[go: up one dir, main page]

JP4716539B2 - Method for producing liquid epoxidized polymer - Google Patents

Method for producing liquid epoxidized polymer Download PDF

Info

Publication number
JP4716539B2
JP4716539B2 JP2000089752A JP2000089752A JP4716539B2 JP 4716539 B2 JP4716539 B2 JP 4716539B2 JP 2000089752 A JP2000089752 A JP 2000089752A JP 2000089752 A JP2000089752 A JP 2000089752A JP 4716539 B2 JP4716539 B2 JP 4716539B2
Authority
JP
Japan
Prior art keywords
solvent
polymer
liquid
epoxidized
epoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000089752A
Other languages
Japanese (ja)
Other versions
JP2001278913A (en
Inventor
英行 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2000089752A priority Critical patent/JP4716539B2/en
Publication of JP2001278913A publication Critical patent/JP2001278913A/en
Application granted granted Critical
Publication of JP4716539B2 publication Critical patent/JP4716539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塗料、樹脂改質剤、ゴム改質剤、接着剤等に使用される液状エポキシ化重合体の製造方法に関する。さらに詳しくは、液状重合体の分子鎖中にある二重結合を過酸類を用いてエポキシ基に変換させるに際し、無水の過酸、過酸化水素から誘導される過酸、又は過酸化水素と触媒を用いて、該重合体を溶媒に懸濁状態にさせてエポキシ化を行うことによる、液状エポキシ化重合体の生産性の向上を図るものである。
【0002】
【従来の技術】
一般に、エポキシ化方法としては、下記の方法が知られている。
(1)過蟻酸、過酢酸などの低級カルボン酸の過カルボン酸の無水の有機溶媒溶液を製造し、この無水の過カルボン酸溶液を反応系にエポキシ化剤として加え、溶媒の存在下または非存在下にエポキシ化反応を行う方法。
(2)予め過酸化水素と蟻酸、酢酸などの低級カルボン酸とを反応させて過カルボン酸を製造し、この過カルボン酸を反応系にエポキシ化剤として加え、溶媒の存在化または非存在下にエポキシ化反応を行う方法。
(3)オスミウムの塩、タングステン酸などの触媒及び溶媒の存在下で、過酸化水素を用いてエポキシ化する方法。
通常これらの方法でエポキシ化を行う場合、エポキシ化対象重合体を溶媒に溶解させて、エポキシ化を行う。これは、均一相でエポキシ化を行うことにより、高いエポキシ化率を得るためである。
なお、過カルボン酸を過酸という。
【0003】
しかしながら、エポキシ化対象重合体が、有機溶媒に溶解性である場合には、エポキシ化した製品は、脱溶媒操作によって容易に回収できるが、エポキシ化対象重合体が、有機溶媒に対して不溶又は溶解度の低い液状である場合には、脱溶媒操作を行うと、液状の製品が析出するので、その回収方法は困難を極める。特に、エポキシ化対象重合体がゴム系重合体であるときは、エポキシ化した製品が粘性を持ち、作業性が著しく悪くなる。
また、液状の重合体の場合、エポキシ基を導入することで、酸類、カチオン種などによる硬化が可能になるため、液状のポリブタジエンやポリイソプレンなど、エポキシ化されたものが使用されている。
これら液状の重合体は、一般にエステル系、芳香族系等の溶媒との相溶性が良好なため、エポキシ化後の製品の回収については、特に問題はない。
【0004】
しかし、例えば、液状のポリイソプレンなどのうち、溶媒に対する溶解度が著しく低いものが有る。
一般にエポキシ化は、溶媒に溶解させて行う方が効率が良いため、溶解度が低い重合体をエポキシ化する場合、多量の溶媒を使用する必要があるため、生産性が極めて悪く、工業的に問題になることが多い。
【0005】
従来技術においては、例えば、特開昭56−11904号公報には、液状のポリブタジエン500部にベンゼン1,300部を添加して溶解させ、これに30%過酸化水素水700部を加えて懸濁させ、得られた懸濁液にギ酸を加えてエポキシ化する方法が開示されている。
この方法では、液状のポリブタジエンを溶解させるために使用した多量のベンゼン溶媒系と過酸化水素水系との間で酸化剤の移動の効率が悪いが、特にギ酸を使用しているため移動がさらに悪く、この方法によるエポキシ化率は、ブタジエンの構成単位当たり0.19個であり、現在市販されている、エポキシ化ポリブタジエンのオキシラン酸素濃度と比較して、エポキシ化の方法としては、あまりよい方法とは言えない。
【0006】
特開平9−165418号公報には、懸濁状態によるエポキシ化が例示されているが、これは、固形物のエポキシ化であり、製品の回収は、通常の固体製品と同様の方法により行うことができるものである。
液状で溶媒との溶解性が低い重合体をエポキシ化する本発明の場合には、ろ過や遠心分離などで製品を回収できないため、特開平9−165418号公報に記載の技術とは事情が異なる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、二重結合を有する液状の重合体とエポキシ化剤を使用して、液状エポキシ化重合体を、生産性よく製造する方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、かかる状況にあって、有機溶媒等に不溶又は溶解度の低い液状の重合体を、特定の溶媒を使用して、懸濁状態でエポキシ化することにより、生産性の向上を図ることができることを見い出し、本発明を完成するに至った。
【0009】
すなわち本発明の第1は、二重結合を有する液状の重合体であって、ジエン系モノマーから構成される単位を持つ重合体を、予め酢酸エチルに懸濁状態にするか、又は下記エポキシ化剤を添加することにより酢酸エチルに懸濁状態にし、アルデヒドの酸素酸化により得られる過酢酸の無水の酢酸エチル溶液をエポキシ化剤として使用するとともに、全溶媒の使用量を被エポキシ化物である前記二重結合を有する液状の重合体に対して、質量基準で1/2倍量〜2倍量として、エポキシ化することを特徴とする液状エポキシ化重合体の製造方法を提供する
本発明の第は、重合体が、ジエン系のモノマーを含む2種以上のブロック又は、ランダム共重合体であることを特徴とする本発明の第記載の液状エポキシ化重合体の製造方法を提供する。
なお、本明細書では、上記の発明のほか、有機溶媒に不溶又は溶解度の低い二重結合を有する液状の重合体を、予め溶媒に懸濁状態にして、又は、下記エポキシ化剤を添加することにより溶媒に懸濁状態にして、
エポキシ化剤として、
(1)過酸の無水の有機溶媒溶液、
(2)過酸化水素とカルボン酸、又は
(3)過酸化水素と触媒
を使用してエポキシ化することを特徴とする液状エポキシ化重合体の製造方法についても説明する。
【0010】
【発明の実施の形態】
本発明では、液状の重合体、特に通常市販される液状ゴムのうち、ジエン系モノマーから構成される部分を持つ重合体を、懸濁状態でエポキシ化して、液状エポキシ化重合体を製造するものである。
【0011】
以下に、本発明を詳しく説明する。
本発明において、エポキシ化に供する液状の重合体としては、分子内に二重結合を持っていれば特に制限はないが、単一のモノマーの重合体でも2種以上のモノマーの重合体でも構わない。2種以上の重合体の場合は、ブロック共重合体でもランダム共重合体でもよい。
単一のジエン系モノマーの重合体では、例えば、ポリブタジエン、ポリイソプレン、ポリブチレンなどが挙げられる。
共重合体を構成しうるモノマーとしては、ビニル芳香族炭化水素化合物の代表例としては、例えば、スチレン、α−メチルスチレンなどの種々のアルキレン置換スチレン、アルコキシ置換スチレン、ビニルナフタレン、アルキル置換ビニルナフタレン、ジビニルベンゼン、ビニルトルエンなどが挙げられる。
また、エチレンやプロピレンなどを用いることも可能である。これらの中から1種、もしくは2種以上組み合わせて用いることもできる。
【0012】
ブロック共重合体を構成しうるジエン化合物の代表例としては、例えば、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、ピペリレン、3−ブチル−1,3−オクタジエン、フェニル−1,3−ブタジエンなどが挙げられる。
さらに脂環式骨格を持つジシクロペンタジエン、シクロペンタジエン、エチリデンノルボルネンなどが挙げられる。これらのなかから1種でも2種以上を組み合わせてもよい。
ブロック共重合体を構成しうるビニル芳香族炭化水素化合物と共役ジエン化合物との共重合組成比(質量比)には、制限はない。
これら分子内に二重結合を持つ重合体(以下、被エポキシ化物とも略称する。
)の分子量は、特に制限はない。
常温で液状であることが原料及び製品を取り扱う際の作業性の上から望ましい。常温で液状であれば、これら被エポキシ化物の末端基についても特に制限はない。
このような化合物の例としては、液状ジエン系ブロック共重合体であるクレイトンリキッドL−1302(シェル社製、数平均分子量8,000、ヨウ素価43)、液状ポリイソプレンであるLIR−290(クラレ製、数平均分子量25,000、ヨウ素価40)等が挙げられる。
【0013】
本発明において、溶解度の低い(即ち、懸濁状態でエポキシ化されることを意味する。)二重結合を有する液状の重合体を、予め溶媒に懸濁状態にして、エポキシ化させるために使用する有機溶媒としては、水に0.5〜10重量%、好ましくは1〜6重量%、さらに好ましくは2〜5重量%可溶な有機溶媒であり、以下のような化合物が好適である。
具体的には、酢酸メチル、酢酸エチル、酢酸ブチル、酪酸メチル、イソ酪酸メチルなどの炭素数1〜5の低級カルボン酸の炭素数1〜4の低級アルコールエステル類;エチレングリコールもしくはプロピレングリコールのモノもしくはジメチルエーテルなどの炭素数2〜4のグリコールの炭素数1〜4の低級アルコールエーテル類;エチレングリコールもしくはプロピレングリコールのモノもしくはジ酢酸エステルなどの炭素数2〜4のグリコールの炭素数1〜4の低級カルボン酸エステル類;メトキシプロピレングリコールアセテートのような炭素数2〜4のグリコールの炭素数1〜4の低級アルコールエーテル炭素数1〜4の低級カルボン酸エステル類;ジエチレングリコールもしくはジプロピレングリコールのモノもしくはジ酢酸エステルなどのポリエーテルエステル類;アセトニトリルなどのニトリル類;クロロホルムなどのハロゲン化炭化水素類などが挙げられる。
これらのなかで、被エポキシ化物の溶解性が小さいこと、及びその後の有機溶媒回収の容易性などから、酢酸エチル等を使用することが望ましい。
また本発明において、二重結合を有する液状の重合体にエポキシ化剤を添加することにより、懸濁状態を生じさせる溶媒としては、過酸を含有することから、水、上記低級カルボン酸低級アルコールエステル、グリコールエーテル類、又はこれらの混合物が挙げられる。
また、特に、エポキシ化反応の際に使用する溶媒は、製造された液状エポキシ化物が溶解すると、溶媒回収が難しくなるため、液状エポキシ化物の溶解度が極力低い溶媒を使用することが望ましい。
従って、ヘキサン、オクタン、シクロヘキサン、シクロヘプタン、ベンゼン、トルエン、キシレン、ナフタレンなどの単独には水に対する溶解度が低いために好ましくない。しかしながら、混合溶媒にして水に対して上記の溶解度になるように調製すれば使用できる。
また、アセトンなどのケトン類等、溶媒自体が過酸により酸化される溶媒は好ましくない。
【0014】
エポキシ化反応を行う際の被エポキシ化物に対する全溶媒(予め懸濁状態にさせるために使用する溶媒、エポキシ化剤を添加することにより溶媒に懸濁状態にさせるための溶媒の合計のことである。)の使用量は、被エポキシ化物の種類、エポキシ化反応条件などにより変るが、被エポキシ化物に対して、質量基準で、1/5倍量〜5倍量、好ましくは1/4倍量〜3倍量、さらに好ましくは1/2倍量〜2倍量の範囲で選ぶことができる。
溶媒の使用量が上記範囲より少な過ぎると、被エポキシ化物を十分に分散ないし懸濁させることができないため、エポキシ化の反応効率の低下による反応の長時間化、ポンプによる送液不良などを起こす。逆に多すぎるとエポキシ化反応終了後の脱溶媒、製品の分離・回収操作に長時間を要したり、溶媒を貯留する設備が大きくなるため、いずれも好ましくない。
【0015】
本発明において、エポキシ化剤としては下記の3種類のものが挙げられる。
(1)過酸の無水の有機溶媒溶液、
(2)過酸化水素とカルボン酸、又は
(3)過酸化水素と触媒。
過酸としては、過蟻酸、過酢酸、過プロピオン酸などの過カルボン酸化合物が用いられる。
これらの過酸は、過酸化水素とカルボン酸をから得られたものでも、アルデヒドの酸素酸化で得られたものでも使用可能である。
【0016】
これらの過酸の溶媒としては、例えば、ヘキサンなどの炭化水素類、酢酸エチルなどの有機酸エステル類、トルエンなどの芳香族炭化水素などがあるが、好ましくは、上記エポキシ化させるために使用する溶媒が挙げられる。
過酸化水素を用いた系では、予め過酸化水素と蟻酸、酢酸などの低級カルボン酸とを反応させ過カルボン酸を製造し、この過カルボン酸を反応系にエポキシ化剤として加え、溶媒の存在化または非存在下にエポキシ化反応を行う場合と、過酸化水素をオスミウムの塩、タングステン酸などの触媒及び溶媒の存在下でエポキシ化する方法がある。
なお、上記でいう溶媒の非存在下とは、エポキシ化反応開始前に懸濁用の溶媒を使用しない場合のことである。この場合でも、過酸の溶液を使用するので、過酸を含有している溶媒、例えば、水、酢酸エチルなどのカルボン酸エステル、メトキシプロピレングリコールなどのグリコールエーテルが反応系に加えられて、二重結合を有する液状の重合体の懸濁状態が生じることになる。
【0017】
これら、過酸類の溶媒としては、例えば、炭化水素類、有機酸エステル類、芳香族炭化水素などが工業的に入手しやすいため望ましい。
反応温度は、20〜80℃が適当であり、特に30〜60℃が好ましい。反応圧力は、大気圧下で十分であるが、やや減圧、または、やや加圧にしてもさしつかえない。
反応温度が、20℃未満の場合は、反応速度が小さく、実用的でない。逆に80℃を超えると、過酸化物の自己分解が著しくなり好ましくない。
被エポキシ化物中の二重結合量と過酸純分の反応モル比(過酸/二重結合量)は、1.0〜2.0が適当であり、特に1.05〜1.3が好ましい。
【0018】
本発明のエポキシ化物、即ち液状エポキシ化重合体のオキシラン酸素濃度は、エポキシ化剤の反応割合を適宜変えることにより、調節することが可能である。
反応時間は、反応速度によっても変わるが、通常1〜5時間程度である。反応時間が1時間未満の場合、二重結合の転化率が低く実用的でない。5時間以上になると、例えば過酸として過酢酸を用いた場合、エポキシ化物と酢酸の付加反応が増大し、収率低下の原因となり好ましくない。
【0019】
本発明の方法によって得られる反応生成液中には、目的物であるエポキシ化物のほかに、副生成物や、カルボン酸、溶媒などが含まれているので、過酸によるエポキシ化反応終了後は、水洗で溶媒、カルボン酸などを除去したり、又は水洗を行うことなく、減圧下又は非減圧下で、加熱又は非加熱の状態で脱溶媒させることにより製品化される。
なお、本発明では、二重結合を有する液状の重合体が懸濁状態でエポキシ化できることが特徴であり、エポキシ化終了時には懸濁していても、溶解していてもよい。
【0020】
本発明の方法では、二重結合を持つゴム系重合体をエポキシ化する際、溶媒に溶解させず懸濁状態でエポキシ化することにより、多量の溶媒を必要とせず、生産性の向上を図ることができる。
【0021】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例3及び4は参考例として記載するものである。
また、「部」及び「%」はいずれも質量基準によるものとする。
エポキシ化された生成物についてのオキシラン酸素濃度、酸価を、以下に記載の方法で測定した。
(1)オキシラン酸素濃度:ASTM−1652に従って測定した。
(2)酸価:JIS K−0070
【0022】
[実施例1]
温度計、撹拌機、及び還流冷却器を備えた内容積1,000mlの4つ口丸底フラスコに、クレイトンリキッドL−1302(ヨウ素価43、数平均分子量8,000、シェル社製)300g、溶媒として酢酸エチル300gを取り、よく混合し、40℃に加温した。この溶液は、乳白色に白濁していたが、ここに無水の純度30%の過酢酸酢酸エチル溶液155.9g(被エポキシ化物中の二重結合:過酸の反応モル比=1.00:1.20)を滴下ロートを用いて約60分で滴下して反応させ、更に反応温度40℃で2時間熟成した。熟成後の反応マスは白濁していた。
熟成終了後、薄膜蒸発機により脱溶剤を行って製品化を行い、エポキシ化物を298.0g(エポキシ化率90.2%)得た。得られたエポキシ化物は、オキシラン酸素濃度が2.40%、酸価が1.88mgKOH/gであった。
【0023】
[実施例2]
実施例1と同じフラスコに、液状ポリイソプレンLIR−290(ヨウ素価40、数平均分子量25,000、クラレ(株)社製)200g、溶媒として酢酸エチル200gを取り、よく混合した。これを、50℃に加温したが、混合液は、白濁していた。ここに無水の純度30%の過酢酸酢酸エチル溶液84.1gを滴下ロートを用いて約30分で滴下して反応させ、更に反応温度50℃で3時間熟成した。
熟成終了後、薄膜蒸発機にて脱溶剤を行ってエポキシ化ポリイソプレンを195.3g(エポキシ化率89.2%)を得た。得られたエポキシ化ポリイソプレンは、オキシラン酸素濃度が2.21%、酸価1.80mgKOH/gであった。
【0024】
[実施例3]
実施例1と同じフラスコにクレイトンリキッドL−1302を100g、溶媒として酢酸エチル200g、90%ギ酸水溶液11.4gを取り、よく混合する。これを、50℃に加温したが溶液は、白濁していた。ここに純度30%の過酸化水素水37.8gを滴下ロートを用いて約20分で仕込み、過ギ酸酢酸エチル溶液(被エポキシ化物中の二重結合:過ギ酸の反応モル比=1.00:1.30)とした後、約4時間熟成させた。
熟成終了後、薄膜蒸発機を用いて脱溶剤を行いエポキシ化物を99.0g(エポキシ化率85%)得た。得られたエポキシ化物は、オキシラン酸素2.27%、酸価2.9mgKOH/gであった。
【0025】
[実施例4]
実施例1と同じフラスコにクレイトンリキッドL−1302を100g、溶媒として酢酸エチル200g、NaWO4を1.5g取りよく混合する。これを、50℃に加温したが、溶液は白濁していた。ここに純度30%の過酸化水素水37.8g(被エポキシ化物中の二重結合:H22の反応モル比=1.00:1.30)を滴下ロートを用いて約20分で仕込み、約4時間熟成させた。この反応終了液をイオン交換水200gで2回洗浄した。
洗浄終了後、薄膜蒸発機を用いて脱溶剤を行い、エポキシ化物を99.0g(エポキシ化率88%)得た。得られたエポキシ化物は、オキシラン酸素2.35%、酸価2.7mgKOH/gであった。
【0026】
[比較例1]
実施例1と同じフラスコにクレイトンリキッドL−1302を100g、溶媒として酢酸エチル800gを取り、溶解させた。これを、40℃に加温した。この溶液は、透明であった。ここに純度30%の過酢酸酢酸エチル溶液51.9gを滴下ロートを用いて約60分で滴下反応させ、更に反応温度40℃で3時間熟成した。
熟成終了後、薄膜蒸発機を用いて脱溶剤を行い、エポキシ化物98.7g(エポキシ化率96%)得た。得られたエポキシ化物は、オキシラン酸素2.56%、酸価2.7mgKOH/gであった。
このように、均一な反応原料溶液を得るには、多量の溶媒が必要であった。
【0027】
【発明の効果】
本発明は、有機溶媒に不溶又は溶解度の低い液状のゴム系重合体をエポキシ化する際、溶媒に溶解させず懸濁状態でエポキシ化することで、多量の溶媒を必要とせず、生産性の向上を図ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a liquid epoxidized polymer used in paints, resin modifiers, rubber modifiers, adhesives and the like. More specifically, when a double bond in a molecular chain of a liquid polymer is converted into an epoxy group using peracids, an anhydrous peracid, a peracid derived from hydrogen peroxide, or hydrogen peroxide and a catalyst Is used to improve the productivity of a liquid epoxidized polymer by suspending the polymer in a solvent and performing epoxidation.
[0002]
[Prior art]
In general, the following methods are known as epoxidation methods.
(1) An anhydrous organic solvent solution of a percarboxylic acid of a lower carboxylic acid such as formic acid or peracetic acid is prepared, and this anhydrous percarboxylic acid solution is added to the reaction system as an epoxidizing agent, and in the presence or absence of a solvent A method of performing an epoxidation reaction in the presence.
(2) A percarboxylic acid is produced by previously reacting hydrogen peroxide with a lower carboxylic acid such as formic acid or acetic acid, and this percarboxylic acid is added to the reaction system as an epoxidizing agent in the presence or absence of a solvent. To perform epoxidation reaction.
(3) A method of epoxidation using hydrogen peroxide in the presence of a catalyst such as an osmium salt or a tungstic acid and a solvent.
Usually, when performing epoxidation by these methods, the epoxidation target polymer is dissolved in a solvent, and epoxidation is performed. This is to obtain a high epoxidation rate by performing epoxidation in a homogeneous phase.
In addition, percarboxylic acid is called peracid.
[0003]
However, when the polymer to be epoxidized is soluble in an organic solvent, the epoxidized product can be easily recovered by desolvation operation, but the polymer to be epoxidized is insoluble in the organic solvent or In the case of a liquid having low solubility, a liquid product is precipitated when the solvent is removed, and the recovery method is extremely difficult. In particular, when the polymer to be epoxidized is a rubber-based polymer, the epoxidized product has viscosity and workability is remarkably deteriorated.
In the case of a liquid polymer, epoxidized materials such as liquid polybutadiene and polyisoprene are used because curing with an acid or a cationic species is possible by introducing an epoxy group.
Since these liquid polymers generally have good compatibility with solvents such as esters and aromatics, there is no particular problem with the recovery of products after epoxidation.
[0004]
However, for example, some liquid polyisoprene has extremely low solubility in a solvent.
In general, epoxidation is more efficient when dissolved in a solvent, so when epoxidizing a polymer with low solubility, it is necessary to use a large amount of solvent. Often becomes.
[0005]
In the prior art, for example, in Japanese Patent Laid-Open No. 56-11904, 1,300 parts of benzene is added to 500 parts of liquid polybutadiene and dissolved, and 700 parts of 30% hydrogen peroxide water is added thereto to suspend it. A method is disclosed in which a suspension is obtained and formic acid is added to the resulting suspension for epoxidation.
In this method, the efficiency of the transfer of the oxidant is poor between the large amount of benzene solvent system used for dissolving the liquid polybutadiene and the hydrogen peroxide solution system, but the transfer is even worse, especially because formic acid is used. The epoxidation rate by this method is 0.19 per butadiene constitutional unit, and compared with the oxirane oxygen concentration of epoxidized polybutadiene which is currently commercially available, the epoxidation method is a very good method. I can't say that.
[0006]
Japanese Patent Application Laid-Open No. 9-165418 exemplifies epoxidation in a suspended state, but this is epoxidation of a solid material, and product recovery should be performed in the same manner as a normal solid product. It is something that can be done.
In the case of the present invention in which a liquid polymer having low solubility in a solvent is epoxidized, the product cannot be recovered by filtration or centrifugation, so that the situation is different from the technique described in JP-A-9-165418. .
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a liquid epoxidized polymer with high productivity by using a liquid polymer having a double bond and an epoxidizing agent.
[0008]
[Means for Solving the Problems]
In such a situation, the inventors have improved the productivity by epoxidizing a liquid polymer insoluble or low in solubility in an organic solvent or the like in a suspended state using a specific solvent. As a result, the present invention has been completed.
[0009]
That is, the first of the present invention is a liquid polymer having a double bond, and a polymer having a unit composed of a diene monomer is previously suspended in ethyl acetate, or the following epoxidation: In addition to the suspension in ethyl acetate by adding an agent, an anhydrous ethyl acetate solution of peracetic acid obtained by oxygen oxidation of aldehyde is used as an epoxidizing agent, and the amount of all solvents used is the epoxidized product. Provided is a method for producing a liquid epoxidized polymer, characterized by epoxidizing a liquid polymer having a double bond in an amount of 1/2 to 2 times by mass .
A second aspect of the present invention is the method for producing a liquid epoxidized polymer according to the first aspect of the present invention, wherein the polymer is two or more kinds of blocks containing a diene monomer or a random copolymer. I will provide a.
In the present specification, in addition to the above-mentioned invention, a liquid polymer having a double bond insoluble in organic solvent or having low solubility is suspended in a solvent in advance, or the following epoxidizing agent is added. To make it suspended in a solvent,
As an epoxidizing agent,
(1) An anhydrous organic solvent solution of peracid,
A method for producing a liquid epoxidized polymer, characterized by (2) hydrogen peroxide and carboxylic acid or (3) epoxidation using hydrogen peroxide and a catalyst, is also described.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a liquid epoxidized polymer is produced by epoxidizing a liquid polymer, in particular, a polymer having a portion composed of a diene monomer, among liquid rubbers that are usually commercially available, in a suspended state. It is.
[0011]
The present invention is described in detail below.
In the present invention, the liquid polymer used for epoxidation is not particularly limited as long as it has a double bond in the molecule, but it may be a single monomer polymer or a polymer of two or more monomers. Absent. In the case of two or more kinds of polymers, a block copolymer or a random copolymer may be used.
Examples of the polymer of a single diene monomer include polybutadiene, polyisoprene, polybutylene and the like.
As monomers that can constitute the copolymer, typical examples of vinyl aromatic hydrocarbon compounds include, for example, various alkylene-substituted styrenes such as styrene and α-methylstyrene, alkoxy-substituted styrenes, vinyl naphthalene, and alkyl-substituted vinyl naphthalene. , Divinylbenzene, vinyltoluene and the like.
Also, ethylene, propylene, or the like can be used. One or a combination of two or more of these can be used.
[0012]
Representative examples of the diene compound that can constitute the block copolymer include, for example, 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl- Examples include 1,3-octadiene and phenyl-1,3-butadiene.
Further examples include dicyclopentadiene, cyclopentadiene, and ethylidene norbornene having an alicyclic skeleton. Among these, you may combine 1 type or 2 types or more.
There is no restriction | limiting in the copolymerization composition ratio (mass ratio) of the vinyl aromatic hydrocarbon compound and conjugated diene compound which can comprise a block copolymer.
These polymers having a double bond in the molecule (hereinafter also abbreviated as epoxidized product).
) Is not particularly limited.
It is desirable from the viewpoint of workability when handling raw materials and products that it is liquid at room temperature. If it is liquid at normal temperature, there is no restriction | limiting in particular also about the terminal group of these epoxidized materials.
Examples of such compounds include Clayton Liquid L-1302 (manufactured by Shell, number average molecular weight 8,000, iodine value 43) which is a liquid diene block copolymer, and LIR-290 (Kuraray) which is a liquid polyisoprene. Manufactured, number average molecular weight 25,000, iodine value 40) and the like.
[0013]
In the present invention, a liquid polymer having a double bond having low solubility (that is, epoxidized in a suspended state) is used to epoxidize the polymer in a suspended state in advance in a solvent. The organic solvent to be used is an organic solvent soluble in water by 0.5 to 10% by weight, preferably 1 to 6% by weight, more preferably 2 to 5% by weight, and the following compounds are suitable.
Specifically, lower alcohol esters having 1 to 4 carbon atoms of lower carboxylic acids having 1 to 5 carbon atoms such as methyl acetate, ethyl acetate, butyl acetate, methyl butyrate and methyl isobutyrate; Or a lower alcohol ether having 1 to 4 carbon atoms of a glycol having 2 to 4 carbon atoms such as dimethyl ether; 1 to 4 carbon atoms of a glycol having 2 to 4 carbon atoms such as mono- or diacetate of ethylene glycol or propylene glycol Lower carboxylic acid esters; lower alcohol ethers having 1 to 4 carbon atoms of 1 to 4 carbon atoms of glycols having 2 to 4 carbon atoms such as methoxypropylene glycol acetate; mono- or diethylene glycol or dipropylene glycol Diacetate S Polyether esters such as Le; nitriles such as acetonitrile; and the like halogenated hydrocarbons such as chloroform.
Among these, it is desirable to use ethyl acetate or the like because of the low solubility of the epoxidized product and the ease of subsequent organic solvent recovery.
Further, in the present invention, as a solvent for producing a suspended state by adding an epoxidizing agent to a liquid polymer having a double bond, since it contains a peracid, water, the above lower carboxylic acid and lower alcohol Examples include esters, glycol ethers, or mixtures thereof.
In particular, the solvent used in the epoxidation reaction may be difficult to recover when the produced liquid epoxidized product is dissolved. Therefore, it is desirable to use a solvent having the lowest solubility of the liquid epoxidized product.
Accordingly, hexane, octane, cyclohexane, cycloheptane, benzene, toluene, xylene, naphthalene and the like alone are not preferable because of their low solubility in water. However, it can be used if it is prepared so as to have the above-mentioned solubility in water as a mixed solvent.
In addition, a solvent in which the solvent itself is oxidized by a peracid, such as ketones such as acetone, is not preferable.
[0014]
Total solvent for the epoxidized product during the epoxidation reaction (this is the total of the solvent to be suspended in the solvent by adding the epoxidizing agent and the solvent used to make the suspension in advance) )) Varies depending on the type of epoxidized product, epoxidation reaction conditions, etc., but is 1/5 to 5 times, preferably ¼ times the mass of the epoxidized product on a mass basis. It can be selected in a range of ˜3 times, more preferably ½ times to 2 times.
If the amount of solvent used is less than the above range, the epoxidized product cannot be sufficiently dispersed or suspended, resulting in a prolonged reaction due to a decrease in the reaction efficiency of epoxidation, poor liquid feeding by a pump, etc. . On the other hand, if the amount is too large, it takes a long time for solvent removal and product separation / recovery operation after the epoxidation reaction, and the equipment for storing the solvent becomes large.
[0015]
In the present invention, examples of the epoxidizing agent include the following three types.
(1) An anhydrous organic solvent solution of peracid,
(2) Hydrogen peroxide and carboxylic acid, or (3) Hydrogen peroxide and catalyst.
As the peracid, a percarboxylic acid compound such as formic acid, peracetic acid, and perpropionic acid is used.
These peracids can be used either from hydrogen peroxide and carboxylic acid or from aldehyde oxygen oxidation.
[0016]
Examples of these peracid solvents include hydrocarbons such as hexane, organic acid esters such as ethyl acetate, and aromatic hydrocarbons such as toluene. Preferably, the peracid solvent is used for the epoxidation. A solvent is mentioned.
In a system using hydrogen peroxide, hydrogen peroxide and a lower carboxylic acid such as formic acid or acetic acid are reacted in advance to produce a percarboxylic acid, and this percarboxylic acid is added to the reaction system as an epoxidizing agent, and the presence of a solvent. There are a case where the epoxidation reaction is performed in the presence or absence of hydrogenation, and a method in which hydrogen peroxide is epoxidized in the presence of a catalyst such as an osmium salt, tungstic acid and a solvent.
The term “in the absence of a solvent” as used above refers to the case where a suspending solvent is not used before the start of the epoxidation reaction. Even in this case, since a peracid solution is used, a solvent containing a peracid, for example, water, a carboxylic acid ester such as ethyl acetate, or a glycol ether such as methoxypropylene glycol is added to the reaction system. A suspended state of a liquid polymer having a heavy bond will occur.
[0017]
As these peracid solvents, for example, hydrocarbons, organic acid esters, aromatic hydrocarbons and the like are desirable because they are easily available industrially.
The reaction temperature is suitably 20 to 80 ° C, particularly preferably 30 to 60 ° C. The reaction pressure is sufficient under atmospheric pressure, but it may be slightly reduced or slightly increased.
When the reaction temperature is less than 20 ° C., the reaction rate is small and not practical. On the other hand, if it exceeds 80 ° C., the self-decomposition of the peroxide becomes remarkably unfavorable.
The reaction molar ratio (peracid / double bond amount) of the double bond amount and the pure peracid content in the epoxidized product is suitably 1.0 to 2.0, particularly 1.05 to 1.3. preferable.
[0018]
The oxirane oxygen concentration of the epoxidized product of the present invention, that is, the liquid epoxidized polymer can be adjusted by appropriately changing the reaction ratio of the epoxidizing agent.
The reaction time varies depending on the reaction rate, but is usually about 1 to 5 hours. When the reaction time is less than 1 hour, the double bond conversion rate is low and impractical. If it is 5 hours or more, for example, when peracetic acid is used as the peracid, the addition reaction between the epoxidized product and acetic acid increases, which is not preferable because it causes a decrease in yield.
[0019]
Since the reaction product obtained by the method of the present invention contains by-products, carboxylic acid, solvent, etc. in addition to the epoxidized product, the epoxidation reaction with peracid is completed. The product is produced by removing the solvent, carboxylic acid, or the like by washing with water, or removing the solvent in a heated or non-heated state under reduced pressure or non-depressurized without washing with water.
In the present invention, a liquid polymer having a double bond can be epoxidized in a suspended state, and may be suspended or dissolved at the end of epoxidation.
[0020]
In the method of the present invention, when a rubber-based polymer having a double bond is epoxidized, it is not dissolved in a solvent and epoxidized in a suspended state, so that a large amount of solvent is not required and productivity is improved. be able to.
[0021]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Examples 3 and 4 are described as reference examples.
“Parts” and “%” are both based on mass.
The oxirane oxygen concentration and acid value of the epoxidized product were measured by the method described below.
(1) Oxirane oxygen concentration: measured in accordance with ASTM-1652.
(2) Acid value: JIS K-0070
[0022]
[Example 1]
In a 1,000 ml four-necked round bottom flask equipped with a thermometer, a stirrer, and a reflux condenser, 300 g of Clayton Liquid L-1302 (iodine number 43, number average molecular weight 8,000, manufactured by Shell), As a solvent, 300 g of ethyl acetate was taken, mixed well, and heated to 40 ° C. This solution was milky white and cloudy, but was then added 155.9 g of anhydrous 30% pure ethyl acetate solution (double molar ratio of epoxidized compound: peracid reaction molar ratio = 1.00: 1). 20) was dropped using a dropping funnel in about 60 minutes, and further aged at a reaction temperature of 40 ° C. for 2 hours. The reaction mass after aging was cloudy.
After completion of the aging, the solvent was removed by a thin film evaporator to produce a product, and 298.0 g of an epoxidized product (epoxidation rate: 90.2%) was obtained. The obtained epoxidized product had an oxirane oxygen concentration of 2.40% and an acid value of 1.88 mgKOH / g.
[0023]
[Example 2]
In the same flask as in Example 1, 200 g of liquid polyisoprene LIR-290 (iodine value 40, number average molecular weight 25,000, manufactured by Kuraray Co., Ltd.) and 200 g of ethyl acetate as a solvent were mixed well. This was heated to 50 ° C., but the mixed solution was cloudy. Thereto, 84.1 g of an anhydrous ethyl acetate solution with a purity of 30% was dropped for about 30 minutes using a dropping funnel, and the mixture was aged at a reaction temperature of 50 ° C. for 3 hours.
After completion of the aging, the solvent was removed by a thin film evaporator to obtain 195.3 g (epoxidation rate: 89.2%) of epoxidized polyisoprene. The obtained epoxidized polyisoprene had an oxirane oxygen concentration of 2.21% and an acid value of 1.80 mgKOH / g.
[0024]
[Example 3]
In the same flask as in Example 1, 100 g of Clayton Liquid L-1302, 200 g of ethyl acetate and 11.4 g of 90% aqueous formic acid solution are taken and mixed well. This was heated to 50 ° C., but the solution was cloudy. Into this, 37.8 g of 30% pure hydrogen peroxide water was charged using a dropping funnel in about 20 minutes, and an ethyl formate acetate solution (double bond in epoxidized product: reaction molar ratio of formic acid = 1.00). : 1.30) and then aged for about 4 hours.
After completion of aging, the solvent was removed using a thin film evaporator to obtain 99.0 g of an epoxidized product (epoxidation rate: 85%). The obtained epoxidized product had an oxirane oxygen of 2.27% and an acid value of 2.9 mgKOH / g.
[0025]
[Example 4]
In the same flask as in Example 1, 100 g of Kraton Liquid L-1302, 200 g of ethyl acetate as a solvent and 1.5 g of NaWO 4 are mixed well. This was warmed to 50 ° C., but the solution was cloudy. Here, 37.8 g of 30% pure hydrogen peroxide water (reaction molar ratio of double bond in epoxidized substance: H 2 O 2 = 1.00: 1.30) was added in about 20 minutes using a dropping funnel. Prepared and aged for about 4 hours. This reaction completion liquid was washed twice with 200 g of ion-exchanged water.
After completion of the cleaning, the solvent was removed using a thin film evaporator to obtain 99.0 g of an epoxidized product (epoxidation rate 88%). The obtained epoxidized product had an oxirane oxygen of 2.35% and an acid value of 2.7 mgKOH / g.
[0026]
[Comparative Example 1]
In the same flask as in Example 1, 100 g of Kraton Liquid L-1302 and 800 g of ethyl acetate as a solvent were taken and dissolved. This was warmed to 40 ° C. This solution was clear. Thereto, 51.9 g of a 30% pure ethyl acetate solution was dropped for about 60 minutes using a dropping funnel, and further aged at a reaction temperature of 40 ° C. for 3 hours.
After completion of the aging, the solvent was removed using a thin film evaporator to obtain 98.7 g of an epoxidized product (epoxidation rate 96%). The obtained epoxidized product had an oxirane oxygen of 2.56% and an acid value of 2.7 mgKOH / g.
Thus, a large amount of solvent was required to obtain a uniform reaction raw material solution.
[0027]
【The invention's effect】
In the present invention, when epoxidizing a liquid rubber polymer that is insoluble or low in solubility in an organic solvent, it is not dissolved in a solvent and epoxidized in a suspended state, so that a large amount of solvent is not required and productivity is improved. Improvements can be made.

Claims (2)

二重結合を有する液状の重合体であって、ジエン系モノマーから構成される単位を持つ重合体を、予め酢酸エチルに懸濁状態にするか、又は下記エポキシ化剤を添加することにより酢酸エチルに懸濁状態にし、アルデヒドの酸素酸化により得られる過酢酸の無水の酢酸エチル溶液をエポキシ化剤として使用するとともに、全溶媒の使用量を被エポキシ化物である前記二重結合を有する液状の重合体に対して、質量基準で1/2倍量〜2倍量として、エポキシ化することを特徴とする液状エポキシ化重合体の製造方法。A liquid polymer having a double bond, wherein a polymer having units composed of a diene monomer is suspended in ethyl acetate in advance or ethyl acetate is added by adding the following epoxidizing agent. An anhydrous ethyl acetate solution of peracetic acid obtained by oxygen oxidation of an aldehyde is used as an epoxidizing agent, and the amount of all solvents used is a liquid heavy compound having the above-mentioned double bond as an epoxidized product. A method for producing a liquid epoxidized polymer, characterized in that epoxidation is carried out in an amount of 1/2 to 2 times the mass of the coalescence. 重合体が、ジエン系のモノマーを含む2種以上のブロック又は、ランダム共重合体であることを特徴とする請求項記載の液状エポキシ化重合体の製造方法。Polymer, two or more blocks or comprising monomers of diene, manufacturing method of the liquid epoxidized polymers of claim 1, wherein the random copolymer.
JP2000089752A 2000-03-28 2000-03-28 Method for producing liquid epoxidized polymer Expired - Fee Related JP4716539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089752A JP4716539B2 (en) 2000-03-28 2000-03-28 Method for producing liquid epoxidized polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089752A JP4716539B2 (en) 2000-03-28 2000-03-28 Method for producing liquid epoxidized polymer

Publications (2)

Publication Number Publication Date
JP2001278913A JP2001278913A (en) 2001-10-10
JP4716539B2 true JP4716539B2 (en) 2011-07-06

Family

ID=18605461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089752A Expired - Fee Related JP4716539B2 (en) 2000-03-28 2000-03-28 Method for producing liquid epoxidized polymer

Country Status (1)

Country Link
JP (1) JP4716539B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038626A1 (en) * 2000-11-13 2002-05-16 Daicel Chemical Industries, Ltd. Epoxidized thermoplastic polymers and processes for their production
JP4881267B2 (en) * 2000-11-13 2012-02-22 株式会社ダイセル Epoxidized thermoplastic polymer and process for producing the same
MY176896A (en) * 2004-03-01 2020-08-26 Toyota Motor Co Ltd Novel polymeric compound and method for producing the same.
KR102394623B1 (en) * 2020-09-01 2022-05-06 김진국 Manufacturing method for epoxidized isoprene rubber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123160A (en) * 1978-03-17 1979-09-25 Ube Ind Ltd Photo-setting composition
JP3722238B2 (en) * 1995-12-14 2005-11-30 ダイセル化学工業株式会社 Process for producing epoxidized organic polymer
JPH10316715A (en) * 1997-05-20 1998-12-02 Jsr Corp Aqueous dispersion of epoxy-modified polymer

Also Published As

Publication number Publication date
JP2001278913A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US6797787B2 (en) Epoxidized polyalkenylenes and method for their preparation
US4423239A (en) Method for purifying an epoxidation product
JP2022068188A (en) Process for producing epoxidized polymers
JP5778684B2 (en) Method for producing divinylarene dioxide
JP4716539B2 (en) Method for producing liquid epoxidized polymer
US6541575B2 (en) Process for producing an epoxidized polymer
WO1998028338A1 (en) Method for the epoxidation of unsaturated polymers
JP5457102B2 (en) Method for producing epoxidized polyene resin
JP2004182648A (en) Method for producing alicyclic diepoxy compound
JP3686370B2 (en) Method for producing epoxidized polymer
JP2002371113A (en) Method for producing epoxidized polymer
JP3722238B2 (en) Process for producing epoxidized organic polymer
JP2002249516A5 (en)
JP3686381B2 (en) Method for producing epoxidized polymer
JP3460178B2 (en) Method for recovering epoxidized block copolymer
JP2562648B2 (en) Method for producing hydroxyl group-containing liquid polymer
JP3487921B2 (en) Epoxidized block copolymer
JP2941036B2 (en) Method for preventing coloration of epoxidized (meth) acrylate
JP3018109B2 (en) Epoxidized (meth) acrylate and its production method
JP3729599B2 (en) Narrowly dispersible poly (p-hydroxy-α-methylstyrene) and process for producing the same
JPH08134135A (en) Production of polyisoprene epoxide
JPH08120022A (en) Production of epoxidized block copolymer
JP2819061B2 (en) Method for purifying epoxidized (meth) acrylate
JP2003335840A (en) Method for producing epoxidized organic polymer with excellent storage stability
JPH1077305A (en) Epoxydized polyene

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050815

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees