[go: up one dir, main page]

JP4703726B2 - Method and apparatus for determining gas component in exhaust gas of internal combustion engine - Google Patents

Method and apparatus for determining gas component in exhaust gas of internal combustion engine Download PDF

Info

Publication number
JP4703726B2
JP4703726B2 JP2008530443A JP2008530443A JP4703726B2 JP 4703726 B2 JP4703726 B2 JP 4703726B2 JP 2008530443 A JP2008530443 A JP 2008530443A JP 2008530443 A JP2008530443 A JP 2008530443A JP 4703726 B2 JP4703726 B2 JP 4703726B2
Authority
JP
Japan
Prior art keywords
sensor
exhaust gas
concentration
hydrogen
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008530443A
Other languages
Japanese (ja)
Other versions
JP2009508125A (en
Inventor
シュナイベル,エーバーハルト
ホツェル,リヒャルト
ジーリング,ハンス・ピーター
アッケンターレル,テーオフィール・エス
オンダー,クリストファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2009508125A publication Critical patent/JP2009508125A/en
Application granted granted Critical
Publication of JP4703726B2 publication Critical patent/JP4703726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1452Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration
    • F02D41/1453Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a COx content or concentration the characteristics being a CO content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1496Measurement of the conductivity of a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気ガス内ガス成分の決定方法および装置に関するものである。   The present invention relates to a method and apparatus for determining a gas component in exhaust gas of an internal combustion engine.

本発明は、特に、理論平衡付近の空気/燃料混合物で運転される内燃機関、例えば車両内オットー・サイクル・エンジン排気ガス内ガス成分の決定方法および装置に関するものである。特に欧州または米国における今日の排ガス規制を満たす内燃機関を備えたこのような車両は、少なくとも1つの触媒と、空燃比またはこれと相関を有する空気数λを決定するための2つ以上の排気ガス・センサとを有している。典型的な装置においては、排気曲管のすぐ下流側に第1の排気ガス・センサ、いわゆる「制御センサ」が、これの流れ方向後方に(三元)触媒が配置され、また触媒下流側に他の排気ガス・センサ、いわゆる「ガイド・センサ」が配置されている。   More particularly, the present invention relates to a method and apparatus for determining the gas components in an internal combustion engine, such as an in-vehicle Otto cycle engine exhaust gas, operated with an air / fuel mixture near theoretical equilibrium. Such vehicles, particularly with internal combustion engines that meet today's emission regulations in Europe or the United States, have at least one catalyst and two or more exhaust gases for determining the air / fuel ratio or the air number λ correlated therewith. -It has a sensor. In a typical apparatus, a first exhaust gas sensor, a so-called “control sensor” is arranged immediately downstream of the exhaust curved pipe, and a (three-way) catalyst is arranged behind the flow direction of the exhaust gas sensor. Other exhaust gas sensors, so-called “guide sensors” are arranged.

混合物組成の大きな予制御誤差を補償するための急速なλ制御は、制御センサに基づいている。制御センサのばらつきを補償し、並びに混合物組成をエミッション低減に関して最適化させる、上位の第2の制御ループ、いわゆるガイド制御のためにガイド・センサが利用される。   Rapid λ control to compensate for large pre-control errors in the mixture composition is based on control sensors. Guide sensors are used for the upper second control loop, the so-called guide control, which compensates for variations in the control sensors and optimizes the mixture composition for emission reduction.

ここで、複数の排気ガス・センサ・タイプが既知である。このような排気ガス・センサは、例えば、専門書「BOSCH自動車ハンドブック」、Vieweg−Verlag出版、25版、2003年、133、134頁に記載されている。そこに記載のλセンサは、内燃機関の排気ガス内の空気数λに対する尺度を提供する。上記のλセンサの作動方法は、固体電解質を有するガルバニ酸素濃淡電池の原理に基づいている。表面にガス透過性白金層からなる電極が設けられている。白金の触媒活性により、排気ガスは、後燃焼により平衡状態とされ、これにより、酸素平衡分圧が設定される。   Here, a plurality of exhaust gas sensor types are known. Such an exhaust gas sensor is described, for example, in the technical book “BOSCH Automotive Handbook”, published by Viewweg-Verlag, 25th edition, 2003, 133, page 134. The λ sensor described therein provides a measure for the number of air λ in the exhaust gas of an internal combustion engine. The method of operating the λ sensor is based on the principle of a galvanic oxygen concentration cell having a solid electrolyte. An electrode made of a gas permeable platinum layer is provided on the surface. Due to the catalytic activity of platinum, the exhaust gas is brought into an equilibrium state by post-combustion, thereby setting an oxygen equilibrium partial pressure.

ここで、今日、ほぼ2つのタイプの排気ガス・センサ、即ちジャンプ・センサおよび広帯域センサが使用されている。ジャンプ・センサは、酸素濃度センサを示し且つネルンスト原理に従って作動する。この場合、電解質の両側の電位差が測定され、電解質の片側は排気ガスに曝され、反対側は基準ガス(空気)に曝されている。このために、電解質の両側に電極が装着されている。電位差はセンサ信号として出力される。センサ特性曲線、即ち空気数λに対するセンサ信号の曲線は、λ=1において急に低下する。この理由から、このようなセンサはジャンプ・センサとも呼ばれる。   Here, almost two types of exhaust gas sensors are used today: jump sensors and broadband sensors. The jump sensor represents an oxygen concentration sensor and operates according to the Nernst principle. In this case, the potential difference between both sides of the electrolyte is measured, and one side of the electrolyte is exposed to the exhaust gas, and the other side is exposed to the reference gas (air). For this purpose, electrodes are mounted on both sides of the electrolyte. The potential difference is output as a sensor signal. The sensor characteristic curve, that is, the curve of the sensor signal with respect to the air number λ suddenly decreases at λ = 1. For this reason, such sensors are also called jump sensors.

広帯域センサは多層セラミックを有している。広帯域センサは、本質的に、ネルンスト・センサ、即ちガルバニ電池として作動する濃度センサと、限界電流セルまたはポンプ・セルとの組み合わせから構成されている。λセンサにおいてと同様に、センサ・セルとも呼ばれるネルンスト・セルの両側で、排気ガスおよび基準ガス間の電位差が測定される。既知の濃淡電池と同じ形式に基づいているポンプ・セルに外部から電圧が印加される。電圧はポンプ電流と呼ばれる電流を発生し、この電流により、極性の関数として酸素イオンが移送される。電子制御回路は、ポンプ・セルが、センサ・セルに接している排気ガス容積に、排気ガス容積内に状態λ=1が設定されるように常に正確に酸素を供給したりそれから酸素を排出したりするように働き、この場合、リーン範囲内、即ち空気過剰においては、酸素が排出され、一方、リッチ範囲内、即ち燃料過剰においては、酸素が供給される。制御回路により設定されるポンプ電流は、排気ガス内空気数λの関数である。ポンプ電流は広帯域センサの出力信号を形成する。ジャンプ・センサ並びに広帯域センサの構造およびそれらのセンサ信号は、専門書「BOSCH自動車ハンドブック」、Vieweg−Verlag出版、25版、2003年、133、134頁に記載され、ここでこれが参照される。   The broadband sensor has a multilayer ceramic. A broadband sensor essentially consists of a combination of a Nernst sensor, a concentration sensor operating as a galvanic cell, and a limiting current cell or pump cell. As in the lambda sensor, the potential difference between the exhaust gas and the reference gas is measured on both sides of the Nernst cell, also called the sensor cell. An external voltage is applied to a pump cell that is based on the same format as a known concentration cell. The voltage generates a current called a pump current, which transports oxygen ions as a function of polarity. The electronic control circuit always supplies and exhausts oxygen accurately to the exhaust gas volume in contact with the sensor cell so that the state λ = 1 is set in the exhaust gas volume. In this case, oxygen is exhausted in the lean range, ie, in excess of air, while oxygen is supplied in the rich range, ie, in excess of fuel. The pump current set by the control circuit is a function of the exhaust gas air number λ. The pump current forms the output signal of the broadband sensor. The structure of jump sensors and broadband sensors and their sensor signals are described in the technical book "BOSCH Automotive Handbook", Viewweg-Verlag Publishing, 25th edition, 2003, 133, 134, to which reference is made.

制御センサとして、ジャンプ・センサまたは広帯域センサが使用される。ガイド・センサとして、一般にジャンプ・センサが使用される。
まず第1に、両方のセンサ・タイプの信号は確かに排気ガスのλ値の関数であるが、同じλにおいて、この信号は異なる排気ガス組成によってもまた影響され、この場合、この影響は、両方のセンサ・タイプにおいて異なっている。この影響は、特定の排気ガス成分に対するいわゆる交差感度に基づいている。したがって、特にリッチ範囲内においては、一酸化炭素(CO)および水素(H)間の比が作用する。未処理排気ガス内においては、この比はほぼ一定のままである。しかしながら、触媒下流側においては、この比は、触媒コーティング、触媒の劣化および運転点の関数として変化することがある。これはλセンサ信号に不利な妨害を与えることになる。
A jump sensor or a broadband sensor is used as the control sensor. A jump sensor is generally used as the guide sensor.
First of all, the signal for both sensor types is certainly a function of the λ value of the exhaust gas, but at the same λ, this signal is also affected by different exhaust gas compositions, in which case this effect is It is different for both sensor types. This effect is based on the so-called cross sensitivity for specific exhaust gas components. Therefore, particularly in the rich range, the ratio between carbon monoxide (CO) and hydrogen (H 2 ) acts. In the untreated exhaust gas, this ratio remains almost constant. However, on the downstream side of the catalyst, this ratio may vary as a function of catalyst coating, catalyst degradation and operating point. This will adversely interfere with the λ sensor signal.

空気数λの測定のみでなく、一酸化炭素(CO)濃度および水素(H)濃度の決定もまた可能にする、内燃機関の排気ガス内ガス成分の決定方法および装置を提供することが本発明の課題である。 It is a main object of the present invention to provide a method and apparatus for determining a gas component in an exhaust gas of an internal combustion engine that enables not only the measurement of the air number λ but also the determination of carbon monoxide (CO) concentration and hydrogen (H 2 ) concentration. It is a subject of the invention.

この課題は独立請求項の特徴により解決される。有利な形態および変更態様が独立請求項に引用されるそれぞれの従属請求項から明らかである。
本発明は両方のセンサ・タイプの異なる交差感度を利用し、これにより、空気数λのみならず触媒下流側の排気ガス内における酸素(O)、一酸化炭素(CO)および水素(H)の比濃度もまた測定可能である。このために、触媒下流側の排気ガス内に配置されているジャンプ・センサの信号と、ジャンプ・センサに近接して排気ガス内に配置されている広帯域センサの同時に測定される信号とから、排気ガスの個々のガス成分の濃度が推測される。
This problem is solved by the features of the independent claims. Advantageous forms and modifications are apparent from the respective dependent claims cited in the independent claims.
The present invention takes advantage of the different crossing sensitivities of both sensor types, whereby oxygen (O 2 ), carbon monoxide (CO) and hydrogen (H 2 ) in the exhaust gas downstream of the catalyst as well as the air number λ. ) Specific concentration can also be measured. For this purpose, the exhaust sensor is determined from the signal of the jump sensor arranged in the exhaust gas downstream of the catalyst and the signal simultaneously measured by the broadband sensor arranged in the exhaust gas close to the jump sensor. The concentration of the individual gas components of the gas is estimated.

このために、ジャンプ・センサ信号と、一酸化炭素(CO)濃度および水素(H)濃度との関係から、また広帯域センサ信号と、一酸化炭素(CO)濃度および水素(H)濃度との関係から、一酸化炭素(CO)および水素(H)の濃度が推測されることが好ましい。これらの濃度を知ることは、複数の目的のために利用可能である。一方で、これらの濃度を知ることは、上記交差感度を補償するために、したがって空気数λのより正確な決定のために有利である。これにより、ガイド制御を改善することができる。個々のガス成分濃度を知ることにより、さらに、特に車上診断の目的のために触媒の劣化状態の決定もまた行うことができる。最後に、ガス成分の濃度を知ることは、それ自身既知のモデルによる混合物制御における触媒モデルの補正のためにもまた有利である。 To this end, from the relationship between the jump sensor signal and the carbon monoxide (CO) concentration and hydrogen (H 2 ) concentration, the broadband sensor signal and the carbon monoxide (CO) concentration and hydrogen (H 2 ) concentration From the relationship, it is preferable that the concentrations of carbon monoxide (CO) and hydrogen (H 2 ) are estimated. Knowing these concentrations can be used for multiple purposes. On the other hand, knowing these concentrations is advantageous in order to compensate for the above cross sensitivity and thus for a more accurate determination of the air number λ. Thereby, guide control can be improved. By knowing the individual gas component concentrations, it is also possible to determine the deterioration state of the catalyst, especially for the purpose of on-board diagnosis. Finally, knowing the concentration of the gas component is also advantageous for the correction of the catalyst model in the mixture control with a model known per se.

内燃機関100の排気系105内の(図示されていない)排気曲管のすぐ下流側に、排気ガス・センサ110が配置され、排気ガス・センサ110の出力信号は制御装置200に供給される。この排気ガス・センサは、いわゆる制御センサとして働く。この信号に基づいて、混合物組成内の大きな予制御誤差を補償するための急速なλ制御が行われる。   An exhaust gas sensor 110 is disposed immediately downstream of an exhaust curved pipe (not shown) in the exhaust system 105 of the internal combustion engine 100, and an output signal of the exhaust gas sensor 110 is supplied to the control device 200. This exhaust gas sensor serves as a so-called control sensor. Based on this signal, rapid λ control is performed to compensate for large pre-control errors in the mixture composition.

制御センサ110に(三元)触媒120が続く。触媒120下流側に、他のジャンプ・センサ130と、他のジャンプ・センサ130に近接して排気ガス内に配置されている広帯域センサ140とが設けられている。他のジャンプ・センサ130および広帯域センサ140の出力信号は、同様に制御装置200に供給される。   The control sensor 110 is followed by a (three-way) catalyst 120. On the downstream side of the catalyst 120, another jump sensor 130 and a broadband sensor 140 disposed in the exhaust gas in the vicinity of the other jump sensor 130 are provided. The output signals of the other jump sensors 130 and the broadband sensor 140 are supplied to the control device 200 in the same manner.

触媒120下流側に、リッチ運転においては実際に還元性排気ガス成分のみが発生し、リーン運転においては実際に酸化性排気ガス成分のみが発生し、即ち、一方で酸素(O)(還元性排気ガス成分)および他方で一酸化炭素(CO)および水素(H)(酸化性排気ガス成分)が発生する。言い換えると、還元性および酸化性ガス成分は、排気ガス内に同時には発生しない。この理由から、リーン範囲内においては酸素(O)濃度を決定するために広帯域センサ140信号が使用され、このようにして空気数λが決定可能である。 On the downstream side of the catalyst 120, only the reducing exhaust gas component is actually generated in the rich operation, and only the oxidizing exhaust gas component is actually generated in the lean operation, that is, oxygen (O 2 ) (reducing property). Exhaust gas component) and carbon monoxide (CO) and hydrogen (H 2 ) (oxidative exhaust gas component) are generated on the other side. In other words, reducing and oxidizing gas components are not generated simultaneously in the exhaust gas. For this reason, the broadband sensor 140 signal is used to determine the oxygen (O 2 ) concentration within the lean range, and thus the air number λ can be determined.

これに対して、リッチ範囲内においては、一酸化炭素(CO)濃度および水素(H)濃度が同時に決定されなければならない。このために、図2a、図2bに示されている、ジャンプ・センサ130および広帯域センサ140のセンサ信号と、一酸化炭素(CO)濃度および水素(H)濃度との関係が使用される。ジャンプ・センサ130のセンサ信号と、一酸化炭素(CO)濃度および水素(H)濃度との関数関係は、広帯域センサ140のセンサ信号と、一酸化炭素(CO)濃度および水素(H)濃度との関数関係とは著しく異なっている。関数関係は、例えば特性曲線群の形で制御装置200内に記憶されていてもよい。センサ信号と、一酸化炭素(CO)濃度並びに水素(H)濃度との関数関係が近似式で表わされ、且つ対応関数が制御装置200内に記憶されていてもよい。得られた一酸化炭素(CO)濃度並びに得られた水素(H)濃度は、ここで、制御装置200内において関数の反転により決定され、これにより、両方のセンサ信号と、これらのセンサ信号と濃度との関数関係とから、濃度が決定可能である。 On the other hand, within the rich range, the carbon monoxide (CO) concentration and the hydrogen (H 2 ) concentration must be determined simultaneously. For this purpose, the relationship between the sensor signals of the jump sensor 130 and the broadband sensor 140 and the carbon monoxide (CO) concentration and the hydrogen (H 2 ) concentration shown in FIGS. 2a and 2b is used. The functional relationship between the sensor signal of the jump sensor 130 and the carbon monoxide (CO) concentration and hydrogen (H 2 ) concentration is similar to the sensor signal of the broadband sensor 140, the carbon monoxide (CO) concentration, and hydrogen (H 2 ). The functional relationship with concentration is significantly different. The functional relationship may be stored in the control device 200 in the form of a characteristic curve group, for example. The functional relationship between the sensor signal, the carbon monoxide (CO) concentration, and the hydrogen (H 2 ) concentration may be expressed by an approximate expression, and the corresponding function may be stored in the control device 200. The resulting carbon monoxide (CO) concentration as well as the resulting hydrogen (H 2 ) concentration is now determined in the controller 200 by a function inversion, whereby both sensor signals and these sensor signals The concentration can be determined from the functional relationship between the density and the concentration.

有利な実施形態においては、両方のセンサ130、140がただ1つのセンサ上で多層セラミックの形で統合されている。このためのベースとして広帯域センサが適している。広帯域センサは、ポンプ・セルの両側の電圧の測定装置を補足するためのものである。この電圧は、一方で、外側排気ガスおよびλ=1に設定された排気ガス容積間のネルンスト電圧と、他方で、ポンプ電流に比例する電圧部分との和である。ポンプ・セルのオーム抵抗を知ることにより、この電圧部分からポンプ電流が計算される。この電圧部分を全電圧から減算することにより、オフセットに至るまでジャンプ・センサの特性が有する信号電圧が得られる。この計算は、排気ガス容積内にλ=1を設定するための電子制御回路を形成する集積スイッチ回路内において行われても、または別のプロセッサ、例えばエンジン制御装置で行われてもよい。   In an advantageous embodiment, both sensors 130, 140 are integrated in the form of a multilayer ceramic on a single sensor. A broadband sensor is suitable as a base for this purpose. The broadband sensor is intended to supplement the voltage measurement device on both sides of the pump cell. This voltage is on the one hand the sum of the Nernst voltage between the outer exhaust gas and the exhaust gas volume set at λ = 1 and, on the other hand, the voltage portion proportional to the pump current. Knowing the ohmic resistance of the pump cell, the pump current is calculated from this voltage portion. By subtracting this voltage portion from the total voltage, a signal voltage having the characteristics of the jump sensor until the offset is obtained. This calculation may be performed in an integrated switch circuit that forms an electronic control circuit for setting λ = 1 in the exhaust gas volume, or may be performed in another processor, such as an engine controller.

代替態様として、広帯域センサに、外部排気ガスおよび基準ガス間のネルンスト電圧を測定するための追加電極が配置されていてもよい。   As an alternative, the broadband sensor may be provided with an additional electrode for measuring the Nernst voltage between the external exhaust gas and the reference gas.

図1は、内燃機関排気ガス内ガス成分の本発明による決定装置を示す。FIG. 1 shows a determination device according to the invention for the gas components in an internal combustion engine exhaust gas. 図2aは、ジャンプ・センサとCO濃度およびH濃度との関係を示し、図2bは、広帯域センサとCO濃度およびH濃度との関係を示す。FIG. 2a shows the relationship between the jump sensor and the CO and H 2 concentrations, and FIG. 2b shows the relationship between the broadband sensor and the CO and H 2 concentrations.

Claims (5)

排気ガス流れ内に配置されている広帯域センサ(140)の信号および排気ガス流れ内に配置されているジャンプ・センサ(130)の信号から、リッチ範囲における一酸化炭素(CO)および水素(H)の濃度を推測する内燃機関の排気ガス内ガス成分の決定方法であって、
ジャンプ・センサの信号と、一酸化炭素(CO)および水素(H)の濃度との関係から、および広帯域センサ(140)の信号と、一酸化炭素(CO)および水素(H)の濃度との関係から、一酸化炭素(CO)および水素(H)の濃度を推測することを特徴とする決定方法。
From the signal of the broadband sensor (140) located in the exhaust gas flow and the signal of the jump sensor (130) located in the exhaust gas flow, carbon monoxide (CO) and hydrogen (H 2 ) in the rich range. ) To estimate the gas component in the exhaust gas of the internal combustion engine,
From the relationship between jump sensor signal and carbon monoxide (CO) and hydrogen (H 2 ) concentration, and broad band sensor (140) signal and carbon monoxide (CO) and hydrogen (H 2 ) concentration And determining the concentration of carbon monoxide (CO) and hydrogen (H 2 ) from
広帯域センサ(140)およびジャンプ・センサ(130)が、排気系内の同じ位置に、または相互に近接して配置されていることを特徴とする請求項1に記載の決定方法。  The method according to claim 1, characterized in that the broadband sensor (140) and the jump sensor (130) are arranged at the same location in the exhaust system or close to each other. 排気ガス内に配置されている広帯域センサ(140)と、排気系内に配置されているジャンプ・センサ(130)と、広帯域センサ(140)信号およびジャンプ・センサ(130)信号を同時に測定し且つ評価する回路ユニットとを特徴とする内燃機関の排気ガス内のリッチ範囲における一酸化炭素(CO)および水素(H)の濃度の決定装置であって、
ジャンプ・センサの信号と、一酸化炭素(CO)および水素(H)の濃度との関係から、および広帯域センサ(140)信号と、一酸化炭素(CO)および水素(H)の濃度との関係から、一酸化炭素(CO)および水素(H)の濃度を推測することを特徴とする決定装置
A broadband sensor (140) disposed in the exhaust gas, a jump sensor (130) disposed in the exhaust system, and simultaneously measuring the broadband sensor (140) signal and the jump sensor (130) signal; and An apparatus for determining the concentration of carbon monoxide (CO) and hydrogen (H 2 ) in a rich range in an exhaust gas of an internal combustion engine characterized by a circuit unit to be evaluated,
From the relationship between the jump sensor signal and the concentrations of carbon monoxide (CO) and hydrogen (H 2 ) and from the broadband sensor (140) signal and the concentrations of carbon monoxide (CO) and hydrogen (H 2 ) The determination apparatus characterized by estimating the concentration of carbon monoxide (CO) and hydrogen (H 2 ) from the relationship of
ジャンプ・センサ(130)および広帯域センサ(140)が、ただ1つの多層セラミックの部分であることを特徴とする請求項3に記載の決定装置。  4. The determination device according to claim 3, characterized in that the jump sensor (130) and the broadband sensor (140) are part of only one multilayer ceramic. 広帯域センサ(140)およびジャンプ・センサ(130)が、排気系内において、それらの間に触媒が存在しないように配置されていることを特徴とする請求項3に記載の決定装置。  4. The determination device according to claim 3, characterized in that the broadband sensor (140) and the jump sensor (130) are arranged in the exhaust system such that there is no catalyst between them.
JP2008530443A 2005-09-13 2006-08-01 Method and apparatus for determining gas component in exhaust gas of internal combustion engine Expired - Fee Related JP4703726B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005043414.2 2005-09-13
DE102005043414A DE102005043414A1 (en) 2005-09-13 2005-09-13 Method and device for determining the gas components in the exhaust gas of an internal combustion engine
PCT/EP2006/064912 WO2007031365A1 (en) 2005-09-13 2006-08-01 Method and device for determining the gas components in the exhaust gas of an internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009508125A JP2009508125A (en) 2009-02-26
JP4703726B2 true JP4703726B2 (en) 2011-06-15

Family

ID=37103046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008530443A Expired - Fee Related JP4703726B2 (en) 2005-09-13 2006-08-01 Method and apparatus for determining gas component in exhaust gas of internal combustion engine

Country Status (6)

Country Link
EP (1) EP1926899A1 (en)
JP (1) JP4703726B2 (en)
KR (1) KR20080043828A (en)
CN (1) CN101263290A (en)
DE (1) DE102005043414A1 (en)
WO (1) WO2007031365A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013600A2 (en) * 2007-07-24 2009-01-29 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormalair-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP5018550B2 (en) * 2008-02-27 2012-09-05 トヨタ自動車株式会社 Fuel reformer
DE102008002493A1 (en) 2008-06-18 2009-12-24 Robert Bosch Gmbh Fuel mixture e.g. ethanol/petrol fuels mixture, composition determining method for e.g. petrol engine, involves determining composition of fuel mixture from signal differently based on components of exhaust gas
DE102009047648B4 (en) 2009-12-08 2022-03-03 Robert Bosch Gmbh Method and device for diagnosing deviations in an individual cylinder lambda control
EP2339338B1 (en) * 2009-12-23 2012-08-29 Iveco Motorenforschung AG Improved control method and device for oxygen pump cells of sensors in internal combustion engines or exhaust gas after treatment systems of such engines
DE102022101084B3 (en) 2022-01-18 2023-05-25 Audi Aktiengesellschaft Method for operating a drive device for a motor vehicle and corresponding drive device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285461A (en) * 1987-05-18 1988-11-22 Ngk Spark Plug Co Ltd Gas detector
DE19923044A1 (en) * 1999-05-20 2000-11-23 Bosch Gmbh Robert Process for the defined lean/rich control of a combustion mixture for operating a NOx storage catalyst used in an IC engine comprises determining the nitrogen oxides concentration and the oxygen concentration using the same gas sensor
JP2003004698A (en) * 2001-06-26 2003-01-08 Nissan Motor Co Ltd Flammable gas detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111586A1 (en) * 2001-03-10 2002-09-12 Volkswagen Ag Process for operating internal combustion engines
DE10138806C1 (en) * 2001-08-14 2002-12-19 Bosch Gmbh Robert Temperature determination method for automobile exhaust gas sensor uses measurement of internal resistance of electrochemical cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285461A (en) * 1987-05-18 1988-11-22 Ngk Spark Plug Co Ltd Gas detector
DE19923044A1 (en) * 1999-05-20 2000-11-23 Bosch Gmbh Robert Process for the defined lean/rich control of a combustion mixture for operating a NOx storage catalyst used in an IC engine comprises determining the nitrogen oxides concentration and the oxygen concentration using the same gas sensor
JP2003004698A (en) * 2001-06-26 2003-01-08 Nissan Motor Co Ltd Flammable gas detector

Also Published As

Publication number Publication date
CN101263290A (en) 2008-09-10
JP2009508125A (en) 2009-02-26
KR20080043828A (en) 2008-05-19
DE102005043414A1 (en) 2007-03-15
EP1926899A1 (en) 2008-06-04
WO2007031365A1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4864556B2 (en) Determination method of λ value by broadband λ sensor
EP0878709A2 (en) Method and apparatus for measuring NOx gas concentration
US10094803B2 (en) Method and device for diagnosing the measuring ability of an exhaust gas sensor
JP4703726B2 (en) Method and apparatus for determining gas component in exhaust gas of internal combustion engine
JP2000137018A (en) Gas concentration detector, and gas concentration sensor used therefor
US20220113280A1 (en) Gas sensor
JP6658672B2 (en) Gas sensor control device
JP3310274B2 (en) Gas concentration detector and gas concentration sensor used for it
JP5247780B2 (en) Gas sensor calibration method
JP4874282B2 (en) Gas sensor control device
JP3589872B2 (en) Method and apparatus for detecting exhaust gas concentration
US6554983B2 (en) Gas sensing element employable in an exhaust system of an internal combustion engine
JP4325368B2 (en) Air-fuel ratio measuring device
JP2008169842A (en) STORAGE CONDITION ESTIMATING DEVICE FOR NOx STORAGE CATALYTIC CONVERTER
US6637197B1 (en) Method for controlling a rich/lean combustion mixture in a defined manner
US11174807B2 (en) Operation control method of vehicle engine and vehicle system
JP2002139468A (en) Gas sensor
JP3973851B2 (en) Gas sensor element
JP2005180419A (en) Sensor device for exhaust gas of internal combustion engine and method of operating the same
JP2004037100A (en) Gas sensor element
JP4625261B2 (en) Sensor element of gas sensor
US20200363370A1 (en) Method for monitoring a gas sensor
JP2010127091A (en) Deterioration detecting method of exhaust emission control catalyst
US20090223819A1 (en) Circuit arrangement for operating a guide probe
JP4272970B2 (en) Exhaust gas concentration detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

LAPS Cancellation because of no payment of annual fees