に水または水を主体とする水溶液に対して、カチオン系界面活性剤を50〜1500ppm、対イオン剤を50〜5000ppmとなる範囲で用いるのが好ましい。これらカチオン系界面活性剤および(または)対イオン剤を更に大量に用いることは、かえって熱媒の粘度の上昇を来たし、流体の流れを阻害する方向になる。また上記範囲よりも低濃度で用いたのでは、流れ促進効果が十分に発揮されない。 In the present invention, the use ratio of the cationic surfactant and the counter ion agent is not particularly strict, but as a suitable range, it is used in a ratio of 1 to 3 to 1 by weight. The fluid flow promoter of the present invention is a range in which the cationic surfactant is 50 to 1500 ppm and the counter ion agent is 50 to 5000 ppm with respect to the target heat medium, particularly water or an aqueous solution mainly composed of water. Is preferably used. The use of a larger amount of these cationic surfactants and / or counter-ionic agents leads to an increase in the viscosity of the heat medium, and tends to inhibit the fluid flow. Moreover, if it is used at a concentration lower than the above range, the flow promoting effect is not sufficiently exhibited.
亜鉛引き配管を想定して、500mlのビーカーに試験水を用意し、これに予め秤量した亜鉛板(30×50×1mm)を12日間浸透させ、この間、ホットマグネットスターラーを用いて攪拌しながら55℃の条件に保った。その後、亜鉛板を再び秤量して減量を求め、下記の式により亜鉛板の腐食速度(MDD)を算出した。 Assuming zinc-drawing piping, prepare test water in a 500 ml beaker, and pre-weighed zinc plate (30 × 50 × 1 mm) is infiltrated for 12 days. During this period, the sample is stirred with a hot magnet stirrer. The temperature was kept at ℃. Thereafter, the zinc plate was weighed again to determine the weight loss, and the corrosion rate (MDD) of the zinc plate was calculated according to the following formula.
その結果、腐食速度に顕著な差異のあるデータが得られた。すなわち、比較例として水道水500mlにカチオン系界面活性剤(Arquad18−63)500ppmとサリチル酸ナトリウム500ppmを添加混合して上述した条件で腐食速度を測定した結果、22.1(MDD)であった。因みに、一般にMDD値が10以下であると防食できたと判断される。さらに、本発明に基づき、カチオン系界面活性剤(Arquad18−63)500ppmとパラクロロ安息香酸500ppmを添加混合し、上記条件下で実験を行い亜鉛板の腐食速度を測定し、前記式(化1)によって腐食速度を算出したところ、0.1(MDD)となり、腐食速度が極めて小さいことが判明した。因みに、水道水500mlのみの場合では、0.5(MDD)であった。 As a result, data with marked differences in corrosion rates were obtained. That is, as a comparative example, 500 ppm of a cationic surfactant (Arquad 18-63) and 500 ppm of sodium salicylate were added to and mixed with 500 ml of tap water, and the corrosion rate was measured under the above-described conditions. The result was 22.1 (MDD). Incidentally, it is generally judged that the anticorrosion can be achieved when the MDD value is 10 or less. Furthermore, based on the present invention, 500 ppm of cationic surfactant (Arquad 18-63) and 500 ppm of parachlorobenzoic acid were added and mixed, and the corrosion rate of the zinc plate was measured by performing an experiment under the above conditions. When the corrosion rate was calculated by the above, it was 0.1 (MDD), and it was found that the corrosion rate was extremely low. Incidentally, in the case of only 500 ml of tap water, it was 0.5 (MDD).
これに対して、既存の技術では、鉄の腐食防止はモリブデン酸ナトリウムや亜硝酸ナトリウムを添加し、銅の腐食防止はベンゾトリアゾール系腐食抑制剤を添加すればよいが、亜鉛の場合は腐食が抑えられず、ほとんど効果が無かった。しかしながら、抗力減少剤の対イオン剤をサリチル酸ナトリウムからパラクロロ安息香酸に替えたことにより、亜鉛に対する腐食が改善した。さらに、パラクロロ安息香酸の添加によって、抗力減少効果はサリチル酸ナトリウムによるものと同レベルであるばかりでなく、抗力減少を維持する上限温度を上昇することかできる。 In contrast, with existing technologies, sodium molybdate or sodium nitrite can be added to prevent iron corrosion, and benzotriazole-based corrosion inhibitors can be added to prevent copper corrosion. It was not able to be suppressed and there was almost no effect. However, the corrosion resistance to zinc was improved by changing the counterion agent of the drag reducing agent from sodium salicylate to parachlorobenzoic acid. Furthermore, by adding parachlorobenzoic acid, the drag reduction effect is not only at the same level as that by sodium salicylate, but it is also possible to increase the upper limit temperature at which drag reduction is maintained.
本発明の流体用流れ促進剤は、さらに防錆剤を併せ用いることも極めて効果的であり、冷温水用の腐食抑制流れ促進剤となる。これら併用される防錆剤は、特に制限されることなく、市販の防錆剤が使用可能であり、例えば、モリブデン酸ナトリウム塩、モリブデン酸カリウム塩、モリブデン酸リチウム塩、モリブデン酸カルシウム塩、モリブデン酸アンモニウム塩などが挙げられ、特に好適にはモリブデン酸ナトリウムあるいはモリブデン酸リチウムである。また、亜硝酸塩としては、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸リチウムなどが挙げられる。本発明の腐食抑制性流れ促進剤には、さらにベンゾトリアゾール系腐食抑制剤を含有せしめることもできる。 The fluid flow accelerator of the present invention is also extremely effective in combination with a rust inhibitor, and becomes a corrosion-inhibiting flow accelerator for cold and hot water. These rust preventives used in combination are not particularly limited, and commercially available rust preventives can be used. For example, sodium molybdate, potassium molybdate, lithium molybdate, calcium molybdate, molybdenum Examples of the acid ammonium salt include sodium molybdate and lithium molybdate. Examples of the nitrite include sodium nitrite, potassium nitrite, and lithium nitrite. The corrosion-inhibiting flow promoter of the present invention can further contain a benzotriazole-based corrosion inhibitor.
モリブデン酸塩は、通常の腐食抑制剤として一般的に利用されてはいるが、高価であり、また単独での使用だと高い添加量を必要とするため、従来は、何種類かの腐食抑制剤と併用することによってそのモリブデン酸塩の腐食抑制活性を利用してきたに止まる。モリブデン酸塩を流れ促進剤と併用しての腐食抑制の原理としては、モリブデン酸塩がパイプ管内に酸化皮膜を形成せしめて、腐食抑制を行い、かつ、界面活性剤の吸着の相乗効果により、腐食機能をもたらしていると思われる。流体用流れ促進剤をモリブデン酸塩と併用することにより、常に腐食抑制されることになりパイプ内部の腐食進行がなくなり、長期的に流れ促進機能を維持できるのである。 Although molybdate is generally used as a normal corrosion inhibitor, it is expensive and requires a high amount of addition when used alone. When used in combination with an agent, the corrosion inhibiting activity of the molybdate has only been utilized. As a principle of corrosion inhibition using molybdate in combination with a flow accelerator, molybdate forms an oxide film in the pipe pipe to suppress corrosion, and due to the synergistic effect of adsorption of surfactant, It seems to have brought about a corrosive function. By using the fluid flow accelerator together with the molybdate, the corrosion is always suppressed and the progress of corrosion inside the pipe is eliminated, and the flow promotion function can be maintained for a long time.
本発明は、さらに前記流体用流れ促進剤に防錆剤に代えてあるいは、防錆剤に併せて消泡剤を添加することも極めて有効である。この場合用いられる消泡剤は市販のものが何ら制限なく使用することができる。例えば、シリコン系消泡剤や鉱物油系消泡剤が市販されており、それらを有効量併せ用いればよい。 In the present invention, it is also extremely effective to add an antifoaming agent to the fluid flow accelerator in place of the rust inhibitor or in combination with the rust inhibitor. In this case, a commercially available antifoaming agent can be used without any limitation. For example, silicon-based antifoaming agents and mineral oil-based antifoaming agents are commercially available, and these may be used together in an effective amount.
本発明の代表的な冷温水式の空調システムでは、熱源地点と放熱地点との間の直径約5〜1000mm、好ましくは約10〜500mmの熱媒移送管内に、液温約−30〜120℃、好ましくは約−20〜100℃、より好ましくは約2〜80℃であり、また対イオン剤成分としてパラメタクロロ安息香酸成分あるいはメタクロロ安息香酸をそれぞれ約50〜5000ppm、好ましくは約100〜3000ppm、さらに好ましくは約200〜2000ppm含有し、さらにモリブデン酸塩又は亜硝酸塩を含有する防錆剤を含有している冷温水を壁面せん断速度約5〜3000γ(1/s)で流通せしめることになる。
本発明では、液温を約−30〜120℃に限定したのは、次の理由による。すなわち、−30℃以下になると、溶解度が低下して、一旦溶解したものが溶出してくる。また、120℃以上になると棒状ミセルを形成しないか、あるいは不安定な状態になり易い。
In the typical cold / hot water type air conditioning system of the present invention, the liquid temperature is about −30 to 120 ° C. in the heat medium transfer pipe having a diameter of about 5 to 1000 mm, preferably about 10 to 500 mm, between the heat source point and the heat radiation point. , Preferably about -20 to 100 ° C, more preferably about 2 to 80 ° C, and the parameter chlorobenzoic acid component or metachlorobenzoic acid as the counter ion component is about 50 to 5000 ppm, preferably about 100 to 3000 ppm, More preferably, cold / warm water containing about 200 to 2000 ppm and further containing a rust inhibitor containing molybdate or nitrite is circulated at a wall shear rate of about 5 to 3000 γ (1 / s).
In the present invention, the liquid temperature is limited to about −30 to 120 ° C. for the following reason. That is, when it becomes -30 degrees C or less, a solubility will fall and what once melt | dissolved will elute. Moreover, when it becomes 120 degreeC or more, a rod-like micelle will not be formed or it will be in an unstable state easily.
なお、0℃以下の場合熱媒が凍ることがあるが、その場合には、ポリエチレングリコールやアルコール類を加えた溶液が用いられるが、本発明の流体流れ促進剤はかかる溶液に対しても有効である。さらに、100℃を超えた高温の場合、当然高圧となるが同様に本発明の流体用流れ促進剤は適用可能である。しかしながら、本発明の流れ促進剤が最も有効に作用する範囲は前述のとおり2〜80℃である。 In addition, although a heat medium may freeze when it is 0 degrees C or less, in that case, although the solution which added polyethyleneglycol and alcohols is used, the fluid flow promoter of this invention is effective also with respect to this solution. It is. Furthermore, in the case of a high temperature exceeding 100 ° C., naturally, the pressure becomes high, but the fluid flow accelerator of the present invention is also applicable. However, the range in which the flow promoter of the present invention works most effectively is 2 to 80 ° C. as described above.
熱媒としての冷温水の移送管の直径は、好ましくは約5〜1000mm、さらに好ましくは約10〜500mmであり、この範囲より小さい場合は熱媒の送水能力に不足を生じ十分な熱媒の供給が困難となり、さらにこの範囲を越えると配管コストが高くなりすぎるという問題が生じる。 The diameter of the transfer pipe for the cold / hot water as the heat medium is preferably about 5 to 1000 mm, more preferably about 10 to 500 mm. Supply becomes difficult, and if this range is exceeded, the piping cost becomes too high.
図2は縦軸を最大DR%(%)で表し、横軸をカチオン系界面活性剤濃度(ppm)で表す。図2において、本発明の流体用流れ促進剤であるカチオン系界面活性剤(界面活性剤成分)は約50〜1500ppm、好ましくは約100〜1200ppm、さらに好ましくは約200〜1500ppm含有せしめることができ、この範囲より少ないと、抗力減少効果が不満足となり、またこの範囲を越えると熱媒の粘度上昇によって抗力減少効果の割りには熱量が増加せず、またそれの使用量の増大によるコスト上昇が問題となる。 In FIG. 2, the vertical axis represents the maximum DR% (%), and the horizontal axis represents the cationic surfactant concentration (ppm). In FIG. 2, the cationic surfactant (surfactant component), which is the fluid flow promoter of the present invention, can be contained in an amount of about 50 to 1500 ppm, preferably about 100 to 1200 ppm, more preferably about 200 to 1500 ppm. If it is less than this range, the drag reduction effect will be unsatisfactory, and if it exceeds this range, the heat quantity will not increase due to the increase in viscosity of the heat medium, and the cost will increase due to the increase in the amount of use. It becomes a problem.
さらに、図3は縦軸を最大DR%(%)で表し、横軸を対イオン濃度(ppm)で表す。図3において、対イオン濃度の好適な範囲は、約50〜5000ppmであり、より好ましい範囲は約100〜3000ppmとなる。この範囲より少ないと、抗力減少効果が不満足となり、またこの範囲を越えると熱媒の粘度上昇によって抗力減少効果の割りには熱量が増加せず、またそれの使用量の増大によるコスト上昇が問題となる。 Further, in FIG. 3, the vertical axis represents the maximum DR% (%), and the horizontal axis represents the counter ion concentration (ppm). In FIG. 3, the preferred range of the counter ion concentration is about 50 to 5000 ppm, and the more preferred range is about 100 to 3000 ppm. If it is less than this range, the drag reduction effect will be unsatisfactory, and if this range is exceeded, the amount of heat will not increase due to the increase in viscosity of the heating medium, and the cost will increase due to the increase in usage. It becomes.
以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。本発明では、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきである。全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用いて実施したもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なものである。 The present invention will be described in detail with reference to the following examples, which are provided merely for the purpose of illustrating the present invention and for reference to specific embodiments thereof. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application. In the present invention, it should be understood that various embodiments based on the idea of the present specification are possible. All examples were performed or can be performed using standard techniques, except as otherwise described in detail, and are well known and routine to those skilled in the art. .
図1を用いて実施例1を説明する。図1に冷温水式の空調システムを示す。図1では、冷温水発生機(ヒートポンプ)1と高架タンク2とを熱媒移送配管3で結んで、熱媒(冷温水)の抗力減少化効果及び腐食性向上についてテストした。図1に示された装置には、電磁流量計4及び差圧計測器(U字管マノメーター)5が設けられ、それぞれ各流量の測定及びタップ間直管部区間Lの圧力損失を測定できる。循環ポンプ6をインバータ7で周波数を変化させて、各流量、各温度及び添加された流体用流れ促進剤とモリブデン酸塩又は亜硝酸塩を含有する防錆剤の影響を調べた。図中、8は調温装置、T.Cは温度計である。冷温水発生機(熱源)1としては、吸収式冷温水発生機(ヒートポンプ)を使用した。循環ポンプ6は、S型片吸込渦巻きポンプ1.5kwを使用し、熱媒移送配管3のパイプ径は20mmのものを使用した。熱媒移送配管3のパイプの総延長は220mであった。該空調システム中の保有水量はおおよそ1.54立方メートルである。インバーター7は汎用インバーター2.2kwのものを使用し、冷温水の温度範囲は冷水7〜10℃とし、温水80℃とした。
Example 1 will be described with reference to FIG. FIG. 1 shows a cold / hot water type air conditioning system. In FIG. 1, a cold / hot water generator (heat pump) 1 and an
水道水に、流体用流れ促進剤としてオレイルビスヒドロキシエチルメチルアンモニウムクロライド(「エソカード(Ethoquard O/12)」、商品名:ライオン(株)社製の界面活性剤)を500ppm、そして対イオン剤成分としてパラクロロ安息香酸を500ppmの同量添加した。得られたEthoquard O/12+パラクロロ安息香酸に、防錆剤としてモリブデン酸ナトリウムを添加し、抗力低減効果(drag
reduction:DR)に及ぼす影響を調べた。
Tap water, 500 ppm of oleyl bishydroxyethylmethylammonium chloride ("Ethoquad O / 12", a product of a surfactant manufactured by Lion Corporation) as a flow promoter for fluids, and a counter ion component The same amount of 500 ppm of parachlorobenzoic acid was added. Sodium molybdate as a rust preventive agent was added to the obtained Ethoquaard O / 12 + parachlorobenzoic acid to reduce drag (drag
The effect on reduction (DR) was examined.
実験は、先ず最初に水道水を使用し、実際に稼働している状態として運転し、インバーターによるモーターの回転数制御を行い、各周波数毎のポンプのモーターの回転数制御を行い、ポンプの各回転数毎のポンプの吐出圧力、熱媒(冷温水)の温度、流速(u[m/s])を測定した。次に流体用流れ促進剤を添加した水道水、流体用流れ促進剤とモリブデン酸ナトリウムを添加したもので同様に測定した。またインバーターを用いて周波数を下げて行き、流速が水道水の時と同じになるように設定し、その時の電流値を比較し、節減量を求めた。 In the experiment, tap water is used first, it is operated as if it is actually operating, the motor speed is controlled by an inverter, the motor speed of the pump is controlled at each frequency, The pump discharge pressure, the temperature of the heat medium (cold / warm water), and the flow velocity (u [m / s]) were measured for each rotation speed. Next, tap water to which a fluid flow accelerator was added, a fluid flow accelerator and sodium molybdate were added, and the same measurement was performed. In addition, the frequency was lowered using an inverter, the flow rate was set to be the same as that for tap water, and the current value at that time was compared to determine the amount of saving.
得られた結果を、図4〜5に示す。図4及び図5は縦軸を抗力低減効果(以下、DR%で表し、Drag Reduction Rateの略称である)とし、横軸を温度(℃)で表す。ここで抗力減少率DR%(%)を導入した。流体摩擦係数fとレイノズル数Reとの関係から、水(ニュートン流体)を流したときの流体摩擦抵抗fwと、流れ促進剤を流したときの流体摩擦抵抗fsを算出しておき、抗力減少率DR(%)を以下のように定義する。
抗力減少率DR%(%)=[(fw―fs)/fs]×100
The obtained results are shown in FIGS. 4 and 5, the vertical axis represents the drag reduction effect (hereinafter referred to as DR% and is an abbreviation for Drag Reduction Rate), and the horizontal axis represents the temperature (° C.). Here, the drag reduction rate DR% (%) was introduced. From the relationship between the fluid friction coefficient f and the Ray nozzle number Re, the fluid friction resistance fw when water (Newtonian fluid) is flowed and the fluid friction resistance fs when a flow accelerator is flowed are calculated, and the drag reduction rate is calculated. DR (%) is defined as follows.
Drag reduction rate DR% (%) = [(fw−fs) / fs] × 100
すなわち、抗力減少が起きていないときは抗力減少率DR(%)=0%となり、抗力減少率DR%(%)が大きいほど抗力減少効果が大きい。図4と図5を比較すると、図4の場合は、カチオン系界面活性剤〔Ethoquard O/12;塩化オレイルビスヒドロキシエチルメチルアンモニウム;C18H35N(C2H4OH)2CH3Cl〕500ppmにサリチル酸ナトリウム(HOC6H4COONa)を添加して、温度を室温から徐々に上昇させた後に抗力減少率DR%(%)を測定した結果、流体の温度が65℃を超えると抗力減少率DR%(%)が低下し始め、抗力減少率DR%(%)が50%を切るときの上限温度は69℃になった。 That is, when there is no drag reduction, the drag reduction rate DR (%) = 0%, and the drag reduction effect increases as the drag reduction rate DR% (%) increases. When FIG. 4 is compared with FIG. 5, in the case of FIG. 4, the cationic surfactant [Ethoquad O / 12; oleylbishydroxyethylmethylammonium chloride; C 18 H 35 N (C 2 H 4 OH) 2 CH 3 Cl ] After adding sodium salicylate (HOC 6 H 4 COONa) to 500 ppm and gradually increasing the temperature from room temperature, the drag reduction rate DR% (%) was measured. As a result, if the fluid temperature exceeded 65 ° C, the drag The decrease rate DR% (%) began to decrease, and the upper limit temperature when the drag decrease rate DR% (%) fell below 50% became 69 ° C.
これに対して、図5の場合は、カチオン系界面活性剤(Ethoquard O/12;塩化オレイルビスヒドロキシエチルメチルアンモニウム;C18H35N(C2H4OH)2CH3Cl〕500ppmにパラクロロ安息香酸(ClC6H4COOH)を添加したときの結果である。温度が70℃を超えると抗力減少率DR%(%)が低下し始め、76℃で抗力減少率DR%=50%となった。これにより、対イオン剤をオルト位のサリチル酸ナトリウムからパラ位のパラクロロ安息香酸に替えたことで、上限温度が7℃上昇したことが判る。 On the other hand, in the case of FIG. 5, a cationic surfactant (Ethoquad O / 12; oleylbishydroxyethylmethylammonium chloride; C 18 H 35 N (C 2 H 4 OH) 2 CH 3 Cl) is added to 500 ppm of parachloro. This is the result when benzoic acid (ClC 6 H 4 COOH) is added, and the drag reduction rate DR% (%) starts to drop when the temperature exceeds 70 ° C., and the drag reduction rate DR% = 50% at 76 ° C. As a result, it was found that the upper limit temperature was increased by 7 ° C. by changing the counter ion agent from sodium orthosalicylate in the ortho position to parachlorobenzoic acid in the para position.
1 冷温水発生機(ヒートポンプ)
2 高架タンク
3 熱媒移送配管
4 電磁流量計
5 差圧計測器
6 循環ポンプ
7 インバータ
8 調温装置
1 Cold / hot water generator (heat pump)
2
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004267845A JP4719873B2 (en) | 2004-09-15 | 2004-09-15 | Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004267845A JP4719873B2 (en) | 2004-09-15 | 2004-09-15 | Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006083247A JP2006083247A (en) | 2006-03-30 |
JP4719873B2 true JP4719873B2 (en) | 2011-07-06 |
Family
ID=36162022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004267845A Expired - Lifetime JP4719873B2 (en) | 2004-09-15 | 2004-09-15 | Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4719873B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0813278D0 (en) * | 2008-07-18 | 2008-08-27 | Lux Innovate Ltd | Method for inhibiting corrosion |
DE102013214891A1 (en) * | 2013-07-30 | 2015-02-05 | Siemens Aktiengesellschaft | Thermal engineering interconnection of a geothermal energy source with a district heating network |
JP2016030853A (en) * | 2014-07-29 | 2016-03-07 | 大阪瓦斯株式会社 | Piping equipment chemical addition method and surface treatment agent |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58185692A (en) * | 1982-04-07 | 1983-10-29 | ヘキスト・アクチエンゲゼルシヤフト | Reduction of friction resistance for streaming aqueous medium |
JPS5946246A (en) * | 1982-06-29 | 1984-03-15 | ヘキスト・アクチエンゲゼルシヤフト | Quaternary ammonium salt, manufacture and use |
JPS624888A (en) * | 1985-06-28 | 1987-01-10 | ヘキスト アクチェンゲゼルシャフト | Prevention of corrosion of metal material |
JPH1161093A (en) * | 1997-08-26 | 1999-03-05 | Lion Corp | Frictional resistance reduction agent for aqueous medium and method for reducing frictional resistance of aqueous medium by using same |
JP2002080820A (en) * | 2000-09-07 | 2002-03-22 | Shunan Chiiki Jiba Sangyo Shinko Center | Corrosion-resistant flow accelerator for cold and hot water |
JP2004231833A (en) * | 2003-01-31 | 2004-08-19 | Osaka Gas Co Ltd | Heat carrying medium and heat carrying system using the same |
JP2005029591A (en) * | 2003-07-07 | 2005-02-03 | New Industry Research Organization | Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry |
-
2004
- 2004-09-15 JP JP2004267845A patent/JP4719873B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58185692A (en) * | 1982-04-07 | 1983-10-29 | ヘキスト・アクチエンゲゼルシヤフト | Reduction of friction resistance for streaming aqueous medium |
JPS5946246A (en) * | 1982-06-29 | 1984-03-15 | ヘキスト・アクチエンゲゼルシヤフト | Quaternary ammonium salt, manufacture and use |
JPS624888A (en) * | 1985-06-28 | 1987-01-10 | ヘキスト アクチェンゲゼルシャフト | Prevention of corrosion of metal material |
JPH1161093A (en) * | 1997-08-26 | 1999-03-05 | Lion Corp | Frictional resistance reduction agent for aqueous medium and method for reducing frictional resistance of aqueous medium by using same |
JP2002080820A (en) * | 2000-09-07 | 2002-03-22 | Shunan Chiiki Jiba Sangyo Shinko Center | Corrosion-resistant flow accelerator for cold and hot water |
JP2004231833A (en) * | 2003-01-31 | 2004-08-19 | Osaka Gas Co Ltd | Heat carrying medium and heat carrying system using the same |
JP2005029591A (en) * | 2003-07-07 | 2005-02-03 | New Industry Research Organization | Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry |
Also Published As
Publication number | Publication date |
---|---|
JP2006083247A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3383441B2 (en) | Method for preventing corrosion of closed cooling system, scale and corrosion inhibiting composition | |
RU2741298C2 (en) | Heat carrier composition and its application | |
TWI708867B (en) | Corrosion inhibition method in closed cooling water system, corrosion inhibitor for closed cooling water system, and corrosion inhibition system | |
JP4719873B2 (en) | Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium | |
JP4748290B2 (en) | Corrosion-inhibiting flow promoter for cold and hot water | |
JP4645187B2 (en) | Cold transport medium | |
JP4180923B2 (en) | Method for delaying corrosion of metals in lithium halide solutions. | |
JP2005029591A (en) | Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry | |
JP3897330B2 (en) | Heat transfer medium | |
JP5706728B2 (en) | Heat transfer medium and heat transfer system using the same | |
GB1579217A (en) | Her closed circuit water system composition for addition to a central heating system or ot | |
JP2005016896A (en) | Heat transporting medium and heat transporting system using the same | |
EP0837919A1 (en) | Heat and mass transfer additives for improved aqueous absorption fluids | |
CN112375546A (en) | Efficient refrigerant | |
JP2004323814A (en) | Frictional resistance reducing agent in piping for brine | |
JP2001158878A (en) | Cooling liquid composition | |
JP2011184513A (en) | Heat transportation medium and heat transportation system using the same | |
JP5571418B2 (en) | Heat transfer medium and heat transfer system using the same | |
JP4132951B2 (en) | Method for reducing frictional resistance in piping of water-based heat transfer medium | |
JPH08231941A (en) | Flow promoter for fluid and method for transporting heat energy using the same promoter | |
Saeki et al. | Cationic surfactants and counter Ions for turbulent drag reduction | |
JP4420995B2 (en) | How to reduce frictional resistance in piping | |
JP4295013B2 (en) | Water transport drag reducing additive effective in a wide temperature range | |
JP4479265B2 (en) | Silica-based scale inhibitor and silica-based scale prevention method | |
SK9794Y1 (en) | Additive for heating systems with liquid circulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110308 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4719873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |