[go: up one dir, main page]

JP4714209B2 - COD automatic measuring instrument and COD measuring method using the same - Google Patents

COD automatic measuring instrument and COD measuring method using the same Download PDF

Info

Publication number
JP4714209B2
JP4714209B2 JP2007313181A JP2007313181A JP4714209B2 JP 4714209 B2 JP4714209 B2 JP 4714209B2 JP 2007313181 A JP2007313181 A JP 2007313181A JP 2007313181 A JP2007313181 A JP 2007313181A JP 4714209 B2 JP4714209 B2 JP 4714209B2
Authority
JP
Japan
Prior art keywords
silver nitrate
amount
solution
reaction vessel
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007313181A
Other languages
Japanese (ja)
Other versions
JP2009139119A (en
Inventor
達也 門馬
美明 阿部
茂樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Ecology Management Co Ltd
Original Assignee
Kureha Ecology Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Ecology Management Co Ltd filed Critical Kureha Ecology Management Co Ltd
Priority to JP2007313181A priority Critical patent/JP4714209B2/en
Publication of JP2009139119A publication Critical patent/JP2009139119A/en
Application granted granted Critical
Publication of JP4714209B2 publication Critical patent/JP4714209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、COD自動計測器、より詳しくは、溶液中の塩化物イオンを硝酸銀によりマスキングする機能を備えるCOD自動計測器、およびそれを用いたCODの測定方法に関する。   The present invention relates to a COD automatic measuring instrument, and more particularly, to a COD automatic measuring instrument having a function of masking chloride ions in a solution with silver nitrate, and a COD measuring method using the same.

化学的酸素要求量(COD)は水質汚濁の指標であり、工場などでは、一般に、JIS K0806−1997(非特許文献1)に規定されたCOD自動計測器を用いて排水のCODを連続的にモニタリングしている。   Chemical oxygen demand (COD) is an indicator of water pollution. In factories and the like, generally, COD of wastewater is continuously measured using a COD automatic measuring instrument defined in JIS K0806-1997 (Non-patent Document 1). Monitoring is in progress.

前記COD自動計測器は、JIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」(非特許文献2)に記載の方法に準拠してCODの測定方法を自動化したものである。JIS K0102−1998によるCODの測定方法は具体的には以下の通りである。先ず、試料溶液に硫酸を添加して硫酸酸性とし、さらに硝酸銀溶液を添加して塩化物イオンを塩化銀として沈殿させる。次いで酸化剤として既知量の過マンガン酸カリウムを加えて沸騰水浴または油浴で30分間加熱して有機物などの還元性物質を酸化する。その後、試料溶液を60〜80℃に冷却し、前記過マンガン酸カリウムと当量のしゅう酸ナトリウム溶液を加える。残存するしゅう酸ナトリウムを過マンガン酸カリウムにより逆滴定し、前記試料溶液中の還元性物質により消費された過マンガン酸カリウムの量を求め、これを当量の酸素量として表したものがCODである。前記COD自動計測器はこれらの一連の操作を自動化したものである。   The COD automatic measuring instrument is an automated COD measurement method based on the method described in JIS K0102-1998 “17.100 ° C. Oxygen Consumption by Potassium Permanganate” (Non-Patent Document 2). . Specifically, the COD measurement method according to JIS K0102-1998 is as follows. First, sulfuric acid is added to the sample solution to make it acidic, and a silver nitrate solution is further added to precipitate chloride ions as silver chloride. Next, a known amount of potassium permanganate is added as an oxidizing agent and heated in a boiling water bath or an oil bath for 30 minutes to oxidize reducing substances such as organic substances. Thereafter, the sample solution is cooled to 60 to 80 ° C., and a sodium oxalate solution equivalent to the potassium permanganate is added. The residual sodium oxalate is back titrated with potassium permanganate, the amount of potassium permanganate consumed by the reducing substance in the sample solution is determined, and this is expressed as the equivalent amount of oxygen is COD. . The COD automatic measuring instrument automates a series of these operations.

工場排水は一般的に塩化物イオン濃度が低い(例えば500mg/L以下)ため、前記COD自動計測器において添加される硝酸銀の量は少量であり、生成する塩化銀の量も少ない。一方、産業廃棄物の焼却排ガスの洗浄排水のように塩化物イオン濃度が高い(例えば3000mg/L以上)場合、前記COD自動計測器において添加される硝酸銀の量は多くなり、生成する塩化銀の量も多くなる。従来のCOD自動計測器では、このように多量の塩化銀が生成すると塩化銀が反応槽や配管の内壁、さらには反応槽内の酸化還元電位(ORP)電極などの各種センサーの表面に付着し、COD値の測定誤差の原因となっていた。また、塩化銀の生成量が少ない場合でも測定の繰り返しにより反応槽内に塩化銀が蓄積して同様の測定誤差が発生していた。さらに、COD値が小さく、これを正確に測定する場合には試料溶液の量を増加させる必要があり、これによる塩化銀の生成量の増加がCOD値の測定誤差の原因となることもあった。   Since industrial wastewater generally has a low chloride ion concentration (for example, 500 mg / L or less), the amount of silver nitrate added in the COD automatic measuring instrument is small, and the amount of silver chloride produced is small. On the other hand, when the chloride ion concentration is high (for example, 3000 mg / L or more) as in the case of cleaning wastewater from incineration exhaust gas of industrial waste, the amount of silver nitrate added in the COD automatic measuring instrument increases, and the generated silver chloride The amount also increases. In conventional COD automatic measuring instruments, when a large amount of silver chloride is produced in this way, the silver chloride adheres to the inner walls of reaction vessels and piping, as well as to the surfaces of various sensors such as oxidation-reduction potential (ORP) electrodes in the reaction vessel. This was a cause of measurement error of the COD value. Further, even when the amount of silver chloride produced was small, silver chloride accumulated in the reaction vessel due to repeated measurement, resulting in the same measurement error. Further, when the COD value is small and this is accurately measured, it is necessary to increase the amount of the sample solution, and this increase in the amount of silver chloride produced may cause a COD value measurement error. .

このような塩化銀の付着や蓄積を防止するためには測定毎に計測器を洗浄する必要があるが、工場排水などのCODを連続的にモニタリングする場合、JIS K0806−1997に記載されているようにその測定周期は1時間以内と規定されている。従来のCOD自動計測器では、測定時に反応槽を高温に保持する必要があるため、測定毎に計測器を洗浄することは困難であった。また、試料溶液を希釈して生成する塩化銀量を低減するとCOD自動計測器の流路閉塞は防止できるが、試料溶液中の還元性物質の濃度も低下するため、CODを精密に測定することが困難な場合があった。
JIS K0806−1997 JIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」
In order to prevent such adhesion and accumulation of silver chloride, it is necessary to wash the measuring device for each measurement. However, when COD such as factory effluent is continuously monitored, it is described in JIS K0806-1997. Thus, the measurement cycle is defined as within one hour. In the conventional COD automatic measuring instrument, it is necessary to keep the reaction vessel at a high temperature during the measurement, and thus it is difficult to clean the measuring instrument for each measurement. In addition, if the amount of silver chloride produced by diluting the sample solution is reduced, blockage of the flow path of the COD automatic measuring instrument can be prevented, but the concentration of the reducing substance in the sample solution also decreases, so COD must be measured accurately. There were cases where it was difficult.
JIS K0806-1997 JIS K0102-1998 “17. Oxygen consumption by potassium permanganate at 100 ° C.”

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、反応槽内壁やセンサー表面などへの塩化銀の付着や蓄積を十分に抑制することができ、測定毎の洗浄や試料溶液の希釈などを施すことなく、長期にわたって継続的なCOD測定が可能なCOD自動計測器、ならびにそれを用いたCODの測定方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and can sufficiently suppress the adhesion and accumulation of silver chloride on the inner wall of the reaction tank, the sensor surface, etc. It is an object of the present invention to provide a COD automatic measuring instrument capable of continuously measuring COD over a long period of time without performing dilution, and a method for measuring COD using the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、従来のCOD自動計測器ではその構造と運用(例えば測定周期)の面から硝酸銀溶液を添加する反応槽の温度が50℃以上の高温に保持されており、このような高温下で多量の硝酸銀を添加して塩化物イオンをマスキングすると、生成した塩化銀が熱により凝固しやすく、その結果、反応槽や配管の内壁、さらには反応槽内のORP電極などの各種センサーの表面に塩化銀が付着や堆積してCOD値の測定誤差が発生しやすいことを見出した。さらに、本発明者らは、多量の硝酸銀を添加して塩化物イオンをマスキングする場合でも50℃未満の低温で添加すると、生成した塩化銀は攪拌により容易に試料溶液中に分散するため反応槽内壁やセンサー表面などに付着しにくく、COD値の測定誤差が発生しにくいことを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the temperature of the reaction vessel to which the silver nitrate solution is added is 50 ° C. in terms of the structure and operation (for example, the measurement cycle) in the conventional COD automatic measuring instrument. It is held at the above high temperature, and when a large amount of silver nitrate is added at such a high temperature to mask chloride ions, the generated silver chloride tends to solidify due to heat, and as a result, the inner wall of the reaction vessel or piping, Furthermore, it has been found that silver chloride is likely to adhere to and deposit on the surface of various sensors such as the ORP electrode in the reaction tank, resulting in measurement errors in the COD value. Furthermore, the present inventors have added a large amount of silver nitrate to mask chloride ions, and when added at a low temperature of less than 50 ° C., the produced silver chloride is easily dispersed in the sample solution by stirring, so that the reaction vessel It has been found that it is difficult to adhere to the inner wall, the sensor surface, etc., and the measurement error of the COD value hardly occurs, and the present invention has been completed.

すなわち、本発明のCOD自動計測器は、
(A)試料溶液の塩化物イオン濃度を測定するためのイオン濃度測定部と、
(B)前記イオン濃度測定部(A)に直列または並列に接続され、温度が−5℃以上50℃未満の範囲にある反応槽と、
(C)前記反応槽(B)に直列に接続され、50℃以上100℃以下の範囲の温度に制御された反応槽と、
(D)前記反応槽(B)に硝酸銀溶液を添加する手段と、
(E)前記反応槽(C)に硝酸銀溶液を添加する手段と、
(F)前記イオン濃度測定部(A)と前記硝酸銀溶液添加手段(D)および(E)とに電気的に接続された制御手段であって、
前記塩化物イオン濃度に基づいて前記試料溶液に添加する硝酸銀量を決定し、
前記硝酸銀量が閾値以下である場合には、前記決定された硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(E)を用いて前記試料溶液に添加し、
前記硝酸銀量が閾値を超える場合には、前記閾値を超える分の硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(D)を用いて前記試料溶液に添加し、次いで、前記反応槽(B)から前記反応槽(C)に移送された前記試料溶液に前記硝酸銀溶液添加手段(E)を用いて前記閾値の硝酸銀量に相当する量の硝酸銀溶液を添加する、
ように前記硝酸銀溶液添加手段(D)および(E)を制御する制御手段と、
(G)JIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」に記載の方法に準拠した構成を有するものであって、前記反応槽(C)において、硝酸銀溶液添加後の前記試料溶液の化学的酸素要求量を測定する手段と、
を備えることを特徴とするものである。
That is, the COD automatic measuring instrument of the present invention is
(A) an ion concentration measurement unit for measuring the chloride ion concentration of the sample solution;
(B) a reaction tank connected in series or in parallel to the ion concentration measurement unit (A) and having a temperature in the range of −5 ° C. or more and less than 50 ° C .;
(C) a reaction vessel connected in series to the reaction vessel (B) and controlled to a temperature in the range of 50 ° C. or more and 100 ° C. or less;
(D) means for adding a silver nitrate solution to the reaction vessel (B);
(E) means for adding a silver nitrate solution to the reaction vessel (C);
(F) Control means electrically connected to the ion concentration measuring section (A) and the silver nitrate solution adding means (D) and (E),
Determining the amount of silver nitrate added to the sample solution based on the chloride ion concentration;
When the silver nitrate amount is not more than a threshold value, an amount of silver nitrate solution corresponding to the determined silver nitrate amount is added to the sample solution using the silver nitrate solution adding means (E),
When the amount of silver nitrate exceeds a threshold value, an amount of silver nitrate solution corresponding to the amount of silver nitrate exceeding the threshold value is added to the sample solution using the silver nitrate solution addition means (D), and then the reaction vessel Adding a silver nitrate solution in an amount corresponding to the threshold amount of silver nitrate using the silver nitrate solution addition means (E) to the sample solution transferred from (B) to the reaction vessel (C);
Control means for controlling the silver nitrate solution addition means (D) and (E),
(G) It has the structure based on the method as described in JIS K0102-1998 "Oxygen consumption by potassium permanganate at 17.100 degreeC", Comprising: In the said reaction vessel (C), after a silver nitrate solution addition Means for measuring the chemical oxygen demand of the sample solution;
It is characterized by providing.

また、本発明のCODの測定方法は、
(A)試料溶液の塩化物イオン濃度を測定するためのイオン濃度測定部と、
(B)前記イオン濃度測定部(A)に直列または並列に接続され、温度が−5℃以上50℃未満の範囲にある反応槽と、
(C)前記反応槽(B)に直列に接続され、50℃以上100℃以下の範囲の温度に制御された反応槽と、
(D)前記反応槽(B)に硝酸銀溶液を添加する手段と、
(E)前記反応槽(C)に硝酸銀溶液を添加する手段と、
(F)前記イオン濃度測定部(A)と前記硝酸銀溶液添加手段(D)および(E)とに電気的に接続された制御手段と、
(G)JIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」に記載の方法に準拠した構成を有する、化学的酸素要求量を測定する手段と、
を備えるCOD自動計測器を用いて試料溶液の化学的酸素要求量を測定する方法であって、
前記イオン濃度測定部(A)において試料溶液の塩化物イオン濃度を測定する工程と、
前記制御手段(F)によって、
前記塩化物イオン濃度に基づいて前記試料溶液に添加する硝酸銀量を決定し、
前記硝酸銀量が閾値以下である場合には、前記決定された硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(E)を用いて前記試料溶液に添加し、
前記硝酸銀量が閾値を超える場合には、前記閾値を超える分の硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(D)を用いて前記試料溶液に添加し、次いで、前記反応槽(B)から前記反応槽(C)に前記試料溶液を移送し、該試料溶液に前記閾値の硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(E)を用いて添加する、工程と、
前記反応槽(C)において前記化学的酸素要求量測定手段(G)により硝酸銀溶液添加後の前記試料溶液の化学的酸素要求量を測定する工程と、
を含むことを特徴とする方法である。
In addition, the COD measurement method of the present invention includes:
(A) an ion concentration measurement unit for measuring the chloride ion concentration of the sample solution;
(B) a reaction tank connected in series or in parallel to the ion concentration measurement unit (A) and having a temperature in the range of −5 ° C. or more and less than 50 ° C .;
(C) a reaction vessel connected in series to the reaction vessel (B) and controlled to a temperature in the range of 50 ° C. or more and 100 ° C. or less;
(D) means for adding a silver nitrate solution to the reaction vessel (B);
(E) means for adding a silver nitrate solution to the reaction vessel (C);
(F) a control means electrically connected to the ion concentration measurement section (A) and the silver nitrate solution addition means (D) and (E);
(G) means for measuring a chemical oxygen demand having a configuration conforming to the method described in JIS K0102-1998 "Oxygen consumption by potassium permanganate at 17.100 ° C" ;
A method for measuring chemical oxygen demand of a sample solution using a COD automatic measuring instrument comprising:
Measuring the chloride ion concentration of the sample solution in the ion concentration measuring section (A);
By the control means (F),
Determining the amount of silver nitrate added to the sample solution based on the chloride ion concentration;
When the silver nitrate amount is not more than a threshold value, an amount of silver nitrate solution corresponding to the determined silver nitrate amount is added to the sample solution using the silver nitrate solution adding means (E),
When the amount of silver nitrate exceeds a threshold value, an amount of silver nitrate solution corresponding to the amount of silver nitrate exceeding the threshold value is added to the sample solution using the silver nitrate solution addition means (D), and then the reaction vessel (B) transferring the sample solution to the reaction vessel (C), and adding a silver nitrate solution in an amount corresponding to the threshold amount of silver nitrate to the sample solution using the silver nitrate solution adding means (E) When,
Measuring the chemical oxygen demand of the sample solution after addition of the silver nitrate solution by the chemical oxygen demand measurement means (G) in the reaction vessel (C);
It is the method characterized by including.

本発明によれば、COD測定時に反応槽を高温に保持する必要があるCOD自動計測器において、反応槽内壁やセンサー表面などへの塩化銀の付着や蓄積を十分に抑制することができ、測定毎の洗浄や試料溶液の希釈などを施すことなく、長期にわたって継続的にCODを測定することが可能となる。   According to the present invention, in a COD automatic measuring instrument that needs to keep the reaction tank at a high temperature during COD measurement, it is possible to sufficiently suppress the adhesion and accumulation of silver chloride on the inner wall of the reaction tank, the sensor surface, etc. It is possible to continuously measure COD over a long period of time without performing cleaning or dilution of the sample solution.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明するが、本発明は前記図面に限定されるものではない。なお、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。また、図面中、送液ライン中のバルブは省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted. In the drawing, valves in the liquid feeding line are omitted.

本発明のCOD自動計測器は、例えば図1または図2に示すように、
(A)試料溶液の塩化物イオン濃度を測定するためのイオン濃度測定部と、
(B)前記イオン濃度測定部(A)に直列(例えば図1)または並列(例えば図2)に接続され、温度が−5℃以上50℃未満の範囲にある反応槽と、
(C)前記反応槽(B)に直列に接続され、50℃以上100℃以下の範囲の温度に制御された反応槽と、
(D)前記反応槽(B)に硝酸銀溶液を添加する手段と、
(E)前記反応槽(C)に硝酸銀溶液を添加する手段と、
(F)前記イオン濃度測定部(A)と前記硝酸銀溶液添加手段(D)および(E)とに電気的に接続された制御手段と、
(G)前記反応槽(C)において化学的酸素要求量を測定する手段と、
を備えることを特徴とするものである。なお、本発明のCOD自動計測器は図1および図2に示すものに限定されない。
For example, as shown in FIG. 1 or FIG.
(A) an ion concentration measurement unit for measuring the chloride ion concentration of the sample solution;
(B) a reaction tank connected in series (for example, FIG. 1) or in parallel (for example, FIG. 2) to the ion concentration measurement unit (A) and having a temperature in the range of −5 ° C. or more and less than 50 ° C .;
(C) a reaction vessel connected in series to the reaction vessel (B) and controlled to a temperature in the range of 50 ° C. or more and 100 ° C. or less;
(D) means for adding a silver nitrate solution to the reaction vessel (B);
(E) means for adding a silver nitrate solution to the reaction vessel (C);
(F) a control means electrically connected to the ion concentration measurement section (A) and the silver nitrate solution addition means (D) and (E);
(G) means for measuring chemical oxygen demand in the reaction vessel (C);
It is characterized by providing. The COD automatic measuring instrument of the present invention is not limited to that shown in FIGS.

このCOD自動計測器は、工場排水などの溶液のCODを測定するために使用されるものであり、特に、塩化物イオン濃度が高い溶液、例えば産業廃棄物の焼却排ガスの洗浄排水などのCODを測定する場合に使用することが好ましい。なお、本発明ではCODを測定する溶液を「試料溶液」という。   This COD automatic measuring instrument is used to measure the COD of solutions such as factory effluent, and in particular, COD such as washing wastewater of incineration exhaust gas from industrial waste, such as solutions with high chloride ion concentration. It is preferably used when measuring. In the present invention, a solution for measuring COD is referred to as a “sample solution”.

(A)イオン濃度測定部:
本発明のCOD自動計測器におけるイオン濃度測定部(A)は、試料溶液の塩化物イオン濃度を測定できるものであれば特に限定されず、例えば、塩素イオン濃度計などのイオン濃度計測器(1)を備える試料溶液槽(2)が挙げられる。また、塩化物イオン濃度と導電率との間に相関関係が成立する試料溶液、例えば、塩化物イオンが高濃度(例えば1000mg/L以上)の試料溶液のCODを測定する場合には、イオン濃度測定部(A)に用いるイオン濃度計測器(1)として導電率計を使用することができる。導電率計は塩素イオン濃度計などに比べて保守が容易であり、また信頼性が高く、安価であるため、上記のような場合には導電率計を用いて塩化物イオン濃度を測定することが好ましい。
(A) Ion concentration measurement unit:
The ion concentration measuring unit (A) in the COD automatic measuring instrument of the present invention is not particularly limited as long as it can measure the chloride ion concentration of the sample solution. For example, the ion concentration measuring instrument (1 ) Sample solution tank (2). When measuring the COD of a sample solution in which a correlation is established between the chloride ion concentration and the conductivity, for example, a sample solution having a high concentration of chloride ions (for example, 1000 mg / L or more), the ion concentration A conductivity meter can be used as the ion concentration measuring instrument (1) used in the measuring section (A). Conductivity meters are easier to maintain than chlorine ion concentration meters, and are more reliable and less expensive. In such cases, measure the chloride ion concentration using a conductivity meter. Is preferred.

また、試料溶液槽(2)にはオーバーフローラインが設けられていることが好ましい。試料溶液をオーバーフローさせながら塩化物イオン濃度を常時測定することによって塩化物イオン濃度測定と反応槽(B)への試料溶液の移送とのタイムラグを小さくすることができる。   The sample solution tank (2) is preferably provided with an overflow line. By constantly measuring the chloride ion concentration while overflowing the sample solution, the time lag between the chloride ion concentration measurement and the transfer of the sample solution to the reaction vessel (B) can be reduced.

このように、COD自動計測器にイオン濃度測定部(A)を設けて、硝酸銀溶液を添加する前に試料溶液の塩化物イオン濃度を測定することにより、COD測定の際の妨害物質である塩化物イオンをマスキングするために添加する硝酸銀の量を必要最小限にすることができ、測定コストを低減することが可能となる。   In this way, the ion concentration measuring unit (A) is provided in the COD automatic measuring instrument, and the chloride ion concentration of the sample solution is measured before the silver nitrate solution is added, so that chloride that is an interference substance in COD measurement is obtained. The amount of silver nitrate added to mask the product ions can be minimized, and the measurement cost can be reduced.

(B)反応槽:
本発明のCOD自動計測器における反応槽(B)は、温度が−5℃以上50℃未満の範囲にあるものである。反応槽(B)は、恒温槽(図示なし)などを用いて前記範囲の温度に保持されていてもよいが、経済的な観点から、温度制御せずに単に室温の環境下に設置されていることが好ましい。
(B) Reaction tank:
The reaction tank (B) in the COD automatic measuring instrument of the present invention has a temperature in the range of −5 ° C. or more and less than 50 ° C. The reaction vessel (B) may be maintained at a temperature within the above range using a thermostatic bath (not shown) or the like, but from an economical viewpoint, it is simply installed in a room temperature environment without temperature control. Preferably it is.

この反応槽(B)は、図1に示すように前記イオン濃度測定部(A)に直列に接続されていてもよいし、図2に示すように前記イオン濃度測定部(A)に並列に接続されていてもよい。   This reaction vessel (B) may be connected in series to the ion concentration measurement unit (A) as shown in FIG. 1, or in parallel to the ion concentration measurement unit (A) as shown in FIG. It may be connected.

反応槽(B)が直列に接続されている場合、この反応槽(B)には、前記イオン濃度測定部(A)において塩化物イオン濃度が測定された試料溶液が所定量移送される。ここで、試料溶液は、前記イオン濃度測定部(A)において塩化物イオン濃度を測定した後に一括で反応槽(B)に移送してもよいし、前記イオン濃度測定部(A)において塩化物イオン濃度を測定しながら反応槽(B)に移送してもよい。また、前記試料溶液槽(2)にオーバーフローラインを設けて試料溶液をオーバーフローさせながら塩化物イオン濃度を常時測定し、COD測定時に、塩化物イオン濃度を測定した試料溶液の一部を反応槽(B)に移送してもよい(図1)。これらのうち、塩化物イオン濃度測定と反応槽(B)への試料溶液の移送とのタイムラグを小さくすることが可能であるという観点から、試料溶液をオーバーフローさせながら塩化物イオン濃度を常時測定し、COD測定時に試料溶液の一部を反応槽(B)に移送することが好ましい。   When the reaction vessel (B) is connected in series, a predetermined amount of the sample solution whose chloride ion concentration is measured in the ion concentration measurement unit (A) is transferred to the reaction vessel (B). Here, the sample solution may be transferred to the reaction vessel (B) in a lump after measuring the chloride ion concentration in the ion concentration measuring section (A), or the chloride solution in the ion concentration measuring section (A). You may transfer to a reaction tank (B), measuring ion concentration. In addition, an overflow line is provided in the sample solution tank (2) to constantly measure the chloride ion concentration while allowing the sample solution to overflow, and at the time of COD measurement, a part of the sample solution in which the chloride ion concentration is measured is added to the reaction tank ( B) may be transferred (FIG. 1). Of these, the chloride ion concentration is constantly measured while overflowing the sample solution from the viewpoint that the time lag between the measurement of the chloride ion concentration and the transfer of the sample solution to the reaction vessel (B) can be reduced. It is preferable to transfer a part of the sample solution to the reaction vessel (B) during COD measurement.

一方、反応槽(B)が並列に接続されている場合には、前記試料溶液槽(2)に試料溶液を供給して塩化物イオン濃度を測定するとともに反応槽(B)に試料溶液を供給してもよいし、前記試料溶液槽(2)にオーバーフローラインを設けて試料溶液をオーバーフローさせながら塩化物イオン濃度を常時測定し、COD測定時に、試料溶液槽(2)に供給する試料溶液の一部を反応槽(B)に供給してもよい(図2)。これらのうち、塩化物イオン濃度測定と反応槽(B)への試料溶液の移送とのタイムラグを小さくすることが可能であるという観点から、試料溶液をオーバーフローさせながら塩化物イオン濃度を常時測定し、COD測定時に試料溶液の一部を反応槽(B)に移送することが好ましい。   On the other hand, when the reaction vessel (B) is connected in parallel, the sample solution is supplied to the sample solution vessel (2) to measure the chloride ion concentration and the sample solution is supplied to the reaction vessel (B). Alternatively, an overflow line may be provided in the sample solution tank (2) to constantly measure the chloride ion concentration while overflowing the sample solution, and the sample solution supplied to the sample solution tank (2) during COD measurement. A part may be supplied to the reaction tank (B) (FIG. 2). Of these, the chloride ion concentration is constantly measured while overflowing the sample solution from the viewpoint that the time lag between the measurement of the chloride ion concentration and the transfer of the sample solution to the reaction vessel (B) can be reduced. It is preferable to transfer a part of the sample solution to the reaction vessel (B) during COD measurement.

本発明では、前記反応槽(B)の手前に試料溶液計量器(3)を設けて試料溶液の移送量(供給量)を測定してもよいし(図1または図2)、反応槽(B)に所定量の試料溶液が移送されるように、反応槽(B)で試料溶液をオーバーフローさせてもよい(図示なし)。   In the present invention, a sample solution meter (3) may be provided in front of the reaction vessel (B) to measure the transfer amount (supply amount) of the sample solution (FIG. 1 or FIG. 2). The sample solution may be overflowed in the reaction vessel (B) so that a predetermined amount of the sample solution is transferred to B) (not shown).

なお、反応槽(B)への試料溶液の移送量は、COD測定の際に使用する試料溶液の量や後述する反応槽(C)を共洗する際に使用する試料溶液の量などを考慮して適宜設定することができる。   The amount of sample solution transferred to the reaction vessel (B) takes into account the amount of sample solution used for COD measurement and the amount of sample solution used for co-washing the reaction vessel (C) described later. And can be set as appropriate.

(C)反応槽:
本発明のCOD自動計測器における反応槽(C)は、前記反応槽(B)に直列に接続され、加熱装置(4)を使用して50℃以上100℃以下の範囲の温度に制御されたものである。前記加熱装置(4)としては沸騰水浴および油浴などが挙げられる。
(C) Reaction tank:
The reaction tank (C) in the COD automatic measuring instrument of the present invention was connected in series to the reaction tank (B) and controlled to a temperature in the range of 50 ° C. or more and 100 ° C. or less using the heating device (4). Is. Examples of the heating device (4) include a boiling water bath and an oil bath.

この反応槽(C)には、前記反応槽(B)から所定量の試料溶液が移送される。試料溶液の移送量は、通常、前記イオン濃度測定部(A)と反応槽(B)との間に設けた試料溶液計量器(5)により測定される。   A predetermined amount of sample solution is transferred from the reaction vessel (B) to the reaction vessel (C). The transfer amount of the sample solution is usually measured by a sample solution meter (5) provided between the ion concentration measuring unit (A) and the reaction tank (B).

(D)硝酸銀溶液添加手段:
本発明のCOD自動計測器における硝酸銀溶液添加手段(D)は、前記反応槽(B)に硝酸銀溶液を添加するためのものであり、硝酸銀溶液貯蔵タンク(6)と硝酸銀溶液計量器(7)とからなる。この硝酸銀溶液添加手段(D)(具体的には硝酸銀溶液計量器(7))は後述する制御手段(F)と電気的に接続されており、この硝酸銀溶液計量器(7)を制御手段(F)により制御することにより反応槽(B)に添加する硝酸銀溶液の量を調整することができる。
(D) Silver nitrate solution addition means:
The silver nitrate solution adding means (D) in the COD automatic measuring instrument of the present invention is for adding a silver nitrate solution to the reaction tank (B), and includes a silver nitrate solution storage tank (6) and a silver nitrate solution meter (7). It consists of. The silver nitrate solution adding means (D) (specifically, the silver nitrate solution meter (7)) is electrically connected to the control means (F) described later, and the silver nitrate solution meter (7) is connected to the control means (7). By controlling by F), the amount of the silver nitrate solution added to the reaction vessel (B) can be adjusted.

(E)硝酸銀溶液添加手段:
本発明のCOD自動計測器における硝酸銀溶液添加手段(E)は、前記反応槽(C)に硝酸銀溶液を添加するためのものであり、硝酸銀溶液貯蔵タンク(6)と硝酸銀溶液計量器(8)とからなる。この硝酸銀溶液添加手段(E)(具体的には硝酸銀溶液計量器(8))は後述する制御手段(F)と電気的に接続されており、この硝酸銀溶液計量器(8)を制御手段(F)により制御することにより反応槽(C)に添加する硝酸銀溶液の量を調整することができる。前記硝酸銀溶液貯蔵タンク(6)として、図1および図2に示すように前記硝酸銀溶液添加手段(D)の硝酸銀溶液貯蔵タンクと共通して使用してもよいし、別個のものを使用してもよい。
(E) Silver nitrate solution addition means:
The silver nitrate solution adding means (E) in the COD automatic measuring instrument of the present invention is for adding a silver nitrate solution to the reaction vessel (C), and includes a silver nitrate solution storage tank (6) and a silver nitrate solution meter (8). It consists of. The silver nitrate solution adding means (E) (specifically, the silver nitrate solution meter (8)) is electrically connected to the control means (F) described later, and the silver nitrate solution meter (8) is connected to the control means (8). By controlling by F), the amount of the silver nitrate solution added to the reaction vessel (C) can be adjusted. The silver nitrate solution storage tank (6) may be used in common with the silver nitrate solution storage tank of the silver nitrate solution addition means (D) as shown in FIGS. Also good.

(F)制御手段:
本発明のCOD自動計測器における制御手段(F)は、前記イオン濃度測定部(A)と前記硝酸銀溶液添加手段(D)および(E)(具体的には前記硝酸銀溶液計量器(7)および(8))に接続されており、前記イオン濃度測定部(A)において測定された塩化物イオン濃度に基づいて前記試料溶液に添加する硝酸銀の量を決定し、且つ前記硝酸銀溶液添加手段(D)および(E)を制御するためのものである。
(F) Control means:
The control means (F) in the COD automatic measuring instrument of the present invention includes the ion concentration measuring section (A) and the silver nitrate solution adding means (D) and (E) (specifically, the silver nitrate solution measuring instrument (7) and (8)), the amount of silver nitrate to be added to the sample solution is determined based on the chloride ion concentration measured in the ion concentration measuring section (A), and the silver nitrate solution adding means (D ) And (E).

具体的には、まず、予め設定された塩化物イオン濃度と硝酸銀添加量との検量線に基づいて、前記測定された塩化物イオン濃度に対する硝酸銀の添加量を決定する。   Specifically, first, an addition amount of silver nitrate with respect to the measured chloride ion concentration is determined based on a calibration curve between a preset chloride ion concentration and an addition amount of silver nitrate.

次に、この硝酸銀量が閾値以下である場合には、反応槽(B)では硝酸銀溶液を添加せず、反応槽(B)中の試料溶液の所定量をそのまま、50℃以上100℃以下の範囲の温度に制御された反応槽(C)に移送し、この反応槽(C)において、前記決定された硝酸銀量に相当する量の硝酸銀溶液を前記試料溶液に硝酸銀溶液添加手段(E)により攪拌しながら添加する。攪拌は、図1および図2に示すように攪拌機(9)により実施してもよいし、バブリングにより実施してもよい(図示なし)。   Next, when the amount of silver nitrate is not more than the threshold, no silver nitrate solution is added in the reaction vessel (B), and the predetermined amount of the sample solution in the reaction vessel (B) is kept as it is at 50 ° C. or more and 100 ° C. or less. It is transferred to a reaction vessel (C) controlled to a temperature in the range, and in this reaction vessel (C), an amount of silver nitrate solution corresponding to the determined silver nitrate amount is added to the sample solution by means of silver nitrate solution addition means (E). Add with stirring. Stirring may be performed by a stirrer (9) as shown in FIGS. 1 and 2, or by bubbling (not shown).

一方、前記硝酸銀量が閾値を超える場合には、まず、温度が−5℃以上50℃未満の範囲にある反応槽(B)において、前記閾値を超える分の硝酸銀量に相当する量の硝酸銀溶液を前記試料溶液に前記硝酸銀溶液添加手段(D)により攪拌しながら添加する。次に、反応槽(B)中の試料溶液の所定量を反応槽(C)に移送し、50℃以上100℃以下の範囲の温度に制御された反応槽(C)において、前記閾値の硝酸銀量に相当する量の硝酸銀溶液を前記試料溶液に前記硝酸銀溶液添加手段(E)により攪拌しながら添加する。攪拌は、図1および図2に示すように攪拌機(10)により実施してもよいし、バブリングにより実施してもよい(図示なし)。   On the other hand, when the amount of silver nitrate exceeds the threshold, first, in the reaction vessel (B) having a temperature in the range of −5 ° C. or more and less than 50 ° C., an amount of silver nitrate solution corresponding to the amount of silver nitrate exceeding the threshold Is added to the sample solution with stirring by the silver nitrate solution adding means (D). Next, a predetermined amount of the sample solution in the reaction vessel (B) is transferred to the reaction vessel (C), and in the reaction vessel (C) controlled to a temperature in the range of 50 ° C. or more and 100 ° C. or less, the silver nitrate having the above threshold value is obtained. An amount of silver nitrate solution corresponding to the amount is added to the sample solution with stirring by the silver nitrate solution adding means (E). Stirring may be performed by a stirrer (10) as shown in FIGS. 1 and 2, or by bubbling (not shown).

前記閾値は、通常、COD自動計測器の仕様などにより決定されるが、上述したように、高温で多量の硝酸銀を添加すると熱による塩化銀の凝固が発生しやすいため、閾値は可能な限り小さいことが好ましく、具体的には200g/Lの硝酸銀溶液の量に換算して5ml以下であることが好ましい。   The threshold is usually determined by the specifications of the COD automatic measuring instrument, etc., but as described above, if a large amount of silver nitrate is added at a high temperature, the silver chloride is likely to be solidified by heat, so the threshold is as small as possible. More specifically, it is preferably 5 ml or less in terms of the amount of 200 g / L silver nitrate solution.

上述のように、閾値を超える分の硝酸銀量に相当する量の硝酸銀溶液を予め−5℃以上50℃未満の比較的低温で前記試料溶液に添加することにより、硝酸銀溶液を添加して多量の塩化銀が生成した場合でも熱による塩化銀の凝固を抑制することができ、塩化銀が試料溶液中に均一に分散して反応槽(B)および(C)の内壁やセンサーの表面への塩化銀の付着や蓄積を抑制することができる。このような効果は反応槽の温度が低いほど大きいため、反応槽(B)の温度は−5〜40℃の範囲にあることが好ましく、この範囲の温度で閾値を超える分の硝酸銀量に相当する量の硝酸銀溶液を添加することが好ましい。また、本発明では、経済的な観点から、反応槽(B)は温度制御せずに単に室温の環境下に設置されていることが特に好ましい。   As described above, an amount of silver nitrate corresponding to the amount of silver nitrate exceeding the threshold is added to the sample solution at a relatively low temperature of −5 ° C. or more and less than 50 ° C. Even when silver chloride is generated, it is possible to suppress the solidification of silver chloride due to heat, and the silver chloride is uniformly dispersed in the sample solution and chlorinated on the inner walls of the reaction vessels (B) and (C) and the sensor surface. Silver adhesion and accumulation can be suppressed. Since such an effect is larger as the temperature of the reaction vessel is lower, the temperature of the reaction vessel (B) is preferably in the range of −5 to 40 ° C., which corresponds to the amount of silver nitrate exceeding the threshold at this temperature range. It is preferred to add the amount of silver nitrate solution to be added. Moreover, in this invention, it is especially preferable that the reaction tank (B) is simply installed in the environment of room temperature, without controlling temperature from an economical viewpoint.

(G)化学的酸素要求量(COD)測定手段:
本発明のCOD自動計測器におけるCOD測定手段(G)は、50℃以上100℃以下の範囲の温度に制御された前記反応槽(C)において、硝酸銀溶液添加後の前記試料溶液のCODを測定できるものであれば特に制限されない。
(G) Chemical oxygen demand (COD) measuring means:
The COD measuring means (G) in the COD automatic measuring instrument of the present invention measures the COD of the sample solution after addition of the silver nitrate solution in the reaction vessel (C) controlled to a temperature in the range of 50 ° C. to 100 ° C. There is no particular limitation as long as it is possible.

このようなCOD測定手段(G)としては、JIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」に記載の方法に準拠したもの、例えば、図1に示すようなORP電極(11)、滴定器(12)、試薬貯蔵タンク(13)、試薬計量器(14)、およびこれらと電気的に接続され、これらを制御するための滴定制御装置(15)を含むものが挙げられるが、前記COD測定手段(G)はこれに限定されるものではない。具体的には、以下の方法によりCOD測定を実施する。   Examples of such COD measuring means (G) include those based on the method described in JIS K0102-1998 “17. Oxygen consumption by potassium permanganate at 100 ° C.”, for example, ORP electrode as shown in FIG. (11), a titrator (12), a reagent storage tank (13), a reagent meter (14), and a titration controller (15) electrically connected to and controlling them. However, the COD measuring means (G) is not limited to this. Specifically, COD measurement is performed by the following method.

先ず、硫酸を添加(硫酸貯蔵タンクおよび硫酸計量器は図示なし)して硫酸酸性に調整した硝酸銀溶液添加後の前記試料溶液に酸化剤として所定量の過マンガン酸カリウム溶液を添加する。なお、硫酸は硝酸銀溶液を添加する前に添加してもよいし、硝酸銀溶液と同時に添加してもよいし、硝酸銀溶液を添加した後に添加してもよい。次いで、この試料溶液を100℃で30分間加熱する。これにより、前記試料溶液中の有機物などの還元性物質が過マンガン酸カリウムにより酸化される。その後、所定量のしゅう酸ナトリウム溶液を添加(しゅう酸ナトリウム貯蔵タンクおよびしゅう酸ナトリウム計量器は図示なし)し、反応槽(C)を50℃以上60℃以下の範囲の温度に冷却し、過マンガン酸カリウム溶液で逆滴定して前記酸化反応において消費された過マンガン酸カリウムの量を測定する。この過マンガン酸カリウムの消費量に相当する酸素量が前記試料溶液の化学的酸素要求量(COD)である。なお、前記逆滴定の終点は、ORP電極(11)を用いて試料溶液の酸化還元電位を測定することによって決定することができる。   First, sulfuric acid is added (a sulfuric acid storage tank and a sulfuric acid meter are not shown), and a predetermined amount of potassium permanganate solution is added as an oxidizing agent to the sample solution after addition of the silver nitrate solution adjusted to sulfuric acid acidity. The sulfuric acid may be added before the silver nitrate solution is added, may be added simultaneously with the silver nitrate solution, or may be added after the silver nitrate solution is added. The sample solution is then heated at 100 ° C. for 30 minutes. Thereby, reducing substances such as organic substances in the sample solution are oxidized by potassium permanganate. Thereafter, a predetermined amount of sodium oxalate solution is added (sodium oxalate storage tank and sodium oxalate meter are not shown), and the reaction vessel (C) is cooled to a temperature in the range of 50 ° C. to 60 ° C. Back titration with a potassium manganate solution measures the amount of potassium permanganate consumed in the oxidation reaction. The amount of oxygen corresponding to the consumption of potassium permanganate is the chemical oxygen demand (COD) of the sample solution. The end point of the back titration can be determined by measuring the redox potential of the sample solution using the ORP electrode (11).

その後、反応槽(B)および(C)中の試料溶液は銀回収槽(16)に移送され、塩化銀を分離回収した後、排出される。   Thereafter, the sample solutions in the reaction tanks (B) and (C) are transferred to the silver recovery tank (16), and after silver chloride is separated and recovered, it is discharged.

本発明のCOD自動計測器における試料溶液の移送手段は特に限定されず、ポンプを用いて移送してもよいし、圧力をかけて押し出し式に移送してもよい(いずれも図示なし)。   The means for transferring the sample solution in the COD automatic measuring instrument of the present invention is not particularly limited, and may be transferred using a pump or may be transferred in an extruding manner by applying pressure (all not shown).

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
図2に示すCOD自動計測器を用いて産業廃棄物の焼却排ガスの洗浄排水(塩化物イオン濃度:3000mg/L以上)のCODを継続的に測定した。各回の測定は以下の順序で自動制御により実施した。なお、硝酸銀溶液は濃度200g/Lのものを使用し、硝酸銀量の閾値は前記硝酸銀溶液の量に換算して5mlに設定した。なお、図2には、硫酸貯蔵タンク、硫酸計量器、しゅう酸ナトリウム溶液貯蔵タンク、しゅう酸ナトリウム溶液計量器、および希釈水流路は図示していないが、硫酸、しゅう酸ナトリウム溶液および希釈水も自動制御により添加した。各溶液はJIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」に記載の方法に従って調製した。また、イオン濃度計測器(1)として導電率計を使用し、攪拌機(9)の代わりにバブリングにより反応槽(B)中の洗浄排水を攪拌した。
Example 1
Using the COD automatic measuring instrument shown in FIG. 2, the COD of industrial waste incineration exhaust gas cleaning wastewater (chloride ion concentration: 3000 mg / L or more) was continuously measured. Each measurement was carried out by automatic control in the following order. A silver nitrate solution having a concentration of 200 g / L was used, and the threshold value of the amount of silver nitrate was set to 5 ml in terms of the amount of the silver nitrate solution. FIG. 2 does not show a sulfuric acid storage tank, a sulfuric acid meter, a sodium oxalate solution storage tank, a sodium oxalate solution meter, and a diluting water flow path. However, sulfuric acid, a sodium oxalate solution, and diluting water are also not shown. Added by automatic control. Each solution was prepared according to the method described in JIS K0102-1998 “Oxygen consumption by potassium permanganate at 17.100 ° C.”. Moreover, the electrical conductivity meter was used as an ion concentration measuring device (1), and the washing waste_water | drain in the reaction tank (B) was stirred by bubbling instead of the stirrer (9).

まず、試料溶液槽(2)において前記洗浄排水(試料溶液)をオーバーフローさせてイオン濃度計測器(1)により試料溶液の塩化物イオン濃度を常時測定した。次に、COD測定時に、前記試料溶液の一部を、室温の環境下に設置された反応槽(B)に160ml供給した。その後、制御手段(F)により、下記表1に基づいて、測定された塩化物イオン濃度に対する硝酸銀添加量に相当する硝酸銀溶液の添加量を決定し、以下のようにして硝酸銀溶液を試料溶液に添加した。   First, the washing waste water (sample solution) was overflowed in the sample solution tank (2), and the chloride ion concentration of the sample solution was constantly measured by the ion concentration measuring device (1). Next, at the time of COD measurement, 160 ml of a part of the sample solution was supplied to a reaction vessel (B) installed in a room temperature environment. Thereafter, the control means (F) determines the addition amount of the silver nitrate solution corresponding to the addition amount of silver nitrate with respect to the measured chloride ion concentration based on the following Table 1, and the silver nitrate solution is used as a sample solution as follows. Added.

Figure 0004714209
Figure 0004714209

決定した硝酸銀溶液の添加量が前記閾値(5ml)以下の場合には、反応槽(B)には硝酸銀溶液を添加せず、反応槽(C)を反応槽(B)の試料溶液で共洗した後、反応槽(C)に反応槽(B)の試料溶液を67ml移送した。これに希釈水33mlと硫酸(1+2)10mlとを添加した後、前記決定した量の硝酸銀溶液を硝酸銀溶液計量器(8)で計量し、攪拌しながら反応槽(C)に添加した。この間、反応槽(C)の温度を100℃に制御した。   When the determined addition amount of the silver nitrate solution is not more than the threshold (5 ml), the reaction vessel (B) is not added with the silver nitrate solution, and the reaction vessel (C) is co-washed with the sample solution in the reaction vessel (B). After that, 67 ml of the sample solution in the reaction tank (B) was transferred to the reaction tank (C). After adding 33 ml of diluted water and 10 ml of sulfuric acid (1 + 2) to this, the determined amount of silver nitrate solution was weighed with a silver nitrate solution meter (8) and added to the reaction vessel (C) with stirring. During this time, the temperature of the reaction vessel (C) was controlled at 100 ° C.

一方、決定した硝酸銀溶液の添加量が前記閾値(5ml)を超える場合には、超えた分(例えば、決定した硝酸銀溶液の添加量が9mlの場合には4ml)の硝酸銀溶液を硝酸銀溶液計量器(7)で計量し、室温の環境下に設置された反応槽(B)にバブリング(図示なし)により攪拌しながら添加した。次に、この試料溶液で反応槽(C)を共洗した後、反応槽(C)に反応槽(B)の試料溶液を67ml移送した。これに希釈水33mlと硫酸(1+2)10mlとを添加した後、前記閾値の量(5ml)の硝酸銀溶液を硝酸銀溶液計量器(8)で計量し、攪拌機(10)により攪拌しながら反応槽(C)に添加した。この間、反応槽(C)の温度を100℃に制御した。   On the other hand, when the determined addition amount of the silver nitrate solution exceeds the threshold value (5 ml), the excess amount (for example, 4 ml when the determined addition amount of the silver nitrate solution is 9 ml) is added to the silver nitrate solution meter. Weighed in (7) and added to the reaction vessel (B) installed in a room temperature environment while stirring by bubbling (not shown). Next, after the reaction vessel (C) was co-washed with this sample solution, 67 ml of the sample solution in the reaction vessel (B) was transferred to the reaction vessel (C). After adding 33 ml of diluting water and 10 ml of sulfuric acid (1 + 2) to this, a silver nitrate solution of the threshold amount (5 ml) was weighed with a silver nitrate solution meter (8) and stirred with a stirrer (10) (reaction vessel ( To C). During this time, the temperature of the reaction vessel (C) was controlled at 100 ° C.

次に、100℃に制御した前記反応槽(C)に5mmol/Lの過マンガン酸カリウム溶液10mlを攪拌機(10)により攪拌しながら添加し、この反応槽(C)を100℃で30分間加熱した。その後、攪拌機(10)により攪拌しながら反応槽(C)に12.5mmol/Lのしゅう酸ナトリウム溶液10mlを添加した後、反応槽(C)を50〜60℃に冷却し、5mmol/Lの過マンガン酸カリウム溶液で逆滴定して試料溶液のCOD値を測定した。逆滴定の終点はORP電極(11)により試料溶液の酸化還元電位を測定して決定した。測定終了後、反応槽(B)および(C)の試料溶液を銀回収槽(16)に移送して、塩化銀を分離回収した後、試料溶液を排出した。   Next, 10 ml of 5 mmol / L potassium permanganate solution is added to the reaction vessel (C) controlled at 100 ° C. while stirring with a stirrer (10), and the reaction vessel (C) is heated at 100 ° C. for 30 minutes. did. Thereafter, 10 ml of a 12.5 mmol / L sodium oxalate solution was added to the reaction vessel (C) while stirring with a stirrer (10), and then the reaction vessel (C) was cooled to 50 to 60 ° C. The COD value of the sample solution was measured by back titration with a potassium permanganate solution. The end point of the back titration was determined by measuring the redox potential of the sample solution with the ORP electrode (11). After completion of the measurement, the sample solutions in the reaction tanks (B) and (C) were transferred to the silver recovery tank (16) to separate and recover the silver chloride, and then the sample solution was discharged.

この測定を1時間周期で実施し、23回測定した後、系内を自動洗浄し、さらにこの周期で測定と洗浄を繰り返した。180日間継続してCODの測定を実施したが、このCOD自動計測器ではCOD値に大きな測定誤差は見られず、長期にわたって安定してCOD測定が可能であることが確認された。   This measurement was performed at a cycle of 1 hour. After 23 measurements, the system was automatically cleaned, and the measurement and cleaning were repeated at this cycle. Although COD measurement was carried out continuously for 180 days, this COD automatic measuring instrument did not show a large measurement error in the COD value, and it was confirmed that COD measurement was possible stably over a long period of time.

(比較例1)
図3に示すCOD自動計測器を用いて産業廃棄物の焼却排ガスの洗浄排水(塩化物イオン濃度:3000mg/L以上)のCODを継続的に測定した。各回の測定は以下の順序で自動制御により実施した。なお、硝酸銀溶液は濃度200g/Lのものを使用し、硝酸銀溶液の添加量は、塩化物イオンのマスキング不足を防止するため、13mlとした。また、図3には、硫酸貯蔵タンク、硫酸計量器、しゅう酸ナトリウム溶液貯蔵タンク、およびしゅう酸ナトリウム溶液計量器は図示していないが、硫酸およびしゅう酸ナトリウム溶液も自動制御により添加した。各溶液はJIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」に記載の方法に従って調製した。また、イオン濃度計測器(1)として導電率計を使用した。
(Comparative Example 1)
Using the COD automatic measuring instrument shown in FIG. 3, the COD of industrial waste incineration exhaust gas cleaning wastewater (chloride ion concentration: 3000 mg / L or more) was continuously measured. Each measurement was carried out by automatic control in the following order. A silver nitrate solution having a concentration of 200 g / L was used, and the addition amount of the silver nitrate solution was 13 ml to prevent insufficient masking of chloride ions. Further, although FIG. 3 does not show a sulfuric acid storage tank, a sulfuric acid meter, a sodium oxalate solution storage tank, and a sodium oxalate solution meter, sulfuric acid and sodium oxalate solution were also added by automatic control. Each solution was prepared according to the method described in JIS K0102-1998 “Oxygen consumption by potassium permanganate at 17.100 ° C.”. Moreover, the conductivity meter was used as an ion concentration measuring device (1).

前記洗浄排水(試料溶液)で反応槽(C)を共洗した後、反応槽(C)に試料溶液を67ml移送した。これに希釈水33mlと硫酸(1+2)10mlとを添加した後、前記量の硝酸銀溶液を硝酸銀溶液計量器(8)で計量し、攪拌機(10)により攪拌しながら反応槽(C)に添加した。この間、反応槽(C)の温度を100℃に制御した。   After washing the reaction tank (C) with the washing waste water (sample solution), 67 ml of the sample solution was transferred to the reaction tank (C). After adding 33 ml of diluted water and 10 ml of sulfuric acid (1 + 2) to this, the above-mentioned amount of silver nitrate solution was weighed with a silver nitrate solution meter (8) and added to the reaction vessel (C) while stirring with a stirrer (10). . During this time, the temperature of the reaction vessel (C) was controlled at 100 ° C.

次に、100℃に制御した前記反応槽(C)に5mmol/Lの過マンガン酸カリウム溶液10mlを攪拌機(10)により攪拌しながら添加し、この反応槽(C)を100℃で30分間加熱した。その後、攪拌機(10)により攪拌しながら反応槽(C)に12.5mmol/Lのしゅう酸ナトリウム溶液10mlを添加した後、反応槽(C)を50〜60℃に冷却し、5mmol/Lの過マンガン酸カリウム溶液で逆滴定して試料溶液のCOD値を測定した。逆滴定の終点はORP電極(11)により試料溶液の酸化還元電位を測定して決定した。測定終了後、反応槽(C)の試料溶液を銀回収槽(16)に移送して、塩化銀を分離回収した後、試料溶液を排出した。   Next, 10 ml of 5 mmol / L potassium permanganate solution is added to the reaction vessel (C) controlled at 100 ° C. while stirring with a stirrer (10), and the reaction vessel (C) is heated at 100 ° C. for 30 minutes. did. Thereafter, 10 ml of a 12.5 mmol / L sodium oxalate solution was added to the reaction vessel (C) while stirring with a stirrer (10), and then the reaction vessel (C) was cooled to 50-60 ° C. The COD value of the sample solution was measured by back titration with a potassium permanganate solution. The end point of the back titration was determined by measuring the redox potential of the sample solution with the ORP electrode (11). After completion of the measurement, the sample solution in the reaction tank (C) was transferred to the silver recovery tank (16), and after silver chloride was separated and recovered, the sample solution was discharged.

この測定を1時間周期で実施したところ、測定開始から3時間目にCOD値が大きく上昇したため、測定を停止し、反応槽(C)の内部およびORP電極(11)の表面を目視観察したところ、反応槽(C)の底部に塩化銀が堆積し、ORP電極(11)の表面には塩化銀が付着していた。   When this measurement was carried out at a cycle of 1 hour, the COD value increased greatly at 3 hours from the start of the measurement. Therefore, the measurement was stopped, and the inside of the reaction vessel (C) and the surface of the ORP electrode (11) were visually observed. Silver chloride was deposited on the bottom of the reaction vessel (C), and silver chloride was adhered to the surface of the ORP electrode (11).

以上説明したように、本発明によれば、COD測定時に反応槽を高温に保持する必要があるCOD自動計測器においても、反応槽内壁やセンサー表面などへの塩化銀の付着や蓄積を十分に抑制することができ、測定毎の洗浄や試料溶液の希釈などを施すことなく、長期にわたって継続的にCODを測定することが可能となる。   As described above, according to the present invention, even in a COD automatic measuring instrument that needs to keep the reaction vessel at a high temperature during COD measurement, the adhesion and accumulation of silver chloride on the inner wall of the reaction vessel, the sensor surface, etc. Therefore, it is possible to continuously measure COD over a long period of time without performing cleaning for each measurement or dilution of the sample solution.

したがって、本発明のCOD自動計測器は、長期間の継続したCOD測定、特に産業廃棄物の焼却排ガスの洗浄排水のCOD測定に有用である。   Therefore, the COD automatic measuring instrument of the present invention is useful for long-term continuous COD measurement, particularly COD measurement of cleaning wastewater from incineration exhaust gas of industrial waste.

本発明のCOD自動計測器の一例を示す模式図である。It is a schematic diagram which shows an example of the COD automatic measuring device of this invention. 本発明のCOD自動計測器の他の例を示す模式図である。It is a schematic diagram which shows the other example of the COD automatic measuring device of this invention. 従来のCOD自動計測器を示す模式図である。It is a schematic diagram which shows the conventional COD automatic measuring device.

符号の説明Explanation of symbols

A…イオン濃度測定部;B、C…反応槽;D、E…硝酸銀溶液添加手段;F…制御手段;G…COD測定手段;1…イオン濃度計測器;2…試料溶液槽;3、5…試料溶液計量器;4…加熱装置;6…硝酸銀溶液貯蔵タンク;7、8…硝酸銀溶液計量器;9、10…攪拌機;11…ORP電極;12…滴定器;13…試薬貯蔵タンク;14…試薬計量器;15…滴定制御装置;16…銀回収槽。   A ... Ion concentration measuring part; B, C ... Reaction tank; D, E ... Silver nitrate solution adding means; F ... Control means; G ... COD measuring means; 1 ... Ion concentration measuring instrument; Sample solution meter; 4 ... Heating device; 6 ... Silver nitrate solution storage tank; 7, 8 ... Silver nitrate solution meter; 9, 10 ... Stirrer; 11 ... ORP electrode; 12 ... Titrator; ... Reagent meter; 15 ... Titration controller; 16 ... Silver recovery tank.

Claims (2)

(A)試料溶液の塩化物イオン濃度を測定するためのイオン濃度測定部と、
(B)前記イオン濃度測定部(A)に直列または並列に接続され、温度が−5℃以上50℃未満の範囲にある反応槽と、
(C)前記反応槽(B)に直列に接続され、50℃以上100℃以下の範囲の温度に制御された反応槽と、
(D)前記反応槽(B)に硝酸銀溶液を添加する手段と、
(E)前記反応槽(C)に硝酸銀溶液を添加する手段と、
(F)前記イオン濃度測定部(A)と前記硝酸銀溶液添加手段(D)および(E)とに電気的に接続された制御手段であって、
前記塩化物イオン濃度に基づいて前記試料溶液に添加する硝酸銀量を決定し、
前記硝酸銀量が閾値以下である場合には、前記決定された硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(E)を用いて前記試料溶液に添加し、
前記硝酸銀量が閾値を超える場合には、前記閾値を超える分の硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(D)を用いて前記試料溶液に添加し、次いで、前記反応槽(B)から前記反応槽(C)に移送された前記試料溶液に前記硝酸銀溶液添加手段(E)を用いて前記閾値の硝酸銀量に相当する量の硝酸銀溶液を添加する、
ように前記硝酸銀溶液添加手段(D)および(E)を制御する制御手段と、
(G)JIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」に記載の方法に準拠した構成を有するものであって、前記反応槽(C)において、硝酸銀溶液添加後の前記試料溶液の化学的酸素要求量を測定する手段と、
を備えることを特徴とするCOD自動計測器。
(A) an ion concentration measurement unit for measuring the chloride ion concentration of the sample solution;
(B) a reaction tank connected in series or in parallel to the ion concentration measurement unit (A) and having a temperature in the range of −5 ° C. or more and less than 50 ° C .;
(C) a reaction vessel connected in series to the reaction vessel (B) and controlled to a temperature in the range of 50 ° C. or more and 100 ° C. or less;
(D) means for adding a silver nitrate solution to the reaction vessel (B);
(E) means for adding a silver nitrate solution to the reaction vessel (C);
(F) Control means electrically connected to the ion concentration measuring section (A) and the silver nitrate solution adding means (D) and (E),
Determining the amount of silver nitrate added to the sample solution based on the chloride ion concentration;
When the silver nitrate amount is not more than a threshold value, an amount of silver nitrate solution corresponding to the determined silver nitrate amount is added to the sample solution using the silver nitrate solution adding means (E),
When the amount of silver nitrate exceeds a threshold value, an amount of silver nitrate solution corresponding to the amount of silver nitrate exceeding the threshold value is added to the sample solution using the silver nitrate solution addition means (D), and then the reaction vessel Adding a silver nitrate solution in an amount corresponding to the threshold amount of silver nitrate using the silver nitrate solution addition means (E) to the sample solution transferred from (B) to the reaction vessel (C);
Control means for controlling the silver nitrate solution addition means (D) and (E),
(G) It has the structure based on the method as described in JIS K0102-1998 "Oxygen consumption by potassium permanganate at 17.100 degreeC", Comprising: In the said reaction tank (C), after a silver nitrate solution addition Means for measuring the chemical oxygen demand of the sample solution;
A COD automatic measuring instrument comprising:
(A)試料溶液の塩化物イオン濃度を測定するためのイオン濃度測定部と、
(B)前記イオン濃度測定部(A)に直列または並列に接続され、温度が−5℃以上50℃未満の範囲にある反応槽と、
(C)前記反応槽(B)に直列に接続され、50℃以上100℃以下の範囲の温度に制御された反応槽と、
(D)前記反応槽(B)に硝酸銀溶液を添加する手段と、
(E)前記反応槽(C)に硝酸銀溶液を添加する手段と、
(F)前記イオン濃度測定部(A)と前記硝酸銀溶液添加手段(D)および(E)とに電気的に接続された制御手段と、
(G)JIS K0102−1998「17.100℃における過マンガン酸カリウムによる酸素消費量」に記載の方法に準拠した構成を有する、化学的酸素要求量を測定する手段と、
を備えるCOD自動計測器を用いて試料溶液の化学的酸素要求量を測定する方法であって、
前記イオン濃度測定部(A)において試料溶液の塩化物イオン濃度を測定する工程と、
前記制御手段(F)によって、
前記塩化物イオン濃度に基づいて前記試料溶液に添加する硝酸銀量を決定し、
前記硝酸銀量が閾値以下である場合には、前記決定された硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(E)を用いて前記試料溶液に添加し、
前記硝酸銀量が閾値を超える場合には、前記閾値を超える分の硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(D)を用いて前記試料溶液に添加し、次いで、前記反応槽(B)から前記反応槽(C)に前記試料溶液を移送し、該試料溶液に前記閾値の硝酸銀量に相当する量の硝酸銀溶液を前記硝酸銀溶液添加手段(E)を用いて添加する、工程と、
前記反応槽(C)において前記化学的酸素要求量測定手段(G)により硝酸銀溶液添加後の前記試料溶液の化学的酸素要求量を測定する工程と、
を含むことを特徴とするCODの測定方法。
(A) an ion concentration measurement unit for measuring the chloride ion concentration of the sample solution;
(B) a reaction tank connected in series or in parallel to the ion concentration measurement unit (A) and having a temperature in the range of −5 ° C. or more and less than 50 ° C .;
(C) a reaction vessel connected in series to the reaction vessel (B) and controlled to a temperature in the range of 50 ° C. or more and 100 ° C. or less;
(D) means for adding a silver nitrate solution to the reaction vessel (B);
(E) means for adding a silver nitrate solution to the reaction vessel (C);
(F) a control means electrically connected to the ion concentration measurement section (A) and the silver nitrate solution addition means (D) and (E);
(G) means for measuring a chemical oxygen demand having a configuration conforming to the method described in JIS K0102-1998 "Oxygen consumption by potassium permanganate at 17.100 ° C" ;
A method for measuring chemical oxygen demand of a sample solution using a COD automatic measuring instrument comprising:
Measuring the chloride ion concentration of the sample solution in the ion concentration measuring section (A);
By the control means (F),
Determining the amount of silver nitrate added to the sample solution based on the chloride ion concentration;
When the silver nitrate amount is not more than a threshold value, an amount of silver nitrate solution corresponding to the determined silver nitrate amount is added to the sample solution using the silver nitrate solution adding means (E),
When the amount of silver nitrate exceeds a threshold value, an amount of silver nitrate solution corresponding to the amount of silver nitrate exceeding the threshold value is added to the sample solution using the silver nitrate solution addition means (D), and then the reaction vessel (B) transferring the sample solution to the reaction vessel (C), and adding a silver nitrate solution in an amount corresponding to the threshold amount of silver nitrate to the sample solution using the silver nitrate solution adding means (E) When,
Measuring the chemical oxygen demand of the sample solution after addition of the silver nitrate solution by the chemical oxygen demand measurement means (G) in the reaction vessel (C);
A COD measurement method comprising:
JP2007313181A 2007-12-04 2007-12-04 COD automatic measuring instrument and COD measuring method using the same Expired - Fee Related JP4714209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313181A JP4714209B2 (en) 2007-12-04 2007-12-04 COD automatic measuring instrument and COD measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313181A JP4714209B2 (en) 2007-12-04 2007-12-04 COD automatic measuring instrument and COD measuring method using the same

Publications (2)

Publication Number Publication Date
JP2009139119A JP2009139119A (en) 2009-06-25
JP4714209B2 true JP4714209B2 (en) 2011-06-29

Family

ID=40869885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313181A Expired - Fee Related JP4714209B2 (en) 2007-12-04 2007-12-04 COD automatic measuring instrument and COD measuring method using the same

Country Status (1)

Country Link
JP (1) JP4714209B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697081B2 (en) * 2010-11-22 2015-04-08 株式会社堀場製作所 Reaction tank and measuring device using the reaction tank
JP5477913B2 (en) * 2010-11-22 2014-04-23 株式会社堀場製作所 Electrode body and measuring apparatus using the electrode body
JP6230194B2 (en) * 2014-05-09 2017-11-15 コスモ石油株式会社 Method for producing silver nitrate
JP6347297B1 (en) * 2017-02-10 2018-06-27 栗田工業株式会社 Ballast water measuring device and ballast water measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130065U (en) * 1991-05-24 1992-11-30 古河電気工業株式会社 COD automatic measuring device
JPH05322830A (en) * 1992-05-16 1993-12-07 Horiba Ltd Method for melting silver chloride for cod measuring instrument
JPH08101188A (en) * 1994-09-29 1996-04-16 Hiranuma Sangyo Kk Automatic analyzing method and device
JP2001281220A (en) * 2000-03-29 2001-10-10 Dkk Toa Corp COD automatic measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130065U (en) * 1991-05-24 1992-11-30 古河電気工業株式会社 COD automatic measuring device
JPH05322830A (en) * 1992-05-16 1993-12-07 Horiba Ltd Method for melting silver chloride for cod measuring instrument
JPH08101188A (en) * 1994-09-29 1996-04-16 Hiranuma Sangyo Kk Automatic analyzing method and device
JP2001281220A (en) * 2000-03-29 2001-10-10 Dkk Toa Corp COD automatic measuring instrument

Also Published As

Publication number Publication date
JP2009139119A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US20230014032A1 (en) Systems and methods for detecting and measuring oxidizing compounds in test fluids
US10329177B2 (en) Sensor with memory storing calibration information
US9207204B2 (en) Method and apparatus for determining information concerning presence of constituents of a liquid sample with oxygen demand
KR20150051873A (en) Automatic apparatus for measuring chemical oxygen demand(cod)
JP4714209B2 (en) COD automatic measuring instrument and COD measuring method using the same
KR101791490B1 (en) Method for measuring total oxidizing-substance concentration, substrate cleaning method, and substrate cleaning system
US8956875B2 (en) Water hardness monitoring via fluorescence
JP5612822B2 (en) Slime control method
CN107815687A (en) Copper chloride corrosive liquid regenerating unit
US20170089860A1 (en) Residual chlorine measuring apparatus and method of measuring residual chlorine
CN104977393A (en) Online effective chlorine detector and detection method for ship ballast water treatment system
KR20130008828A (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
CN110579524B (en) Method for cleaning, adjusting, calibrating and/or regulating a current sensor
EP0816846A1 (en) A system for monitoring biocide treatments
EP1141686B1 (en) Device and method to control steel pickling processes
KR101758823B1 (en) The method for analysis of Chemical Oxygen Demand
CN204807542U (en) Ship ballast water processing system is with online effective chlorine detector
CA2774111C (en) Device for disinfecting water by means of anodic oxidation
JP7284624B2 (en) Residual chlorine removal method, controller for residual chlorine removal system, and residual chlorine removal system
JP3786863B2 (en) Washing water production equipment
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
JP2011106853A (en) Method for confirming addition amount of chemical-oxygen demand measuring solution
EP4111171B1 (en) Automatic sugar dosing
JP2019120569A (en) COD measuring device and COD measuring method
CN213600624U (en) COD on-line measuring equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4714209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees