[go: up one dir, main page]

JP4704607B2 - Centrifugal loading device - Google Patents

Centrifugal loading device Download PDF

Info

Publication number
JP4704607B2
JP4704607B2 JP2001165061A JP2001165061A JP4704607B2 JP 4704607 B2 JP4704607 B2 JP 4704607B2 JP 2001165061 A JP2001165061 A JP 2001165061A JP 2001165061 A JP2001165061 A JP 2001165061A JP 4704607 B2 JP4704607 B2 JP 4704607B2
Authority
JP
Japan
Prior art keywords
sample container
test material
rotating body
loading device
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001165061A
Other languages
Japanese (ja)
Other versions
JP2002357511A (en
Inventor
憲二 池田
昌志 佐藤
健司 中井
祐基 日下部
哲朗 原口
清貴 大西
Original Assignee
独立行政法人北海道開発土木研究所
住金関西工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人北海道開発土木研究所, 住金関西工業株式会社 filed Critical 独立行政法人北海道開発土木研究所
Priority to JP2001165061A priority Critical patent/JP4704607B2/en
Publication of JP2002357511A publication Critical patent/JP2002357511A/en
Application granted granted Critical
Publication of JP4704607B2 publication Critical patent/JP4704607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、地盤や岩体等の試験材料に所要の遠心加速度を付与して各種の強度実験を行なう遠心力載荷装置に係り、特に岩体の凍結圧による亀裂の進展機構を究明可能な機能を備えた遠心力載荷装置に関する。
【0002】
【発明が解決しようとする課題】
北海道等の積雪寒冷地域で生じる大規模な岩盤崩落事故については、これらに共通する事故原因の一つが、岩体の自重と地下水圧、凍結圧などによる亀裂の進展にあると考えられている。
【0003】
すなわち、北海道等の日本海沿岸に位置する急崖斜面は、溶岩が水中で急激に冷やされてできた水冷破砕岩で構成された斜面が多い。水冷破砕岩は、均質ながらも脆さを有した亀裂の少ない岩盤といわれている。このような急崖斜面においてなんらかの要因で亀裂が進展すると、斜面背面の少ない亀裂が連結して比較的大規模な崩落が生じる可能性がある。このことから、亀裂の進展機構を岩盤力学的観点から究明することが重要となっている。
【0004】
しかしながら、従来は、このような岩盤の亀裂の進展をシミュレーションできる実験装置が存在しなかったため、その亀裂の進展機構はほとんど究明されていない。
【0005】
本発明は、このような実情に鑑みなされたものであり、積雪寒冷地における大規模岩盤崩落の原因の一つである、亀裂進展の機構解明に関するシミュレーション実験を室内規模で実施するのに適した装置の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明の装置は、鉛直な回転軸と、回転軸を中心として水平回転する回転体と、該回転体に支持された試料容器とを備え、回転体の回転により試料容器に収納した試験材料に所定の遠心加速度を付与する遠心載荷装置において、上記試料容器に冷凍システムを設け、該容器内の試験材料を遠心加速度の付与状態で凍結可能とすると共に、前記回転体は、回転軸を中心として水平回転する円盤型に形成されており、試験材料を収納する試料容器は、円盤型をなす回転体の内部に設置されると共に、該回転体を構成する水平ビームに支持され、水平方向に可動するスライドベースを介して横置きに設置された遠心力載荷装置を要旨とする。
【0007】
ここで遠心力載荷装置とは、実験対象物に遠心加速度を付与できる装置のことである。衆知のように地球上の重力加速度場にある物質の重さは、質量に重力加速度を乗じて求められる。これはSI単位系でみると自明で、質量1kgの物質の重さは、重力加速度G=9.81m/sec2 を乗じて9.81kgm/sec2 =9.81Nとなる。これを遠心力載荷装置に搭載して、例えば重力加速度の100培の遠心加速度を付与すると、遠心加速度場では重さが100培の981Nになる。
【0008】
本発明は、遠心力載荷装置の上記原理を利用したものであって、岩体等の固体試験材料の自重を自在に増し、その自重による引張り応力やせん断応力を発生させ、その状態に水圧や凍結圧などが作用する実験を可能となし、これらの要因が亀裂進展や岩体破壊に与える影響を究明しようとするものである。
【0009】
本発明の遠心力載荷装置において、試料容器に冷凍システムを設けたのは、その内部に収納する試験材料を凍結させ、自重を増した状態で凍結圧を作用させる実験を可能とするためである。
【0010】
また、回転体円盤形に形成したのは、回転時の空気抵抗が少なく、遠心加速度が安定するとともに、回転駆動装置の消費電力の節約につながるからである。
【0011】
試験材料を収納する試料容器は、回転体に吊り下げる方式ではなく、回転体を構成する水平ビームにスライドベースを介して横置きに固定する設置方式を採用する。本装置にて扱う試験材料が、破壊を目的とした岩体等の大型の固体物に限られるからであり、該試験材料の装置への設置が、通常の吊り下げ方式に比べて容易だからである。また、試料容器を円盤型に形成した回転体の内部に設置することにより、岩体等の試験材料の破壊時の衝撃を緩和し、周囲への飛散を防止することができる。また、試料容器を設置するスライドベースは、回転体を構成するビームに支持され、該ビームに沿って水平方向に可動する構造とすることにより、遠心加速度が作用した試料容器全体の荷重が、バックプレートを介して4本のビームにより確実に支持される。
【0012】
さらに、試料容器に設ける冷凍システムは、回転系外部に設置した冷凍機にて所定温度に冷却した不凍液を、該冷凍機と回転系内部の試料容器に設置した熱交換機との間に循環させるとともに、熱交換された冷気をファンにて試料容器内に送給することにより試験材料を冷凍するものが好ましい。
【0013】
【発明の実施の形態】
図1および図2は、本発明に係る遠心力載荷装置を円筒状をなす地下ピットP内に据え付けた一例であり、1は鉛直な回転軸、9は回転軸1に取り付けられた円盤型の回転体、15は回転体9内部に設置された試料容器を示している。
【0014】
すなわち、回転軸1は、その軸上部を地下ピットPの上部デッキD1に組み込まれた軸受2に、軸下部を内部デッキD2に組み込まれた軸受3に、それぞれ可回転に軸着させて、地下ピットPのほぼ中央部に鉛直に据え付けてある。この回転軸1の下端部は、地下ピットPの下部デッキD3上に設置された駆動装置4に減速機5を介して接続してある。また、回転軸1の下端部には、回転側(装置内部)と装置外部との間で情報をやり取りするためのスリップリング6が取り付けてある。
【0015】
回転軸1には、4本の長尺ビーム71 ,72 ,73 ,74 を角柱状に組み合わせるとともに、その両端面にバックプレート8,8を当着してなる回転体9が、回転軸1を中心として水平に固定してある。この回転体9は、図示例では、図3に示すように、その両側面を半円状に湾曲成形した鋼板11a,11aで被覆するとともに、上下両面を円形の鋼板11b,11bで被覆することにより、空気抵抗の小さい円盤型に形成してある。
【0016】
円盤型をなす回転体9の上面11bには、回転軸1を挟む対称な位置に、それぞれ開口12a,12bが設けてある。一方の開口12aは、回転体9内部に形成されたウエイト取付け器具13に取り付けるカウンターウエイト14を挿入するためのものであり、他方の開口12bは、回転体9内部に試料容器15及びその中に岩体等の試験材料16を挿入するためのものである。なお、図示していないが、回転体9の側面部を被覆する半円状の湾曲鋼板11a,11aには、試験材料16の見える位置にビデオ撮影用の切り欠き窓が設けてある。
【0017】
試料容器15は、図4および図5に示すように、回転体9を構成する下部ビーム73 ,74 に支持され、水平方向に可動するスライドベース17上に組み立てる複数のプレートに分解可能な箱型の密閉容器であり、その内部には、引張り荷重フレーム18及びそれに多数のボルト19で水平に固定される岩体等の試験材料16と、引張り荷重フレーム18の背面に設置する熱交換機20が収納されるようになっている。
【0018】
なお、試験材料16はブロック状に形成され、その一端面には上記各ボルト19と螺合するタップ孔21を多数設けたプレート22が接着してある。また、試料容器15内には、引張り荷重フレーム18に固定する試験材料16を下方から支持するレベル調節可能なローラ23およびスラストボルト24が設けてある。
【0019】
試料容器15内の引張り荷重フレーム18背面に設置された熱交換機20は、その内部の管路25に、装置外部に設置した冷凍機(図示せず)にて所定温度(マイナス30°程度)に冷却される不凍液(ブライン)を回転軸1上部のロータリージョイント26を介して循環導入するとともに、熱交換された冷気をファン27にて密閉された試料容器15内に矢印で示すように送給し、引張り荷重フレーム18に固定された試験材料16を冷凍するものである。
【0020】
上記構成よりなる遠心力載荷装置を使用して岩体の凍結圧による亀裂の進展をシミュレーションするには、試験材料である岩体16を所要の大きさのブロック状に形成し、その表面に切り込みを入れる。また、岩体16の一端面にタップ孔21を備えたプレート22を接着する。この岩体16を、円盤型回転体9上面の一方の開口12bより回転体9内部のスライドベース17上に置かれた試料容器15内のローラ23およびスラストボルト24上に載置して、引張り荷重フレーム18にボルト19で固定する。固定が完了するとスラストボルト24を縮退させて、該ボルト24による岩体16の支持を解除する。
【0021】
次いで、スライドベース17上に熱交換機20を設置し、その内部管路25に、装置外部の冷凍機により冷却された不凍液を循環導入する管路をロータリージョイント26を介して接続する。次いで、固定された岩体16の切れ目に堆水処理を施した後、分解してある試料容器15をスライドベース17上に組み立てることにより、引張り荷重フレーム18に固定された岩体16および熱交換機20を試料容器15の内部に密閉する。
【0022】
そうして、熱交換機20を作動し、冷却された不凍液の内部管路25への循環導入により熱交換された冷気をファン27により試料容器15内に送給する。試料容器15内の試験材料である岩体16の表面温度が低下し、所要の凍結温度となると、回転軸1の駆動装置4を駆動して、円盤型回転体9を水平回転させる。これにより回転体9内で引張り荷重フレーム18に固定された岩体16には、遠心加速度による引張り荷重が付与される。そこで回転体9の回転数を高めてゆくと、岩体16に加わる引張り荷重も暫時増大し、切り込みがさらに進展して、やがて岩体16の破壊に到る。
【0023】
このようにしてシミュレーションされた凍結した岩体16の亀裂の進展状況は、その一部始終をビデオ撮影により観察することができる。また、岩体16等に取り付けた各種センサからの情報を分析して岩盤力学的な観点から亀裂進展の機構を究明することも可能である。
【0024】
【発明の効果】
以上に説明したとおり、本発明の遠心力載荷装置は、試験材料を収納する試料容器に設けた冷凍システムにより試験材料を凍結させることができる。したがって、従来は不可能であった岩盤の凍結圧による亀裂の進展のメカニズムを実験的に観察することが可能である。なお、このような凍結圧の負荷試験以外にも、水圧負荷試験や油圧供給による加振試験等に適用することが可能である。
【0025】
また、試料容器は従来のように回転体に吊り下げる方式ではなく、回転体を構成する水平なビームにスライドベースを介して横置きに設置する方式であるから、岩体等の大型化した試験材料の設置が容易であり、かつ試験材料の破砕時等の耐衝撃性にも優れている。回転ビームが空気抵抗の少ない円盤型であるから、安定した遠心加速度が得られ、しかも回転軸駆動装置の消費電力を大きく減少させることができる。
【図面の簡単な説明】
【図1】本発明の遠心力載荷装置の縦断側面図である。
【図2】図1の平面図である。
【図3】図1のA−A線矢視図である。
【図4】本発明に係る試料容器を説明す縦断側面図である。
【図5】図4の平面図である。
【符号の説明】
1 回転軸
1 ,72 ,73 ,74 ビーム
9 回転体
15 試料容器
16 試験材料(岩体)
17 スライドベース
18 引張り荷重フレーム
20 熱交換機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a centrifugal loading device for performing various strength experiments by applying a required centrifugal acceleration to a test material such as ground or rock body, and in particular, a function capable of investigating a crack propagation mechanism due to freezing pressure of a rock body. The present invention relates to a centrifugal loading device provided with
[0002]
[Problems to be solved by the invention]
Regarding large-scale rock collapse accidents that occur in snowy and cold regions such as Hokkaido, it is considered that one of the common causes of these accidents is the progress of cracks due to the weight of the rock mass, groundwater pressure, freezing pressure, etc.
[0003]
That is, the steep cliff slopes located on the coast of the Sea of Japan, such as Hokkaido, have many slopes composed of water-cooled crushed rocks made by lava being rapidly cooled in water. Water-cooled crushed rocks are said to be homogeneous but brittle and have few cracks. If cracks develop on such steep hill slopes for some reason, there is a possibility that a relatively large collapse will occur due to the connection of few cracks on the back of the slope. For this reason, it is important to investigate the mechanism of crack propagation from the viewpoint of rock dynamics.
[0004]
Conventionally, however, there has not been an experimental device capable of simulating the progress of a crack in such a rock mass, and therefore, the mechanism of the crack propagation has hardly been investigated.
[0005]
The present invention has been made in view of such circumstances, and is suitable for carrying out a simulation experiment on the elucidation of the mechanism of crack propagation, one of the causes of large-scale rock collapse in a snowy cold region, on an indoor scale. The purpose is to provide equipment.
[0006]
[Means for Solving the Problems]
An apparatus of the present invention that achieves the above object includes a vertical rotating shaft, a rotating body that rotates horizontally around the rotating shaft, and a sample container supported by the rotating body. In the centrifugal loading device for applying a predetermined centrifugal acceleration to the stored test material, a refrigeration system is provided in the sample container, the test material in the container can be frozen in a state of applying the centrifugal acceleration, and the rotating body is It is formed in a disk shape that rotates horizontally around the rotation axis, and the sample container for storing the test material is installed inside the disk-shaped rotating body and supported by the horizontal beam that constitutes the rotating body. The gist is a centrifugal loading device installed horizontally through a slide base movable in the horizontal direction .
[0007]
Here, the centrifugal loading device is a device that can impart centrifugal acceleration to the test object. The weight of a substance in the gravitational acceleration field on the earth as is known is obtained by multiplying the mass by the gravitational acceleration. This is obvious when seen in the SI unit system, and the weight of a substance with a mass of 1 kg is 9.81 kgm / sec 2 = 9.81 N multiplied by the gravitational acceleration G = 9.81 m / sec 2 . If this is mounted on a centrifugal loading device and given, for example, a centrifugal acceleration of 100 times of gravitational acceleration, the weight becomes 981 N of 100 times in the centrifugal acceleration field.
[0008]
The present invention utilizes the above principle of a centrifugal loading device, and freely increases the weight of a solid test material such as a rock body, generates tensile stress or shear stress due to the weight of the solid test material. It is intended to investigate the effects of these factors on crack growth and rock fracture, making it possible to conduct experiments in which freezing pressure acts.
[0009]
In the centrifugal loading device of the present invention, the refrigeration system is provided in the sample container in order to allow an experiment in which the test material stored in the sample container is frozen and the freezing pressure is applied in a state where the weight of the test material is increased. .
[0010]
The reason why the rotating body is formed in a disk shape is that air resistance during rotation is small, centrifugal acceleration is stabilized, and power consumption of the rotary drive device is saved.
[0011]
The sample container for storing the test material adopts an installation method in which the sample container is fixed horizontally on the horizontal beam constituting the rotating body via a slide base, instead of being suspended from the rotating body. This is because the test materials handled by this device are limited to large solid objects such as rock bodies for the purpose of destruction, and it is easier to install the test material in the device than in the normal suspension system. is there. Further, by installing the sample container inside a disk-shaped rotating body, it is possible to alleviate the impact when the test material such as a rock body is broken and to prevent scattering to the surroundings. In addition, the slide base on which the sample container is installed is supported by a beam that constitutes a rotating body and is movable in the horizontal direction along the beam, so that the load of the entire sample container on which centrifugal acceleration has acted is reduced. It is securely supported by four beams through the plate.
[0012]
Furthermore, the refrigeration system provided in the sample container circulates the antifreeze liquid cooled to a predetermined temperature by a refrigerator installed outside the rotating system between the refrigerator and the heat exchanger installed in the sample container inside the rotating system. It is preferable that the test material is frozen by feeding the heat-exchanged cold air into the sample container with a fan.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an example in which a centrifugal loading device according to the present invention is installed in a cylindrical underground pit P, where 1 is a vertical rotating shaft and 9 is a disk-type attached to the rotating shaft 1. A rotating body 15 is a sample container installed inside the rotating body 9.
[0014]
That is, the rotary shaft 1 is rotatably mounted on the bearing 2 incorporated in the upper deck D1 of the underground pit P and the bearing 3 incorporated in the inner deck D2 at the lower portion of the shaft. It is installed vertically in the center of the pit P. The lower end portion of the rotating shaft 1 is connected to a driving device 4 installed on the lower deck D3 of the underground pit P via a speed reducer 5. A slip ring 6 for exchanging information between the rotation side (inside the apparatus) and the outside of the apparatus is attached to the lower end portion of the rotating shaft 1.
[0015]
The rotary shaft 1 includes four long beams 7 1 , 7 2 , 7 3 , 7 4 combined in a prismatic shape, and a rotating body 9 formed by attaching back plates 8, 8 to both end faces thereof, The rotating shaft 1 is fixed horizontally. In the illustrated example, as shown in FIG. 3, the rotating body 9 is coated with steel plates 11 a and 11 a that are curved in a semicircular shape, and both upper and lower surfaces are covered with circular steel plates 11 b and 11 b. Thus, it is formed into a disk shape with low air resistance.
[0016]
Openings 12a and 12b are respectively provided on the upper surface 11b of the rotating body 9 having a disk shape at symmetrical positions with the rotating shaft 1 in between. One opening 12a is for inserting a counterweight 14 to be attached to a weight attaching device 13 formed inside the rotating body 9, and the other opening 12b is a sample container 15 in the rotating body 9 and the sample container 15 therein. This is for inserting a test material 16 such as a rock body. Although not shown, the semicircular curved steel plates 11a and 11a covering the side surface of the rotating body 9 are provided with cutout windows for video shooting at positions where the test material 16 can be seen.
[0017]
As shown in FIGS. 4 and 5, the sample container 15 is supported by lower beams 7 3 and 7 4 constituting the rotating body 9 and can be disassembled into a plurality of plates assembled on a slide base 17 that is movable in the horizontal direction. It is a box-shaped airtight container, in which a tensile load frame 18 and a test material 16 such as a rock that is horizontally fixed with a number of bolts 19 and a heat exchanger 20 installed on the back surface of the tensile load frame 18. Is to be stored.
[0018]
The test material 16 is formed in a block shape, and a plate 22 provided with a large number of tap holes 21 screwed to the bolts 19 is bonded to one end surface thereof. In the sample container 15, a level-adjustable roller 23 and a thrust bolt 24 that support the test material 16 fixed to the tensile load frame 18 from below are provided.
[0019]
The heat exchanger 20 installed on the back surface of the tensile load frame 18 in the sample container 15 is brought to a predetermined temperature (about minus 30 °) by a refrigerator (not shown) installed outside the apparatus in a pipe line 25 inside the heat exchanger 20. The cooled antifreeze (brine) is circulated and introduced through the rotary joint 26 at the top of the rotating shaft 1 and the heat-exchanged cold air is fed into the sample container 15 sealed by the fan 27 as indicated by an arrow. The test material 16 fixed to the tensile load frame 18 is frozen.
[0020]
In order to simulate the progress of a crack due to freezing pressure of a rock body using the centrifugal loading device having the above-described configuration, the rock body 16 as a test material is formed in a block shape of a required size and cut into the surface thereof. Insert. Further, a plate 22 having a tap hole 21 is bonded to one end face of the rock body 16. The rock body 16 is placed on the roller 23 and the thrust bolt 24 in the sample container 15 placed on the slide base 17 inside the rotary body 9 through one opening 12b on the upper surface of the disk-type rotary body 9 and pulled. The load frame 18 is fixed with bolts 19. When the fixing is completed, the thrust bolt 24 is retracted and the support of the rock body 16 by the bolt 24 is released.
[0021]
Next, the heat exchanger 20 is installed on the slide base 17, and a pipe line for circulating and introducing the antifreeze liquid cooled by the refrigerator outside the apparatus is connected to the internal pipe line 25 via the rotary joint 26. Next, after subjecting the fixed rock body 16 to a sewage treatment, the disassembled sample container 15 is assembled on the slide base 17 to thereby fix the rock body 16 fixed to the tensile load frame 18 and the heat exchanger. 20 is sealed inside the sample container 15.
[0022]
Then, the heat exchanger 20 is operated, and the cold air that has been heat-exchanged by circulating the cooled antifreeze liquid into the internal conduit 25 is fed into the sample container 15 by the fan 27. When the surface temperature of the rock body 16, which is the test material in the sample container 15, drops to a required freezing temperature, the driving device 4 of the rotating shaft 1 is driven to rotate the disk-shaped rotating body 9 horizontally. As a result, a tensile load due to centrifugal acceleration is applied to the rock body 16 fixed to the tensile load frame 18 in the rotating body 9. Therefore, when the rotational speed of the rotating body 9 is increased, the tensile load applied to the rock body 16 also increases for a while, the incision further progresses, and eventually the rock body 16 is destroyed.
[0023]
The progress of the cracks in the frozen rock body 16 simulated in this way can be observed entirely by video shooting. It is also possible to analyze the information from various sensors attached to the rock body 16 etc. and investigate the mechanism of crack propagation from the viewpoint of rock dynamics.
[0024]
【The invention's effect】
As described above, the centrifugal loading device of the present invention can freeze the test material by the refrigeration system provided in the sample container for storing the test material. Therefore, it is possible to experimentally observe the mechanism of crack propagation due to the freezing pressure of rock mass, which was not possible in the past. In addition to such a freezing pressure load test, the present invention can be applied to a hydraulic load test, a vibration test by hydraulic pressure supply, and the like.
[0025]
In addition, the sample container is not suspended from the rotating body as in the past, but is installed horizontally on the horizontal beam that constitutes the rotating body via the slide base. The material is easy to install and has excellent impact resistance when the test material is crushed. Since the rotating beam is a disk type with low air resistance, stable centrifugal acceleration can be obtained, and the power consumption of the rotating shaft driving device can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a centrifugal loading device of the present invention.
2 is a plan view of FIG. 1. FIG.
3 is a view taken along the line AA in FIG.
FIG. 4 is a longitudinal side view for explaining a sample container according to the present invention.
FIG. 5 is a plan view of FIG. 4;
[Explanation of symbols]
1 Rotating shaft 7 1 , 7 2 , 7 3 , 7 4 Beam 9 Rotating body 15 Sample container 16 Test material (rock body)
17 Slide base 18 Tensile load frame 20 Heat exchanger

Claims (2)

鉛直な回転軸と、回転軸を中心として水平回転する回転体と、回転体に支持された試料容器とを備え、回転体の回転により試料容器に収納した試験材料に所定の遠心加速度を付与する遠心載荷装置において、上記試料容器に冷凍システムを設け、該容器内の試験材料を遠心加速度の付与状態で凍結可能とすると共に、前記回転体は、回転軸を中心として水平回転する円盤型に形成されており、試験材料を収納する試料容器は、円盤型をなす回転体の内部に設置されると共に、該回転体を構成する水平ビームに支持され、水平方向に可動するスライドベースを介して横置きに設置されることを特徴とする遠心力載荷装置。A vertical rotating shaft, a rotating body that rotates horizontally around the rotating shaft, and a sample container supported by the rotating body are provided, and a predetermined centrifugal acceleration is imparted to the test material stored in the sample container by the rotation of the rotating body. In the centrifugal loading device, the sample container is provided with a refrigeration system so that the test material in the container can be frozen with centrifugal acceleration applied, and the rotating body is formed in a disk shape that rotates horizontally around the rotation axis. The sample container for storing the test material is installed inside a disk-shaped rotator, supported by a horizontal beam constituting the rotator, and horizontally through a slide base movable in the horizontal direction. Centrifugal loading device characterized by being installed in a stand. 試料容器に設ける冷凍システムは、回転系外部に設置した冷凍機にて所定温度に冷却した不凍液を、該冷凍機と回転系内部の試料容器に設置した熱交換機との間に循環させるとともに、熱交換された冷気をファンにて試料容器内に送給することにより試験材料を冷凍するものである請求項1に記載の遠心力載荷装置。  The refrigeration system provided in the sample container circulates the antifreeze liquid cooled to a predetermined temperature by a refrigerator installed outside the rotating system between the refrigerator and the heat exchanger installed in the sample container inside the rotating system, The centrifugal loading device according to claim 1, wherein the test material is frozen by feeding the exchanged cold air into the sample container with a fan.
JP2001165061A 2001-05-31 2001-05-31 Centrifugal loading device Expired - Lifetime JP4704607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165061A JP4704607B2 (en) 2001-05-31 2001-05-31 Centrifugal loading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165061A JP4704607B2 (en) 2001-05-31 2001-05-31 Centrifugal loading device

Publications (2)

Publication Number Publication Date
JP2002357511A JP2002357511A (en) 2002-12-13
JP4704607B2 true JP4704607B2 (en) 2011-06-15

Family

ID=19007785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165061A Expired - Lifetime JP4704607B2 (en) 2001-05-31 2001-05-31 Centrifugal loading device

Country Status (1)

Country Link
JP (1) JP4704607B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393195B (en) * 2008-10-22 2011-12-21 哈尔滨工业大学 Low-temperature breaking test device by freezing for bituminous mixture
CN101430320B (en) * 2008-12-17 2012-06-06 哈尔滨工业大学 Test piece centering device
CN104374653B (en) * 2014-11-21 2017-02-01 长安大学 Test equipment for testing shearing strength between ice and asphalt pavement by using centrifugal force
CN104792558B (en) * 2015-04-17 2017-05-03 中国工程物理研究院总体工程研究所 High-dynamic centrifugal test load simulation implementation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157676A (en) * 1991-12-10 1993-06-25 Thermo Electron Kk Cold and hot humidity shock testing machine
JPH11281533A (en) * 1998-03-27 1999-10-15 Takenaka Komuten Co Ltd Centrifugal load apparatus capable of cooling test body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415161A (en) * 1987-07-07 1989-01-19 Fuji Electric Co Ltd Control circuit for pulse impressed on electrode for electrostatic precipitator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157676A (en) * 1991-12-10 1993-06-25 Thermo Electron Kk Cold and hot humidity shock testing machine
JPH11281533A (en) * 1998-03-27 1999-10-15 Takenaka Komuten Co Ltd Centrifugal load apparatus capable of cooling test body

Also Published As

Publication number Publication date
JP2002357511A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP4704607B2 (en) Centrifugal loading device
CA1220052A (en) Method and apparatus for testing ice impact
KR101656200B1 (en) Bedrock Blasting Method Using Paraffin Inserted Paper Tube
US20200115874A1 (en) Systems, methods and machines for constructing foundation piers
CN110726824A (en) Geotechnical engineering test system
GB2567898B (en) Propulsion in granular media
Housen Cumulative damage in strength-dominated collisions of rocky asteroids: Rubble piles and brick piles
CN211235843U (en) A geotechnical engineering test system
US4592662A (en) Thermal test for investigating fracture mechanics of pressure vessel steels by applying thermal shock at high rotational speeds
KR102761966B1 (en) Steel pipe pile construction method
Hao et al. Design, test, and verification of in-situ condition preserved coring and analysis system in lunar-based simulation environment
Wakatsuki et al. Study of the effects of projectile strength and density in the asteroid deflection by hypervelocity impact
JP2004225492A (en) Falling rock safety net anchor
CN116087473B (en) Deep engineering fault sliding model test system and safety control method
CN217733969U (en) Counterforce device for static sounding test
JP2016205045A (en) Explosion energy absorption mechanism
KR102716851B1 (en) Rock Core Drilling Equipment and Rock Core Drilling Method Using the Equipment
SU1219708A1 (en) Method of producing models of ice hummocks
KR102718143B1 (en) Rock Core Drilling Equipment and Rock Core Drilling Method Using the Same
RU2737319C1 (en) Method of constructing an ice-resistant drilling platform on the shallow shelf of the arctic seas
KR20250011480A (en) Operating method for the steel pipe press-fitting pile system
McKenzie et al. Implosive demolition of tall masonry and concrete chimney stacks within a designed footprint
CN108035392A (en) The chain saw of canal formula cutting cement soil continuous wall cutting equipment falls stop device
US3344995A (en) Method and apparatus for disintegrating concrete and like materials
JPS6311771A (en) Construction method for cutting and disassembling underwaterreinforced concrete construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term