JP4707380B2 - Conductive material - Google Patents
Conductive material Download PDFInfo
- Publication number
- JP4707380B2 JP4707380B2 JP2004353312A JP2004353312A JP4707380B2 JP 4707380 B2 JP4707380 B2 JP 4707380B2 JP 2004353312 A JP2004353312 A JP 2004353312A JP 2004353312 A JP2004353312 A JP 2004353312A JP 4707380 B2 JP4707380 B2 JP 4707380B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- silicon carbide
- ceramic
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Resistance Heating (AREA)
- Ceramic Products (AREA)
- Conductive Materials (AREA)
Description
本発明は、帯電防止部品、ヒーター、通電部品等の構造材料又は構成部品に適する導電性セラミックスに関する。 The present invention relates to a conductive ceramic suitable for a structural material or a component such as an antistatic component, a heater, or a current-carrying component.
導電性セラミックスは、帯電防止部品、ヒーター、通電部品等の構造材料又は構成部品として使用されている。炭化ケイ素を用いた導電性セラミックスとしては、例えば、炭化ケイ素と、導電性を付与し得る金属材料とを含んでなるものが知られている(例えば、特許文献1、特許文献2参照)。なお、特許文献2の導電性セラミックスでは、炭化ケイ素基材の焼結助剤及び該セラミックスの抵抗値調整剤として一部炭素が含まれている。 Conductive ceramics are used as structural materials or constituent parts such as antistatic parts, heaters, and current-carrying parts. As conductive ceramics using silicon carbide, for example, those comprising silicon carbide and a metal material capable of imparting conductivity are known (see, for example, Patent Document 1 and Patent Document 2). In addition, in the conductive ceramic of patent document 2, a part of carbon is contained as a sintering aid for the silicon carbide substrate and a resistance value adjusting agent for the ceramic.
このように、従来、導電性セラミックスの材料として炭化ケイ素を用いる場合、導電性が不充分となることから金属材料は必須の成分と考えられていた。
本発明の課題は、導電性に優れた、炭化ケイ素炭素複合系の導電性セラミックスを提供することにある。 An object of the present invention is to provide a silicon carbide carbon composite-based conductive ceramic having excellent conductivity.
すなわち、本発明の要旨は、炭化ケイ素100重量部に対し、10〜50重量部の炭素を含有してなる導電性セラミックスであって、相対密度が92%以上である導電性セラミックスに関する。 That is, the gist of the present invention relates to a conductive ceramic containing 10 to 50 parts by weight of carbon with respect to 100 parts by weight of silicon carbide and having a relative density of 92% or more.
本発明によれば、帯電防止部品、ヒーター、通電部品等の構造材料又は構成部品に好適に使用される、導電性に優れた、炭化ケイ素炭素複合系の導電性セラミックスを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the conductive ceramic of the silicon carbide carbon composite type | system | group excellent in electroconductivity used suitably for structural materials or structural components, such as an antistatic component, a heater, and an electricity supply component, can be provided.
本発明者らは、従来、炭化ケイ素を材料として使用する導電性セラミックスでは金属材料は必須の成分と考えられていたところ、金属材料を含まずとも、一定の炭素含有量の下で炭化ケイ素炭素複合系セラミックスの相対密度を高めることにより、意外にも該セラミックスが充分な導電性を発揮し得ることを見出し、本発明を完成した。本発明の導電性セラミックスによれば、金属材料を必須成分として含んでなる従来の導電性セラミックスと比べて、酸化劣化がなく、鋼性が高いという利点が得られる。 In the conventional conductive ceramics using silicon carbide as a material, the present inventors thought that a metal material was an indispensable component. However, even if a metal material is not included, silicon carbide carbon is used under a certain carbon content. Surprisingly, the present inventors have found that the ceramics can exhibit sufficient conductivity by increasing the relative density of the composite ceramics, thereby completing the present invention. According to the conductive ceramics of the present invention, there is an advantage that there is no oxidative deterioration and high steel properties compared to conventional conductive ceramics containing a metal material as an essential component.
本発明の導電性セラミックスは、炭化ケイ素100重量部に対し、10〜50重量部の炭素を含有してなり、その相対密度は92%以上である。炭素の含有量が10重量部未満であると導電性が小さく、一方、50重量部を超えると構造体として強度が不充分である。また、相対密度が92%未満であると、充分な導電性を確保することが困難となる。炭素の含有量としては、炭化ケイ素100重量部に対し、好ましくは12〜36重量部、より好ましくは16〜26重量部である。相対密度としては、好ましくは95%以上である。 The conductive ceramic of the present invention contains 10 to 50 parts by weight of carbon with respect to 100 parts by weight of silicon carbide, and the relative density is 92% or more. If the carbon content is less than 10 parts by weight, the electrical conductivity is small, whereas if it exceeds 50 parts by weight, the strength of the structure is insufficient. Further, if the relative density is less than 92%, it is difficult to ensure sufficient conductivity. The carbon content is preferably 12 to 36 parts by weight, more preferably 16 to 26 parts by weight with respect to 100 parts by weight of silicon carbide. The relative density is preferably 95% or more.
なお、本明細書において相対密度とは嵩密度を理論密度で除したものを言い、嵩密度はJIS R1634により測定される。なお、導電性セラミックスが複数成分からなる場合は、各成分の理論密度×各成分の含有量(重量%)÷100を計算し、そのようにして得られた各成分についての値の和を該セラミックス全体の理論密度とする。 In this specification, the relative density means a value obtained by dividing the bulk density by the theoretical density, and the bulk density is measured according to JIS R1634. When the conductive ceramic is composed of a plurality of components, the theoretical density of each component x the content of each component (% by weight) ÷ 100 is calculated, and the sum of the values for each component thus obtained is calculated. The theoretical density of the entire ceramic.
本発明の導電性セラミックスは、公知の炭化ケイ素炭素複合セラミックスの製造方法に準じて製造することができる(例えば、特開平3−199164号公報参照)。なお、本発明のセラミックスに使用される材料はそれぞれ単独で若しくは2種以上混合して適宜用いることができる。 The conductive ceramic of the present invention can be produced according to a known method for producing silicon carbide carbon composite ceramics (for example, see JP-A-3-1991164). In addition, the material used for the ceramic of this invention can be used suitably individually or in mixture of 2 or more types, respectively.
炭化ケイ素はセラミックスのマトリックスとなるものであり、α、βのいずれの結晶型であってもよい。また、その純度としては、特に限定するものではないが、分散性及び焼結性に優れることから、好ましくは90重量%以上、より好ましくは95重量%以上である。炭化ケイ素の形態としては焼結性が良好であることから、平均粒子径5μm以下の粉末であるのが好ましい。なお、本明細書に記載の平均粒子径は、例えば、レーザー回折/散乱光式粒子径分布測定装置(堀場製作所製、LA700)により測定される。 Silicon carbide serves as a ceramic matrix, and may be either α or β crystal form. Further, the purity is not particularly limited, but is preferably 90% by weight or more, more preferably 95% by weight or more because of excellent dispersibility and sinterability. The form of silicon carbide is preferably a powder having an average particle diameter of 5 μm or less because of its good sinterability. In addition, the average particle diameter described in the present specification is measured by, for example, a laser diffraction / scattered light type particle size distribution measuring apparatus (LA700, manufactured by Horiba, Ltd.).
導電性セラミックスは、上記の好適範囲の純度の炭化ケイ素と炭素源とだけから構成されることが好ましいが、本発明の効果を損なわない範囲で炭化物等の任意成分を含有することができる。 The conductive ceramic is preferably composed only of silicon carbide having a purity within the above-described preferred range and a carbon source, but may contain an optional component such as a carbide within a range not impairing the effects of the present invention.
本発明の導電性セラミックス中の炭素とは炭素の単体であって、主として結晶相と非晶相の2相で存在する。具体的には炭素の単体として、無定形炭素、黒鉛等が挙げられる。これらの単体の結晶相は、レーザーラマン分光法で測定して得られるスペクトルにおいて、1580cm−1付近を中心とする1450〜1700cm−1にかけてのピークを有し、結晶構造としては、例えば、グラファイト型平面六角形構造、菱面体形構造等が挙げられるが、特に限定はない。また、非晶相は、1360cm−1付近を中心とする1300〜1450cm−1にかけてのピークを有する。本発明の導電性セラミックスにおける炭素の結晶相と非晶相とのレーザーラマン分光強度のピーク面積比(結晶相/非晶相)としては、特に限定はないが、優れた機械的強度(強度、破壊靭性等)を確保する観点から、好ましくは1〜10、より好ましくは1〜5である。当該ピーク面積比は、炭素の黒鉛化度に相当すると考えており、この値が前記好適範囲にあると、良好な強度と破壊靭性を達成できる。スペクトルの測定では、例えば、NEC社製アルゴンレーザー分光装置が用いられる。 The carbon in the conductive ceramic of the present invention is a simple substance of carbon and mainly exists in two phases of a crystalline phase and an amorphous phase. Specifically, amorphous carbon, graphite, etc. are mentioned as a simple substance of carbon. These single crystal phases have a peak from 1450 to 1700 cm −1 centered around 1580 cm −1 in the spectrum obtained by measurement by laser Raman spectroscopy. The crystal structure is, for example, a graphite type Although a plane hexagonal structure, a rhombohedral structure, etc. are mentioned, there is no limitation in particular. Further, an amorphous phase has a peak of over the 1300~1450Cm -1 centered around 1360 cm -1. The peak area ratio (crystal phase / amorphous phase) of the laser Raman spectral intensity between the crystalline phase and the amorphous phase of carbon in the conductive ceramic of the present invention is not particularly limited, but excellent mechanical strength (strength, From the viewpoint of ensuring fracture toughness and the like, it is preferably 1 to 10, more preferably 1 to 5. The peak area ratio is considered to correspond to the degree of graphitization of carbon, and when this value is in the preferred range, good strength and fracture toughness can be achieved. In the measurement of the spectrum, for example, an argon laser spectroscope manufactured by NEC is used.
本発明の導電性セラミックスの製造においては、上記炭素の単体は、簡便であることから、製造工程中に適当な炭素源から生成させるのが好適である。例えば、上記炭化ケイ素、後述の炭素源、及び所望により、通常用いられる添加剤等(例えば、公知のホウ素化合物、チタン化合物、アルミニウム化合物、イットリア化合物等の焼結助剤等)を湿式混合し、仮焼する。この仮焼工程により炭素源は炭素の単体に変換される。湿式混合の際の各原料の混合割合は、導電性セラミックスの組成が前記の通りとなるように適宜調整すればよい。 In the production of the conductive ceramic of the present invention, the simple substance of carbon is simple, and thus it is preferable to produce it from an appropriate carbon source during the production process. For example, the above silicon carbide, a carbon source described later, and, as desired, commonly used additives and the like (for example, known boron compounds, titanium compounds, aluminum compounds, yttria compounds and other sintering aids) are wet-mixed, Calcinate. By this calcining step, the carbon source is converted into simple carbon. What is necessary is just to adjust suitably the mixing ratio of each raw material in the case of wet mixing so that a composition of electroconductive ceramics may become as above-mentioned.
湿式混合は、ボールミル、振動ミル、遊星ミル等を用いて行えばよい。また、使用する溶媒としては水の他、有機溶剤、例えば、ベンゼン、トルエン、キシレン等の芳香族系溶剤や、メタノール、エタノール等のアルコール系溶剤、メチルエチルケトン等のケトン系溶剤などが好ましい。 The wet mixing may be performed using a ball mill, a vibration mill, a planetary mill, or the like. In addition to water, the solvent used is preferably an organic solvent, for example, an aromatic solvent such as benzene, toluene or xylene, an alcohol solvent such as methanol or ethanol, or a ketone solvent such as methyl ethyl ketone.
湿式混合後の混合物の仮焼は所望により公知の方法に従って行えばよいが、使用する炭素源を充分に炭素単体に変換させる一方、粒子の自由焼結を防いで良好な分散性を維持する観点から、好ましくは、不活性雰囲気下(例えば、窒素ガス、アルゴンガス等の雰囲気下)、400〜800℃で熱処理して行う。 The mixture after wet mixing may be calcined according to a known method if desired, but the viewpoint of maintaining good dispersibility by preventing free sintering of particles while sufficiently converting the carbon source to be used to carbon alone. Preferably, the heat treatment is performed at 400 to 800 ° C. in an inert atmosphere (for example, in an atmosphere of nitrogen gas, argon gas, or the like).
上記炭素源としては、湿式混合に使用する上記有機溶剤に可溶性若しくは分散性のもので、かつ上記仮焼条件下に炭素に変換されるものが好ましいが、特に限定されない。その性状としては、球状であって結晶性の良好なものが好ましく、その平均粒子径としては5〜200μm程度が好適である。該炭素源としては、仮焼後、炭素への変換率が高いことから、芳香族炭化水素が好ましく、例えば、フラン樹脂、フェノール樹脂、コールタールピッチ等が挙げられ、中でもフェノール樹脂、コールタールピッチがより好適に使用される。 The carbon source is preferably one that is soluble or dispersible in the organic solvent used for wet mixing and is converted to carbon under the calcining conditions, but is not particularly limited. The properties are preferably spherical and have good crystallinity, and the average particle size is preferably about 5 to 200 μm. The carbon source is preferably an aromatic hydrocarbon since it has a high conversion rate to carbon after calcination, and examples thereof include furan resin, phenol resin, coal tar pitch, and the like, among which phenol resin, coal tar pitch. Are more preferably used.
最終的に、造粒成形後、焼成することにより、所望の導電性セラミックスが得られる。 Finally, the desired conductive ceramics can be obtained by firing after granulation molding.
造粒成形において、造粒はスプレードライ等で行えばよい。一方、成形は金型成形法、CIP(COLD ISOSTATIC PRESS)法、又はスリップキャスティング法等で行えばよい。 In granulation molding, granulation may be performed by spray drying or the like. On the other hand, the molding may be performed by a mold molding method, a CIP (COLD ISOSTATIC PRESS) method, a slip casting method, or the like.
焼成は公知の方法に従って行えばよいが、不活性雰囲気下又は真空下、1800〜2300℃で行うのが好ましい。焼成方法としては、例えば、ホットプレス、HIP(HOT ISOSTATIC PRESS)法等が挙げられる。そのようにして焼成を行うことで、所望の相対密度を有する焼結体として本発明の導電性セラミックスが得られる。 Firing may be performed according to a known method, but it is preferably performed at 1800 to 2300 ° C. in an inert atmosphere or under vacuum. Examples of the firing method include a hot press and a HIP (HOT ISOSTATIC PRESS) method. By firing in such a manner, the conductive ceramic of the present invention can be obtained as a sintered body having a desired relative density.
以上のようにして所望の導電性セラミックスが得られるが、上記の通りの方法に従って製造することで、充分な特性を有する導電性セラミックスが得られる。該セラミックスの体積抵抗率としては、特に限定されるものではないが、充分な導電性を付与する観点から、好ましくは10Ω・cm以下、より好ましくは1Ω・cm以下、さらに好ましくは0.1Ω・cm以下である。体積抵抗率(単に抵抗率とも呼ばれる)とは単位断面積、単位長さの電気抵抗であり、その逆数を求めることによって導電率が分かる。従って、体積抵抗率が低い程、導電性が高いといえる。体積抵抗率は、例えば、「窯業計測」(著作者:窯業読本編集委員会、発行所:社団法人窯業協会)第222頁の「(1)絶縁抵抗試験」に従って測定することができる。 As described above, desired conductive ceramics can be obtained, but conductive ceramics having sufficient characteristics can be obtained by manufacturing according to the method described above. The volume resistivity of the ceramic is not particularly limited, but is preferably 10 Ω · cm or less, more preferably 1 Ω · cm or less, more preferably 0.1 Ω · cm, from the viewpoint of imparting sufficient conductivity. cm or less. Volume resistivity (also simply referred to as resistivity) is an electrical resistance having a unit cross-sectional area and unit length, and the conductivity can be obtained by calculating the reciprocal thereof. Therefore, the lower the volume resistivity, the higher the conductivity. The volume resistivity can be measured, for example, according to “(1) Insulation Resistance Test” on page 222 of “Ceramics Measurement” (author: Ceramics Readers Editorial Board, Issuer: Ceramic Industry Association).
本発明の導電性セラミックスは、例えば、帯電防止部品、ヒーター、通電部品等の構造材料又は構成部品として好適に使用される。 The conductive ceramic of the present invention is suitably used as a structural material or a component such as, for example, an antistatic component, a heater, or a current-carrying component.
実施例1〜5及び比較例1〜2(ただし、実施例1〜3は参考例である。)
表1に示す炭素源、平均粒子径0.5μmのβ−炭化ケイ素(純度98重量%)、及び焼結助剤としてB4C 2重量%を振動ミルでエタノール湿式混合し、アルゴンガス(Ar)雰囲気下600℃で仮焼した。スプレードライで造粒後、金型成形法で成形し、次いで表1に示す焼成雰囲気下及び焼成温度で1時間焼成した。なお、表1中、炭素含有量は、炭化ケイ素100重量部に対する炭素の含有量を示す。コールタールピッチは残炭率53%のものである。
Examples 1-5 and Comparative Examples 1-2 (However, Examples 1-3 are reference examples.)
The carbon source shown in Table 1, β-silicon carbide having an average particle diameter of 0.5 μm (purity 98 wt%), and B 4 C 2 wt% as a sintering aid were wet-mixed in ethanol using a vibration mill, and argon gas (Ar ) Calcined at 600 ° C. in an atmosphere. After granulation by spray drying, it was molded by a mold molding method, and then fired for 1 hour in the firing atmosphere and firing temperature shown in Table 1. In Table 1, the carbon content indicates the carbon content relative to 100 parts by weight of silicon carbide. The coal tar pitch has a residual carbon ratio of 53%.
得られた導電性セラミックスについて以下の特性について評価した。評価結果を表1に併せて示す。 The obtained conductive ceramic was evaluated for the following characteristics. The evaluation results are also shown in Table 1.
(1)レーザーラマン比
レーザーラマン比、すなわち、炭素の結晶相と非晶相とのレーザーラマン分光強度のピーク面積比(結晶相/非晶相)を、NEC社製アルゴンレーザーラマン分光装置により求めた。
(1) Laser Raman ratio The laser Raman ratio, that is, the peak area ratio (crystalline phase / amorphous phase) of the laser Raman spectral intensity between the crystalline phase and the amorphous phase of carbon is obtained with an argon laser Raman spectrometer manufactured by NEC. It was.
(2)相対密度
相対密度を、JIS R1634で嵩密度を求め、それを理論密度で除することにより求めた。
(2) Relative density Relative density was determined by calculating the bulk density according to JIS R1634 and dividing it by the theoretical density.
(3)体積抵抗率
体積抵抗率を、「窯業計測」(著作者:窯業読本編集委員会、発行所:社団法人窯業協会)第222頁の「(1)絶縁抵抗試験」に従って求めた。
(3) Volume resistivity Volume resistivity was determined according to “(1) Insulation resistance test” on page 222 of “Ceramic industry measurement” (author: Ceramic Industry Readers Editorial Board, publisher: Ceramic Industry Association).
表1より、炭化ケイ素100重量部に対し炭素含有量が10〜50重量部で高い相対密度を有すれば、セラミックスが金属材料を含有しなくとも優れた導電性を得ることが分かる。 From Table 1, it can be seen that if the carbon content is 10 to 50 parts by weight with respect to 100 parts by weight of silicon carbide and the ceramic has a high relative density, the ceramic can obtain excellent conductivity even if it does not contain a metal material.
本発明により、導電性に優れた、炭化ケイ素炭素複合系の導電性セラミックスが提供される。 The present invention provides a silicon carbide carbon composite-based conductive ceramic having excellent conductivity.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004353312A JP4707380B2 (en) | 2004-12-06 | 2004-12-06 | Conductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004353312A JP4707380B2 (en) | 2004-12-06 | 2004-12-06 | Conductive material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006160554A JP2006160554A (en) | 2006-06-22 |
JP4707380B2 true JP4707380B2 (en) | 2011-06-22 |
Family
ID=36662986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004353312A Expired - Lifetime JP4707380B2 (en) | 2004-12-06 | 2004-12-06 | Conductive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4707380B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2548191B2 (en) * | 1987-05-26 | 1996-10-30 | 日本電装株式会社 | Method for producing non-oxide ceramics |
JP2968293B2 (en) * | 1989-12-28 | 1999-10-25 | 花王株式会社 | Method for producing silicon carbide carbon composite ceramics compact |
JP2000313669A (en) * | 1999-04-27 | 2000-11-14 | Tokai Konetsu Kogyo Co Ltd | Method for manufacturing silicon carbide sheet heater |
JP2001261441A (en) * | 2000-03-15 | 2001-09-26 | Tokai Konetsu Kogyo Co Ltd | Method for producing conductive SiC sintered body |
WO2003033434A1 (en) * | 2001-10-16 | 2003-04-24 | Bridgestone Corporation | Process for producing silicon carbide sinter and silicon carbide sinter obtained by the process |
-
2004
- 2004-12-06 JP JP2004353312A patent/JP4707380B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006160554A (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sivakumar et al. | Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites | |
Inam et al. | Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering | |
TWI573757B (en) | A silicon nitride powder manufacturing method and a silicon nitride powder, and a silicon nitride sintered body and a circuit board using the same | |
KR101757069B1 (en) | Alumina composite ceramic composition and method of manufacturing the same | |
JP6344844B2 (en) | Boron carbide / titanium boride composite ceramics and method for producing the same | |
JPS6228109B2 (en) | ||
JPH0769731A (en) | High-strength, high-density conductive ceramic | |
Kovalčíková et al. | Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite | |
Lanfant et al. | Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites | |
Zou et al. | Flash spark plasma sintering of HfB2 ceramics without pre-sintering | |
WO2017217378A1 (en) | Silicon carbide production method and silicon carbide composite material | |
JP4691891B2 (en) | C-SiC sintered body and manufacturing method thereof | |
KR101413250B1 (en) | Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same | |
KR101178234B1 (en) | Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compounds for silicon carbide ceramics, silicon carbide ceramics, and its preparation method | |
KR102042668B1 (en) | SiC sintered body and heater and manufacturing method of SiC sintered body | |
JP4707380B2 (en) | Conductive material | |
JP2013014487A (en) | Method for producing conductive ceramics | |
JP2008001571A (en) | High thermal conductive carbon material and method of manufacturing the same | |
Gubernat et al. | Thermomechanical characterisation of coal tar pitch-based carbon containing SiC nanoparticles | |
CN108975916B (en) | A kind of preparation method of high conductivity ceramic material | |
JP4809582B2 (en) | High thermal conductive graphite material and method for producing the same | |
JP6291446B2 (en) | Method for producing conductive silicon carbide sintered body | |
Yamamoto et al. | Polycarbosilane-derived SiC/single-walled carbon nanotube nanocomposites | |
KR101466946B1 (en) | Manufacturing method of zirconium diboride-silicon carbide composite with high thermal conductivity | |
JP6387128B2 (en) | Method for producing conductive silicon carbide sintered body and conductive silicon carbide sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100917 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110315 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110315 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4707380 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |