[go: up one dir, main page]

JP4714807B2 - Method for testing skin permeability of transdermal drugs via skin transporter - Google Patents

Method for testing skin permeability of transdermal drugs via skin transporter Download PDF

Info

Publication number
JP4714807B2
JP4714807B2 JP2006510873A JP2006510873A JP4714807B2 JP 4714807 B2 JP4714807 B2 JP 4714807B2 JP 2006510873 A JP2006510873 A JP 2006510873A JP 2006510873 A JP2006510873 A JP 2006510873A JP 4714807 B2 JP4714807 B2 JP 4714807B2
Authority
JP
Japan
Prior art keywords
transdermal
drug
candidate
skin
transdermal drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006510873A
Other languages
Japanese (ja)
Other versions
JPWO2005088299A1 (en
Inventor
彰 辻
将夫 加藤
吉道 崔
晴 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Hisamitsu Pharmaceutical Co Inc
Original Assignee
Kanazawa University NUC
Hisamitsu Pharmaceutical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, Hisamitsu Pharmaceutical Co Inc filed Critical Kanazawa University NUC
Priority to JP2006510873A priority Critical patent/JP4714807B2/en
Publication of JPWO2005088299A1 publication Critical patent/JPWO2005088299A1/en
Application granted granted Critical
Publication of JP4714807B2 publication Critical patent/JP4714807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法、詳しくは皮膚切片で皮下組織側と表皮側とに区画されたチャンバーを用いて、経皮薬剤又は経皮候補薬剤の皮膚トランスポーター(皮膚組織に備わるトランスポーター)を介しての皮膚透過性の程度を測定・評価する経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法に関する。   The present invention relates to a method for assaying the skin permeability of a transdermal drug or a transdermal candidate drug, and more specifically, using a chamber divided into a subcutaneous tissue side and an epidermal side in a skin section, The present invention relates to a method for assaying skin permeability of a transdermal drug or transdermal candidate drug that measures and evaluates the degree of skin permeability through a skin transporter (transporter provided in skin tissue).

経皮ドラッグデリバリーは、効力ある低分子量の治療薬の投与経路としてしばしば用いられ、錠剤や注射などの従来からの投与形態と比べて、初回通過代謝の回避、痛みの減少、薬の徐放性の可能性などを含む、優れた効果を発揮している。例えば、非ステロイド性抗炎症薬(NSAID)の経皮ルートでの投与は、胃腸の炎症や潰瘍化などの経口ルートの欠点を避けるために導入された(例えば、J. Pharm. Sci. 86:503-508, 1997参照)。しかし、経皮デリバリーは、皮膚の浸透率が低いために、適用が制限されている。   Transdermal drug delivery is often used as a route of administration for effective low molecular weight therapeutics, avoiding first-pass metabolism, reducing pain, and slow drug release compared to conventional dosage forms such as tablets and injections. It has excellent effects including the possibility of. For example, administration of non-steroidal anti-inflammatory drugs (NSAIDs) by the transdermal route has been introduced to avoid the disadvantages of the oral route such as gastrointestinal inflammation and ulceration (eg, J. Pharm. Sci. 86: 503-508, 1997). However, transdermal delivery has limited application due to low skin penetration.

皮膚は、物理的及び生化学的、両面におけるバリアーである。皮膚の最外側層である角質層(SC)が、物理的構造により、さまざまな物質が浸透するときの、最大のバリアーであるとされている。さらに、皮膚内の異物代謝酵素が、2番目の生化学的なバリアーとなっている。例えば、グルタチオンSトランスフェラーゼ(GST)P1−1の発現及び活性が、ヒトの表皮細胞において検出されている(例えば、J. Dermatol. Sci. 30: 205-214, 2002参照)。異物代謝酵素の発現が、ヒト正常ケラチノサイトでも検出され、恒常的な活性が観察されている(例えば、J. Invest. Dermatol. 102:970-975, 1994、J. Biol. Chem. 273:32071-32079, 1998、J. Invest. Dermatol. 112: 337-342, 1994参照)。   The skin is a physical and biochemical barrier on both sides. The stratum corneum (SC), the outermost layer of the skin, is said to be the greatest barrier when various substances penetrate due to the physical structure. Furthermore, foreign body metabolic enzymes in the skin are the second biochemical barrier. For example, the expression and activity of glutathione S transferase (GST) P1-1 has been detected in human epidermal cells (see, for example, J. Dermatol. Sci. 30: 205-214, 2002). Xenobiotic metabolizing enzyme expression is also detected in normal human keratinocytes, and constitutive activity has been observed (eg, J. Invest. Dermatol. 102: 970-975, 1994, J. Biol. Chem. 273: 32071- 32079, 1998, J. Invest. Dermatol. 112: 337-342, 1994).

近年、皮膚におけるいくつかのトランスポーターの発現が報告された。神経細胞グルタミン酸トランスポーターEAAC1及びグリアグルタミン酸トランスポーター(GLT−1)がケラチノサイトで検出され(例えば、J. Invest. Dermatol. 112: 337-342, 1994参照)、ナトリウム依存性マルチビタミントランスポーター(SMVT)が皮膚において発現することが見い出されている(例えば、J. Invest. Dermatol. 120: 428-433, 2003参照)。グルタミン酸及びビオチンは、正常な細胞機能に必須であるので、かかるトランスポーターの存在が、皮膚内の基質に対する役割を支持することを明らかにした。他方、異物トランスポーター(xenobiotics transporter)の発現も、近年報告された。これらは、数多くの有機イオン薬剤を輸送し、ヒトの正常なケラチノサイト内に存在する、多剤耐性関連タンパク質(MRP)(例えば、J. Invest. Dermatol. 116: 541-548, 2001参照)及び有機アニオン輸送ポリペプチド(OATP)ファミリーメンバー(例えば、J. Invest. Dermatol. 120: 285-291, 2003参照)を含む。かかるトランスポーターの皮膚内での発現は、薬剤が経皮浸透するときの、能動的なバリアーとなるかもしれない。しかし、現在のところ、薬剤の経皮浸透においてトランスポーターの関与は明らかになっていない。   Recently, the expression of several transporters in the skin has been reported. The neuronal glutamate transporter EAAC1 and the glial glutamate transporter (GLT-1) are detected in keratinocytes (see, for example, J. Invest. Dermatol. 112: 337-342, 1994), a sodium-dependent multivitamin transporter (SMVT) Has been found to be expressed in the skin (see, for example, J. Invest. Dermatol. 120: 428-433, 2003). Since glutamate and biotin are essential for normal cell function, the presence of such transporters has been shown to support a role for substrates in the skin. On the other hand, the expression of xenobiotics transporters has also been reported recently. They transport numerous organic ionic drugs and are present in human normal keratinocytes, multidrug resistance-related proteins (MRPs) (see, for example, J. Invest. Dermatol. 116: 541-548, 2001) and organic Includes anion transport polypeptide (OATP) family members (see, eg, J. Invest. Dermatol. 120: 285-291, 2003). The expression of such transporters in the skin may be an active barrier when the drug penetrates transdermally. However, at present, the involvement of transporters in the transdermal penetration of drugs has not been clarified.

他方、NSAIDであるインドメタシンは、経皮投与され、経皮デリバリーにおける新規エンハンサーを調べるための疎水性のモデル化合物として用いられている(例えば、J. Pharm. Sci. 84:482-488, 1995、J. Control Release 90: 335-343, 2003、J. Control Release 88: 243-252, 2003参照)。実際に、その効率的な経皮浸透を促進するために、いくつかのアプローチが行われている(J. Control Release 75: 155-166, 2001、Biol. Pharm. Bull. 25: 779-782, 2002)。また、マンニトールも、傍細胞マーカーとして用いられていた。   On the other hand, indomethacin, an NSAID, is administered transdermally and is used as a hydrophobic model compound for investigating new enhancers in transdermal delivery (see, for example, J. Pharm. Sci. 84: 482-488, 1995, J. Control Release 90: 335-343, 2003, J. Control Release 88: 243-252, 2003). In fact, several approaches have been taken to promote its efficient transdermal penetration (J. Control Release 75: 155-166, 2001, Biol. Pharm. Bull. 25: 779-782, 2002). Mannitol has also been used as a paracellular marker.

本発明の課題は、治療薬の経皮浸透に担体輸送(carrier-mediated transport)が関与することを明らかにした上で、経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定・評価する経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法を提供することにある。   The object of the present invention is to clarify that a carrier-mediated transport is involved in the percutaneous penetration of a therapeutic agent, and to permeate the skin through a skin transporter of a transdermal drug or a transdermal candidate drug. An object of the present invention is to provide a method for assaying skin permeability of a transdermal drug or transdermal candidate drug that measures and evaluates the degree of sex.

本発明者らは、経皮輸送のメカニズムの特徴を調べるために、経皮輸送されているNSAIDであるインドメタシンを、疎水性のモデル薬剤として用いた。[14C]インドメタシン及び[H]マンニトールの経皮浸透性を、吸収及び分泌の両方向から測定したところ、[14C]インドメタシンの経皮輸送は、傍細胞マーカーである[H]マンニトールより、かなり高いことを見い出し、[14C]インドメタシンの経皮輸送が、傍細胞輸送ではなく、経細胞輸送であることを見い出した。また、[14C]インドメタシン及び[H]マンニトールの浸透性に対する非標識のインドメタシンの効果を比較し、[14C]インドメタシンの経皮浸透が飽和性であるかどうか調べた。非標識インドメタシン(500μM)を添加すると、[14C]インドメタシンの分泌方向の浸透性が増加するが、[H]マンニトールの浸透性には影響しないことが明らかになり、非標識インドメタシンの効果が、[14C]インドメタシンに特異的であること、[14C]インドメタシンの経皮浸透性には、飽和性過程の関与することを見い出した。さらに、[14C]インドメタシンの飽和性の浸透が、エネルギー依存性であるかどうかを調べるために、NaN及びNaFによる効果を観察した。その結果、[14C]インドメタシンの浸透は、NaN及びNaFによっても増加し、吸収方向の浸透段階がATP依存性であることを見い出した。[14C]インドメタシンの、一方向性、ATP依存性及び飽和性の浸透に関するこれらの結果は、インドメタシンの経皮浸透に、トランスポーター(1又は複数の)が関与している可能性を示した。本発明者らは、また、ヘアレスマウス皮膚と正常ヒト皮膚とにおける、さまざまな異物トランスポーターの発現を比較した。本発明は以上の知見に基づき完成するに至ったものである。In order to investigate the characteristics of the transdermal transport mechanism, the present inventors used indomethacin, an NSAID transported transdermally, as a hydrophobic model drug. When the transdermal permeability of [ 14 C] indomethacin and [ 3 H] mannitol was measured from both the absorption and secretion directions, the transdermal transport of [ 14 C] indomethacin was from the paracellular marker [ 3 H] mannitol. It was found that the transdermal transport of [ 14 C] indomethacin is not a paracellular transport but a transcellular transport. In addition, the effect of unlabeled indomethacin on the permeability of [ 14 C] indomethacin and [ 3 H] mannitol was compared to determine whether the transdermal penetration of [ 14 C] indomethacin was saturable. When unlabeled indomethacin (500 μM) was added, it was found that the permeability of [ 14 C] indomethacin in the direction of secretion increased, but it did not affect the permeability of [ 3 H] mannitol. It has been found that it is specific for [ 14 C] indomethacin, and that the percutaneous permeability of [ 14 C] indomethacin involves a saturation process. Furthermore, the effect of NaN 3 and NaF was observed to investigate whether the saturation penetration of [ 14 C] indomethacin is energy dependent. As a result, it was found that the penetration of [ 14 C] indomethacin was also increased by NaN 3 and NaF, and the penetration step in the absorption direction was ATP-dependent. These results for unidirectional, ATP-dependent and saturable penetration of [ 14 C] indomethacin indicate that transporter (s) may be involved in indomethacin percutaneous penetration. . We also compared the expression of various foreign transporters in hairless mouse skin and normal human skin. The present invention has been completed based on the above findings.

すなわち本発明は、(1)経皮薬剤又は経皮候補薬剤を溶解した溶液を、皮膚切片で皮下組織側と表皮側とに区画されたチャンバー内のいずれか一方に注入し、他方に所定の溶液を注入して、前記皮膚切片の生存条件下、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定・評価することを特徴とする経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(2)皮下組織側の溶液を体温に、表皮側の溶液を室温に維持し、所定時間後に経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定・評価することを特徴とする上記(1)記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法に関する。   That is, the present invention is (1) injecting a solution in which a transdermal drug or transdermal candidate drug is dissolved into one of chambers divided into a subcutaneous tissue side and an epidermis side by a skin section, A solution is injected, and the degree of skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug is measured and evaluated after a predetermined time under the living conditions of the skin section. (2) Maintain the subcutaneous tissue side solution at body temperature and the epidermis side solution at room temperature, and after a predetermined time, The present invention relates to a method for assaying skin permeability of a transdermal drug or transdermal candidate drug as described in (1) above, wherein the degree of skin permeability through a skin transporter is measured and evaluated.

また本発明は、(3)皮膚透過性の程度の測定・評価が、皮膚透過の飽和性、阻害効果、方向指向性及びエネルギー依存性の1又は2以上の測定・評価であることを特徴とする上記(1)又は(2)記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(4)経皮薬剤又は経皮候補薬剤として、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤を用いることを特徴とする上記(1)〜(3)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(5)経皮薬剤又は経皮候補薬剤を溶解した溶液として、皮下組織側が経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液を、表皮側が経皮薬剤又は経皮候補薬剤を溶解した多価アルコール含有溶液を、それぞれ用いることを特徴とする上記(1)〜(4)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(6)多価アルコールが、プロピレングリコールであることを特徴とする上記(5)記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(7)経皮薬剤又は経皮候補薬剤を溶解した溶液が、皮下組織側及び表皮側ともに経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液であることを特徴とする上記(1)〜(4)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(8)エネルギー源を含有する溶液が、ハンクス液であることを特徴とする上記(5)〜(7)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(9)非標識の経皮薬剤又は経皮候補薬剤を皮下組織側と表皮側とに共に用いて、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤の飽和性経皮浸透を調べることを特徴とする上記(1)〜(8)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(10)表皮側の溶液のpHを変化させることを特徴とする上記(1)〜(8)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(11)NaN及びNaFを皮下組織側と表皮側とに共に用いて、経皮薬剤又は経皮候補薬剤の浸透が、エネルギー依存性であるかどうかを調べることを特徴とする上記(1)〜(8)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法に関する。Further, the present invention is characterized in that (3) the measurement / evaluation of the degree of skin permeability is one or more of the measurement / evaluation of skin permeability saturation, inhibitory effect, directionality and energy dependence. (1) The method for assaying the skin permeability of the transdermal drug or transdermal candidate drug described in (1) or (2) above, or (4) a radioisotope or fluorescent substance labeled as the transdermal drug or transdermal drug candidate A method for testing the skin permeability of a transdermal drug or transdermal candidate drug according to any one of the above (1) to (3), wherein a transdermal drug or transdermal candidate drug is used, or (5) transdermal As a solution in which the drug or transdermal candidate drug is dissolved, a solution containing an energy source in which the subcutaneous tissue side dissolves the transdermal drug or transdermal candidate drug, and a polyhydric alcohol in which the epidermal side dissolves the transdermal drug or transdermal candidate drug Each of the above solutions is used (1) to (4), wherein the transdermal drug or transdermal candidate drug has a skin permeability assay method, or (6) the polyhydric alcohol is propylene glycol (5), (7) A solution in which a transdermal drug or transdermal candidate drug is dissolved is a transdermal drug or transdermal candidate on both the subcutaneous tissue side and the epidermis side. (8) A method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to any one of (1) to (4) above, which is a solution containing an energy source in which the drug is dissolved; The solution containing an energy source is Hanks' liquid, the method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to any one of (5) to (7) above, (9) Unlabeled transdermal drug or transdermal candidate drug on the subcutaneous tissue side and epidermal side The transdermal drug according to any one of the above (1) to (8), which is used together to examine the saturated transdermal penetration of a transdermal drug or transdermal candidate drug labeled with a radioisotope or fluorescent substance Alternatively, a method for testing skin permeability of a transdermal candidate drug, or (10) the transdermal drug or transdermal system according to any one of (1) to (8) above, wherein the pH of the solution on the epidermis side is changed Whether the permeation of the transdermal drug or transdermal candidate drug is energy-dependent, using (11) NaN 3 and NaF both on the subcutaneous tissue side and the epidermis side The method for assaying the skin permeability of a transdermal drug or transdermal candidate drug according to any one of the above (1) to (8), wherein

さらに本発明は、(12)経皮薬剤又は経皮候補薬剤を溶解した溶液、及び、経皮薬剤又は経皮候補薬剤と被検物質とを溶解した溶液を、皮膚切片で皮下組織側と表皮側とに区画されたチャンバー内の皮下組織側に注入し、他方に所定の溶液を注入して、前記皮膚切片の生存条件下、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度をそれぞれ測定し、皮膚透過性の程度を比較評価することを特徴とする経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(13)皮下組織側の溶液を体温に、表皮側の溶液を室温に維持し、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度をそれぞれ測定することを特徴とする上記(12)記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法に関する。   Furthermore, the present invention relates to (12) a solution in which a transdermal drug or transdermal candidate drug is dissolved, and a solution in which the transdermal drug or transdermal candidate drug and a test substance are dissolved, and the skin tissue section and the epidermis side. A skin transporter of the transdermal drug or transdermal candidate drug after a predetermined time under the living conditions of the skin section, by injecting into the subcutaneous tissue side in the chamber partitioned into the side, and injecting a predetermined solution into the other A method for screening a substance that promotes or suppresses skin permeability of a transdermal drug or a transdermal candidate drug, characterized by measuring the degree of skin permeability through each skin, and comparing and evaluating the degree of skin permeability, 13) Maintain the subcutaneous tissue side solution at body temperature and the epidermis side solution at room temperature, and measure the degree of skin permeability of the transdermal drug or transdermal candidate drug through the skin transporter after a predetermined time. It is characterized by Serial (12) a method of screening for skin permeation promoting agent or an inhibitory substance for transdermal drug or transdermal drug candidates according.

本発明はまた、(14)皮膚透過性の程度の測定・評価が、皮膚透過の飽和性、阻害効果、方向指向性及びエネルギー依存性の1又は2以上の測定・評価であることを特徴とする上記(12)又は(13)記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(15)経皮薬剤又は経皮候補薬剤として、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤を用いることを特徴とする上記(12)〜(14)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(16)経皮薬剤又は経皮候補薬剤を溶解した溶液として、皮下組織側が経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液を、表皮側が経皮薬剤又は経皮候補薬剤を溶解した多価アルコール含有溶液を、それぞれ用いることを特徴とする上記(12)〜(15)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(17)多価アルコールが、プロピレングリコールであることを特徴とする上記(16)記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、(18)経皮薬剤又は経皮候補薬剤を溶解した溶液が、皮下組織側及び表皮側ともに経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液であることを特徴とする上記(12)〜(15)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(19)エネルギー源を含有する溶液が、ハンクス液であることを特徴とする上記(16)〜(18)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(20)非標識の経皮薬剤又は経皮候補薬剤を皮下組織側と表皮側とに共に用いて、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤の飽和性経皮浸透を測定・評価することを特徴とする上記(12)〜(19)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(21)表皮側の溶液のpHを変化させることを特徴とする上記(12)〜(19)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法や、(22)NaN及びNaFを皮下組織側と表皮側とに共に用いて、経皮薬剤又は経皮候補薬剤の浸透が、エネルギー依存性であるかどうかを測定・評価することを特徴とする上記(12)〜(19)のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法に関する。The present invention is also characterized in that (14) the measurement / evaluation of the degree of skin permeability is one or more of the measurement / evaluation of skin permeability saturation, inhibitory effect, directionality and energy dependence. (12) A method for screening a substance for promoting or inhibiting skin permeability of a transdermal drug or transdermal candidate drug according to (12) or (13), or (15) a radioisotope or fluorescence as a transdermal drug or transdermal candidate drug. Screening of a substance for promoting or inhibiting skin permeability of a transdermal drug or transdermal candidate drug according to any one of (12) to (14), wherein the transdermal drug or transdermal candidate drug labeled with a substance is used. (16) As a solution in which the transdermal drug or transdermal drug candidate is dissolved, a solution containing an energy source in which the subcutaneous tissue side dissolves the transdermal drug or transdermal drug candidate, and the epidermal side is transdermal drug or transdermal Candidate drug The method for screening a substance for promoting or inhibiting skin permeability of a transdermal drug or transdermal candidate drug according to any one of (12) to (15), wherein the polyhydric alcohol-containing solution obtained is used, (17) The method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to (16) above, wherein the polyhydric alcohol is propylene glycol, or (18) the transdermal drug or transdermal candidate Any of the above (12) to (15), wherein the solution in which the drug is dissolved is a solution containing an energy source in which the transdermal drug or transdermal candidate drug is dissolved on both the subcutaneous tissue side and the epidermis side Or (19) a solution containing an energy source is a Hank's solution, To (18) a method for screening a substance for promoting or inhibiting skin permeability of a transdermal drug or transdermal candidate drug according to any one of (18), or (20) a non-labeled transdermal drug or transdermal drug candidate on the subcutaneous tissue side and the epidermis Any one of the above (12) to (19), wherein the saturated percutaneous penetration of a transdermal drug or transdermal candidate drug labeled with a radioisotope or fluorescent substance is measured and evaluated. (21) A method for screening a substance for promoting or inhibiting skin permeability of a transdermal drug or transdermal candidate drug, or (21) changing the pH of a solution on the epidermis side of (12) to (19) above and a screening method of skin permeation enhancers or inhibitors of transdermal drug or transdermal candidate agent according to any one, (22) a NaN 3 and NaF used together and subcutaneous tissue side and a skin side, transdermal drug, or through The penetration of skin candidate drugs The method for screening a substance for promoting or inhibiting skin permeability of a transdermal drug or transdermal candidate drug according to any one of the above (12) to (19), characterized in that it is measured / evaluated as to whether or not it is dependent on rugi. .

第1図は、ヘアレスマウス皮膚を用いたUssing-type Chamber法によるインドメタシンの経皮透過実験の概要を示す図である。FIG. 1 is a diagram showing an outline of a percutaneous permeation experiment of indomethacin by the Ussing-type Chamber method using hairless mouse skin. 第2図は、ヘアレスマウス皮膚における[14C]インドメタシン(A)及び[H]マンニトール(B)の経皮浸透の結果を示す図である。FIG. 2 shows the results of percutaneous penetration of [ 14 C] indomethacin (A) and [ 3 H] mannitol (B) in hairless mouse skin. 第3図は、[14C]インドメタシン(A)及び[H]マンニトール(B)の経皮浸透に対する非標識インドメタシンの影響を示す図である。FIG. 3 shows the effect of unlabeled indomethacin on the transdermal penetration of [ 14 C] indomethacin (A) and [ 3 H] mannitol (B). 第4図は、[14C]インドメタシン(A)及び[H]マンニトール(B)の分泌方向の経皮浸透に対する、NaN及びNaFの影響を示す図である。FIG. 4 is a diagram showing the influence of NaN 3 and NaF on the percutaneous penetration of [ 14 C] indomethacin (A) and [ 3 H] mannitol (B) in the secretory direction. 第5図は、[14C]インドメタシン(白)及び[H]マンニトール(黒)に対する、pH値の影響を示す図である。FIG. 5 is a graph showing the influence of pH value on [ 14 C] indomethacin (white) and [ 3 H] mannitol (black). 第6図は、[14C]インドメタシンの、吸収方向の非直線的な経皮浸透性を示す図である。FIG. 6 is a graph showing the non-linear transdermal permeability of [ 14 C] indomethacin in the absorption direction. 第7図はヘアレスマウス皮膚におけるFluo−3の経皮浸透の結果を示す図である。FIG. 7 shows the results of percutaneous penetration of Fluo-3 in the hairless mouse skin. 第8図は、ヘアレスマウス皮膚及び正常ヒト皮膚内のトランスポーターのmRNA発現結果を示す図である。FIG. 8 shows the results of mRNA expression of transporters in hairless mouse skin and normal human skin.

本発明の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法としては、経皮薬剤又は経皮候補薬剤を溶解した溶液を、皮膚切片で皮下組織側と表皮側とに区画されたチャンバー内のいずれか一方に注入し、他方に所定の溶液を注入して、前記皮膚切片の生存条件下、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定・評価する方法であれば、特に制限されるものではなく、また、皮下組織側や表皮側の溶液の温度(液温)についても特に制限されず、例えば、皮下組織側の溶液を体温に、表皮側の溶液を室温に維持したり、あるいは皮下組織側及び表皮側の溶液の温度を共に体温に維持して、所定時間後に経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定することができるが、皮下組織側の溶液を体温に、表皮側の溶液を室温に維持することが好ましい。さらに、上記の皮膚透過性の程度の測定・評価としては、皮膚透過の飽和性、阻害効果、方向指向性及びエネルギー依存性の1又は2以上の測定・評価を好適に挙げることができるが、他の高感度検出器を用いて低濃度で経皮薬剤又は経皮候補薬剤を測定・評価する方法も本発明に含まれる。   As a method for assaying the skin permeability of the transdermal drug or transdermal candidate drug of the present invention, a solution in which the transdermal drug or transdermal candidate drug is dissolved is divided into a skin section and a subcutaneous tissue side and an epidermal side. Injecting into one of them, injecting a predetermined solution into the other, and skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug after a predetermined time under the living conditions of the skin section The method is not particularly limited as long as it is a method for measuring and evaluating the degree of the skin, and the temperature (liquid temperature) of the solution on the subcutaneous tissue side or the epidermis side is not particularly limited. For example, the solution on the subcutaneous tissue side Maintain the body temperature and the epidermal solution at room temperature, or maintain both the subcutaneous tissue side and epidermal side solution at body temperature. Degree of skin permeability through Can be measured, the body temperature of a solution of the subcutaneous tissue side, it is preferred to maintain the solution of the epidermis side to room temperature. Furthermore, as the measurement / evaluation of the above-mentioned degree of skin permeability, one or more measurement / evaluation of saturation of skin permeation, inhibitory effect, direction directivity and energy dependence can be preferably mentioned. A method of measuring and evaluating a transdermal drug or transdermal drug candidate at a low concentration using another highly sensitive detector is also included in the present invention.

上記経皮薬剤又は経皮候補薬剤としては、既存の経皮薬剤に限らず経口剤として用いられるものや、今後経皮薬剤として開発される候補物質を挙げることができ、これら経皮薬剤又は経皮候補薬剤は、化学物質であっても、動植物や微生物の抽出物等の組成物であってもよい。例えば、中枢作用薬(鎮静薬・抗癲癇薬・脳代謝改善薬、抗不安薬、など)、鎮痛、鎮痒、収斂、抗炎症薬(NSAID、ステロイドなど)、オータコイド類、尿失禁治療薬、気管支拡張薬、抗生物質及び副腎皮質ホルモン混合製剤、抗真菌剤、抗ウイルス剤、循環器系薬、寄生性皮膚疾患用薬、抗悪性腫瘍薬、局所麻酔薬、点眼・点鼻薬、末梢血管拡張薬(ひえ性など)、外皮用殺菌消毒薬、創傷皮膚科用薬、ホルモン薬、抗ヒスタミン薬、化膿性皮膚疾患用薬、外用酵素薬、皮膚潰瘍薬、化粧品、育毛剤、養毛剤、動植物からの抽出物、生薬、核酸、ポリペプチドなどを挙げることができる。以下、これら経皮薬剤又は経皮候補薬剤の一例を示す。     Examples of the transdermal drug or transdermal drug candidate include not only existing transdermal drugs but also those used as oral drugs and candidate substances that will be developed as transdermal drugs in the future. The skin candidate drug may be a chemical substance or a composition such as an animal or plant extract or a microorganism extract. For example, centrally acting drugs (sedatives / antipruritics / brain metabolism improving drugs, anti-anxiety drugs, etc.), analgesics, antipruritics, astringents, anti-inflammatory drugs (NSAIDs, steroids, etc.), otachoids, urinary incontinence drugs, bronchi Dilators, antibiotics and corticosteroids, antifungal agents, antiviral agents, cardiovascular agents, parasitic skin disease agents, antineoplastic agents, local anesthetics, eye drops / nasal drops, peripheral vasodilators (E.g. prickly), skin disinfectant, wound dermatology, hormonal, antihistamine, purulent skin disease, topical enzyme, skin ulcer, cosmetics, hair restorer, hair restorer, animal and plant Examples include extracts, crude drugs, nucleic acids, polypeptides and the like. Examples of these transdermal drugs or transdermal candidate drugs are shown below.

鎮痛、鎮痒、収斂、抗炎症薬(NSAID、ステロイドなど)としては、アムシノニド、吉草酸酢酸プレドニゾロン、吉草酸ジフルコルトロン、吉草酸デキサメタゾン、吉草酸ベタメタゾン、酢酸ジフロラゾン、酢酸ヒドロコルチゾン、ジフルプレドナート、ジプロピオン酸ベタメタゾン、デキサメタゾン、トリアムシノロンアセトニド、ハルシノニド、ピバル酸フルメタゾン、フランカルボン酸モメタゾン、フルオシノニド、フルオシノロンアセトニド、フルドロキシコルチド、プレドニゾロン、プロピオン酸アルクロメタゾン、プロピオン酸クロベタゾール、プロピオン酸デキサメタゾン、プロピオン酸デプロドン、プロピオン酸ベクロメタゾン、酪酸クロベタゾン、酪酸ヒドロコルチゾン、酪酸プロピオン酸ヒドロコルチゾン、酪酸プロピオン酸ベタメタゾン、酢酸プレドニゾロン、亜鉛華デンプン、亜鉛華、イブプロフェンピコノール、インドメタシン、ウフェナマート、ケトプロフェン、グリチルレチン酸、酸化亜鉛、ジクロフェナクナトリウム、スプロフェン、ピロキシカム、フェルビナク、ブフェキサマク、フルルビプロフェン、ベンダザック、ヘパリン類似物質ゲル、ヒドロコルチゾン・クロタミトンなどを挙げることができる。   Analgesic, antipruritic, astringent, anti-inflammatory drugs (NSAIDs, steroids, etc.) include: amsinonide, prednisolone valerate acetate, diflucortron valerate, dexamethasone valerate, betamethasone valerate, diflorazone acetate, hydrocortisone acetate, difluprednate, di Betamethasone propionate, dexamethasone, triamcinolone acetonide, harsinonide, flumethasone pivalate, mometasone furancarboxylate, fluocinonide, fluocinolone acetonide, fludroxycortide, prednisolone, alclomethasone propionate, clobetasol propionate, dexamethas propionate, propionate dexamethasone propionate Deprodon, beclomethasone propionate, clobetasone butyrate, hydrocortisone butyrate, hydrocortisone butyrate propionate, propiobutyrate Betamethasone acid, Prednisolone acetate, Zinc white starch, Zinc white, Ibuprofen piconol, Indomethacin, Ufenamate, Ketoprofen, Glycyrrhetinic acid, Zinc oxide, Diclofenac sodium, Suprofen, Piroxicam, Felbinac, Bufexamac, Flurbiprofen, Bendazac, Heparin Substance gel, hydrocortisone, crotamiton and the like can be mentioned.

抗生物質及び副腎皮質ホルモン混合製剤としては、塩酸オキシテトラサイクリン・ヒドロコルチゾン、塩酸テトラサイクリン・酢酸ヒドロコルチゾン、吉草酸ベタメタゾン・ゲンタマイシン、吉草酸ベタメタゾン・フラジオマイシン、トリアムシノロン・フラジオマイシン配合剤、フラジオマイシン・フルオシノロンアセトニド、硫酸フラジオマイシン・プレドニゾロン、エリスロマイシン、ピマリシン、アシクロビル、硫酸ブレオマイシン、ヒドロコルチゾン・フラジオマイシン配合剤、塩酸オキシテトラサイクリン・硫酸ポリミキシンB、クロラムフェニコ−ル・フラジオマイシン配合剤、などを挙げることができる。   Antibiotic and corticosteroid mixed preparations include oxytetracycline hydrochloride / hydrocortisone hydrochloride, tetracycline hydrochloride / hydrocortisone acetate, betamethasone valerate / gentamicin, betamethasone valerate / valanomycin valerate, triamcinolone / fradiomycin, fradiomycin / fluocinolone acetate Nido, fradiomycin sulfate / prednisolone sulfate, erythromycin, pimaricin, acyclovir, bleomycin sulfate, hydrocortisone / fradiomycin solution, oxytetracycline hydrochloride / polymyxin sulfate B, chloramphenicol / fradiomycin solution, and the like.

寄生性皮膚疾患用薬・抗真菌剤・抗ウイルス剤としては、サリチル酸、塩酸クロコナゾール、塩酸ネチコナゾール、クロトリマゾール、ケトコナゾール、硝酸イソコナゾール、硝酸エコナゾール、硝酸オキシコナゾール、硝酸スルコナゾール、硝酸ミコナゾール、ビホナゾール、ラノコナゾール、シッカニン、オフロキサシン、塩酸ミノサクリン、塩酸テルビナフィン、塩酸ブテナフィン、トルナフタート、ナジフロキサシン、アシクロビル、ビダラビンなどを挙げることができる。   Parasitic skin disease / antifungal / antiviral agents include salicylic acid, croconazole hydrochloride, neticonazole hydrochloride, clotrimazole, ketoconazole, isoconazole nitrate, econazole nitrate, oxyconazole nitrate, sulconazole nitrate, miconazole nitrate, bifonazole , Lanoconazole, siccanin, ofloxacin, minosacrine hydrochloride, terbinafine hydrochloride, butenafine hydrochloride, tolnaphthalate, nadifloxacin, acyclovir, vidarabine and the like.

また、局所麻酔剤・眼科用剤としては、リドカイン、アミノ安息香酸エチル、硫酸アトロピン、硫酸ナファゾリンを、血管拡張剤としては、硝酸イソソルビド、ニトログリセリンを、気管支拡張剤としては、ツロブテロールを、化膿性皮膚疾患用剤としては、スルファジアジン、硫酸カナマイシン、エリスロマイシン、塩酸テトラサイクリン、クロラムフェニコール、硫酸ゲンタマイシン、硫酸フラジオマシン、コリスチン・フラジオマイシン、バシトラシン・硫酸フラジオマイシンを、それぞれ挙げることができる。   In addition, lidocaine, ethyl aminobenzoate, atropine sulfate, and naphazoline sulfate are used as local anesthetics and ophthalmic agents, isosorbide nitrate and nitroglycerin are used as vasodilators, tulobuterol is used as a bronchodilator, and purulent. Examples of the dermatological agent include sulfadiazine, kanamycin sulfate, erythromycin, tetracycline hydrochloride, chloramphenicol, gentamicin sulfate, fradiosulfate, colistin / fradiomycin, bacitracin / fradiomycin sulfate.

さらに、抗ヒスタミン薬としては、ジフェンヒドラミン、ラウリル硫酸ジフェンヒドラミン、クロタミトンを、ホルモン薬としては、エストラジオールを、外皮用殺菌消毒薬としては、ポピドンヨード、ヨウ素を、外用酵素薬としては、塩化リゾチーム、ブロメラインを、抗悪性腫瘍薬としては、フルオロウラシルを、皮膚潰瘍薬としては、白糖・ポビドンヨード配合剤、アルプロスタジルアルファデクスを、その他の経皮薬剤又は経皮候補薬剤としては、塩酸クロルヘキシジン・ジフェンヒドラミン配合剤、吉草酸ジフルコルトロン・リドカイン、シコンエキス配合剤、トリベノシド・リドカイン、尿素、タクロリムス水和物、ゼラチン、酢酸ヒドロコルチゾン・ヒノキチオール配合剤、エトレチナート、カルシポトリオール、タカルシトールをそれぞれ挙げることができる。   In addition, diphenhydramine, diphenhydramine lauryl sulfate and crotamiton are used as antihistamines, estradiol is used as hormones, popidone iodine and iodine are used as disinfectants for skin, and lysozyme chloride and bromelain are used as external enzymes. Fluorouracil as an antineoplastic agent, sucrose / povidone iodine combination agent, alprostadil alphadex as skin ulcer drug, chlorhexidine hydrochloride / diphenhydramine combination agent, Diflucortron / Lidocaine herbate, sicon extract, tribenoside lidocaine, urea, tacrolimus hydrate, gelatin, hydrocortisone / hinokitiol acetate, etretinate, calcipotriol, tacalcito Mention may be made of Le respectively.

上記経皮薬剤又は経皮候補薬剤の剤型としては、ハップ剤、テープ剤、プラスター剤、軟膏剤、クリーム剤、液剤、ローション剤、散布剤、ムースタイプ、エアロゾルタイプ等を挙げることができる。   Examples of the dosage form of the transdermal drug or transdermal drug candidate include haps, tapes, plasters, ointments, creams, solutions, lotions, sprays, mousse types, aerosol types, and the like.

使用する皮膚切片としては、ヘアレス皮膚の切片が好ましく、その由来は特に制限されないが、マウス、ラット、イヌ、ウシ、ヒト等の哺乳動物の皮膚切片、中でも調製の簡便なヘアレスマウスの皮膚切片が好ましい。皮膚切片は、切除した皮膚の皮下脂肪を軽く分離するなど常法により調製することができる。また、皮膚切片として、特定の皮膚トランスポーターの発現が抑制された皮膚切片や、特定の皮膚トランスポーターの発現が増幅された皮膚切片を用いることもできる。   The skin section to be used is preferably a hairless skin section, and the origin thereof is not particularly limited. However, a skin section of a mammal such as a mouse, rat, dog, cow, or human, particularly a hairless mouse skin section that is easy to prepare. preferable. The skin section can be prepared by a conventional method such as lightly separating the subcutaneous fat of the excised skin. Moreover, as a skin section, a skin section in which expression of a specific skin transporter is suppressed or a skin section in which expression of a specific skin transporter is amplified can be used.

皮膚切片で皮下組織側と表皮側とに区画されたチャンバーとしては、垂直方向に皮膚切片を装着できるUssing-type Chamberを好適に例示することができる。これら区画されたチャンバーの皮下組織側か表皮側のいずれか一方には、経皮薬剤又は経皮候補薬剤を溶解した溶液が、他方には所定の溶液が収容されるが、皮下組織側の溶液は体温(約36〜37℃)に、表皮側の溶液は室温に維持される。また、チャンバーの両側の溶液に、95%O/5%COのガスを供給するなど、皮膚切片の生存条件下で皮膚透過性の程度が測定・評価される。As the chamber partitioned by the skin section on the subcutaneous tissue side and the epidermis side, a Ussing-type Chamber in which the skin section can be mounted in the vertical direction can be preferably exemplified. A solution in which a transdermal drug or a transdermal drug is dissolved is stored in either the subcutaneous tissue side or the epidermis side of these compartments, and a predetermined solution is stored in the other. Is maintained at body temperature (about 36-37 ° C.), and the epidermal solution is maintained at room temperature. In addition, the degree of skin permeability is measured and evaluated under the survival condition of the skin section, such as supplying 95% O 2 /5% CO 2 gas to the solution on both sides of the chamber.

皮膚透過性の測定を容易ならしめるために、放射性同位体又は蛍光物質等で標識した経皮薬剤又は経皮候補薬剤を有利に用いることができ、例えば、経皮薬剤又は経皮候補薬剤として、H 、14C、125I若しくは131I等の放射性同位体で標識した経皮薬剤化学物質又は経皮候補薬剤化学物質を有利に用いることができる。その他、皮膚透過性の測定を共焦点顕微鏡法により実施するために、細胞膜マーカーとしてFM4−64等の蛍光色素を共存させることもできる。In order to facilitate measurement of skin permeability, a transdermal drug or transdermal candidate drug labeled with a radioisotope or a fluorescent substance can be advantageously used. For example, as a transdermal drug or transdermal candidate drug, A transdermal drug chemical or a transdermal drug candidate labeled with a radioisotope such as 3 H, 14 C, 125 I or 131 I can be advantageously used. In addition, in order to perform skin permeability measurement by confocal microscopy, a fluorescent dye such as FM4-64 can also coexist as a cell membrane marker.

経皮薬剤又は経皮候補薬剤を溶解した皮下組織側の溶液としては、エネルギー源を含有する溶液、すなわちグルコースその他のエネルギー源となる栄養素を含有した液が好ましく、中でも体液にその組成が類似しているものが好ましく、ハンクス液、リンゲル液、クレブス・ヘンゼライト液を具体的に例示することができ、また、経皮薬剤又は経皮候補薬剤を溶解した表皮側の溶液としては、経皮薬剤又は経皮候補薬剤を溶解しうる液であれば特に制限されないが、上記エネルギー源を含有する溶液の他、プロピレングリコール、グリセロール、エチレングリコール、ソルビトール等の多価アルコール含有液や、エタノール含有液を具体的に例示することができ、中でもプロピレングリコール含有液やハンクス液を有利に用いることができる。したがって、好ましい態様として、経皮薬剤又は経皮候補薬剤を溶解した溶液として、皮下組織側が経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液を、表皮側が経皮薬剤又は経皮候補薬剤を溶解した多価アルコール含有溶液を、それぞれ用いる経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法や、経皮薬剤又は経皮候補薬剤を溶解した溶液が、皮下組織側及び表皮側ともに経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液である経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法を挙げることができる。   The solution on the subcutaneous tissue side in which the transdermal drug or transdermal candidate drug is dissolved is preferably a solution containing an energy source, that is, a solution containing glucose or other nutrients that serve as an energy source. Hank's solution, Ringer's solution, Krebs-Henseleit solution can be specifically exemplified, and the epidermal side solution in which the transdermal drug or transdermal candidate drug is dissolved may be a transdermal drug or transdermal drug. The solution is not particularly limited as long as it is a solution capable of dissolving the skin candidate drug. In addition to the solution containing the above energy source, a liquid containing a polyhydric alcohol such as propylene glycol, glycerol, ethylene glycol, sorbitol, or an ethanol-containing solution is specifically used. Among them, a propylene glycol-containing liquid or Hanks liquid can be advantageously used.Therefore, as a preferred embodiment, as a solution in which the transdermal drug or transdermal drug candidate is dissolved, a solution containing an energy source in which the subcutaneous tissue side dissolves the transdermal drug or transdermal drug candidate, and the epidermal side is transdermal drug or transdermal The percutaneous drug or transdermal candidate drug skin permeability assay method using the polyhydric alcohol-containing solution in which the candidate drug is dissolved, or the transdermal drug or transdermal candidate drug dissolved solution are used for the subcutaneous tissue side and the epidermis. Examples of the method for assaying the skin permeability of the transdermal drug or transdermal candidate drug, which are solutions containing an energy source in which the transdermal drug or transdermal drug candidate is dissolved on both sides, can be mentioned.

経皮薬剤又は経皮候補薬剤の皮膚透過性の検定に際しては、後述の実施例に記載されているように、非標識の経皮薬剤又は経皮候補薬剤を皮下組織側と表皮側とに共に用いて、放射性同位体又は蛍光物質等で標識した経皮薬剤又は経皮候補薬剤の飽和性経皮浸透を調べることや、表皮側の溶液のpHを変化させ、pHの相違による皮膚透過性の影響を調べることや、NaN及びNaFを皮下組織側と表皮側とに共に用いて、経皮薬剤又は経皮候補薬剤の浸透が、エネルギー依存性であるかどうかを調べることが好ましい。When testing the skin permeability of a transdermal drug or a transdermal candidate drug, as described in the Examples below, the unlabeled transdermal drug or transdermal candidate drug is applied to both the subcutaneous tissue side and the epidermis side. Use it to examine the saturation transdermal penetration of transdermal drugs or transdermal candidate drugs labeled with radioisotopes or fluorescent substances, or to change the pH of the solution on the epidermis side. It is preferable to examine the influence or to examine whether penetration of the transdermal drug or transdermal candidate drug is energy-dependent using NaN 3 and NaF on both the subcutaneous tissue side and the epidermis side.

次に、本発明の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法としては、経皮薬剤又は経皮候補薬剤を溶解した溶液、及び、経皮薬剤又は経皮候補薬剤と被検物質とを溶解した溶液を、皮膚切片で皮下組織側と表皮側とに区画されたチャンバー内の皮下組織側に注入し、他方に所定の溶液を注入して、前記皮膚切片の生存条件下、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度をそれぞれ測定し、皮膚透過性の程度を比較評価する方法であれば特に制限されるものではなく、上記被検物質としては、化学物質であっても、動植物や微生物の抽出物等の組成物であってもよく、例えば、上皮細胞基底側に存在する有機酸(アニオン)輸送担体阻害剤であるプロベネシド(probenecid)、ミトコンドリアの酸化的リン酸化を脱共役させるFCCP(カルボニルシアニドp−トリフルオロメトキシフェニルヒドラゾン)、アドレナリン及びコリン作動神経の遮断薬TEA(テトラエチルアンモニウム)などを挙げることができる。また、皮下組織側や表皮側の溶液の温度(液温)は特に制限されず、例えば、皮下組織側の溶液を体温に、表皮側の溶液を室温に維持したり、あるいは皮下組織側及び表皮側の溶液の温度を共に体温に維持して、所定時間後に経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定することができるが、皮下組織側の溶液を体温に、表皮側の溶液を室温に維持することが好ましい。さらに、上記の皮膚透過性の程度の測定・評価としては、皮膚透過の飽和性、阻害効果、方向指向性及びエネルギー依存性の1又は2以上の測定・評価を好適に挙げることができるが、他の高感度検出器を用いて低濃度で経皮薬剤又は経皮候補薬剤を測定・評価する方法も本発明に含まれ、評価に際しては、被検物質不存在下における対照と比較評価することが好ましい。   Next, as a method for screening a substance for promoting or suppressing skin permeability of the transdermal drug or transdermal candidate drug of the present invention, a solution in which the transdermal drug or transdermal candidate drug is dissolved, and the transdermal drug or transdermal candidate A solution in which a drug and a test substance are dissolved is injected into a subcutaneous tissue side in a chamber divided into a subcutaneous tissue side and an epidermis side by a skin section, and a predetermined solution is injected into the other side of the skin section. The method is particularly limited if it is a method for measuring the degree of skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug after a predetermined time under the living conditions, and comparing and evaluating the degree of skin permeability. The test substance may be a chemical substance or a composition such as an extract of animals or plants or microorganisms. For example, it transports an organic acid (anion) present on the basal side of epithelial cells. Pro is a carrier inhibitor Neshido (probenecid), FCCP to uncouple mitochondrial oxidative phosphorylation (carbonyl cyanide p- trifluoromethoxyphenyl hydrazone), blocker TEA (tetraethylammonium) of adrenaline and cholinergic nerves and the like. Further, the temperature (liquid temperature) of the solution on the subcutaneous tissue side or the epidermis side is not particularly limited. For example, the solution on the subcutaneous tissue side is maintained at the body temperature, the solution on the epidermis side is maintained at room temperature, or the subcutaneous tissue side and the epidermis are maintained. The temperature of the side solution can be maintained at body temperature, and the degree of skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug can be measured after a predetermined time. Is preferably maintained at body temperature and the epidermal solution at room temperature. Furthermore, as the measurement / evaluation of the above-mentioned degree of skin permeability, one or more measurement / evaluation of saturation of skin permeation, inhibitory effect, direction directivity and energy dependence can be preferably mentioned. A method of measuring and evaluating a transdermal drug or transdermal drug candidate at a low concentration using another high-sensitivity detector is also included in the present invention, and the evaluation should be performed by comparing with a control in the absence of a test substance. Is preferred.

本発明の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法においても、経皮薬剤又は経皮候補薬剤として、放射性同位体又は蛍光物質等で標識した経皮薬剤又は経皮候補薬剤を用いることが好ましい。また、経皮薬剤又は経皮候補薬剤を溶解した溶液として、上記本発明の検定方法におけると同様に、皮下組織側が経皮薬剤又は経皮候補薬剤を溶解したハンクス液等のエネルギー源を含有する溶液を有利に用いることができ、表皮側が経皮薬剤又は経皮候補薬剤を溶解したプロピレングリコール等の多価アルコール含有液やハンクス液等のエネルギー源を含有する溶液を有利に用いることができる。さらに、スクリーニングに際して、上記本発明の検定方法におけると同様に、非標識の経皮薬剤又は経皮候補薬剤を皮下組織側と表皮側とに共に用いて、放射性同位体又は蛍光物質等で標識した経皮薬剤又は経皮候補薬剤の飽和性経皮浸透を測定・評価することや、表皮側の溶液のpHを変化させ、pHの相違による皮膚透過性の影響を測定・評価することや、NaN及びNaFを皮下組織側と表皮側とに共に用いて、経皮薬剤又は経皮候補薬剤の浸透が、エネルギー依存性であるかどうかを測定・評価することが好ましい。In the method for screening a substance for promoting or suppressing skin permeability of a transdermal drug or transdermal candidate drug of the present invention, the transdermal drug or transdermal drug labeled with a radioisotope or fluorescent substance is used as the transdermal drug or transdermal candidate drug. It is preferable to use a skin candidate drug. Further, as a solution in which the transdermal drug or transdermal candidate drug is dissolved, the subcutaneous tissue side contains an energy source such as Hanks' solution in which the transdermal drug or transdermal candidate drug is dissolved, as in the above-described assay method of the present invention. A solution can be advantageously used, and a solution containing an energy source such as a polyhydric alcohol-containing liquid such as propylene glycol or Hank's liquid in which the epidermal side is dissolved with a transdermal drug or transdermal candidate drug can be advantageously used. Further, at the time of screening, as in the above-described assay method of the present invention, unlabeled transdermal drug or transdermal candidate drug was used for both the subcutaneous tissue side and the epidermis side and labeled with a radioisotope or fluorescent substance. Measure and evaluate the saturation transdermal penetration of transdermal drugs or drug candidates, change the pH of the solution on the epidermis side, measure and evaluate the effect of skin permeability due to pH differences, NaN It is preferable to measure and evaluate whether penetration of the transdermal drug or transdermal candidate drug is energy-dependent using 3 and NaF on both the subcutaneous tissue side and the epidermis side.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。実施例において、全てのデータは、平均値±標準誤差で示し、統計学的解析をStudent’s t testで行った。平均値間の相違は、p値が0.05未満であるときに有意とした。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations. In the examples, all data are shown as mean ± standard error, and statistical analysis was performed by Student's t test. Differences between the mean values were considered significant when the p-value was less than 0.05.

[材料と動物]
14C]インドメタシン(740MBq/mol)及び[H]マンニトール(740GBq/mol)は、PerkinElmer Life Sciences, Inc.及びAmerican Radiolabeled Chemicals Inc.から、それぞれ購入した。Fluo−3−AMとFM4−64は、それぞれ株式会社同仁化学研究所及びMolecular Probe 社から購入した。SUPERSCRIPTTMII RNase H-はInvitrogen Corp.から購入した。正常ヒト成人皮膚cDNAは、Invitrogen Corp. 及びBioChain Institute Inc.から購入した。また、5週齢から7週齢のオスのヘアレスマウス(HR−1)を日本エスエルシー株式会社から、5週齢から7週齢のオスのヘアレスマウス(FVB)を日本クレア株式会社から購入した。FVB/Mrp1(−/−)マウスは、文献(Nature Med.3:1275-1279,1997)記載の方法に準じて作製した。動物実験は、金沢大学宝町キャンパスの動物実験に関する指針に従って行われた。
[逆転写−ポリメラーゼ連鎖反応(RT−PCR)]
ヘアレスマウスの皮膚を採取し、β−メルカプトエタノールを加えたRLT緩衝液を入れ、RNeasy Mini Kit(QIAGEN社製)を用いて全RNAを抽出した。1マイクログラムの全RNAを、オリゴ(dT)12−18(Life technologies)及びSUPERSCRIPTTM II RNase H- Reverse Transcriptase 200 Uを用いて逆転写しcDNAを作製した。反応後の混合物に、適切なセットのマウスプライマー(表1)及びヒトプライマー(表2)を用いて、PCRを30サイクル行った。PCR産物を、2%のアガロースゲル上に電気泳動し、臭化エチジウムで染色した。PCRの各生成物の量を、AE−6955Light Capture instrument(ATTO社製)で測定した。
[Materials and animals]
[ 14 C] Indomethacin (740 MBq / mol) and [ 3 H] mannitol (740 GBq / mol) were purchased from PerkinElmer Life Sciences, Inc. and American Radiolabeled Chemicals Inc., respectively. Fluo-3-AM and FM4-64 were purchased from Dojindo Laboratories Co., Ltd. and Molecular Probe, respectively. SUPERSCRIPT II RNase H - was purchased from Invitrogen Corp. Normal human adult skin cDNA was purchased from Invitrogen Corp. and BioChain Institute Inc. In addition, 5 to 7-week-old male hairless mice (HR-1) were purchased from Japan SLC Co., Ltd. and 5 to 7-week-old male hairless mice (FVB) were purchased from Clea Japan Co., Ltd. . FVB / Mrp1 (− / −) mice were prepared according to the method described in the literature (Nature Med. 3: 1275-1279, 1997). Animal experiments were conducted according to the guidelines for animal experiments at Kanazawa University Takaramachi Campus.
[Reverse transcription-polymerase chain reaction (RT-PCR)]
Hairless mouse skin was collected, RLT buffer added with β-mercaptoethanol was added, and total RNA was extracted using RNeasy Mini Kit (manufactured by QIAGEN). One microgram of total RNA was reverse transcribed using oligo (dT) 12-18 (Life technologies) and SUPERSCRIPT II RNase H - Reverse Transcriptase 200 U to produce cDNA. The mixture after the reaction was subjected to 30 cycles of PCR using an appropriate set of mouse primers (Table 1) and human primers (Table 2). PCR products were electrophoresed on a 2% agarose gel and stained with ethidium bromide. The amount of each PCR product was measured with an AE-6955 Light Capture instrument (manufactured by ATTO).

[Ussing‐type Chamber Methodによる浸透実験]
浸透実験を、文献(J. Pharm. Pharmacol. 49: 108-112, 1997、J. Pharm. Sci. 92: 1502-1508, 2003)記載の方法で行った。簡潔に言うと、ヘアレスマウスを安楽死させ、直に皮膚を切除して皮下脂肪を軽く分離した皮膚切片を、0.766cmの露出区域(exposed area)を有するUssing-type Chamber内に縦方向に装着した。図1に示すように、皮膚切片で区画された皮下組織側のチャンバー内に、ハンクス液(HBSS、136.7mMのNaCl、5.36mMのKCl、0.952mMのCaCl、0.812mMのMgSO、0.441mMのKHPO、0.385mMのNaPO、25mMのD−グルコース及び10mMのHEPES、pH7.4)1.2mLを、表皮側のチャンバー内に、プロピレングリコール:水(1:1)の混合溶液1.2mLをそれぞれ添加し、溶液の温度を、皮下組織側では37℃に、表皮側では室温に維持した。皮膚組織の生存度を維持するために、チャンバーの両側の溶液に、95%O/5%COのガスを、輸送実験中に供給した。O/COの気泡は、組織に酸素を供給しただけではなく、組織の周囲の溶液を混和した。
[Penetration experiment by Ussing-type Chamber Method]
The permeation experiment was conducted by the method described in the literature (J. Pharm. Pharmacol. 49: 108-112, 1997, J. Pharm. Sci. 92: 1502-1508, 2003). Briefly, a hairless mouse was euthanized, and a skin section obtained by directly excising the skin and lightly separating the subcutaneous fat was longitudinally placed in a Ussing-type Chamber with an exposed area of 0.766 cm 2. Attached to. As shown in FIG. 1, Hanks's solution (HBSS, 136.7 mM NaCl, 5.36 mM KCl, 0.952 mM CaCl 2 , 0.812 mM MgSO is contained in a chamber on the subcutaneous tissue side partitioned by a skin section. 4, KH 2 PO 4 of 0.441mM, Na 2 PO 4 of 0.385 mm, 25 mM of D- glucose and 10mM of HEPES, pH 7.4) and 1.2 mL, into the chamber of the epidermis side, propylene glycol: water 1.2 mL of the (1: 1) mixed solution was added, and the temperature of the solution was maintained at 37 ° C. on the subcutaneous tissue side and at room temperature on the epidermis side. To maintain skin tissue viability, 95% O 2 /5% CO 2 gas was supplied to the solution on both sides of the chamber during the transport experiment. O 2 / CO 2 bubbles not only supplied oxygen to the tissue, but also mixed the solution around the tissue.

14C]インドメタシンと[H]マンニトールとの経皮浸透性を測定するために、テスト化合物を皮下組織側又は表皮側に用いて、所定の時間に、0.4mLの溶液を反対側から採取し、同量の新鮮な溶液と交換した。採取したサンプルを液体シンチレーションカウンターで測定した。また、[14C]インドメタシンの経皮浸透に対するpHの効果を調べるために、皮下組織側ではハンクス液(pH7.4)としたのに対し、表皮側での試験溶液をプロピレングリコール:20mMのリン酸緩衝液(1:1)で構成した。浸透性係数の値(μL/cm2/hr、Psec及びPabs)は、時間(hr)に対する浸透性のプロットの直線部の傾きから求めた(μL/cm2)。
[薄層クロマトグラフィー(TLC)方法]
TLCを用いて、インドメタシングルクロニドが実験中に発生するかどうかを文献(Pharm. Res. 17: 432-438, 2000)記載の方法に準じて調べた。簡潔に言うと、[14C]インドメタシンの経皮浸透実験の後、テスト化合物の反対側の培地を、ジエチルエーテル(6mL)で抽出した。抽出物が乾燥するまで蒸発させ、残留物をエタノールに溶解し、この溶液をTLCプレート上にプロットした。代謝物を、クロロホルム:酢酸(95:5v/v)の混合液で分離し、ラジオアイソトープスキャナーを用いて定量した。得られた強度と、標準の[14C]インドメタシンのものとを比較した。
[共焦点顕微鏡法]
ヘアレスマウスと脱毛クリームで脱毛し24時間回復させたFVB及びFVB/Mrp1(−/−)マウスの皮膚を、それぞれ氷上にてマイクロスライサー(DTK−2000,Dosaka EM Co., LTD.)で皮膚切片(厚さ:100μm)を作製した。皮膚切片はFluo−3−AM(10μM)とFM4−64(1μM)を添加した4°Cのハンクス液(pH7.4)に2時間浸透させた後、皮膚切片をLabTek chambered micro cover glass(24X60mm)にのせ、共焦点顕微鏡(Zeiss Axiovert 100M LSM510)に装着し、室温(20〜22°C)で、488nmと543nmレーザーを使用し、水浸レンズ(630倍)で蛍光を観察した。
[インドメタシンの方向性経皮浸透]
14C]インドメタシン(47μM)及び[H]マンニトール(0.25μM)の経皮浸透性を、Ussing-type chamber methodを用いて、皮下から表皮側に向って(四角)、及び表皮から皮下組織側に向って(丸)4時間、ヘアレスマウス皮膚で調べた。結果を図2に示す(各点は、3〜4回の実験における平均値±標準誤差を表す。)。[14C]インドメタシンの経皮浸透は、直線的であり、分泌方向の浸透性(皮下組織側から表皮側;Psec)は、吸収方向(表皮から皮下組織側;Pabs)と比較して、4倍高かった(図2−A)。これに対し、[H]マンニトールの経皮浸透では、一方向性の輸送は観察されなかった(図2−B)。[14C]インドメタシンの浸透性は、[H]マンニトールと比べて、かなり高かった(5倍以上)。
[反対側に現れる放射能は、主として親化合物によるものである。]
インドメタシングルクロニドは、cMOAT/MRP2の基質であり(Pharm. Res. 17: 432-438, 2000)、インドメタシンはOAT1(J. Pharmacol. Exp. Ther. 303:534-539, 2002)、OAT2(J. Pharmacol. Exp. Ther. 298:1179-1184, 2001)、OAT3(J. Pharmacol. Exp. Ther. 303:534-539, 2002)及びNPT1(Biochem. Biophys. Res. Commun. 270: 254-259, 2000)により輸送されるが、cMOAT/MRP2(Pharm. Res. 17: 432-438, 2000)によっては輸送されない。インドメタシンが、経皮浸透実験中に代謝したかどうかを調べるために、[14C]インドメタシンを皮下組織側に添加した後、表皮側に現れた放射能を、6時間の薄層クロマトグラフィー(TLC)により分離した。[14C]インドメタシンの回収率は、80%以上であった。標識化合物の95%以上は、[14C]インドメタシンであった。したがって、本実験におけるインドメタシンの代謝は、ごくわずかであるとみなされた。
[インドメタシンの飽和性経皮浸透]
能動輸送の重要な特徴の一つは飽和性にあるので、[14C]インドメタシンの経皮浸透が飽和性であるかどうか調べた。[14C]インドメタシン(47μM)及び[H]マンニトール(0.25μM)の経皮浸透を、Ussing type chamberの両側に添加した非標識インドメタシン(500μM)の存在下(白柱)、非存在下(黒柱)で4時間調べた結果を図3に示す(各柱は、3〜4回の実験における平均値±標準誤差を表す。)。その結果、非標識インドメタシン(500μM)は[14C]インドメタシンのPsecを増加させたが、Pabsには影響しなかった(図3―A)。これに対し、[H]マンニトールの浸透性に対する非標識インドメタシンの効果は、観察されなかった(図3−B)。したがって、非標識インドメタシンの効果は、[14C]インドメタシンの浸透に特異的であり、[14C]インドメタシンの経皮浸透は、分泌方向に飽和性である。
[インドメタシンのATP依存性経皮浸透]
14C]インドメタシンの浸透が、エネルギー依存性であるかどうか調べるために、[14C]インドメタシンの浸透に対するATP消費(depletor)の効果を調べた。Ussing-type chamberの両側に、NaN及びNaF(10mM)を負荷してから30分後、[14C]インドメタシン(47μM)及び[H]マンニトール(0.25μM)の経皮浸透性を、添加したNaN及びNaF(10mM)の存在下(白円)及び非存在下(黒円)で4時間後に観察した結果を図4に示す(各点は、4〜5回の実験における平均値±標準誤差を表す。)。その結果、[14C]インドメタシンのPsecが、NaN及びNaFの存在下で増加すること(図4−A)を見い出したが、[H]マンニトールの浸透性に対しては、何の効果も観察されなかった(図4−B)。これらの結果は、吸収方向の[14C]インドメタシンの浸透が、エネルギー依存性であることを示した。
[インドメタシンの経皮浸透に対するpHの効果]
皮膚の環境が、弱酸性であるため、[14C]インドメタシンの経皮浸透性に対するpHの効果を確認した。ヘアレスマウス皮膚のpHは、比較的一定のままであり(pH5.9)(J. Investig. Dermatol. Symp. Proc. 3: 110-113, 1998)、ヒトの皮膚のpHに類似していた(pH4−6)(21)。チャンバーの表皮側で[14C]インドメタシン(47μM)及び[H]マンニトール(0.25μM)の経皮浸透性の係数を、異なるpH値(pH5.0、6.0、7.4)で、吸収方向(A)及び分泌方向(B)で観察した結果を図5に示す(各柱は、4〜5回の実験における平均値±標準誤差を表す。)。インドメタシンのpKa値は4.5であるので、表皮側の培地のpH(5.0、6.0及び7.4)の変化は、インドメタシンのイオン化程度を変更させた。表皮側のpH値が減少すると、[14C]インドメタシンのPabsが上昇することを見い出した。これに対して、[H]マンニトールのPabsには何の変化も観察されなかった(図5−A)。反対に、表皮側において、[14C]インドメタシン又は[H]マンニトールのPsecに、pHの効果は観察されなかった(図5−B)。その結果、[14C]インドメタシンの一方向性の浸透は、表皮側においてpH値の減少につれて消失した。
[表皮側における、pH5.0でのインドメタシンの飽和性浸透]
表皮側において、pH5.0での[14C]インドメタシンのPabsを、非標識インドメタシンの非存在下又は存在下で調べた。[14C]インドメタシン(47μM)及び[H]マンニトール(0.25μM)(B)の経皮浸透性を、Ussing-type chamberの両側に添加した非標識インドメタシン(500μM)の存在下(白)及び非存在下(黒)で4時間後に調べた結果を図6に示す(各点は、3〜5回の実験における平均値±標準誤差を表す。)。なお、非標識インドメタシンの存在下及び非存在下とも、チャンバーの表皮側のpH値は、5.0に保たれた。その結果、表皮側において、pH5.0で、[14C]インドメタシンのPabsは、非標識インドメタシン(500μM)によって増加した(図6−A)。しかし、[H]マンニトールのPabsに対する、非標識インドメタシン(500μM)の効果は観察されなかった(図6−B)。[14C]インドメタシンの吸収方向の浸透は飽和性であるとみなされた。
[Fluo−3の方向性経皮浸透]
Fluo−3の方向性経皮浸透を、Fluo−3のカルボキシル基を脂溶性のアセトキシメチルエステル体にして細胞膜透過性とし、細胞内のエステラーゼにより加水分解されてFluo−3となるFluo−3−AM(1-[2-Amino-5-(2,7-dichloro-6-hydroxy-3-
oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid, pentaacetoxymethyl ester;10μM)と蛍光色素FM4−64(1μM)を添加したハンクス液を浸透させ、Ussing-type chamberに設置し、チャンバーの両側から排泄されたFluo−3を調べた。また、Fluo−3−AMに、それぞれプロベネシド(probenecid)5mM、FCCP5μM、TEA5mMを加えた検体についても同様にFluo−3の方向性経皮浸透を調べた。結果を図7に示す。その結果、皮膚組織内で生成されたFluo−3の経皮浸透は、直線的であり、吸収方向(皮膚組織内から皮下組織側;図7左のコントロール)は、分泌方向の浸透性(皮膚組織内から表皮側;図7右のコントロール)と比較して、50倍高かった。また、プロベネシド、FCCP、TEAの中では、FCCPを共存させた場合、Fluo−3単独に比べて、約2倍の吸収を示した。
[皮膚内におけるトランスポーターの発現]
ヘアレスマウス皮膚の全RNA(パネルA)と、正常ヒト皮膚のcDNA(パネルB)にそれぞれ、RT−PCR及びPCRを行った。ヒトcDNAは、年齢80歳/女性(パネルB−I)、年齢44歳/男性(パネルB−II)及び年齢44歳/男性、年齢58歳/女性、年齢65歳/女性の3人の混合物(パネルB−III)を用いた。PCR生成物は、2%アガロースゲル電気泳動により分析し、臭化エチジウムで染色した。結果を図8に示す。
In order to measure the percutaneous permeability of [ 14 C] indomethacin and [ 3 H] mannitol, a test compound was used on the subcutaneous tissue side or epidermal side, and 0.4 mL of solution was added from the opposite side at a predetermined time. It was collected and replaced with the same amount of fresh solution. The collected sample was measured with a liquid scintillation counter. In order to examine the effect of pH on the percutaneous penetration of [ 14 C] indomethacin, Hanks' solution (pH 7.4) was used on the subcutaneous tissue side, whereas the test solution on the epidermis side was propylene glycol: 20 mM phosphorus. Consists of acid buffer (1: 1). The values of permeability coefficient (μL / cm 2 / hr, P sec and P abs ) were determined from the slope of the linear part of the permeability plot with respect to time (hr) (μL / cm 2 ).
[Thin layer chromatography (TLC) method]
Using TLC, it was investigated whether or not indometha single clonide was generated during the experiment according to the method described in the literature (Pharm. Res. 17: 432-438, 2000). Briefly, after a [ 14 C] indomethacin percutaneous penetration experiment, the medium opposite the test compound was extracted with diethyl ether (6 mL). The extract was evaporated to dryness, the residue was dissolved in ethanol and the solution was plotted on a TLC plate. Metabolites were separated with a mixture of chloroform: acetic acid (95: 5 v / v) and quantified using a radioisotope scanner. The strength obtained was compared with that of standard [ 14 C] indomethacin.
[Confocal microscopy]
Skins of hairless mice and FVB and FVB / Mrp1 (− / −) mice that had been depilated with a hair removal cream and recovered for 24 hours were each cut on skin with a microslicer (DTK-2000, Dosaka EM Co., LTD.). (Thickness: 100 μm) was produced. The skin section was infiltrated with 4 ° C Hanks solution (pH 7.4) supplemented with Fluo-3-AM (10 μM) and FM4-64 (1 μM) for 2 hours, and then the skin section was LabTek chambered micro cover glass (24 × 60 mm). ) And mounted on a confocal microscope (Zeiss Axiovert 100M LSM510), and fluorescence was observed with a water immersion lens (630 ×) at room temperature (20-22 ° C.) using 488 nm and 543 nm lasers.
[Directed percutaneous penetration of indomethacin]
Percutaneous permeability of [ 14 C] indomethacin (47 μM) and [ 3 H] mannitol (0.25 μM) using the Ussing-type chamber method, from subcutaneous to epidermal side (square), and subcutaneous from the epidermis The hairless mouse skin was examined for 4 hours toward the tissue side (circle). The results are shown in FIG. 2 (each point represents an average value ± standard error in 3 to 4 experiments). The percutaneous penetration of [ 14 C] indomethacin is linear and the permeability in the direction of secretion (from the subcutaneous tissue side to the epidermis side; P sec ) is compared to the absorption direction (from the epidermis to the subcutaneous tissue side; P abs ). It was 4 times higher (FIG. 2-A). In contrast, unidirectional transport was not observed in the transdermal penetration of [ 3 H] mannitol (FIG. 2-B). The permeability of [ 14 C] indomethacin was much higher (more than 5 times) compared to [ 3 H] mannitol.
[The radioactivity appearing on the opposite side is mainly due to the parent compound. ]
Indomethacin clonide is a substrate of cMOAT / MRP2 (Pharm. Res. 17: 432-438, 2000), and indomethacin is OAT1 (J. Pharmacol. Exp. Ther. 303: 534-539, 2002) and OAT2 (J. Pharmacol. Exp. Ther. 298: 1179-1184, 2001), OAT3 (J. Pharmacol. Exp. Ther. 303: 534-539, 2002) and NPT1 (Biochem. Biophys. Res. Commun. 270: 254-259, 2000) but not by cMOAT / MRP2 (Pharm. Res. 17: 432-438, 2000). In order to examine whether indomethacin was metabolized during the percutaneous penetration experiment, after [ 14 C] indomethacin was added to the subcutaneous tissue side, the radioactivity appearing on the epidermis side was analyzed by 6-hour thin layer chromatography (TLC). ). The recovery rate of [ 14 C] indomethacin was 80% or more. More than 95% of the labeled compounds were [ 14 C] indomethacin. Therefore, indomethacin metabolism in this experiment was considered to be negligible.
[Saturable transdermal penetration of indomethacin]
Since one of the important features of active transport is saturation, it was investigated whether the transdermal penetration of [ 14 C] indomethacin was saturable. [ 14 C] Indomethacin (47 μM) and [ 3 H] mannitol (0.25 μM) percutaneous infiltration in the presence of unlabeled indomethacin (500 μM) added to both sides of the Ussing type chamber (white column), in the absence FIG. 3 shows the results obtained by examining (black pillars) for 4 hours (each pillar represents an average value ± standard error in 3 to 4 experiments). As a result, unlabeled indomethacin (500 μM) increased P sec of [ 14 C] indomethacin, but did not affect P abs (FIG. 3-A). In contrast, the effect of unlabeled indomethacin on [ 3 H] mannitol permeability was not observed (FIG. 3-B). Therefore, the effect of unlabeled indomethacin is specific for penetration [14 C] indomethacin, [14 C] transdermal penetration of indomethacin is saturable secretion direction.
[ATP-dependent percutaneous penetration of indomethacin]
In order to investigate whether the penetration of [ 14 C] indomethacin is energy dependent, the effect of ATP depletor on the penetration of [ 14 C] indomethacin was examined. 30 minutes after loading NaN 3 and NaF (10 mM) on both sides of the Ussing-type chamber, the transdermal permeability of [ 14 C] indomethacin (47 μM) and [ 3 H] mannitol (0.25 μM) The results observed after 4 hours in the presence (white circle) and absence (black circle) of added NaN 3 and NaF (10 mM) are shown in FIG. 4 (each point is an average value in 4 to 5 experiments). ± standard error.) As a result, it was found that P sec of [ 14 C] indomethacin increases in the presence of NaN 3 and NaF (FIG. 4-A), but for the permeability of [ 3 H] mannitol, No effect was observed (FIG. 4-B). These results indicated that the penetration of [ 14 C] indomethacin in the absorption direction was energy dependent.
[Effect of pH on percutaneous penetration of indomethacin]
Since the skin environment is weakly acidic, the effect of pH on the percutaneous permeability of [ 14 C] indomethacin was confirmed. The pH of hairless mouse skin remained relatively constant (pH 5.9) (J. Investig. Dermatol. Symp. Proc. 3: 110-113, 1998) and was similar to the pH of human skin ( pH 4-6) (21). On the epidermal side of the chamber, [ 14 C] indomethacin (47 μM) and [ 3 H] mannitol (0.25 μM) transdermal permeability coefficients at different pH values (pH 5.0, 6.0, 7.4). The results observed in the absorption direction (A) and the secretion direction (B) are shown in FIG. 5 (each column represents an average value ± standard error in 4 to 5 experiments). Since the pKa value of indomethacin is 4.5, changes in the pH (5.0, 6.0 and 7.4) of the epidermal medium changed the degree of ionization of indomethacin. It was found that the P abs of [ 14 C] indomethacin increases when the pH value on the epidermis side decreases. In contrast, no changes were observed in the P abs of [ 3 H] mannitol (FIG. 5-A). Conversely, on the epidermal side, no effect of pH was observed on P sec of [ 14 C] indomethacin or [ 3 H] mannitol (FIG. 5-B). As a result, the unidirectional penetration of [ 14 C] indomethacin disappeared as the pH value decreased on the epidermis side.
[Saturable penetration of indomethacin at pH 5.0 on the epidermis side]
On the epidermal side, [ 14 C] indomethacin P abs at pH 5.0 was examined in the absence or presence of unlabeled indomethacin. In the presence of unlabeled indomethacin (500 μM), the transdermal permeability of [ 14 C] indomethacin (47 μM) and [ 3 H] mannitol (0.25 μM) (B) added to both sides of the Ussing-type chamber (white) And the result investigated after 4 hours in absence (black) is shown in FIG. 6 (each point represents the average value ± standard error in 3-5 experiments). Note that the pH value on the epidermal side of the chamber was maintained at 5.0 in the presence and absence of unlabeled indomethacin. As a result, on the epidermal side, at pH 5.0, [ 14 C] indomethacin P abs was increased by unlabeled indomethacin (500 μM) (FIG. 6A). However, the effect of unlabeled indomethacin (500 μM) on [ 3 H] mannitol P abs was not observed (FIG. 6-B). The penetration of [ 14 C] indomethacin in the absorption direction was considered saturable.
[Directed percutaneous penetration of Fluo-3]
Fluo-3 directional percutaneous penetration of Fluo-3 is permeabilized by converting the carboxyl group of Fluo-3 into a fat-soluble acetoxymethyl ester, and is permeabilized by intracellular esterase to become Fluo-3. AM (1- [2-Amino-5- (2,7-dichloro-6-hydroxy-3-
oxo-9-xanthenyl) phenoxy] -2- (2-amino-5-methylphenoxy) ethane-N, N, N ′, N′-tetraacetic acid, pentaacetoxymethyl ester; 10 μM) and fluorescent dye FM4-64 (1 μM) The added Hanks solution was permeated and placed in a Ussing-type chamber, and Fluo-3 excreted from both sides of the chamber was examined. Similarly, directional transdermal penetration of Fluo-3 was also examined for specimens obtained by adding probenecid 5 mM, FCCP 5 μM, and TEA 5 mM to Fluo-3-AM. The results are shown in FIG. As a result, the percutaneous penetration of Fluo-3 produced in the skin tissue is linear, and the absorption direction (from the skin tissue to the subcutaneous tissue side; control on the left in FIG. 7) is the permeability in the direction of secretion (skin From inside the tissue to the epidermis side; the control on the right in FIG. In probenecid, FCCP, and TEA, when FCCP was coexisted, the absorption was about twice that of Fluo-3 alone.
[Expression of transporter in skin]
RT-PCR and PCR were performed on hairless mouse skin total RNA (panel A) and normal human skin cDNA (panel B), respectively. Human cDNA is a mixture of 3 ages of age 80 / female (panel BI), age 44 / male (panel B-II) and age 44 / male, age 58 / female, age 65 / female. (Panel B-III) was used. PCR products were analyzed by 2% agarose gel electrophoresis and stained with ethidium bromide. The results are shown in FIG.

パネルAの1〜32レーンは、1,Mdr1a;2,Mdr1b;3,Mrp1;4,Mrp2;5,Mrp3;6,Mrp4;7,Mrp5;8,Mrp6;9,Smvt;10,PepT1;11,PepT2;12,Mct1;13,Mct2;14,Mct3;15,Mct4;16,Npt1;17,Oatp1;18,Oapt2;19,Oapt3;20,Oatp4;21,Oatp5;22,Oatp11;23,Oatp14;24,mPGT;25,Oct1;26,Oct2;27,Oct3;28,Octn1;29,Octn2;30,Octn3;31,Oat1;32,Oat2をそれぞれ示す。   The lanes 1-32 in Panel A are: 1, Mdr1a; 2, Mdr1b; 3, Mrp1; 4, Mrp2; 5, Mrp3; 6, Mrp4; 7, Mrp5; 8, Mrp6; 9, Smvt; 10, PepT1; , PepT2; 12, Mct1; 13, Mct2; 14, Mct3; 15, Mct4; 16, Npt1; 17, Oatt1; 18, Oapt2; 19, Oapt3; 20, OAtp4; 21, Oatt5; 22, Oatt11; 24, mPGT; 25, Oct1; 26, Oct2; 27, Oct3; 28, Octn1; 29, Octn2; 30, Octn3; 31, Oat1; 32, Oat2.

また、パネルBの1〜38レーンは、1,β−アクチン;2,Urat1;3,Mrp1;4,Mrp2;5,Mrp3;6,Mrp4;7,Mrp5;8,Mrp6;9,Mrp7;10,Oat1;11,Oat2;12,Oat3;13,Oat4;14,Oatp−A;15,Oatp−B;16,Oatp−C;17,Oatp−D;18,Oatp−E;19,Oatp8;20,Mdr1;21,Oct1;22,Oct2;23,Oct3;24,Octn1;25,Octn2;26,Npt1;27,Npt;28,Pept1;29,Pept2;30,Ae2;31,Nhe3;32,Glut5;33,Ent1;34,Mct1;35,Mct2;26,Mct3;37,Mct4;38,Mct5をそれぞれ示す。   In addition, lanes 1 to 38 of panel B are 1, β-actin; 2, Urat1; 3, Mrp1; 4, Mrp2; 5, Mrp3; 6, Mrp4; 7, Mrp5; 8, Mrp6; 9, Mrp7; 10 11, Oat2; 12, Oat3; 13, Oat4; 14, Oatp-A; 15, Oatp-B; 16, Oatp-C; 17, Oatp-D; 18, Oatp-E; , Mdr1; 21, Oct1; 22, Oct2; 23, Oct3; 24, Octn1; 25, Octn2; 26, Npt1; 27, Npt; 28, Pept1; 29, Pept2; 30, Ae2; 31, Nhe3; 32, Glut5 33, Ent1; 34, Mct1; 35, Mct2; 26, Mct3; 37, Mct4; 38, Mct5, respectively It is.

ヘアレスマウス皮膚で、MRP1、MRP3、MRP4、MRP5、ペプチドトランンスポーター1(PEPT1)、PEPT2、モノカルボン酸トランスポーター1(MCT1)、MCT2、MCT4、OATP3、OATP11、プロスタグランジントランスポーター(PGT)、有機カチオントランスポーター3(OCT3)、有機カチオン/カルニチントランスポーター1(OCTN1)、OCTN2及びOCTN3の発現を観察した(図8−A)。   In hairless mouse skin, MRP1, MRP3, MRP4, MRP5, peptide transporter 1 (PEPT1), PEPT2, monocarboxylic acid transporter 1 (MCT1), MCT2, MCT4, OATP3, OATP11, prostaglandin transporter (PGT) The expression of organic cation transporter 3 (OCT3), organic cation / carnitine transporter 1 (OCTN1), OCTN2 and OCTN3 was observed (FIG. 8-A).

また、正常ヒト皮膚(ResGen Invitrogen 社製及びBiochain Institute社製)のcDNA内で、トランスポーターの発現を観察した。正常ヒト皮膚で、MRP1、MRP3、MRP4、MRP5、MRP6、GLUT5、AE2、MCT1、MCT4、MCT5、OATP−B、OATP−D、OATP−E、OCTN1、OCTN2及びENT1の発現を観察した(図8−B)。MRP2、MDR1、PEPT1、PEPT2、MCT2、MCT3、OCT1、OCT3及びURAT1の発現は、ドナーによっては検出され、発現に個体差のあることが示唆された。
[考察]
非標識インドメタシン(500μM)による飽和は、分泌方向において、明らかに観察されたが、[14C]インドメタシンの飽和された浸透は、表皮区画において、低pHで、吸収方向においても見い出された。これらの結果は、インドメタシン輸送に複数の輸送システムが関与しているのであれば説明できる。経皮吸収の効率の点からは、このような吸収方向の非直線の動態学は重要である。吸収方向のインドメタシンの経皮浸透を飽和するために、インドメタシンを経皮投与したときの皮膚表面における濃度は、上記実施例で用いた非標識インドメタシンの濃度(500μM)と比較すると、通常とても高い。このように、上記実施例の結果は、経皮投与した薬剤の浸透性は、投与した濃度に左右されることを示唆している。
In addition, the expression of the transporter was observed in cDNA of normal human skin (manufactured by ResGen Invitrogen and Biochain Institute). Expression of MRP1, MRP3, MRP4, MRP5, MRP6, GLUT5, AE2, MCT1, MCT4, MCT5, OATP-B, OATP-D, OATP-E, OCTN1, OCTN2, and ENT1 was observed in normal human skin (FIG. 8). -B). The expression of MRP2, MDR1, PEPT1, PEPT2, MCT2, MCT3, OCT1, OCT3 and URAT1 was detected depending on the donor, suggesting that there is an individual difference in expression.
[Discussion]
Saturation with unlabeled indomethacin (500 μM) was clearly observed in the secretory direction, whereas saturated penetration of [ 14 C] indomethacin was also found in the epidermal compartment at low pH and in the absorption direction. These results can be explained if multiple transport systems are involved in indomethacin transport. From the viewpoint of the efficiency of percutaneous absorption, such non-linear dynamics in the absorption direction are important. In order to saturate the percutaneous penetration of indomethacin in the absorption direction, the concentration on the skin surface when indomethacin is administered transdermally is usually very high compared to the concentration of unlabeled indomethacin (500 μM) used in the above examples. Thus, the results of the above examples suggest that the permeability of drugs administered transdermally depends on the concentration administered.

表皮区画におけるpH値の減少は、[14C]インドメタシンのPabsを増加させるが、Psecに影響しないことを見い出した。その結果、表皮区画において、pH5.0で[14C]インドメタシンの一方向性の浸透は消失する。Pabsがこのように増加した一つの可能性として、角質層(SC)内において非イオン化した[14C]インドメタシンが分配されて増加したことが挙げられる。それにより、角質層(SC)から皮下組織側への高濃度勾配を引き起こし、[14C]インドメタシンの非直線Pabsを導く(図6−A)。しかし、プロトン依存性輸送システムが[14C]インドメタシンのPabsに関与しているという、別の仮説もある。以前の研究で、本発明者らは、モノカルボン酸トランスポーター1(MCT1)が、pH依存性方式で、弱有機酸の腸管吸収に関与していることを証明した(Biochem. Biophys. Res. Commun. 214: 482-489, 1995、J. Pharm. Pharmacol. 51: 1113-1121, 1999)。一方で、有機アニオン性化合物を輸送するOATPファミリーのトランスポーターの発現も確認された。It was found that a decrease in pH value in the epidermal compartment increases [ 14 C] indomethacin P abs but does not affect P sec . As a result, unidirectional penetration of [ 14 C] indomethacin disappears at pH 5.0 in the epidermal compartment. One possible increase in P abs is the increased distribution of non-ionized [ 14 C] indomethacin in the stratum corneum (SC). Thereby causing a high concentration gradient of the subcutaneous tissue side from the stratum corneum (SC), leads to a non-linear P abs of [14 C] Indomethacin (Figure 6-A). However, there is another hypothesis that a proton-dependent transport system is involved in [ 14 C] indomethacin P abs . In previous studies we have demonstrated that monocarboxylic acid transporter 1 (MCT1) is involved in the intestinal absorption of weak organic acids in a pH-dependent manner (Biochem. Biophys. Res. Commun. 214: 482-489, 1995, J. Pharm. Pharmacol. 51: 1113-1121, 1999). On the other hand, the expression of OATP family transporters that transport organic anionic compounds was also confirmed.

14C]インドメタシンの経皮浸透に関与している可能性があるトランスポーター(1つ又は複数)を同定するために、ヘアレスマウス皮膚におけるトランスポーターの発現をRT−PCRで調べた。MRP1、MRP3、MRP4及びMRP5の発現を確認したほか、PEPT1、PEPT2、MCT1、MCT2、MCT4、OATP3、OATP11、mPGT、OCT3、OCTN1、OCTN2及びOCTN3の発現もヘアレスマウス皮膚で観察した(図8)。インドメタシンが、OAT1(J. Pharmacol. Exp. Ther. 303:534-539, 2002)、OAT2(J. Pharmacol. Exp. Ther. 298:1179-1184, 2001)及びOat3(J. Pharmacol. Exp. Ther. 303:534-539, 2002)の基質であり、NPT1の低基質(Biochem. Biophys. Res. Commun. 270: 254-259, 2000)であることが、以前報告されている。しかし、本実施例の結果においては、OAT1、OAT3及びNPT1の発現は検出されず、他のトランスポーターがインドメタシンの浸透に関与している可能性を示唆した。In order to identify transporter (s) that may be involved in percutaneous penetration of [ 14 C] indomethacin, transporter expression in hairless mouse skin was examined by RT-PCR. In addition to confirming the expression of MRP1, MRP3, MRP4 and MRP5, expression of PEPT1, PEPT2, MCT1, MCT2, MCT4, OATP3, OATP11, mPGT, OCT3, OCTN1, OCTN2 and OCTN3 was also observed in the hairless mouse skin (FIG. 8). . Indomethacin has been identified as OAT1 (J. Pharmacol. Exp. Ther. 303: 534-539, 2002), OAT2 (J. Pharmacol. Exp. Ther. 298: 1179-1184, 2001) and Oat3 (J. Pharmacol. Exp. Ther 303: 534-539, 2002) and a low substrate of NPT1 (Biochem. Biophys. Res. Commun. 270: 254-259, 2000) has been previously reported. However, in the results of this example, the expression of OAT1, OAT3 and NPT1 was not detected, suggesting that other transporters may be involved in indomethacin penetration.

正常ヒト皮膚におけるトランスポーターの発現も調べ、ヘアレスマウス皮膚と比較した。ヘアレスマウス皮膚におけるMRP、MCT及びOCTNファミリーメンバーの発現は、正常ヒト皮膚における発現と類似であり、ヘアレスマウス皮膚は、これらのトランスポーターの機能を調べるためのよいモデルとなりうることを示唆した。近年の研究と同様、MRP2以外のMRPファミリーメンバーの発現を、全ての個体で検出した(J. Invest. Dermatol. 116: 541-548, 2001)。ヘアレスマウス皮膚でも、Mrp1、Mrp3、Mrp4及びMrp5の発現を観察したが、Mrp2は観察されず、発現の特徴がヒト皮膚と類似であることが示された。ヒト皮膚においてOATP−B、OATP−D及びOATP−Eの発現を全ての個体で観察した。この結果は、最近の報告(J. Invest. Dermatol. 120: 285-291, 2003)と一致した。OATP−Bは、基質として、ステロイドの硫酸抱合体やプラバスタチン、フェキソフェナジン等の薬物は受け入れるが、グルクロニド抱合体は受け入れず、アニオン性化合物の胃腸吸収を媒介することが提案されている(J. Pharmacol. Exp. Ther. 306:703-708, 2003)。OATP−Cは、ステロイド抱合体の両方の型を輸送するとみなされていた(Pharm. Res. 18: 1262-1269, 2001)が、OATP−Dは特別な組織及び細胞に、プロスタグランジンをトランスロケートするときに重要な役割を演じている(Am. J. Physiol. Renal Physiol 285:F1188-1197, 2003)。免疫組織化学による染色により、OATP−Bが、表皮の全ての層で発現するが、皮下では発現しないことが明らかになった。さらに、正常なヒト表皮ケラチノサイトによるエストロン硫酸の取り込みが、OATPファミリーの基質である、タウロコール酸によって33%低下した(J. Invest. Dermatol. 120: 285-291, 2003)。これらの研究成果は、有機アニオン輸送システムが、ケラチノサイトによる、その基質の取り込みに関連している可能性を示唆し、かかるトランスポーターが、薬剤の経皮輸送に重要な役割を演じているかどうか明らかにするために、さらなる解析の必要性を示唆している。MCT1、MCT2及びMCT5の発現を、ヒト皮膚で検出したが、MCT2及びMCT3の発現は、いくつかのケースでしか検出できなかった(図8)。MCT1及びMCT4を、皮膚由来の複数の細胞株で検出し、MCTが、メラノーマにおけるpH調整の主要な決定因子であることを示唆した(Mol. Cancer Ther. 1:617-628, 2002)。以前の研究で、本発明者らはMCT1が、安息香酸及び小腸及び脳内の乳酸などの外因性及び内因性の弱有機酸を含む、モノカルボン酸の輸送に重要な役割を演じていることを報告した(Biochem. Biophys. Res. Commun. 214: 482-489, 1995、J. Pharm. Pharmacol. 51: 1113-1121, 1999、Pharm. Res. 17:55-62, 2000)。皮膚内のMCTの発現は、皮膚のpH調節及び弱有機酸の輸送の役割を示すかもしれない。OCTNファミリーメンバーの発現を、全ての個体で観察した(図8)。OCTNファミリーは、長鎖脂肪酸の酸化に必須な補助因子であるカルニチンの輸送に関与している。ヒト培養皮膚繊維芽細胞におけるインビトロのカルニチン輸送システムが特徴づけられた。カルニチンの取り込み用のKmは5μMであり、ヒトOCTN2の値に近かった(N. Engl. J. Med. 319: 1331-1336, 1988、Pediatr. Res. 28: 247-255, 1990、Biochem. Pharmacol. 55:1729-1732, 1998)。OCTN1は、プロトン/有機カチオンアンチポーター及び/又は、有機カチオン/カチオン交換体として、腎臓頂端膜及び他の組織で機能しうる、多選択性でpH依存性の有機カチオントランスポーターであることが機能的に示された(J. Pharmacol. Exp. Ther. 289:768-773, 1999)。これに対し、OCTN2は、有機カチオン輸送もカルニチン輸送も媒介する多選択性のトランスポーターであるように考えられている(J. Biol. Chem. 275: 40064-40072, 2000)。皮膚内のOCTNファミリーメンバーは、カルニチン又は有機カチオン化合物の取り込みに関与しているかもしれない。このように、皮膚内の機能に関するさらなる研究が必要ではあるが、これらのトランスポーターの皮膚内の発現が、皮膚の能動的なバリアシステムとして、基質の輸送に関与する可能性を示している。   Transporter expression in normal human skin was also examined and compared to hairless mouse skin. Expression of MRP, MCT and OCTN family members in hairless mouse skin is similar to that in normal human skin, suggesting that hairless mouse skin can be a good model for examining the function of these transporters. Similar to recent studies, expression of MRP family members other than MRP2 was detected in all individuals (J. Invest. Dermatol. 116: 541-548, 2001). In hairless mouse skin, the expression of Mrp1, Mrp3, Mrp4 and Mrp5 was observed, but Mrp2 was not observed, indicating that the characteristics of expression were similar to human skin. Expression of OATP-B, OATP-D and OATP-E in human skin was observed in all individuals. This result was consistent with a recent report (J. Invest. Dermatol. 120: 285-291, 2003). OATP-B accepts drugs such as steroid sulfate conjugates, pravastatin, and fexofenadine as substrates, but does not accept glucuronide conjugates and mediates gastrointestinal absorption of anionic compounds (J Pharmacol. Exp. Ther. 306: 703-708, 2003). OATP-C was considered to transport both types of steroid conjugates (Pharm. Res. 18: 1262-1269, 2001), while OATP-D transfects prostaglandins into special tissues and cells. It plays an important role in locating (Am. J. Physiol. Renal Physiol 285: F1188-1197, 2003). Staining by immunohistochemistry revealed that OATP-B was expressed in all layers of the epidermis but not subcutaneously. Furthermore, uptake of estrone sulfate by normal human epidermal keratinocytes was reduced by 33% by taurocholic acid, a substrate of the OATP family (J. Invest. Dermatol. 120: 285-291, 2003). These findings suggest that organic anion transport systems may be related to their substrate uptake by keratinocytes, and it is clear whether such transporters play an important role in the transdermal transport of drugs Suggests the need for further analysis. While expression of MCT1, MCT2 and MCT5 was detected in human skin, expression of MCT2 and MCT3 could only be detected in some cases (FIG. 8). MCT1 and MCT4 were detected in multiple skin-derived cell lines, suggesting that MCT is a major determinant of pH adjustment in melanoma (Mol. Cancer Ther. 1: 617-628, 2002). In previous studies, we have shown that MCT1 plays an important role in the transport of monocarboxylic acids, including benzoic acid and exogenous and endogenous weak organic acids such as lactic acid in the small intestine and brain. (Biochem. Biophys. Res. Commun. 214: 482-489, 1995, J. Pharm. Pharmacol. 51: 1113-1121, 1999, Pharm. Res. 17: 55-62, 2000). Expression of MCT in the skin may indicate a role in skin pH regulation and weak organic acid transport. The expression of OCTN family members was observed in all individuals (Figure 8). The OCTN family is involved in the transport of carnitine, a cofactor essential for the oxidation of long chain fatty acids. An in vitro carnitine transport system in human cultured dermal fibroblasts has been characterized. Km for uptake of carnitine was 5 μM and was close to that of human OCTN2 (N. Engl. J. Med. 319: 1331-1336, 1988, Pediatr. Res. 28: 247-255, 1990, Biochem. Pharmacol 55: 1729-1732, 1998). OCTN1 is a multi-selective, pH-dependent organic cation transporter that can function in the apical membrane of the kidney and other tissues as a proton / organic cation antiporter and / or organic cation / cation exchanger (J. Pharmacol. Exp. Ther. 289: 768-773, 1999). In contrast, OCTN2 is thought to be a multi-selective transporter that mediates both organic cation transport and carnitine transport (J. Biol. Chem. 275: 40064-40072, 2000). OCTN family members in the skin may be involved in the uptake of carnitine or organic cation compounds. Thus, although further research on the function in the skin is necessary, the expression of these transporters in the skin, as an active barrier system of the skin, has the potential to be involved in substrate transport.

本発明により、インドメタシン等の経皮薬剤又は経皮候補薬剤の経皮浸透においてトランスポーター(1つ又は複数)が関与していることが明らかにされた。また、MRP、OATP、MCT及びOCTNファミリーの複数のトランスポーターのmRNA発現を、ヘアレスマウス皮膚と正常ヒト皮膚との両方で観察したことから、これら皮膚内のトランスポーターの発現の生理学的な意味はさらに解明する必要があるが、このように多様なトランスポーターの種類の存在は、能動的なバリアとして、生体異物の経皮浸透をコントロールするにあたっての、役割の可能性を示している。本発明により、皮膚内のトランスポーターの生理学的な役割のさらなる解明が進展するばかりでなく、経皮薬剤や化粧品の優れた経皮デリバリーシステムの開発が可能となる。     The present invention revealed that the transporter (s) is involved in the percutaneous penetration of transdermal drugs such as indomethacin or transdermal candidate drugs. Moreover, since the mRNA expression of several transporters of MRP, OATP, MCT and OCTN family was observed in both hairless mouse skin and normal human skin, the physiological meaning of transporter expression in these skins is It is necessary to elucidate further, but the existence of various types of transporters in this way indicates a possible role in controlling the transdermal penetration of xenobiotics as an active barrier. The present invention not only advances further elucidation of the physiological role of transporters in the skin, but also enables the development of superior transdermal delivery systems for transdermal drugs and cosmetics.

Claims (22)

経皮薬剤又は経皮候補薬剤を溶解した溶液を、皮膚切片で皮下組織側と表皮側とに区画されたチャンバー内のいずれか一方に注入し、他方に所定の溶液を注入して、前記皮膚切片の生存条件下、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定・評価することを特徴とする経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。A solution in which the transdermal drug or transdermal candidate drug is dissolved is injected into one of the chambers divided into the subcutaneous tissue side and the epidermis side by a skin section, and a predetermined solution is injected into the other, and the skin A transdermal drug or transdermal candidate drug characterized by measuring and evaluating the degree of skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug after a predetermined time under the survival conditions of the section Test method for skin permeability. 皮下組織側の溶液を体温に、表皮側の溶液を室温に維持し、所定時間後に経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度を測定・評価することを特徴とする請求項1記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。Maintain the subcutaneous tissue side solution at body temperature and the epidermis side solution at room temperature, and measure and evaluate the degree of skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug after a predetermined time. The method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to claim 1, wherein 皮膚透過性の程度の測定・評価が、皮膚透過の飽和性、阻害効果、方向指向性及びエネルギー依存性の1又は2以上の測定・評価であることを特徴とする請求項1又は2記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。The measurement / evaluation of the degree of skin permeability is one or more of the measurement / evaluation of saturation of skin permeation, inhibitory effect, direction directivity and energy dependence. Method for assaying skin permeability of transdermal drug or transdermal candidate drug. 経皮薬剤又は経皮候補薬剤として、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤を用いることを特徴とする請求項1〜3のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。The transdermal drug or transdermal drug according to any one of claims 1 to 3, wherein a transdermal drug or transdermal candidate drug labeled with a radioisotope or a fluorescent substance is used as the transdermal drug or transdermal drug candidate. Test method for skin permeability of candidate drugs. 経皮薬剤又は経皮候補薬剤を溶解した溶液として、皮下組織側が経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液を、表皮側が経皮薬剤又は経皮候補薬剤を溶解した多価アルコール含有溶液を、それぞれ用いることを特徴とする請求項1〜4のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。As a solution in which the transdermal drug or transdermal drug candidate is dissolved, a solution containing an energy source in which the subcutaneous tissue side dissolves the transdermal drug or transdermal drug candidate, or in which the epidermal side dissolves the transdermal drug or transdermal drug candidate A method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to any one of claims 1 to 4, wherein a solution containing a monohydric alcohol is used. 多価アルコールが、プロピレングリコールであることを特徴とする請求項5記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。6. The method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to claim 5, wherein the polyhydric alcohol is propylene glycol. 経皮薬剤又は経皮候補薬剤を溶解した溶液が、皮下組織側及び表皮側ともに経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液であることを特徴とする請求項1〜4のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。The solution in which the transdermal drug or transdermal candidate drug is dissolved is a solution containing an energy source in which the transdermal drug or transdermal candidate drug is dissolved on both the subcutaneous tissue side and the epidermis side. The method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to any one of the above. エネルギー源を含有する溶液が、ハンクス液であることを特徴とする請求項5〜7のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。8. The method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to any one of claims 5 to 7, wherein the solution containing an energy source is Hanks' liquid. 非標識の経皮薬剤又は経皮候補薬剤を皮下組織側と表皮側とに共に用いて、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤の飽和性経皮浸透を調べることを特徴とする請求項1〜8のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。To investigate the saturation percutaneous penetration of a transdermal drug or transdermal candidate drug labeled with a radioisotope or fluorescent substance, using an unlabeled transdermal drug or transdermal candidate drug on both the subcutaneous tissue side and the epidermis side. A method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to any one of claims 1 to 8. 表皮側の溶液のpHを変化させることを特徴とする請求項1〜8のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。The method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to any one of claims 1 to 8, wherein the pH of the epidermal solution is changed. NaN及びNaFを皮下組織側と表皮側とに共に用いて、経皮薬剤又は経皮候補薬剤の浸透が、エネルギー依存性であるかどうかを調べることを特徴とする請求項1〜8のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。The NaN 3 and NaF used together and subcutaneous tissue side and a skin side, osmotic transdermal drug or transdermal candidate agent, any of the preceding claims, characterized in that to determine whether an energy dependent A method for assaying the skin permeability of the transdermal drug or transdermal candidate drug. 経皮薬剤又は経皮候補薬剤を溶解した溶液、及び、経皮薬剤又は経皮候補薬剤と被検物質とを溶解した溶液を、皮膚切片で皮下組織側と表皮側とに区画されたチャンバー内の皮下組織側に注入し、他方に所定の溶液を注入して、前記皮膚切片の生存条件下、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度をそれぞれ測定し、皮膚透過性の程度を比較評価することを特徴とする経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。In a chamber where a transdermal drug or a transdermal drug candidate and a transdermal drug or transdermal drug candidate and a test substance are dissolved are divided into a skin section and a subcutaneous tissue side and an epidermis side. Injecting into the subcutaneous tissue side of the skin, and injecting a predetermined solution into the other, the skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug after a predetermined time under the condition of survival of the skin section. A screening method for a substance that promotes or suppresses skin permeability of a transdermal drug or transdermal candidate drug, characterized by measuring the degree of each and comparing and evaluating the degree of skin permeability. 皮下組織側の溶液を体温に、表皮側の溶液を室温に維持し、所定時間後に前記経皮薬剤又は経皮候補薬剤の皮膚トランスポーターを介しての皮膚透過性の程度をそれぞれ測定することを特徴とする請求項12記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。Maintaining the solution on the subcutaneous tissue side at body temperature and the solution on the epidermis side at room temperature, and measuring the degree of skin permeability through the skin transporter of the transdermal drug or transdermal candidate drug after a predetermined time, respectively 13. A screening method for a substance that promotes or suppresses skin permeability of a transdermal drug or transdermal candidate drug according to claim 12. 皮膚透過性の程度の測定・評価が、皮膚透過の飽和性、阻害効果、方向指向性及びエネルギー依存性の1又は2以上の測定・評価であることを特徴とする請求項12又は13記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。14. The measurement / evaluation of the degree of skin permeability is one or more of the measurement / evaluation of skin permeability saturation, inhibitory effect, direction directivity and energy dependence. A screening method for a substance that promotes or suppresses skin permeability of a transdermal drug or transdermal candidate drug. 経皮薬剤又は経皮候補薬剤として、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤を用いることを特徴とする請求項12〜14のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。The transdermal drug or transdermal drug according to any one of claims 12 to 14, wherein a transdermal drug or transdermal drug candidate labeled with a radioisotope or a fluorescent substance is used as the transdermal drug or transdermal drug candidate. A screening method for a substance that promotes or suppresses skin permeability of a candidate drug. 経皮薬剤又は経皮候補薬剤を溶解した溶液として、皮下組織側が経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液を、表皮側が経皮薬剤又は経皮候補薬剤を溶解した多価アルコール含有溶液を、それぞれ用いることを特徴とする請求項12〜15のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。As a solution in which the transdermal drug or transdermal drug candidate is dissolved, a solution containing an energy source in which the subcutaneous tissue side dissolves the transdermal drug or transdermal drug candidate, or in which the epidermal side dissolves the transdermal drug or transdermal drug candidate A method for screening a substance for promoting or suppressing skin permeability of a transdermal drug or transdermal drug candidate according to any one of claims 12 to 15, wherein a solution containing a monohydric alcohol is used. 多価アルコールが、プロピレングリコールであることを特徴とする請求項16記載の経皮薬剤又は経皮候補薬剤の皮膚透過性の検定方法。17. The method for assaying skin permeability of a transdermal drug or transdermal candidate drug according to claim 16, wherein the polyhydric alcohol is propylene glycol. 経皮薬剤又は経皮候補薬剤を溶解した溶液が、皮下組織側及び表皮側ともに経皮薬剤又は経皮候補薬剤を溶解したエネルギー源を含有する溶液であることを特徴とする請求項12〜15のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。16. The solution in which the transdermal drug or transdermal candidate drug is dissolved is a solution containing an energy source in which the transdermal drug or transdermal candidate drug is dissolved on both the subcutaneous tissue side and the epidermis side. A screening method for a substance that promotes or suppresses skin permeability of a transdermal drug or transdermal candidate drug according to any one of the above. エネルギー源を含有する溶液が、ハンクス液であることを特徴とする請求項16〜18のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。The method for screening a substance for promoting or suppressing skin permeability of a transdermal drug or transdermal drug candidate according to any one of claims 16 to 18, wherein the solution containing an energy source is Hanks' liquid. 非標識の経皮薬剤又は経皮候補薬剤を皮下組織側と表皮側とに共に用いて、放射性同位体又は蛍光物質で標識した経皮薬剤又は経皮候補薬剤の飽和性経皮浸透を測定・評価することを特徴とする請求項12〜19のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。Measurement of saturation transdermal penetration of transdermal drug or transdermal candidate drug labeled with radioisotope or fluorescent substance using unlabeled transdermal drug or transdermal candidate drug on both subcutaneous tissue and epidermal side 20. The screening method for a substance that promotes or suppresses skin permeability of a transdermal drug or transdermal candidate drug according to any one of claims 12 to 19, wherein evaluation is performed. 表皮側の溶液のpHを変化させることを特徴とする請求項12〜19のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。20. The method for screening a substance for promoting or inhibiting skin permeability of a transdermal drug or transdermal candidate drug according to any one of claims 12 to 19, wherein the pH of the solution on the epidermis side is changed. NaN及びNaFを皮下組織側と表皮側とに共に用いて、経皮薬剤又は経皮候補薬剤の浸透が、エネルギー依存性であるかどうかを測定・評価することを特徴とする請求項12〜19のいずれか記載の経皮薬剤又は経皮候補薬剤の皮膚透過性促進又は抑制物質のスクリーニング方法。13. Using NaN 3 and NaF on both the subcutaneous tissue side and the epidermis side, it is measured and evaluated whether the penetration of the transdermal drug or transdermal candidate drug is energy-dependent or not. 20. A screening method for a substance that promotes or inhibits skin permeability of a transdermal drug or transdermal candidate drug according to any one of 19 items.
JP2006510873A 2004-03-10 2004-09-10 Method for testing skin permeability of transdermal drugs via skin transporter Expired - Fee Related JP4714807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510873A JP4714807B2 (en) 2004-03-10 2004-09-10 Method for testing skin permeability of transdermal drugs via skin transporter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004068249 2004-03-10
JP2004068249 2004-03-10
JP2006510873A JP4714807B2 (en) 2004-03-10 2004-09-10 Method for testing skin permeability of transdermal drugs via skin transporter
PCT/JP2004/013219 WO2005088299A1 (en) 2004-03-10 2004-09-10 Method of assaying dermal permeability of transdermal drug mediated by dermal transporter

Publications (2)

Publication Number Publication Date
JPWO2005088299A1 JPWO2005088299A1 (en) 2008-01-31
JP4714807B2 true JP4714807B2 (en) 2011-06-29

Family

ID=34975711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006510873A Expired - Fee Related JP4714807B2 (en) 2004-03-10 2004-09-10 Method for testing skin permeability of transdermal drugs via skin transporter

Country Status (2)

Country Link
JP (1) JP4714807B2 (en)
WO (1) WO2005088299A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281675B2 (en) 2007-10-17 2012-10-09 Syneron Medical Ltd Dissolution rate verification
WO2009057112A2 (en) 2007-10-29 2009-05-07 Transpharma Medical, Ltd. Vertical patch drying
JP2011106846A (en) * 2009-11-13 2011-06-02 Hamamatsu Univ School Of Medicine New nsaid ulcer risk determininig method
CN114034608B (en) * 2021-11-12 2024-06-18 深圳杉海创新技术有限公司 Method for measuring skin permeation efficiency of glucosyl based on artificial skin model

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0804541A1 (en) * 1994-07-14 1997-11-05 Smithkline Beecham Corporation Diffusion chamber system and method for transport studies
JP3925701B2 (en) * 2002-01-15 2007-06-06 東洋紡績株式会社 In vitro test method using biological tissue

Also Published As

Publication number Publication date
WO2005088299A1 (en) 2005-09-22
JPWO2005088299A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
Crawford et al. Targeting G542X CFTR nonsense alleles with ELX-02 restores CFTR function in human-derived intestinal organoids
Fratoddi et al. Effects of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse model
Roberts Dermal absorption and toxicity assessment
Matthay et al. Lung epithelial fluid transport and the resolution of pulmonary edema
Horvath et al. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway
Cheng et al. Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs
Posada et al. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling
EP3831389A1 (en) Topical pharmaceutical formulations comprising crisaborole for treating inflammatory-related conditions
Rinaldi et al. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models
Liu et al. Uptake, transport and regulation of JBP485 by PEPT1 in vitro and in vivo
Li et al. Mechanistic insights of the enhancement effect of sorbitan monooleate on olanzapine transdermal patch both in release and percutaneous absorption processes
Liu et al. Drug in adhesive patch of zolmitriptan: formulation and in vitro/in vivo correlation
Yasam et al. A novel vesicular transdermal delivery of nifedipine–preparation, characterization and in vitro/in-vivo evaluation
Lee et al. Methyl-β-cyclodextrin up-regulates collagen I expression in chronologically-aged skin via its anti-caveolin-1 activity
Tardelli et al. Adiponectin regulates aquaglyceroporin expression in hepatic stellate cells altering their functional state
Monti et al. Topical formulations containing finasteride. Part I: In vitro permeation/penetration study and in vivo pharmacokinetics in hairless rat
Dasht Bozorg et al. Topical and transdermal delivery with diseased human skin: passive and iontophoretic delivery of hydrocortisone into psoriatic and eczematous skin
Stanekzai et al. Recent approaches in transdermal drug delivery system
Li et al. Characterization of the transdermal transport of flurbiprofen and indomethacin
Germer et al. Improved skin permeability after topical treatment with serine protease: probing the penetration of rapamycin by scanning transmission X-ray microscopy
Sugiyama et al. Analysis of aquaporin 9 expression in human epidermis and cultured keratinocytes
Lee et al. Comparison study of the effects of cationic liposomes on delivery across 3D skin tissue and whitening effects in pigmented 3D skin
JP4714807B2 (en) Method for testing skin permeability of transdermal drugs via skin transporter
Jiang et al. Ultraviolet B radiation-induced JPH203-loaded keratinocyte extracellular vesicles exert etiological interventions for psoriasis therapy
Szanda et al. Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110208

R150 Certificate of patent or registration of utility model

Ref document number: 4714807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees