[go: up one dir, main page]

JP4701641B2 - Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet. - Google Patents

Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet. Download PDF

Info

Publication number
JP4701641B2
JP4701641B2 JP2004196858A JP2004196858A JP4701641B2 JP 4701641 B2 JP4701641 B2 JP 4701641B2 JP 2004196858 A JP2004196858 A JP 2004196858A JP 2004196858 A JP2004196858 A JP 2004196858A JP 4701641 B2 JP4701641 B2 JP 4701641B2
Authority
JP
Japan
Prior art keywords
bonded magnet
magnetic field
molded body
field orientation
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004196858A
Other languages
Japanese (ja)
Other versions
JP2006019573A (en
Inventor
隆行 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004196858A priority Critical patent/JP4701641B2/en
Publication of JP2006019573A publication Critical patent/JP2006019573A/en
Application granted granted Critical
Publication of JP4701641B2 publication Critical patent/JP4701641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は、DCブラシレスモータ等の技術、特に、永久磁石型回転子に関するボンド磁石の磁場配向成形に関する。   The present invention relates to a technique such as a DC brushless motor, and more particularly to magnetic field orientation molding of a bonded magnet for a permanent magnet type rotor.

従来から、ボンド磁石の世界では、高価だがエネルギー積が高く磁気特性に優れる希土類コンパウンドと、エネルギー積は低いが安価なフェライトコンパウンドを任意の配合比でブレンドしてハイブリットコンパウンドを作り、それを射出成形することによって、任意の磁気特性をもつボンド磁石を最適な価格で得ようという試みがなされていたが、熱的特性が全く異なる希土類ボンド磁石とフェライト系ボンド磁石を同一条件で射出成形せざるを得ない、このハイブリットコンパウンドは、本来の磁気特性を発揮させるのが非常に困難であり、却ってコストが割高になる場合が多いという問題があった。   Conventionally, in the bonded magnet world, a rare earth compound that is expensive but has a high energy product and excellent magnetic properties and a ferrite compound that has a low energy product but is inexpensive have been blended at an arbitrary mixing ratio to create a hybrid compound, which is then injection molded. Attempts have been made to obtain bonded magnets with arbitrary magnetic properties at an optimal price, but rare-earth bonded magnets and ferrite-based bonded magnets with completely different thermal properties must be injection molded under the same conditions. This hybrid compound, which cannot be obtained, has a problem that it is very difficult to exert its original magnetic characteristics, and the cost is often high.

そのために、モータの回転軸に、フェライトを含有するボンド磁石を介して、環状の希土類磁石を一体成型して固着してなる小型モータのロータが提案されている。ここでフェライトを含有するボンド磁石は、回転軸と希土類磁石とをインサート成形により一体化させているものとしている。つまり、先に圧縮成形または射出成形等によって製造された希土類磁石を、軸と共に金型にインサートした状態で、溶融可塑化したフェライト系ボンド磁石を射出成形して一体化されている。(例えば、特許文献1参照)
特開平9−93842号公報、(第2頁〜第3頁、図1、図2)
For this purpose, there has been proposed a rotor for a small motor in which an annular rare earth magnet is integrally molded and fixed to a rotating shaft of a motor via a bonded magnet containing ferrite. Here, in the bonded magnet containing ferrite, the rotating shaft and the rare earth magnet are integrated by insert molding. In other words, in a state where the rare earth magnet previously produced by compression molding or injection molding is inserted into the mold together with the shaft, the melt-plasticized ferrite bond magnet is injection molded and integrated. (For example, see Patent Document 1)
JP-A-9-93842 (2nd to 3rd pages, FIGS. 1 and 2)

従来の複合ボンド磁石は、実際に製造すると、インサートした希土類磁石がボンド磁石の場合は、希土類ボンド磁石が射出成形時の熱履歴を2度受ける上に、フェライト系ボンド磁石の成形時の射出温度が260℃〜300℃程度と高いため、希土類ボンド磁石が高温によって酸化劣化して保持力が低下するなど磁気特性が悪化するという問題があった。   When a conventional composite bonded magnet is actually manufactured, if the inserted rare earth magnet is a bonded magnet, the rare earth bonded magnet receives twice the heat history during injection molding, and the injection temperature during molding of the ferrite-based bonded magnet However, the magnetic properties of the rare earth bonded magnet deteriorate due to oxidation deterioration due to high temperature and a decrease in coercive force.

因みに希土類ボンド磁石として実用化されている、ネオジウム(Nd)と鉄(Fe)とボロン(B)から成るNd−Fe−B系やサマリウム(Sm)と鉄(Fe)窒素(N)から成るSm−Fe−N系は非常に酸化劣化し易く、磁粉に酸化防止表面処理を施したものを適用するが、それでも製造時の熱履歴により容易に酸化劣化するため、射出温度が高い場合は本来の磁気特性が得られない。   Incidentally, Nd-Fe-B system composed of neodymium (Nd), iron (Fe), and boron (B), and Sm composed of samarium (Sm), iron (Fe) nitrogen (N), which are put into practical use as rare earth bonded magnets. -Fe-N system is very oxidatively deteriorated and is applied with anti-oxidation surface treatment on magnetic powder. However, it is still easily oxidized and deteriorated due to the heat history at the time of manufacture. Magnetic properties cannot be obtained.

つまり、磁気異方性の材料を用いて、金型内に電磁石または永久磁石を配備して射出成形中にボンド磁石に磁場を与えて成形する磁場配向成形を施す場合には、希土類磁石の保持力が低下し磁気特性が悪化するので、希土類磁石をインサートしてフェライト系ボンド磁石を射出成形する特開平9−93842号に記載の形態では、希土類磁石に対して特定の磁場配向を施すことは困難であり、表面磁束分布を任意にコントロールできないため、磁気特性や音・振動に対するロータの最適設計を施すことが難しいという問題があった。   In other words, when using magnetic anisotropy material, when placing an electromagnet or permanent magnet in a mold and applying a magnetic field to the bond magnet during injection molding, magnetic field orientation molding is performed. Since the force is lowered and the magnetic properties are deteriorated, in the form described in JP-A-9-93842 in which a rare earth magnet is inserted and a ferrite-based bonded magnet is injection-molded, a specific magnetic field orientation is applied to the rare earth magnet. This is difficult, and the surface magnetic flux distribution cannot be arbitrarily controlled. Therefore, there is a problem that it is difficult to optimally design the rotor with respect to magnetic characteristics and sound / vibration.

また、Nd−Fe−B系の希土類ボンド磁石は、成形時には磁場配向させない等方性の材料を用いる場合も多いが、希土類磁石が等方性の場合でも、フェライト系ボンド磁石を射出して一体成形する際に高温酸化劣化して保持力が低下するという大きな問題が存在している。   Nd-Fe-B rare earth bonded magnets often use isotropic materials that are not magnetically oriented during molding. However, even when the rare earth magnets are isotropic, the ferrite bonded magnets are injected and integrated. There is a big problem that the holding power decreases due to high-temperature oxidative degradation during molding.

この発明による複合ボンド磁石は、これらの問題点を解決するためになされたもので、表面磁束密度分布や減磁耐力を向上させ、ロータの高性能化および音・振動を低減するための最適設計を可能とすると共に、希土類ボンド磁性体の材質を変更するだけで、標準からハイグレードまでの機種対応が可能となり、金型の共通化、部品の統合化を可能とし、多品種少量生産にも迅速に対応できることを目的とする。   The composite bonded magnet according to the present invention has been made to solve these problems, and has an optimum design for improving the surface magnetic flux density distribution and demagnetization resistance, improving the performance of the rotor, and reducing sound and vibration. In addition, by changing the material of the rare earth bonded magnetic material, it is possible to support models from standard to high grade, enabling common use of molds and integration of parts. The aim is to be able to respond quickly.

この発明の複合ボンド磁石は、フェライト又は軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を備え、その内側又は外側に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を配備し、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、前記2次ボンド磁石成形体の層の厚みが前記極異方磁場配向の極中心部と極間部とで異なり、かつ表面磁束密度分布が略正弦波波形であることを特徴とするものである。 The composite bonded magnet of the present invention comprises a primary bonded magnet molded body obtained by injection molding of a primary bonded magnet containing ferrite or soft magnetic iron and oriented in a polar anisotropic magnetic field. A secondary bonded magnet including a magnetic material is injection-molded to provide a secondary bonded magnet molded body that is oriented in an anisotropic magnetic field, and the primary bonded magnet molded body and the secondary bonded magnet molded body are melt bonded. The anisotropic magnetic field orientation molding is continuously performed, the thickness of the layer of the secondary bonded magnet molding is different between the polar center part and the interpolar part of the polar anisotropic magnetic field orientation, and the surface magnetic flux density distribution is substantially It is a sine wave waveform.

また、この発明の複合ボンド磁石の製造方法は、円周方向に相似形の極異方配向磁場を形成するように、金型内に磁場配向用永久磁石と磁場配向用ヨークを配備して磁気回路を形成し、前記金型内にフェライトまたは軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を生成するステップと、前記金型内に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を前記1次ボンド磁石成形体の内側又は外側に生成するステップとを含み、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、前記2次ボンド磁石成形体の層の厚みが前記極異方磁場配向の極中心部と極間部とで異なり、かつ表面磁束密度分布が略正弦波波形であることを特徴とするものである。このように、1次ボンド磁石と2次ボンド磁石は同一磁気回路を用いて磁場配向成形されるので、これらの2層間は熱可塑性樹脂等のバインダ樹脂にて溶融接合され、連続的に極異方磁場配向を施すことを可能としている。 In addition, in the method for manufacturing a composite bonded magnet according to the present invention , a magnetic field orientation permanent magnet and a magnetic field orientation yoke are provided in a mold so as to form a polar anisotropic magnetic field having a similar shape in the circumferential direction. Forming a circuit and injection-molding a primary bonded magnet containing ferrite or soft magnetic iron in the mold to produce a primary bonded magnet molded body oriented in an anisotropic magnetic field; and in the mold Generating a secondary bonded magnet formed by injection molding a secondary bonded magnet containing a magnetic anisotropic rare earth magnetic material and oriented in a polar anisotropic magnetic field inside or outside the primary bonded magnet formed body. The primary bonded magnet molded body and the secondary bonded magnet molded body are melt-bonded and continuously subjected to polar anisotropic magnetic field orientation molding, and the layer thickness of the secondary bonded magnet molded body is the polar anisotropic It differs between the pole center part and the pole part of the magnetic field orientation, One surface magnetic flux density distribution is characterized in that a substantially sinusoidal waveform. Thus, since the primary bond magnet and the secondary bond magnet are formed by magnetic field orientation molding using the same magnetic circuit, these two layers are melt-bonded with a binder resin such as a thermoplastic resin, and are continuously different from each other. It is possible to apply a magnetic field orientation.

この発明の複合ボンド磁石は、フェライト又は軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を備え、その内側又は外側に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を配備し、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、前記2次ボンド磁石成形体の層の厚みが前記極異方磁場配向の極中心部と極間部とで異なり、かつ表面磁束密度分布が略正弦波波形であることを特徴とするものであるので、表面磁束密度分布や減磁耐力を向上でき、ロータの高性能化および音・振動を低減するための最適設計を可能とすると共に、希土類ボンド磁性体の材質を変更するだけで、標準からハイグレードまでの機種対応が可能となり、金型の共通化、部品の統合化を可能とし、多品種少量生産にも迅速に対応できる等多大な効果がある。 The composite bonded magnet of the present invention comprises a primary bonded magnet molded body obtained by injection molding of a primary bonded magnet containing ferrite or soft magnetic iron and oriented in a polar anisotropic magnetic field. A secondary bonded magnet including a magnetic material is injection-molded to provide a secondary bonded magnet molded body that is oriented in an anisotropic magnetic field, and the primary bonded magnet molded body and the secondary bonded magnet molded body are melt bonded. The anisotropic magnetic field orientation molding is continuously performed, the thickness of the layer of the secondary bonded magnet molding is different between the polar center part and the interpolar part of the polar anisotropic magnetic field orientation, and the surface magnetic flux density distribution is substantially Since it is characterized by a sinusoidal waveform, the surface magnetic flux density distribution and demagnetization resistance can be improved, enabling high performance of the rotor and optimum design for reducing sound and vibration, as well as rare earth Changing the material of the bond magnetic material Only by the model corresponding standard to high grade becomes possible, common mold, and allowing the integration of components, quickly in limited production of diversified products is equal great effects can accommodate.

また、この発明の複合ボンド磁石の製造方法は、円周方向に相似形の極異方配向磁場を形成するように、金型内に磁場配向用永久磁石と磁場配向用ヨークを配備して磁気回路を形成し、前記金型内にフェライトまたは軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を生成するステップと、前記金型内に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を前記1次ボンド磁石成形体の内側又は外側に生成するステップとを含み、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、前記2次ボンド磁石成形体の層の厚みが前記極異方磁場配向の極中心部と極間部とで異なり、かつ表面磁束密度分布が略正弦波波形であることを特徴とするものであるので、希土類ボンド磁石の熱劣化を最小限に抑制し、極異方配向など任意に連続的な磁場配向を施すことができるとともに、異方性ボンド磁石の磁気特性を最大限に引き出すと共に音・振動に対しても優位なボンド磁石を用いたロータを容易に得られるという効果がある。 In addition, in the method for manufacturing a composite bonded magnet according to the present invention , a magnetic field orientation permanent magnet and a magnetic field orientation yoke are provided in a mold so as to form a polar anisotropic magnetic field having a similar shape in the circumferential direction. Forming a circuit and injection-molding a primary bonded magnet containing ferrite or soft magnetic iron in the mold to produce a primary bonded magnet molded body oriented in an anisotropic magnetic field; and in the mold Generating a secondary bonded magnet formed by injection molding a secondary bonded magnet containing a magnetic anisotropic rare earth magnetic material and oriented in a polar anisotropic magnetic field inside or outside the primary bonded magnet formed body. The primary bonded magnet molded body and the secondary bonded magnet molded body are melt-bonded and continuously subjected to polar anisotropic magnetic field orientation molding, and the layer thickness of the secondary bonded magnet molded body is the polar anisotropic It differs between the pole center part and the pole part of the magnetic field orientation, One the surface magnetic flux density distribution is characterized in that a substantially sinusoidal waveform, minimizing thermal degradation of the rare earth bonded magnet, applying any continuous magnetic field orientation, such as polar anisotropic orientation In addition, the magnetic characteristics of the anisotropic bonded magnet can be maximized, and a rotor using the bonded magnet that is superior to sound and vibration can be easily obtained.

実施の形態1.
図1は、この発明の実施の形態1による複合ボンド磁石の1次ボンド磁石の射出成形用金型を示す模式図、図2はこの発明の実施の形態1による複合ボンド磁石の2次ボンド磁石の射出成形用金型を示す模式図、図3はこの発明の実施の形態1による複合ボンド磁石金型で成形されたロータを示す平面図、図4はこの発明の実施の形態1による複合ボンド磁石金型で成形されたロータを示す軸方向断面図、図5は表面磁束密度を示す特性図、図6はこの発明の実施の形態1による複合ボンド磁石金型をアウターロータ成形に適用した成形用金型を示す模式図である。図1において、金型1の外殻金型2内に磁場配向用永久磁石3と磁場配向ヨーク4を配備し、円周方向に相似形配向磁場5を形成するように、磁極が8極の極異方配向成形ができるように構成する。
Embodiment 1 FIG.
FIG. 1 is a schematic view showing a mold for injection molding of a primary bonded magnet of a composite bonded magnet according to Embodiment 1 of the present invention, and FIG. 2 is a secondary bonded magnet of the composite bonded magnet according to Embodiment 1 of the present invention. FIG. 3 is a plan view showing a rotor formed of a composite bonded magnet mold according to Embodiment 1 of the present invention, and FIG. 4 is a composite bond according to Embodiment 1 of the present invention. FIG. 5 is a characteristic diagram showing the surface magnetic flux density, and FIG. 6 is a molding in which the composite bonded magnet mold according to the first embodiment of the present invention is applied to the outer rotor molding. It is a schematic diagram which shows the metal mold | die. In FIG. 1, a magnetic field orientation permanent magnet 3 and a magnetic field orientation yoke 4 are arranged in an outer shell mold 2 of a mold 1 so that a similar orientation magnetic field 5 is formed in the circumferential direction. It is configured to allow polar anisotropic orientation molding.

第1ステップとして、図1に示す複合ボンド磁石の1次ボンド磁石の射出成形用の金型で、この金型1の外殻金型2内に前記磁場配向用永久磁石3と磁場配向ヨーク4を配備し、非磁性リング6を介して中心部に内径コア7を配し、フェライト系ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体8を得る。ここで、2次ボンド磁石成形用のキャビティー9にはダミー入れ子10を挿入しておき、フェライト系ボンド磁石はフェライト磁性粉1〜3ミクロン程度を体積で約70%含み、バインダ樹脂をPA12(ポリアミド12)とした市販のコンパウンドを用いた。   As a first step, a mold for injection molding of a primary bonded magnet of the composite bonded magnet shown in FIG. 1, the magnetic field orientation permanent magnet 3 and the magnetic field orientation yoke 4 are placed in the outer shell mold 2 of the mold 1. And an inner core 7 is arranged at the center via a non-magnetic ring 6 and a ferrite-based bonded magnet is injection-molded to obtain a primary bonded magnet molded body 8 oriented in an anisotropic magnetic field. Here, a dummy insert 10 is inserted in the cavity 9 for forming the secondary bonded magnet, and the ferrite-based bonded magnet contains about 1 to 3 microns of ferrite magnetic powder in a volume of about 70%, and the binder resin is PA12 ( A commercially available compound as polyamide 12) was used.

次に第2ステップとして、図2に示す複合ボンド磁石の2次ボンド磁石の射出成形用の金型において、前記図1に示した金型1内の2次ボンド磁石成形用のキャビティー9に挿入されたダミー入れ子10を抜いた金型1を用いて、図2に示す1次ボンド磁石成形体8をインサートした金型1に、ダミー入れ子10を抜いたキャビティー9部分にSm−Fe−N系ボンド磁石を射出成形して、磁場を集中させて表面磁束密度を最も高くした部分を極中心部Aとし、逆に表面磁束密度が最も低い部分を極間部Bとして2次ボンド磁石成形体11を成形し、前記1次ボンド磁石成形体8と2次ボンド磁石成形体11との熱可塑性樹脂部分が溶融接合し、一体となり連続的に磁場配向されている複合ボンド磁石成形体を得る。   Next, as a second step, in the mold for injection molding of the secondary bonded magnet of the composite bonded magnet shown in FIG. 2, the cavity 9 for molding the secondary bonded magnet in the mold 1 shown in FIG. Using the mold 1 with the inserted dummy insert 10 removed, the mold 1 with the primary bonded magnet molded body 8 shown in FIG. N-bond magnet is injection molded, and the portion where the surface magnetic flux density is the highest by concentrating the magnetic field is the pole center portion A, and conversely, the portion where the surface magnetic flux density is the lowest is the interpole portion B. The body 11 is molded, and the thermoplastic resin portion of the primary bonded magnet molded body 8 and the secondary bonded magnet molded body 11 is melt-bonded to obtain a composite bonded magnet molded body that is integrated and continuously magnetically oriented. .

ここで、Sm−Fe−N系ボンド磁石は、磁気異方性の粒度を1〜5ミクロン程度としたSm−Fe−N磁性粉を体積比率で60%含有し、熱可塑性樹脂であるバインダ樹脂をPA12(ポリアミド12)とした市販コンパンドを適用した。   Here, the Sm-Fe-N-based bonded magnet contains 60% by volume of Sm-Fe-N magnetic powder having a magnetic anisotropy particle size of about 1 to 5 microns, and is a binder resin that is a thermoplastic resin. A commercially available compound with PA12 (polyamide 12) was applied.

尚、バインダ樹脂としては、PA12に限定せず、要求される耐熱性や成形性に応じて、PA6(ポリアミド6),PA66(ポリアミド66),PBT(ポリブチレンテレフタレート),PET(ポリエチレンテレフタレート),PPS(ポリフェニレンサルファイド),LCP(液晶ポリマー)などを用いても良い。   The binder resin is not limited to PA12, but PA6 (polyamide 6), PA66 (polyamide 66), PBT (polybutylene terephthalate), PET (polyethylene terephthalate), depending on the required heat resistance and moldability. PPS (polyphenylene sulfide), LCP (liquid crystal polymer), or the like may be used.

このように1次ボンド磁石成形体8と2次ボンド磁石成形体11は、同一磁気回路を用いて磁場配向成形されるので、これらの2層間はバインダ樹脂等の熱可塑性樹脂で溶融接合され、連続的に極異方磁場配向を施すことを容易に可能としている。   Thus, since the primary bonded magnet molded body 8 and the secondary bonded magnet molded body 11 are formed by magnetic field orientation molding using the same magnetic circuit, these two layers are melt-bonded with a thermoplastic resin such as a binder resin, It is possible to easily carry out polar anisotropic magnetic field orientation continuously.

また、フェライト系の磁性粉を使用する1次ボンド磁石成形体8とSm−Fe−N系の磁性粉を使用する2次ボンド磁石成形体11とは、粒度が近いので、粒度が比較的大きなNd−Fe−B系よりも連続磁場配向成形における2層間の連続性を確保しやすく滑らかな磁束密度分布を得る効果があり、さらに、2次ボンド磁石成形体11の肉厚が3mm以下の薄い場合でも、1次ボンド磁石成形体8がバックヨークの役目を果たすため、極異方配向が容易に得られる効果を有する。   Further, since the primary bonded magnet molded body 8 using ferrite magnetic powder and the secondary bonded magnet molded body 11 using Sm-Fe-N magnetic powder are close in particle size, the particle size is relatively large. Compared to the Nd-Fe-B system, it is easy to ensure the continuity between the two layers in the continuous magnetic field orientation molding, and has an effect of obtaining a smooth magnetic flux density distribution. Further, the thickness of the secondary bonded magnet molded body 11 is as thin as 3 mm or less. Even in this case, since the primary bonded magnet molded body 8 serves as a back yoke, it has an effect that polar anisotropic orientation can be easily obtained.

さらにまた、2次ボンド磁石成形体11の肉厚が、極中心部と極間部とで異なることにより、表面磁束密度の分布波形を任意の形状にコントロールできる効果があり、極中心部に表面磁束密度を集中させたいときは、極中心部に位置する2次ボンド磁石成形体11の厚みを周辺より厚くすれば良い。   Furthermore, since the thickness of the secondary bonded magnet molded body 11 is different between the pole center portion and the inter-pole portion, there is an effect that the distribution waveform of the surface magnetic flux density can be controlled to an arbitrary shape, and the surface is formed at the pole center portion. When it is desired to concentrate the magnetic flux density, the thickness of the secondary bonded magnet molded body 11 located at the pole center may be made thicker than the periphery.

更に、第3ステップとして、図3の平面図、図4の断面図に示すように、前記複合ボンド磁石をPBT(ポリブチレンテレフタレート)などの樹脂製ホイール12を介してシャフト13と一体とし、DCブラシレスモータ用のロータ14の回転体を構成する。   Further, as a third step, as shown in the plan view of FIG. 3 and the cross-sectional view of FIG. A rotating body of the rotor 14 for the brushless motor is configured.

尚、第1ステップにてシャフトインサート成形を施しても良く、その場合は第3ステップが省略されるが、図5の表面磁束密度を示す特性図により、横軸に位相角、縦軸に表面磁束密度をプロットすれば、綺麗な正弦波波形となるため、コギングトルク発生や矩形波による音・振動の問題を抑制可能である。   In addition, shaft insert molding may be performed in the first step, in which case the third step is omitted, but the horizontal axis indicates the phase angle and the vertical axis indicates the surface according to the characteristic diagram showing the surface magnetic flux density in FIG. If the magnetic flux density is plotted, a clean sine wave waveform is obtained, so that problems of sound and vibration due to cogging torque generation and rectangular waves can be suppressed.

次に、この実施の形態1の他の例では、1次ボンド磁石成形体8の中に軟磁性鉄粉を体積比率で60%含むもので、第一ステップにおいて、軟磁性鉄粉を体積比率で約60%含み、バインダ樹脂をPA12としたボンド磁性体を用いて1次ボンド磁石成形体8を磁場配向成形した。以下のステップは前記実施の形態1と同様である。   Next, in another example of the first embodiment, the primary bonded magnet molded body 8 includes soft magnetic iron powder in a volume ratio of 60%. In the first step, the soft magnetic iron powder is mixed in a volume ratio. The primary bonded magnet molded body 8 was subjected to magnetic field orientation molding using a bond magnetic body containing about 60% and a binder resin of PA12. The following steps are the same as those in the first embodiment.

この他の実施の形態の特徴として、1次ボンド磁石成形体8に軟磁性鉄粉を含むボンド磁性体をロータバックヨークとして有効に作用させることができる。因みに、一般にロータバックヨークとして使用されている電磁鋼板の積層体の場合は、積厚バラツキやスプリングバックの影響でボンド磁石との一体成形は困難であったが、この発明の実施の形態ではそれを容易とする効果がある。   As another feature of the embodiment, a bonded magnetic body containing soft magnetic iron powder can be effectively acted on the primary bonded magnet molded body 8 as a rotor back yoke. Incidentally, in the case of a laminated body of electromagnetic steel sheets generally used as a rotor back yoke, it was difficult to integrally form with a bond magnet due to the effect of thickness variation and spring back. Has the effect of facilitating

又、さらに他の実施の形態では前記実施の形態1または他の実施の形態において、前記の2次ボンド磁石成形体11が、磁気異方性SmーFeーN磁性粉30%と等方性NdーFeーB磁性粉30%とバインダ樹脂PA12が40%(体積比率)としたものである。   In still another embodiment, the secondary bonded magnet molded body 11 is isotropic with 30% magnetic anisotropic Sm-Fe-N magnetic powder in the first embodiment or the other embodiments. Nd-Fe-B magnetic powder 30% and binder resin PA12 are 40% (volume ratio).

このように、前記他の実施の形態で述べているように希土類ボンド磁性体の材質を変更するだけで、標準からハイグレードまでの機種対応が可能となり、金型の共通化、部品の統合化を可能とし、多品種少量生産にも迅速に対応できる効果がある。   In this way, as described in the other embodiments, it is possible to support models from standard to high grade by simply changing the material of the rare earth bonded magnetic material, sharing molds, and integrating parts. And can respond quickly to small-lot production of various varieties.

さらにまた、実施の形態1の他の形態について説明する。図6に示す他の実施の形態による複合ボンド磁石のアウターロータへの適用模式図である。図において、アウターロータの場合、作用表面がインナロータとは逆となる。つまり、外径側に1次ボンド磁石成形体8であるフェライトまたは軟磁性体を含むボンド磁性体を射出成形し、内径側に2次ボンド磁石成形体11である希土類ボンド磁石を配置する。配向磁場5回路も図1における金型内の内径コア7側に永久磁石を配備する点が異なるが、その他は前述したインナーロータの実施形態と同様である。   Furthermore, another embodiment of the first embodiment will be described. It is an application schematic diagram to the outer rotor of the composite bond magnet by other embodiment shown in FIG. In the figure, in the case of an outer rotor, the working surface is opposite to that of the inner rotor. That is, a bond magnetic body containing ferrite or soft magnetic body, which is the primary bonded magnet molded body 8, is injection molded on the outer diameter side, and a rare earth bonded magnet, which is the secondary bonded magnet molded body 11, is disposed on the inner diameter side. The orientation magnetic field 5 circuit is different from the embodiment of the inner rotor described above except that a permanent magnet is provided on the inner core 7 side in the mold in FIG.

なお、以上に述べた磁場配向の方法では8極の極異方配向の成形についてのべたが、磁場配向は8極に限定されるものではなく、この他の極数でも連続的に磁場配向成形可能であることは勿論である。   In the above-described magnetic field orientation method, the formation of the 8-pole polar anisotropic orientation has been described. However, the magnetic field orientation is not limited to 8 poles, and the magnetic field orientation shaping is continuously performed with other pole numbers. Of course, it is possible.

この発明の実施の形態1による複合ボンド磁石の1次ボンド磁石の射出成形用金型を示す模式図である。It is a schematic diagram which shows the injection mold of the primary bond magnet of the composite bond magnet by Embodiment 1 of this invention. この発明の実施の形態1による複合ボンド磁石の2次ボンド磁石の射出成形用金型を示す模式図である。It is a schematic diagram which shows the injection die of the secondary bond magnet of the composite bond magnet by Embodiment 1 of this invention. この発明の実施の形態1による複合ボンド磁石金型で成形されたロータを示す平面図である。It is a top view which shows the rotor shape | molded with the composite bond magnet metal mold | die by Embodiment 1 of this invention. この発明の実施の形態1による複合ボンド磁石金型で成形されたロータを示す軸方向断面図である。It is an axial sectional view showing a rotor formed with a composite bonded magnet mold according to Embodiment 1 of the present invention. この発明の実施の形態1による複合ボンド磁石の表面磁束密度を示す特性図である。It is a characteristic view which shows the surface magnetic flux density of the composite bond magnet by Embodiment 1 of this invention. この発明の実施の形態1による複合ボンド磁石金型をアウターロータ成形に適用した成形用金型を示す模式図である。It is a schematic diagram which shows the metal mold | die for which the composite bond magnet metal mold | die by Embodiment 1 of this invention was applied to outer rotor shaping | molding.

符号の説明Explanation of symbols

1 金型、
2 外殻金型、
3 磁場配向用永久磁石、
4 磁場配向用ヨーク、
5 配向磁場、
6 非磁性リング、
7 内径コア、
8 1次ボンド磁石成形体、
9 2次ボンド磁石成形体用キャビティー、
10 ダミー入れ子、
11 2次ボンド磁石成形体、
12 ホイール、
13 シャフト、
14 ロータ。
1 mold,
2 Outer shell mold,
3 permanent magnets for magnetic field orientation,
4 Magnetic field orientation yoke,
5 orientation magnetic field,
6 Non-magnetic ring,
7 inner core,
8 Primary bonded magnet molded body,
9 Cavity for secondary bonded magnet molding,
10 Dummy nesting,
11 Secondary bonded magnet molded body,
12 wheels,
13 shaft,
14 Rotor.

Claims (6)

フェライト又は軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を備え、その内側又は外側に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を配備し、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、
前記2次ボンド磁石成形体の層の厚みが前記極異方磁場配向の極中心部と極間部とで異なり、かつ表面磁束密度分布が略正弦波波形であることを特徴とする複合ボンド磁石。
The primary bonded magnet comprising ferrite or soft iron by injection molding comprising a polar anisotropic magnetic field oriented primary bonded magnet molding, secondary bond magnet comprising magnetic anisotropy rare earth magnetic material to the inner or outer A secondary bonded magnet molded body having a polar anisotropic magnetic field orientation formed by injection molding, and the primary bonded magnet molded body and the secondary bonded magnet molded body are melt-bonded to continuously polar anisotropic magnetic field oriented. molded Rutotomoni,
A composite bonded magnet characterized in that the thickness of the layer of the secondary bonded magnet molded body is different between the pole center part and the pole part of the polar anisotropic magnetic field orientation and the surface magnetic flux density distribution is a substantially sinusoidal waveform. .
フェライト又は軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を備え、その内側又は外側に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を配備し、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、
前記2次ボンド磁石成形体の前記極異方磁場配向の極中心部の層の厚みが極間部の層の厚みより厚く、かつ表面磁束密度分布が略正弦波波形であることを特徴とする複合ボンド磁石。
The primary bonded magnet comprising ferrite or soft iron by injection molding comprising a polar anisotropic magnetic field oriented primary bonded magnet molding, secondary bond magnet comprising magnetic anisotropy rare earth magnetic material to the inner or outer A secondary bonded magnet molded body having a polar anisotropic magnetic field orientation formed by injection molding, and the primary bonded magnet molded body and the secondary bonded magnet molded body are melt-bonded to continuously polar anisotropic magnetic field oriented. molded Rutotomoni,
The secondary bonded magnet molded body is characterized in that the thickness of the pole central portion of the polar anisotropic magnetic field orientation is thicker than the thickness of the interpolar portion, and the surface magnetic flux density distribution is a substantially sinusoidal waveform. Composite bond magnet.
円周方向に相似形の極異方配向磁場を形成するように、金型内に磁場配向用永久磁石と磁場配向用ヨークを配備して磁気回路を形成し、前記金型内にフェライトまたは軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を生成するステップと、前記金型内に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を前記1次ボンド磁石成形体の内側又は外側に生成するステップとを含み、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、
前記2次ボンド磁石成形体の層の厚みが前記極異方磁場配向の極中心部と極間部とで異なり、かつ表面磁束密度分布が略正弦波波形であることを特徴とする複合ボンド磁石の製造方法。
A magnetic circuit is formed by arranging a permanent magnet for magnetic field orientation and a yoke for magnetic field orientation in the mold so that a similar polar anisotropic magnetic field is formed in the circumferential direction, and ferrite or soft magnetic material is formed in the mold. A step of generating a primary bonded magnet formed by injection molding of a primary bonded magnet containing magnetic iron and having a polar anisotropic magnetic field orientation; and a secondary bonded magnet containing a magnetic anisotropic rare earth magnetic material in the mold Forming a secondary bonded magnet molded body having an anisotropic magnetic field orientation by injection molding on the inner side or the outer side of the primary bonded magnet molded body, and the primary bonded magnet molded body and the secondary bond. The magnet compact is melt bonded and continuously subjected to polar anisotropic magnetic field orientation molding ,
A composite bonded magnet characterized in that the thickness of the layer of the secondary bonded magnet molded body is different between the pole center part and the pole part of the polar anisotropic magnetic field orientation and the surface magnetic flux density distribution is a substantially sinusoidal waveform. Manufacturing method.
円周方向に相似形の極異方配向磁場を形成するように、金型内に磁場配向用永久磁石と磁場配向用ヨークを配備して磁気回路を形成し、前記金型内にフェライトまたは軟磁性鉄分を含む1次ボンド磁石を射出成形して極異方磁場配向された1次ボンド磁石成形体を生成するステップと、前記金型内に磁気異方性希土類磁性体を含む2次ボンド磁石を射出成形して極異方磁場配向された2次ボンド磁石成形体を前記1次ボンド磁石成形体の内側又は外側に生成するステップとを含み、前記1次ボンド磁石成形体と前記2次ボンド磁石成形体が溶融接合して連続的に極異方磁場配向成形されるとともに、
前記2次ボンド磁石成形体の前記極異方磁場配向の極中心部の層の厚みが極間部の層の厚みより厚く、かつ表面磁束密度分布が略正弦波波形であることを特徴とする複合ボンド磁石の製造方法。
A magnetic circuit is formed by arranging a permanent magnet for magnetic field orientation and a yoke for magnetic field orientation in the mold so that a similar polar anisotropic magnetic field is formed in the circumferential direction, and ferrite or soft magnetic material is formed in the mold. A step of generating a primary bonded magnet formed by injection molding of a primary bonded magnet containing magnetic iron and having a polar anisotropic magnetic field orientation; and a secondary bonded magnet containing a magnetic anisotropic rare earth magnetic material in the mold Forming a secondary bonded magnet molded body having an anisotropic magnetic field orientation by injection molding on the inner side or the outer side of the primary bonded magnet molded body, and the primary bonded magnet molded body and the secondary bond. The magnet compact is melt bonded and continuously subjected to polar anisotropic magnetic field orientation molding ,
The secondary bonded magnet molded body is characterized in that the thickness of the pole central portion of the polar anisotropic magnetic field orientation is thicker than the thickness of the interpolar portion, and the surface magnetic flux density distribution is a substantially sinusoidal waveform. A method for producing a composite bonded magnet.
希土類がSm−Fe−Nを含むこと特徴とした請求項1又は2に記載の複合ボンド磁石。 The composite bonded magnet according to claim 1 or 2 , wherein the rare earth contains Sm-Fe-N. 請求項1、2、5のいずれかに記載の複合ボンド磁石を搭載したことを特徴とする複合ボンド磁石を搭載したDCブラシレスモータの回転子。 DC brushless motor rotor equipped with a composite bonded magnet, characterized in that mounting the composite bonded magnet according to any one of claims 1, 2, 5.
JP2004196858A 2004-07-02 2004-07-02 Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet. Expired - Fee Related JP4701641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196858A JP4701641B2 (en) 2004-07-02 2004-07-02 Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196858A JP4701641B2 (en) 2004-07-02 2004-07-02 Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.

Publications (2)

Publication Number Publication Date
JP2006019573A JP2006019573A (en) 2006-01-19
JP4701641B2 true JP4701641B2 (en) 2011-06-15

Family

ID=35793535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196858A Expired - Fee Related JP4701641B2 (en) 2004-07-02 2004-07-02 Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.

Country Status (1)

Country Link
JP (1) JP4701641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023207150A1 (en) 2023-07-26 2025-01-30 Webasto SE Rotor device and electric motor having the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208104A (en) * 2006-02-03 2007-08-16 Matsushita Electric Ind Co Ltd Compound bond magnet molding
JP4816146B2 (en) * 2006-03-03 2011-11-16 パナソニック株式会社 Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same
US7804603B2 (en) 2006-10-03 2010-09-28 Asml Netherlands B.V. Measurement apparatus and method
JP5039439B2 (en) * 2007-06-12 2012-10-03 アイシン精機株式会社 Electric pump rotor
JP5183608B2 (en) * 2009-10-14 2013-04-17 三菱電機株式会社 Synchronous motor rotor
JP2013198220A (en) * 2012-03-16 2013-09-30 Samsung Electromechanics Japan Advanced Technology Co Ltd Rotary apparatus and production method therefor
MX347464B (en) 2012-09-29 2017-04-26 Emerson Electric Co Rotors with segmented magnet configurations and related dynamoelectric machines and compressors.
US10491082B2 (en) 2015-06-15 2019-11-26 Mitsubishi Electric Corporation Permanent-magnet electric motor
JPWO2018016067A1 (en) * 2016-07-22 2018-10-25 三菱電機株式会社 Electric motor, air conditioner, rotor, and method of manufacturing electric motor
KR102067470B1 (en) * 2017-11-17 2020-01-17 (주)파인드몰드 Fastening device with a locking feature
JP7638434B2 (en) 2022-02-16 2025-03-03 三菱電機株式会社 Permanent magnet rotor
CN115036092B (en) * 2022-07-22 2023-07-21 横店集团东磁股份有限公司 Composite magnetic ring and preparation method thereof
CN118299144A (en) 2022-12-27 2024-07-05 有研稀土高技术有限公司 Gradient ring-shaped bonded magnet, preparation method thereof and motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208812A (en) * 1985-03-13 1986-09-17 Hitachi Metals Ltd Composite magnet
JPS62232107A (en) * 1986-04-02 1987-10-12 Canon Inc Anisotropic resin magnet
JPS62235704A (en) * 1986-04-07 1987-10-15 Canon Inc Anisotropic resin magnet
JPS62235703A (en) * 1986-04-07 1987-10-15 Canon Inc Anisotropic resin magnet
JPH038305A (en) * 1989-06-06 1991-01-16 Daido Steel Co Ltd Magnet roll and manufacture thereof
JPH0993842A (en) * 1995-09-28 1997-04-04 Sankyo Seiki Mfg Co Ltd Small motor rotor
JPH09293609A (en) * 1996-04-25 1997-11-11 Ricoh Co Ltd Extrusion technique of magnet roller in magnetic field and magnet roller
JPH11103564A (en) * 1997-09-29 1999-04-13 Aichi Steel Works Ltd Field element of radially anisotropic magnetic field type motor, and its manufacture
JP2005151757A (en) * 2003-11-19 2005-06-09 Mate Co Ltd Method for manufacturing rotor and rotor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208812A (en) * 1985-03-13 1986-09-17 Hitachi Metals Ltd Composite magnet
JPS62232107A (en) * 1986-04-02 1987-10-12 Canon Inc Anisotropic resin magnet
JPS62235704A (en) * 1986-04-07 1987-10-15 Canon Inc Anisotropic resin magnet
JPS62235703A (en) * 1986-04-07 1987-10-15 Canon Inc Anisotropic resin magnet
JPH038305A (en) * 1989-06-06 1991-01-16 Daido Steel Co Ltd Magnet roll and manufacture thereof
JPH0993842A (en) * 1995-09-28 1997-04-04 Sankyo Seiki Mfg Co Ltd Small motor rotor
JPH09293609A (en) * 1996-04-25 1997-11-11 Ricoh Co Ltd Extrusion technique of magnet roller in magnetic field and magnet roller
JPH11103564A (en) * 1997-09-29 1999-04-13 Aichi Steel Works Ltd Field element of radially anisotropic magnetic field type motor, and its manufacture
JP2005151757A (en) * 2003-11-19 2005-06-09 Mate Co Ltd Method for manufacturing rotor and rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023207150A1 (en) 2023-07-26 2025-01-30 Webasto SE Rotor device and electric motor having the same
WO2025021991A1 (en) 2023-07-26 2025-01-30 Webasto SE Rotor device and electric motor having same

Also Published As

Publication number Publication date
JP2006019573A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4096843B2 (en) Motor and manufacturing method thereof
JP3864986B2 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
JP6297222B2 (en) Permanent magnet motor
JP4796788B2 (en) Coreless motor
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
US20150001977A1 (en) Electrical machine
WO2005101614A1 (en) Rotor and process for manufacturing the same
JP2013143791A (en) Magnet-inclusion type synchronous machine and rotor thereof
KR100579914B1 (en) Manufacturing method of laminated pole anisotropic composite magnet
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
CN110875675A (en) Motor rotor and manufacturing method thereof, motor and electric power steering system
JP4029679B2 (en) Bond magnet for motor and motor
JP2007208104A (en) Compound bond magnet molding
JP6107299B2 (en) Method for manufacturing outer rotor of internal magnet type synchronous machine
JP2011030314A (en) Ring magnet, motor and electrical apparatus including the same, and method of forming the ring magnet
JP2020156203A (en) Device and method for manufacturing magnet member
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP7394427B1 (en) Internal magnet type synchronous machine and its rotor
JP2010252417A (en) Outer rotor type IPM motor and its rotor
JP6712518B2 (en) Polar anisotropic magnet, manufacturing method thereof, and permanent magnet type motor generator
JP4124215B2 (en) Brushless motor
JP2013121262A (en) Rotor of rotary electric machine and method for manufacturing the same
JP5929147B2 (en) Rotor structure of rotating electrical machine
JP4238588B2 (en) Motor, motor rotor and composite anisotropic magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R151 Written notification of patent or utility model registration

Ref document number: 4701641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees