JP4705386B2 - Manufacturing method of fiber reinforced plastic and fiber material for reinforcement - Google Patents
Manufacturing method of fiber reinforced plastic and fiber material for reinforcement Download PDFInfo
- Publication number
- JP4705386B2 JP4705386B2 JP2005067393A JP2005067393A JP4705386B2 JP 4705386 B2 JP4705386 B2 JP 4705386B2 JP 2005067393 A JP2005067393 A JP 2005067393A JP 2005067393 A JP2005067393 A JP 2005067393A JP 4705386 B2 JP4705386 B2 JP 4705386B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- island
- sea
- component
- matrix resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002430 Fibre-reinforced plastic Polymers 0.000 title claims description 29
- 239000011151 fibre-reinforced plastic Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002657 fibrous material Substances 0.000 title description 22
- 230000002787 reinforcement Effects 0.000 title 1
- 229920005989 resin Polymers 0.000 claims description 87
- 239000011347 resin Substances 0.000 claims description 87
- 239000011159 matrix material Substances 0.000 claims description 53
- 239000000835 fiber Substances 0.000 claims description 43
- -1 polyethylene Polymers 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 23
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 13
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 11
- 238000009987 spinning Methods 0.000 claims description 10
- 239000004698 Polyethylene Substances 0.000 claims description 7
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 230000009477 glass transition Effects 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000004953 Aliphatic polyamide Substances 0.000 claims description 4
- 229920003231 aliphatic polyamide Polymers 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 239000000306 component Substances 0.000 description 57
- 238000000034 method Methods 0.000 description 14
- 239000012783 reinforcing fiber Substances 0.000 description 13
- 229920001903 high density polyethylene Polymers 0.000 description 10
- 239000004700 high-density polyethylene Substances 0.000 description 10
- 239000008188 pellet Substances 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000001746 injection moulding Methods 0.000 description 7
- 229920001684 low density polyethylene Polymers 0.000 description 7
- 239000004702 low-density polyethylene Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- GWTCIAGIKURVBJ-UHFFFAOYSA-L dipotassium;dodecyl phosphate Chemical compound [K+].[K+].CCCCCCCCCCCCOP([O-])([O-])=O GWTCIAGIKURVBJ-UHFFFAOYSA-L 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229940033623 potassium lauryl phosphate Drugs 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920001410 Microfiber Polymers 0.000 description 3
- 239000008358 core component Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000012749 thinning agent Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 1
- 229940100630 metacresol Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000000646 scanning calorimetry Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Description
本発明は、繊維強化プラスチックの製造方法とその強化用繊維材料に関する。更に詳しくは、微細な有機系強化用繊維をマトリックス樹脂中に均一に分散する技術とそれを可能とする強化用繊維材料に関するものである。 The present invention relates to a method for producing a fiber-reinforced plastic and a reinforcing fiber material. More specifically, the present invention relates to a technique for uniformly dispersing fine organic reinforcing fibers in a matrix resin and a reinforcing fiber material that makes it possible.
プラスチック材料の機械的強度、剛性、耐衝撃強度等の向上のために、炭素繊維や金属繊維、アラミド繊維、ガラス繊維等を分散した繊維強化プラスチック(通常FRPと呼ばれる。)が知られている。ところが、近年の環境への配慮が高まるにつれ、リサイクル性や廃棄性に問題のあるガラス繊維等の無機系繊維からポリエチレンテレフタレート(PETと略す。)、ビニロン、ナイロン等の有機系繊維へ置き換える検討がされている(例えば、特許文献1、特許文献2など参照。)。 In order to improve the mechanical strength, rigidity, impact strength, etc. of plastic materials, fiber reinforced plastics (usually called FRP) in which carbon fibers, metal fibers, aramid fibers, glass fibers, etc. are dispersed are known. However, as environmental considerations in recent years have increased, studies are underway to replace inorganic fibers such as glass fibers that have problems with recyclability and disposal with organic fibers such as polyethylene terephthalate (abbreviated as PET), vinylon, and nylon. (See, for example, Patent Document 1 and Patent Document 2).
さらに0.6デシテックス以下の細繊度の繊維を補強繊維とする場合、凝集し易く、マトリックス樹脂中への分散が悪いこと、それに伴い連続成型における定量供給性が不均一になりやすく、目標とする機械的強度や耐衝撃強度を劣化させる傾向があった。 Furthermore, when the fiber having a fineness of 0.6 decitex or less is used as the reinforcing fiber, it tends to aggregate, the dispersion in the matrix resin is poor, and accordingly, the quantitative supply in continuous molding tends to be non-uniform, which is the target. There was a tendency to deteriorate the mechanical strength and impact strength.
特許文献1、特許文献2共に、芯部を構成する樹脂の融点がマトリックス樹脂の成型温度より十分高く、鞘部を構成する樹脂の融点より20℃以上高い複合紡糸繊維であることを特徴とする有機繊維系強化材をマトリックス樹脂中に溶融混練成形することで、芯成分からなる強化繊維の分散性を向上させる繊維強化プラスチックの製法方法が提示されている。但し、このような芯鞘複合繊維は、細繊度化が難しく、芯成分からなる強化繊維の繊度が1.0デシテックスより小さくすることが困難であること、また芯比率を小さくすることにより芯繊度を小さくすることは、曳糸性が悪くなる方向で必ずしも紡糸ドラフトを上げて細繊度化できることには繋がらず、また、周囲の鞘樹脂成分の比率が多くなることで、強化繊維の密度や添加量を多くできないので十分な物性向上に繋がらないデメリットがあった。従って、0.6デシテックス以下の細繊度の有機系繊維を強化繊維として使用される実例はなかった。 Both Patent Document 1 and Patent Document 2 are composite spun fibers in which the melting point of the resin constituting the core part is sufficiently higher than the molding temperature of the matrix resin and 20 ° C. higher than the melting point of the resin constituting the sheath part. There has been proposed a method for producing a fiber-reinforced plastic that improves the dispersibility of a reinforcing fiber composed of a core component by melt-kneading and molding an organic fiber-based reinforcing material in a matrix resin. However, such a core-sheath composite fiber is difficult to make fine, and it is difficult to make the fineness of the reinforcing fiber made of the core component smaller than 1.0 dtex, and by reducing the core ratio, the core fineness is reduced. Reducing the size does not necessarily lead to a higher spinning draft in the direction that the spinnability becomes worse, and the fineness can be reduced, and the ratio of the surrounding sheath resin component increases, so that the density and addition of reinforcing fibers There was a demerit that could not lead to a sufficient improvement in physical properties because the amount could not be increased. Accordingly, there has been no example in which organic fibers having a fineness of 0.6 dtex or less are used as reinforcing fibers.
本発明は、上記従来技術を背景になされたもので、その目的は、0.6デシテックス以下の細繊度の有機系繊維を均一に分散させ、かつ理論上からの強度特定劣化の少ない繊維強化プラスチックの製造方法とそれを可能とする強化用繊維材料を提供することにある。 The present invention has been made against the background of the above-mentioned prior art, and its purpose is to uniformly disperse organic fibers having a fineness of 0.6 dtex or less, and a fiber-reinforced plastic that is less theoretically deteriorated in strength. And a reinforcing fiber material that makes it possible.
本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、本発明に到達した。
即ち、本発明は、
(1) 海島状の断面を有する短繊維とマトリックス樹脂からなる繊維強化プラスチック材料の製造方法であって、島成分の繊度が0.6デシテックス以下であって、海成分がマトリックス樹脂と同一の繰り返し単位の化学構造式を有する樹脂を主成分とし、マトリックス樹脂及び海成分がポリエチレン、ポリプロピレンまたはエチレン−プロピレン−ブテン共重合体からなり、島成分がマトリックス樹脂より20℃以上高い融点又はガラス転移点をもつ樹脂からなる短繊維を、マトリックス樹脂中に溶融混練して得ることを特徴とする繊維強化プラスチック材料の製造方法、
(2) 海島状の断面を有する短繊維とマトリックス樹脂からなる繊維強化プラスチック材料であって、海島状の断面を有する短繊維の島成分の繊度が0.6デシテックス以下であって、海成分がマトリックス樹脂と同一の繰り返し単位の化学構造式を有する樹脂を主成分とし、マトリックス樹脂及び海成分がポリエチレン、ポリプロピレンまたはエチレン−プロピレン−ブテン共重合体からなり、島成分がマトリックス樹脂より20℃以上高い融点又はガラス転移点をもつ樹脂からなることを特徴とする繊維強化プラスチック用繊維材料、
(3) 海島状の断面を有する短繊維が、海島型の複合紡糸により得られることを特徴とする、(2)の繊維強化プラスチック材料、
(4) 海島状の断面を有する短繊維が、2成分以上の樹脂の混合紡糸により得られることを特徴とする、(2)の繊維強化プラスチック材料、
(5) 島成分がポリエチレンテレフタレートからなる、(2)〜(4)記載の繊維強化プラスチック材料、
(6)島成分が脂肪族ポリアミドからなる、(2)〜(4)記載の繊維強化プラスチック材料、
である。
The inventors of the present invention have reached the present invention as a result of intensive studies in order to solve the above-mentioned problems.
That is, the present invention
(1) A method for producing a fiber reinforced plastic material comprising a short fiber having a sea-island cross section and a matrix resin, wherein the island component has a fineness of 0.6 dtex or less, and the sea component is the same as the matrix resin. The main component is a resin having a chemical structural formula of the unit , the matrix resin and the sea component are made of polyethylene, polypropylene, or ethylene-propylene-butene copolymer, and the island component has a melting point or glass transition point that is 20 ° C. higher than the matrix resin. A method for producing a fiber-reinforced plastic material, characterized by being obtained by melt-kneading a short fiber comprising a resin having a resin in a matrix resin,
(2) A fiber reinforced plastic material comprising a short fiber having a sea-island cross section and a matrix resin, and the fineness of the island component of the short fiber having a sea-island cross section is 0.6 dtex or less, and the sea component is The main component is a resin having a chemical structural formula of the same repeating unit as that of the matrix resin , the matrix resin and the sea component are made of polyethylene, polypropylene, or an ethylene-propylene-butene copolymer, and the island component is 20 ° C. or more higher than the matrix resin. A fiber material for fiber-reinforced plastic, characterized by comprising a resin having a melting point or glass transition point,
(3) The fiber-reinforced plastic material according to (2), characterized in that short fibers having a sea-island cross section are obtained by sea-island type composite spinning,
(4) The fiber-reinforced plastic material according to (2), characterized in that short fibers having a sea-island cross section are obtained by mixed spinning of two or more resin components,
(5) The fiber component reinforced plastic material according to (2) to (4) , wherein the island component is made of polyethylene terephthalate,
(6) The fiber reinforced plastic material according to (2) to (4) , wherein the island component is made of aliphatic polyamide.
It is.
本発明によれば、極細有機系繊維を強化用繊維として、高濃度で、分散性良く、かつ界面剥離による物性低下の少ない繊維強化プラスチックを提供することを可能とする。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide a fiber reinforced plastic with a high concentration, good dispersibility, and little deterioration in physical properties due to interfacial peeling, using ultrafine organic fibers as reinforcing fibers.
以下本発明の実施形態について詳細に説明する。本発明の繊維強化プラスチック材料はマトリックス樹脂と海島状の断面を有する短繊維からなる。 Hereinafter, embodiments of the present invention will be described in detail. The fiber-reinforced plastic material of the present invention comprises a matrix resin and short fibers having a sea-island cross section.
本発明の海島状の繊維断面を有する繊維材料は、海成分の樹脂の種類がマトリックス樹脂と同一の繰り返し単位の化学構造式を有する樹脂を主成分とし、マトリックス樹脂及び海成分がポリエチレン、ポリプロピレンまたはエチレン−プロピレン−ブテン共重合体からなり、島成分の繊度が0.6デシテックス以下であって、島部を構成する樹脂の融点が、海部すなわちマトリックス樹脂成分を構成する樹脂の融点又はガラス転移点より20℃以上高い有機繊維であれば特に限定はされない。島部の樹脂の融点と、海部すなわちマトリックス樹脂の融点若しくはガラス転移点の差が20℃未満の場合は、繊維強化プラスチックの溶融成型時に島部が融けたり、軟化変形することで目的とする改質効果に劣るようになる。この場合、マトリックス樹脂が結晶性樹脂の場合には融点より20℃以上高く、一方マトリックス樹脂が非晶性樹脂の場合にはガラス転移点より20℃以上高くなるように島成分を構成する樹脂を選択することが好ましい。またガラス転移点(Tg)、融点(Tm)は示差走査熱量計(DSC)で測定して得たDSC曲線より常法により求める。 The fiber material having a sea-island fiber cross section of the present invention is mainly composed of a resin having a chemical structural formula of the same repeating unit as that of the matrix resin, and the matrix resin and the sea component are polyethylene, polypropylene or Made of an ethylene-propylene-butene copolymer, the fineness of the island component is 0.6 dtex or less, and the melting point of the resin constituting the island portion is the melting point or glass transition point of the resin constituting the sea portion, that is, the matrix resin component The organic fiber is not particularly limited as long as it is 20 ° C. or higher. If the difference between the melting point of the resin in the island part and the melting point of the sea part, that is, the matrix resin or the glass transition point is less than 20 ° C, the island part melts or softens and deforms when the fiber reinforced plastic is melt-molded. It becomes inferior in quality effect. In this case, when the matrix resin is a crystalline resin, the resin constituting the island component is higher than the melting point by 20 ° C. or higher, while when the matrix resin is an amorphous resin, the resin constituting the island component is higher than the glass transition point by 20 ° C. or higher. It is preferable to select. The glass transition point (Tg) and the melting point (Tm) are determined by a conventional method from a DSC curve obtained by measurement with a differential scanning calorimeter (DSC).
島部、海部、マトリックス部に用いられる樹脂成分としては特に限定されないが、従来より使用されている成型用樹脂等を用いることができる。島部に用いられる合成樹脂成分としては、例えばポリエステル系、ポリアミド系、ポリパラフェニレンスルフィド系、ポリエーテルケトン系、全芳香族ポリエステル系などがあげられるが、これらの樹脂成分は単一もしくは混合されて用いることもできる。一方、海部の有機繊維に用いられる合成樹脂成分としては、例えば、ポリエステル系、脂肪族ポリアミド系、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリアクリル系などがあげられ、これらの樹脂成分は単一もしくは混合されて用いることもできるが、海部を構成する主成分はマトリックス樹脂と同種でなければならない。ここで主成分とは具体的には70重量%以上、好ましくは90重量%以上を指す。また、同種とは、同一の繰返し単位の化学式(分子構造)を持つという意味であり、含まれる副生成物や不純物、平均分子量等は海成分とマトリックス樹脂成分で異なっていてもよい。この理由は、マトリックス樹脂成分と海成分の繰返し単位の化学式(分子構造)が同一の樹脂が含まれないと、海成分とマトリックス樹脂成分の相溶性に差が生じ、目的とする細繊度繊維の均一分散性や界面剥離抑制が達成されないからである。繊維化や海島断面形成性、製品の成形性、製品物性等の観点から、マトリックス樹脂と海成分樹脂のメルトフローレイト(以下、MFRと略す。)が異なっていても特に問題にはならない。また、界面剥離を抑制するための相溶化剤や溶融粘度調整のための減粘剤、又は第3成分の樹脂(例えば、無水マレイン酸変性ポリオレフィンやアイオノマー等、他のポリマーの官能基と反応して界面接着を起こす樹脂、ポリエーテルポリエステル系エラストマー、ポリエステルポリエステル系エラストマー、スチレンブタジエンラバー、等耐衝撃強度を向上させる樹脂、等)が目的に応じて含まれていてもよい。これらの中で、操作性、コストの観点から好ましく用いられるのは、島部としては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の芳香族ポリエステル類、ナイロン6、ナイロン66、ナイロン46等の脂肪族ポリアミド類、海部すなわちすなわちマトリックス樹脂成分としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ブテン共重合体等のポリオレフィン類の組み合わせである。 Although it does not specifically limit as a resin component used for an island part, a sea part, and a matrix part, The resin for shaping | molding conventionally used can be used. Examples of the synthetic resin component used for the island include polyester-based, polyamide-based, polyparaphenylene sulfide-based, polyether ketone-based, wholly aromatic polyester-based, and the like. These resin components are single or mixed. Can also be used. On the other hand, examples of the synthetic resin component used for the organic fiber in the sea include polyester-based, aliphatic polyamide-based, polyethylene-based, polypropylene-based, polystyrene-based, polyacrylic-based, etc., and these resin components are single or Although it can also be used by mixing, the main component which comprises a sea part must be the same kind as matrix resin. Here, the main component specifically refers to 70% by weight or more, preferably 90% by weight or more. The same type means that they have the same chemical formula (molecular structure) of repeating units, and the by-products, impurities, average molecular weight, etc. contained may be different between the sea component and the matrix resin component. The reason for this is that if the resin having the same chemical formula (molecular structure) of the repeating unit of the matrix resin component and the sea component is not included, a difference in compatibility between the sea component and the matrix resin component occurs, This is because uniform dispersibility and interfacial peeling suppression are not achieved. From the standpoints of fiberization, sea-island cross-sectional formability, product moldability, product physical properties, etc., there is no particular problem even if the melt flow rate (hereinafter abbreviated as MFR) of the matrix resin and the sea component resin is different. It also reacts with functional groups of other polymers such as compatibilizers to suppress interfacial peeling, thinning agents for adjusting melt viscosity, or third component resins (for example, maleic anhydride-modified polyolefins and ionomers). Resin that causes interfacial adhesion, polyether polyester elastomer, polyester polyester elastomer, styrene butadiene rubber, resin that improves impact strength, etc.) may be included depending on the purpose. Among these, the islands are preferably used from the viewpoint of operability and cost, and as the island portion, aromatic polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, nylon 6, nylon 66 In addition, aliphatic polyamides such as nylon 46, and the sea part, that is, the matrix resin component, is a combination of polyolefins such as polyethylene, polypropylene, and ethylene-propylene-butene copolymer.
海島状断面の繊維材料の製造方法は、海成分、島成分である樹脂を各々溶融して公知である海島型複合口金(例えば、最新の紡糸技術(繊維学会編 1992年刊)215p 図6 等を参照。)を用いて複合し、口金より吐出させ、口金下で冷却後、ドラフトを掛けながら巻き取る複合紡糸法によって得る未延伸糸を延伸することで得る方法が挙げられる。海/島の比率は特に限定されないが、適用する繊維強化プラスチックの設計上に応じて決められる。高濃度の極細繊維を得たい場合は、海に対する島の重量比をできるだけ多くする方がよいが、あまり多くしすぎると分散性が悪化する懸念があるので、適切な範囲としては島比率が30〜80重量%、好ましくは40〜70重量%である。また、本発明において、「海島状」とは島の数が2以上の場合を言い、いわゆる「芯鞘型」断面の複合繊維は含まれない。好ましい島の数は、繊度にもよるが、3〜1000、さらに好ましくは7〜100である。 The manufacturing method of the fiber material having a sea-island cross-section is a known sea-island type composite die (for example, the latest spinning technology (edited by the Textile Society 1992) 215p FIG. For example, a method obtained by drawing an undrawn yarn obtained by a composite spinning method in which a composite spinning method is used. The ratio of sea / island is not particularly limited, but is determined according to the design of the fiber reinforced plastic to be applied. In order to obtain high-concentration ultrafine fibers, it is better to increase the weight ratio of the island to the sea as much as possible. However, if the amount is too large, the dispersibility may be deteriorated. -80% by weight, preferably 40-70% by weight. In the present invention, “sea-island shape” means a case where the number of islands is 2 or more, and does not include so-called “core-sheath type” cross-section composite fibers. The preferred number of islands is 3 to 1000, more preferably 7 to 100, although it depends on the fineness.
その他の海島状断面繊維材料の製造方法として、混合紡糸法がある。具体的には、互いに非相溶である海成分、島成分の樹脂を溶融時に混練して口金より吐出させ、口金下で冷却後、ドラフトを掛けながら巻き取って得る未延伸糸を延伸することで得る。互いに非相溶の樹脂が相分離を起こし、溶融粘度や界面張力、樹脂の重量比率により、海島状に分離し、島が不連続の極細繊維となっている。島の数はコントロールできないが、島の平均繊度は相溶化剤や海成分樹脂と島成分樹脂の分子量選択や相溶化剤または減粘剤の添加等によって変化し得る。一般に高粘度側又は重量成分比の少ない樹脂が島成分となる傾向があるので、島成分の比率を上げるためには、海成分の溶融粘度が下がるように分子量や添加剤を選択するか、もしくは溶融粘度の高い島成分を選択するとよい。海/島の比率、島の平均繊度は特に限定されないが、適用する繊維強化プラスチックの設計上に応じて決められる。高濃度の極細繊維を得たい場合は、海に対する島の重量比をできるだけ多くする方がよいが、あまり多くしすぎると分散性が悪化する懸念があるので、適切な範囲としては島比率が30〜80重量%、好ましくは40〜70重量%である。また、島の平均繊度は、同様の理由で、0.001〜0.1デシテックス、好ましくは0.005〜0.05デシテックスが好ましいと思われる。 As another method for producing a sea-island cross-section fiber material, there is a mixed spinning method. Specifically, the sea component and island component resins that are incompatible with each other are kneaded when melted and discharged from the die, and after cooling under the die, the undrawn yarn obtained by winding while drawing is drawn. Get in. The incompatible resins cause phase separation, and are separated into sea islands depending on the melt viscosity, interfacial tension, and resin weight ratio, and the islands are discontinuous ultrafine fibers. Although the number of islands cannot be controlled, the average fineness of the islands can be changed by selecting the molecular weight of the compatibilizer, the sea component resin and the island component resin, the addition of a compatibilizer or a thinning agent, and the like. Generally, a resin having a high viscosity side or a low weight component ratio tends to be an island component, so in order to increase the ratio of the island component, select a molecular weight or an additive so that the melt viscosity of the sea component decreases, or It is recommended to select an island component having a high melt viscosity. The ratio of sea / island and average fineness of the island are not particularly limited, but are determined according to the design of the fiber reinforced plastic to be applied. In order to obtain high-concentration ultrafine fibers, it is better to increase the weight ratio of the island to the sea as much as possible. However, if the amount is too large, the dispersibility may be deteriorated. -80% by weight, preferably 40-70% by weight. The average fineness of the island seems to be preferably 0.001 to 0.1 dtex, preferably 0.005 to 0.05 dtex for the same reason.
本発明の繊維材料を用いて繊維強化プラスチックを成形するにあたって、必要に応じ、本発明の目的を損なわない範囲で公知のタルク、炭酸カルシウムなどの無機充填剤や添加剤、例えば、酸化防止剤、熱安定剤、紫外線吸収剤、光安定剤、滑剤、難燃剤、離型剤、帯電防止剤、着色剤などを添加することができる。成形には、公知方法、例えば、射出成形,押出成形,ブロー成形などを適用することができる。 In molding a fiber reinforced plastic using the fiber material of the present invention, if necessary, inorganic fillers and additives such as talc and calcium carbonate, as long as the purpose of the present invention is not impaired, for example, an antioxidant, A heat stabilizer, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, a release agent, an antistatic agent, a colorant, and the like can be added. A known method such as injection molding, extrusion molding, blow molding or the like can be applied to the molding.
本発明の繊維材料とマトリックス樹脂を用いて繊維強化プラスチックを成形する方法は特に限定はされないが、例えば、本発明の繊維材料とマトリックス樹脂成分を押出機などの公知の装置を用いて溶融混練してペレット状にしたものを射出成形する方法、また繊維材料とマトリックス樹脂成分とを押出機より溶融混練してシート状、環状などの形状に直接成形する方法、繊維材料を織物、不織布、マット状等に加工した後にマトリックス樹脂成分を溶融し含浸させ成形する方法などに用いることができる。但し、多くの場合、繊維材料を成型する際に、製糸プロセス上の潤滑又は集束のために、鉱物油系やアルキル燐酸塩等の油剤を繊維表面に付着しているが、溶融成型時にかかる高温で油剤が熱分解、発泡するために、繊維材料とマトリックス樹脂間で界面剥離を起こすことがあり、メタノールやアセトン、または水洗によって脱油しておくことが好ましい。 The method for molding the fiber reinforced plastic using the fiber material of the present invention and the matrix resin is not particularly limited. For example, the fiber material of the present invention and the matrix resin component are melt-kneaded using a known apparatus such as an extruder. A method of injection-molding the pelletized material, a method of melt-kneading the fiber material and the matrix resin component from an extruder and directly forming into a sheet shape, a ring shape, etc. It can use for the method etc. which melt | dissolve and impregnate a matrix resin component after processing into a etc., etc. However, in many cases, when a fiber material is molded, an oil agent such as a mineral oil or an alkyl phosphate is adhered to the fiber surface for lubrication or bundling in the spinning process. Since the oil agent is thermally decomposed and foamed, interfacial peeling may occur between the fiber material and the matrix resin, and it is preferable to deoil by washing with methanol, acetone, or water.
繊維材料の繊維長は特に限定を受けないが、溶融成型時に0.6デシテックス以下の島繊維がより均一に分散するためには0.05〜10mm、より好ましくは0.1〜5mmの範囲が良い。 The fiber length of the fiber material is not particularly limited, but is 0.05 to 10 mm, and more preferably 0.1 to 5 mm in order to more uniformly disperse island fibers of 0.6 dtex or less during melt molding. good.
以下、実施例により、本発明を更に具体的に説明するが、本発明はこれによって制限されるものではない。
なお、実施例における各項目は次の方法で測定した。
(1)極限粘度(〔η〕)
ポリエステルの場合、オルトクロロフェノールを溶媒として、温度35℃で測定した。また、ポリアミドの場合、メタクレゾールを溶媒として、温度35℃で測定した。
(2)メルトフローレイト(MFR)
JIS K7210記載の方法に従った。
(3)融点(Tm)
JIS K7121記載の示査走査熱量測定(DSC)に従って得たDSC曲線における吸熱ピーク温度として定義した。
(4)繊度
JIS L 1015 7.5.1 A法に記載の方法により測定した。
(5)引張強さ
JIS−K7113に準拠して測定した。
(6)曲げ弾性率
JIS−K7203に準拠して測定した。
(7)シャルピー衝撃強さ(ノッチ付)
JIS−K7111に準拠して測定した。
(8)強化繊維分散性
液体窒素中で凍結した繊維強化プラスチック成型サンプルを剃刀でスライスし、断面を走査型電子顕微鏡(SEM)で観察し、繊維の分散状態を目視により下記の基準で評価した。
レベル1 均一に分散しており、凝集塊が認められない。
レベル2 分散が不均一であるが、凝集塊には殆どなっていない。
レベル3 粒状の凝集塊が多数認められる。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not restrict | limited by this.
In addition, each item in an Example was measured with the following method.
(1) Intrinsic viscosity ([η])
In the case of polyester, it was measured at a temperature of 35 ° C. using orthochlorophenol as a solvent. In the case of polyamide, the measurement was performed at a temperature of 35 ° C. using metacresol as a solvent.
(2) Melt flow rate (MFR)
The method described in JIS K7210 was followed.
(3) Melting point (Tm)
It was defined as the endothermic peak temperature in the DSC curve obtained according to the scanning scanning calorimetry (DSC) described in JIS K7121.
(4) Fineness Measured by the method described in JIS L 1015 7.5.1 Method A.
(5) Tensile strength Measured according to JIS-K7113.
(6) Flexural modulus Measured according to JIS-K7203.
(7) Charpy impact strength (with notch)
It measured based on JIS-K7111.
(8) Reinforced fiber dispersibility A fiber reinforced plastic molded sample frozen in liquid nitrogen was sliced with a razor, the cross section was observed with a scanning electron microscope (SEM), and the fiber dispersion state was visually evaluated according to the following criteria. .
Level 1 Uniformly dispersed and no clumps are observed.
Level 2 Dispersion is non-uniform, but almost no agglomerates.
Level 3 Many granular aggregates are observed.
[実施例1]
MFRが20g/10分、Tmが131℃の高密度ポリエチレン(HDPE)と、120℃で16時間真空乾燥した固有粘度[η]が0.64、Tmが256℃のポリエチレンテレフタレート(PET)を各々別のエクストルーダーで溶融し、各々250℃と280℃の溶融ポリマーとして、前者を海成分A、後者を島成分Bとし、複合比率A:B=50:50(重量比)として、335孔を有する19島の海島型複合紡糸口金を用いて、複合化して溶融吐出させた。この際、口金温度は280℃、吐出量は330g/分であった。さらに、吐出ポリマーを口金下60mmの位置で30℃の冷却風で空冷し1150m/分で巻き取り、未延伸糸を得た。この未延伸糸を75℃の温水中で3倍に延伸した後、ラウリルホスフェートカリウム塩からなる油剤を0.1重量%付与した後、110℃で60分間乾燥した後、ギロチンカッターで1mmの繊維長にカットした。このとき得られた短繊維の繊度は3.2デシテックスであり、島PET成分の繊度は0.085デシテックスであった。
[Example 1]
High density polyethylene (HDPE) with an MFR of 20 g / 10 min, Tm of 131 ° C., and polyethylene terephthalate (PET) with an intrinsic viscosity [η] of 0.64 and Tm of 256 ° C. dried at 120 ° C. for 16 hours, respectively. Melting with a different extruder, the polymer is 250 ° C. and 280 ° C. respectively, the former is the sea component A, the latter is the island component B, and the composite ratio A: B = 50: 50 (weight ratio). Using the 19 island sea-island type compound spinneret, it was compounded and melted and discharged. At this time, the die temperature was 280 ° C., and the discharge rate was 330 g / min. Further, the discharged polymer was air-cooled with a cooling air of 30 ° C. at a position 60 mm below the base and wound at 1150 m / min to obtain an undrawn yarn. This unstretched yarn was stretched 3 times in 75 ° C warm water, 0.1% by weight of an oil agent consisting of potassium lauryl phosphate was applied, dried at 110 ° C for 60 minutes, and then 1 mm fiber with a guillotine cutter Cut to long. The fineness of the short fiber obtained at this time was 3.2 dtex, and the fineness of the island PET component was 0.085 dtex.
得られたカット繊維材料とマトリックス樹脂としてMFRが20g/10分、Tmが131℃の高密度ポリエチレン(HDPE)とをバンバリーミキサーを用いて170℃で混練して、ペレットを得た。なお、混合比は、繊維材料/マトリックス樹脂=30/70(重量比)である。得られたペレットを用い、設定温度190℃で射出成形により試験片を作製し、各物性評価を行った。
本例の実施条件と得られた結果の集約を表1に示す。
The obtained cut fiber material and a high density polyethylene (HDPE) having an MFR of 20 g / 10 min and a Tm of 131 ° C. as a matrix resin were kneaded at 170 ° C. using a Banbury mixer to obtain pellets. The mixing ratio is fiber material / matrix resin = 30/70 (weight ratio). Using the obtained pellets, test pieces were produced by injection molding at a set temperature of 190 ° C., and each physical property evaluation was performed.
Table 1 shows a summary of the implementation conditions and the results obtained in this example.
[比較例1]
固有粘度0.5dl/gのポリエチレンテレフタレート100重量%をエクストルーダーに供給し、溶融温度290℃で、2100孔有する丸孔口金より吐出させた。このときの口金温度は280℃、吐出量は350g/分であった。さらに、吐出ポリマーを口金下30mmの位置で30℃の冷却風で空冷し1100m/分で巻き取り、未延伸糸を得た。この未延伸糸を70℃の温水中で4.0倍に延伸した後、ラウリルホスフェートカリウム塩からなる油剤を0.1重量%付与した後、130℃で60分間乾燥した後、ギロチンカッターで1mmの繊維長にカットした。このとき得られた短繊維の繊度は0.42デシテックスであった。
[Comparative Example 1]
100% by weight of polyethylene terephthalate having an intrinsic viscosity of 0.5 dl / g was supplied to the extruder and discharged from a round hole cap having 2100 holes at a melting temperature of 290 ° C. At this time, the die temperature was 280 ° C., and the discharge rate was 350 g / min. Further, the discharged polymer was air-cooled with 30 ° C. cooling air at a position 30 mm below the die, and wound at 1100 m / min to obtain an undrawn yarn. The unstretched yarn was stretched 4.0 times in warm water at 70 ° C., 0.1% by weight of an oil agent comprising lauryl phosphate potassium salt was added, dried at 130 ° C. for 60 minutes, and then 1 mm with a guillotine cutter. The fiber length was cut. The fineness of the short fibers obtained at this time was 0.42 dtex.
得られたカット繊維材料とマトリックス樹脂としてMFRが20g/10分、Tmが131℃の高密度ポリエチレン(HDPE)とをバンバリーミキサーを用いて170℃で混練して、ペレットを得た。なお、混合比は、繊維材料/マトリックス樹脂=15/85(重量比)である。得られたペレットを用い、設定温度190℃で射出成形により試験片を作製し、各物性評価を行った。
本例の実施条件と得られた結果の集約を表1に示す。
The obtained cut fiber material and a high density polyethylene (HDPE) having an MFR of 20 g / 10 min and a Tm of 131 ° C. as a matrix resin were kneaded at 170 ° C. using a Banbury mixer to obtain pellets. The mixing ratio is fiber material / matrix resin = 15/85 (weight ratio). Using the obtained pellets, test pieces were produced by injection molding at a set temperature of 190 ° C., and each physical property evaluation was performed.
Table 1 shows a summary of the implementation conditions and the results obtained in this example.
[比較例2]
MFRが20g/10分、Tmが131℃の高密度ポリエチレン(HDPE)と、120℃で16時間真空乾燥した固有粘度[η]が0.64、Tmが256℃のポリエチレンテレフタレート(PET)を各々別のエクストルーダーで溶融し、各々250℃と280℃の溶融ポリマーとして、前者を鞘成分A、後者を芯成分Bとし、複合比率A:B=50:50(重量比)として、900孔有する芯鞘型複合紡糸口金を用いて、複合化して溶融吐出させた。この際、口金温度は280℃、吐出量は150g/分であった。さらに、吐出ポリマーを口金下30mmの位置で30℃の冷却風で空冷し1150m/分で巻き取り、未延伸糸を得た。この未延伸糸を75℃の温水中で3倍に延伸した後、ラウリルホスフェートカリウム塩からなる油剤を0.1重量%付与した後、90℃で60分間乾燥した後、ギロチンカッターで1mmの繊維長にカットした。このとき得られた短繊維の繊度は1.2デシテックスであり、芯PET成分の繊度は0.6デシテックスであった。
[Comparative Example 2]
High density polyethylene (HDPE) with an MFR of 20 g / 10 min, Tm of 131 ° C., and polyethylene terephthalate (PET) with an intrinsic viscosity [η] of 0.64 and Tm of 256 ° C. dried at 120 ° C. for 16 hours, respectively. It is melted by another extruder and has 900 holes as a polymer melted at 250 ° C. and 280 ° C., respectively, with the former as the sheath component A and the latter as the core component B and the composite ratio A: B = 50: 50 (weight ratio). Using a core-sheath type composite spinneret, it was compounded and melted and discharged. At this time, the die temperature was 280 ° C., and the discharge rate was 150 g / min. Furthermore, the discharged polymer was air-cooled with 30 ° C. cooling air at a position 30 mm below the die, and wound at 1150 m / min to obtain an undrawn yarn. This unstretched yarn was stretched 3 times in 75 ° C warm water, 0.1% by weight of an oil consisting of potassium lauryl phosphate was added, dried at 90 ° C for 60 minutes, and then 1 mm fiber with a guillotine cutter Cut to long. The fineness of the short fiber obtained at this time was 1.2 dtex, and the fineness of the core PET component was 0.6 dtex.
得られたカット繊維材料とマトリックス樹脂としてMFRが20g/10分、Tmが131℃の高密度ポリエチレン(HDPE)とをバンバリーミキサーを用いて170℃で混練して、ペレットを得た。なお、混合比は、繊維材料/マトリックス樹脂=30/70(重量比)である。得られたペレットを用い、設定温度190℃で射出成形により試験片を作製し、各物性評価を行った。
本例の実施条件と得られた結果の集約を表1に示す。
The obtained cut fiber material and a high density polyethylene (HDPE) having an MFR of 20 g / 10 min and a Tm of 131 ° C. as a matrix resin were kneaded at 170 ° C. using a Banbury mixer to obtain pellets. The mixing ratio is fiber material / matrix resin = 30/70 (weight ratio). Using the obtained pellets, test pieces were produced by injection molding at a set temperature of 190 ° C., and each physical property evaluation was performed.
Table 1 shows a summary of the implementation conditions and the results obtained in this example.
[比較例3]
強化用繊維材料を加えず、マトリックス樹脂100%とした他は、実施例1と同様に試験片を作成した。得られた結果を表1に示す。
[Comparative Example 3]
A test piece was prepared in the same manner as in Example 1 except that the reinforcing fiber material was not added and the matrix resin was 100%. The obtained results are shown in Table 1.
[実施例2]
190℃で測定したメルトインデックスが50g/10分の融点103℃の低密度ポリエチレン50重量%と、固有粘度1.35dl/gのナイロン−6(NY6;Tm=215℃)50重量%とを、チップで混合してエクストルーダーに供給し、溶融温度250℃で、1000孔有する丸孔口金より吐出させた。このときの口金温度は230℃、吐出量は1000g/分であった。さらに、吐出ポリマーを口金下30mmの位置で30℃の冷却風で空冷し650m/分で巻き取り、未延伸糸を得た。この未延伸糸を70℃の温水中で2倍に延伸した後、ラウリルホスフェートカリウム塩からなる油剤を0.1重量%付与した後、50℃で60分間乾燥した後、ギロチンカッターで1mmの繊維長にカットした。このとき得られた短繊維の繊度は9デシテックスであり、その断面において島成分であるNY6成分が多数分散しており、その平均繊度は0.004デシテックスであった。
[Example 2]
50% by weight of low density polyethylene having a melting point of 103 ° C. measured at 190 ° C. of 50 g / 10 min, and 50% by weight of nylon-6 (NY6; Tm = 215 ° C.) having an intrinsic viscosity of 1.35 dl / g, It mixed with the chip | tip, it supplied to the extruder, and it was made to discharge from the round hole nozzle | cap | die which has 1000 holes at the melting temperature of 250 degreeC. At this time, the die temperature was 230 ° C., and the discharge rate was 1000 g / min. Further, the discharged polymer was air-cooled with 30 ° C. cooling air at a position 30 mm below the base and wound at 650 m / min to obtain an undrawn yarn. The undrawn yarn was drawn twice in warm water at 70 ° C., then 0.1% by weight of an oil consisting of potassium lauryl phosphate was added, dried at 50 ° C. for 60 minutes, and then 1 mm fiber with a guillotine cutter Cut to long. The fineness of the short fibers obtained at this time was 9 dtex, and many NY6 components as island components were dispersed in the cross section, and the average fineness was 0.004 dtex.
得られたカット繊維材料とマトリックス樹脂としてMFRが20g/10分、Tmが105℃の低密度ポリエチレン(LDPE)とをバンバリーミキサーを用いて170℃で混練して、ペレットを得た。なお、混合比は、繊維材料/マトリックス樹脂=30/70(重量比)である。得られたペレットを用い、設定温度190℃で射出成形により試験片を作製し、各物性評価を行った。
本例の実施条件と得られた結果の集約を表1に示す。
The obtained cut fiber material and low density polyethylene (LDPE) having an MFR of 20 g / 10 min and a Tm of 105 ° C. as a matrix resin were kneaded at 170 ° C. using a Banbury mixer to obtain pellets. The mixing ratio is fiber material / matrix resin = 30/70 (weight ratio). Using the obtained pellets, test pieces were produced by injection molding at a set temperature of 190 ° C., and each physical property evaluation was performed.
Table 1 shows a summary of the implementation conditions and the results obtained in this example.
[実施例3]
190℃で測定したメルトインデックスが50g/10分の低密度ポリエチレン45重量%と190℃で測定したメルトインデックスが8g/10分の無水マレイン酸変性低密度ポリエチレン5重量%、固有粘度0.64dl/gのポリエチレンテレフタレート50重量%とを、チップで混合してエクストルーダーに供給し、溶融温度285℃で、1000孔有する丸孔口金より吐出させた。このときの口金温度は280℃、吐出量は700g/分であった。さらに、吐出ポリマーを口金下30mmの位置で30℃の冷却風で空冷し200m/分で巻き取り、未延伸糸を得た。この未延伸糸を70℃の温水中で2.5倍に延伸した後、ラウリルホスフェートカリウム塩からなる油剤を0.1重量%付与した後、90℃で60分間乾燥した後、ギロチンカッターで3mmの繊維長にカットした。このとき得られた短繊維の繊度は15デシテックスであり、その断面において島成分であるNY6成分が多数分散しており、その平均繊度は0.0015デシテックスであった。
[Example 3]
45% by weight of low density polyethylene having a melt index measured at 190 ° C. of 50 g / 10 min, 5% by weight of maleic anhydride-modified low density polyethylene having a melt index of 8 g / 10 min measured at 190 ° C., and inherent viscosity of 0.64 dl / g of polyethylene terephthalate (50% by weight) was mixed with a chip, supplied to an extruder, and discharged from a round hole cap having 1000 holes at a melting temperature of 285 ° C. At this time, the die temperature was 280 ° C., and the discharge rate was 700 g / min. Further, the discharged polymer was air-cooled with 30 ° C. cooling air at a position 30 mm below the die, and wound at 200 m / min to obtain an undrawn yarn. This unstretched yarn was stretched 2.5 times in warm water at 70 ° C., then 0.1% by weight of an oil consisting of potassium lauryl phosphate was applied, dried at 90 ° C. for 60 minutes, and then 3 mm with a guillotine cutter. The fiber length was cut. The fineness of the short fibers obtained at this time was 15 dtex, and many NY6 components as island components were dispersed in the cross section, and the average fineness was 0.0015 dtex.
得られたカット繊維材料とマトリックス樹脂としてMFRが20g/10分、Tmが105℃の低密度ポリエチレン(LDPE)とをバンバリーミキサーを用いて170℃で混練して、ペレットを得た。なお、混合比は、繊維材料/マトリックス樹脂=30/70(重量比)である。得られたペレットを用い、設定温度190℃で射出成形により試験片を作製し、各物性評価を行った。
本例の実施条件と得られた結果の集約を表1に示す。
The obtained cut fiber material and low density polyethylene (LDPE) having an MFR of 20 g / 10 min and a Tm of 105 ° C. as a matrix resin were kneaded at 170 ° C. using a Banbury mixer to obtain pellets. The mixing ratio is fiber material / matrix resin = 30/70 (weight ratio). Using the obtained pellets, test pieces were produced by injection molding at a set temperature of 190 ° C., and each physical property evaluation was performed.
Table 1 shows a summary of the implementation conditions and the results obtained in this example.
[比較例4]
強化用繊維材料を加えず、マトリックス樹脂100%とした他は、実施例2と同様に(実施例3とも同一)試験片を作成した。得られた結果を表1に示す。
[Comparative Example 4]
A test piece was prepared in the same manner as in Example 2 (same as in Example 3) except that the reinforcing fiber material was not added and the matrix resin was 100%. The obtained results are shown in Table 1.
本発明によれば、極細有機系繊維を強化用繊維として、高濃度で、分散性良く、かつ界面剥離による物性低下の少ない繊維強化プラスチックを提供することができ、工業的な意義は大きい。 ADVANTAGE OF THE INVENTION According to this invention, a fiber reinforced plastic can be provided with a high concentration, good dispersibility, and little deterioration in physical properties due to interfacial peeling, using an ultrafine organic fiber as a reinforcing fiber, and has great industrial significance.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005067393A JP4705386B2 (en) | 2005-03-10 | 2005-03-10 | Manufacturing method of fiber reinforced plastic and fiber material for reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005067393A JP4705386B2 (en) | 2005-03-10 | 2005-03-10 | Manufacturing method of fiber reinforced plastic and fiber material for reinforcement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006249233A JP2006249233A (en) | 2006-09-21 |
JP4705386B2 true JP4705386B2 (en) | 2011-06-22 |
Family
ID=37090057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005067393A Active JP4705386B2 (en) | 2005-03-10 | 2005-03-10 | Manufacturing method of fiber reinforced plastic and fiber material for reinforcement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4705386B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4079948A4 (en) * | 2019-12-17 | 2024-10-23 | Kuraray Co., Ltd. | SEA-ISLAND COMPOSITE FIBER |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7998577B2 (en) * | 2007-12-13 | 2011-08-16 | E. I. Du Pont De Nemours And Company | Multicomponent fiber with polyarylene sulfide component |
JP2011178061A (en) * | 2010-03-02 | 2011-09-15 | Teijin Fibers Ltd | Fiber reinforced resin molded article |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118618A (en) * | 1987-10-28 | 1989-05-11 | Kuraray Co Ltd | Method for melt spinning |
JPH03223343A (en) * | 1989-12-11 | 1991-10-02 | Toray Ind Inc | Fiber-reinforced foam and its production |
JPH0839712A (en) * | 1995-07-21 | 1996-02-13 | Toray Ind Inc | Production of foamed structure |
JP2000282329A (en) * | 1999-03-31 | 2000-10-10 | Kuraray Co Ltd | Sea-island composite staple fiber |
JP2002079472A (en) * | 2000-06-19 | 2002-03-19 | Kuraray Co Ltd | Abrasive sheet for working texture and manufacturing method for the same |
JP2003096622A (en) * | 2001-09-26 | 2003-04-03 | Toyobo Co Ltd | Reinforcing organic fiber material and fiber-reinforced molded article produced by using the same |
-
2005
- 2005-03-10 JP JP2005067393A patent/JP4705386B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118618A (en) * | 1987-10-28 | 1989-05-11 | Kuraray Co Ltd | Method for melt spinning |
JPH03223343A (en) * | 1989-12-11 | 1991-10-02 | Toray Ind Inc | Fiber-reinforced foam and its production |
JPH0839712A (en) * | 1995-07-21 | 1996-02-13 | Toray Ind Inc | Production of foamed structure |
JP2000282329A (en) * | 1999-03-31 | 2000-10-10 | Kuraray Co Ltd | Sea-island composite staple fiber |
JP2002079472A (en) * | 2000-06-19 | 2002-03-19 | Kuraray Co Ltd | Abrasive sheet for working texture and manufacturing method for the same |
JP2003096622A (en) * | 2001-09-26 | 2003-04-03 | Toyobo Co Ltd | Reinforcing organic fiber material and fiber-reinforced molded article produced by using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4079948A4 (en) * | 2019-12-17 | 2024-10-23 | Kuraray Co., Ltd. | SEA-ISLAND COMPOSITE FIBER |
Also Published As
Publication number | Publication date |
---|---|
JP2006249233A (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5676080B2 (en) | Organic fiber reinforced composite resin composition and organic fiber reinforced composite resin molded product | |
CN1199770C (en) | Fiber reinforced thermoplastic resin sheets and manufacture thereof | |
US6395342B1 (en) | Process of preparing pellets of synthetic organic fiber reinforced polyolefin | |
JP5336130B2 (en) | Recycled plastic material and molded body | |
JP4272417B2 (en) | Plastic material, recycled plastic material and molded body | |
JP3661736B2 (en) | Method for producing polyolefin-polyamide resin composition | |
JP5864314B2 (en) | Fiber reinforced elastomer molded product | |
JP4705386B2 (en) | Manufacturing method of fiber reinforced plastic and fiber material for reinforcement | |
US20060241221A1 (en) | Polyolefin resin composition and processes for the production thereof | |
JP5301806B2 (en) | Fiber products | |
JP2007091792A (en) | Organic fiber-reinforced polypropylene resin composition | |
JP5565971B2 (en) | Polymer alloy comprising polylactic acid resin and polyethylene terephthalate resin and method for producing the same | |
JP3893071B2 (en) | Recycled plastic material and molded article using compatibilizer | |
JP4285482B2 (en) | Method for producing polyolefin-polyamide resin composition | |
JP5161731B2 (en) | Aliphatic polyester resin pellets and molded articles obtained by molding them | |
JP2005272754A (en) | Fiber-containing resin pellet | |
JP2008150414A (en) | Lightweight fiber reinforced resin composition having excellent impact resistance and molded article comprising the same | |
JP4510668B2 (en) | Method for producing fiber-containing resin pellets | |
JP3120711B2 (en) | Method for producing fiber-reinforced thermoplastic resin composition | |
JP2014098108A (en) | Fiber-reinforced resin and fiber-reinforced resin molded product | |
JP2009114331A (en) | Filament-reinforced composite resin composition and molded article | |
JPH09324080A (en) | Original composition containing long-fiber-reinforced crystalline polyolefin resin and molded item formed therefrom | |
JP2004075974A (en) | Molded product and material composed of resin composition | |
JP2022154027A (en) | Method for producing resin pellet containing reinforcing fiber | |
JP2004346251A (en) | Additive for resin molding, resin material, and molded resin article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4705386 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140318 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140318 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |