[go: up one dir, main page]

JP4697129B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4697129B2
JP4697129B2 JP2006333101A JP2006333101A JP4697129B2 JP 4697129 B2 JP4697129 B2 JP 4697129B2 JP 2006333101 A JP2006333101 A JP 2006333101A JP 2006333101 A JP2006333101 A JP 2006333101A JP 4697129 B2 JP4697129 B2 JP 4697129B2
Authority
JP
Japan
Prior art keywords
heater
automatic stop
exhaust gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006333101A
Other languages
Japanese (ja)
Other versions
JP2008144672A (en
Inventor
征輝 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006333101A priority Critical patent/JP4697129B2/en
Publication of JP2008144672A publication Critical patent/JP2008144672A/en
Application granted granted Critical
Publication of JP4697129B2 publication Critical patent/JP4697129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、ヒータ付きの排出ガスセンサと自動停止(アイドルストップ)の機能を備えた内燃機関の制御装置に関する発明である。   The present invention relates to an internal combustion engine control device having an exhaust gas sensor with a heater and an automatic stop (idle stop) function.

近年の電子制御化された内燃機関では、排気通路中の触媒の上流側(又は触媒の上流・下流の両側)に排出ガスの酸素濃度等のガス成分濃度、空燃比、リッチ/リーンのいずれかを検出する排出ガスセンサを設置し、この排出ガスセンサの出力に基づいて空燃比を理論空燃比付近にフィードバック制御することで、触媒の排出ガス浄化効率を高めるようにしている。一般に、排出ガスセンサは、素子部の温度が活性温度まで昇温しないと、検出精度が悪いため、排出ガスセンサにヒータを内蔵させ、そのヒータに通電して排出ガスセンサの活性化を促進するようにしている。   In an electronically controlled internal combustion engine in recent years, any of gas component concentration such as oxygen concentration of exhaust gas, air-fuel ratio, rich / lean on the upstream side of the catalyst in the exhaust passage (or both upstream and downstream sides of the catalyst) An exhaust gas sensor for detecting the exhaust gas is installed, and the exhaust gas purification efficiency of the catalyst is improved by feedback-controlling the air-fuel ratio to the vicinity of the theoretical air-fuel ratio based on the output of the exhaust gas sensor. In general, the exhaust gas sensor has poor detection accuracy unless the temperature of the element portion is raised to the activation temperature. Therefore, a heater is incorporated in the exhaust gas sensor, and the heater is energized to promote activation of the exhaust gas sensor. Yes.

また、燃費節減、排気エミッション低減等を目的として、エンジン自動停止・再始動装置(いわゆるアイドリングストップ装置)を搭載した車両が増加しつつある。このエンジン自動停止・再始動装置は、例えば、運転者が車両を停車させるときにエンジンを自動的に停止させ、その後、運転者が車両を発進させようとする操作(ブレーキ解除操作等)を行ったときにエンジンを自動的に始動させるようにしている。   In addition, vehicles equipped with automatic engine stop / restart devices (so-called idling stop devices) are increasing for the purpose of reducing fuel consumption and exhaust emissions. This automatic engine stop / restart device, for example, automatically stops the engine when the driver stops the vehicle, and then the driver performs an operation (such as a brake release operation) to start the vehicle. The engine is automatically started when

この場合、特許文献1(特開平9−88688号公報)に記載されているように、自動停止中に排出ガスセンサが冷えて未活性状態になるのを防止するために、自動停止中にヒータ通電を再始動時まで継続して排出ガスセンサを活性状態に維持するようにしたものがある。
特開平9−88688号公報(第1頁等)
In this case, as described in Patent Document 1 (Japanese Patent Laid-Open No. 9-88688), in order to prevent the exhaust gas sensor from cooling and becoming inactive during the automatic stop, the heater is energized during the automatic stop. The exhaust gas sensor is maintained in an active state by continuing until the time of restart.
JP-A-9-88688 (first page, etc.)

上記特許文献1のように、自動停止中に排出ガスセンサのヒータ通電を再始動時まで継続するようにすると、その分、再始動時の電気負荷が増えるため、出力トルクが小さい小排気量エンジン搭載車では、再始動性や燃費に悪影響が現れる。また、小排気量エンジン搭載車は、一般にバッテリ容量も小さいため、自動停止時間が長くなる場合に、ヒータ通電を再始動時まで継続すると、バッテリの充電状態にも悪影響が現れる。   If the heater energization of the exhaust gas sensor is continued until the restart at the time of restart as in the above-mentioned Patent Document 1, the electrical load at the time of restart increases accordingly, so a small displacement engine mounted with a small output torque Cars have a negative effect on restartability and fuel efficiency. In addition, since a vehicle with a small displacement engine generally has a small battery capacity, if the heater energization is continued until the restart when the automatic stop time becomes long, the charged state of the battery is also adversely affected.

そこで、自動停止中の電気負荷低減と再始動性・燃費向上を優先して、自動停止中に排出ガスセンサのヒータ通電を停止するようにしたものがある。しかし、自動停止毎に、毎回、ヒータ通電を停止すると、自動停止毎に、毎回、排出ガスセンサの温度を低下させてその後の再始動時のヒータ通電開始によって排出ガスセンサの温度を急上昇させることになり、この温度の低下/急上昇の繰り返しが排出ガスセンサの素子部にストレス(熱応力)を加える温度サイクルとなるため、自動停止回数(ヒータ通電停止回数)が増加するに従って排出ガスセンサの素子部が劣化することが予想される。このため、市街地走行の信号待ち等で自動停止・再始動が頻繁に繰り返される走行距離が多くなると、積算走行距離に対する排出ガスセンサの劣化の進み具合が早まり、予想よりも早期に排出ガスセンサの劣化の影響が現れてしまう可能性がある。この排出ガスセンサの劣化は、空燃比制御性を悪化させて、エミッションやドライバビリティを悪化させる原因となるため、排出ガスセンサの劣化の進み具合をできるだけ遅くする対策が必要となる。   In view of this, there is a technique in which the heater energization of the exhaust gas sensor is stopped during the automatic stop, giving priority to reducing the electric load and improving the restartability and fuel consumption during the automatic stop. However, if the heater energization is stopped every time the automatic stop is performed, the temperature of the exhaust gas sensor is decreased each time the automatic stop is performed, and the temperature of the exhaust gas sensor is rapidly increased by starting the energization of the heater at the subsequent restart. Since the temperature decrease / rapid increase is a temperature cycle in which stress (thermal stress) is applied to the element part of the exhaust gas sensor, the element part of the exhaust gas sensor deteriorates as the number of automatic stops (heater energization stop number) increases. It is expected that. For this reason, if the travel distance in which automatic stop / restart is frequently repeated due to waiting for a signal for traveling in an urban area, the progress of deterioration of the exhaust gas sensor with respect to the accumulated travel distance is accelerated, and the deterioration of the exhaust gas sensor is accelerated earlier than expected. Impact may appear. Since the deterioration of the exhaust gas sensor deteriorates the air-fuel ratio controllability and causes the emission and drivability to deteriorate, it is necessary to take measures to slow down the progress of deterioration of the exhaust gas sensor as much as possible.

本発明は、このような事情を考慮してなされたものであり、従ってその目的は、自動停止中の電気負荷低減と再始動性・燃費向上の要求をある程度満たしながら、排出ガスセンサの劣化の進み具合を遅くすることができる内燃機関の制御装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, the object of the present invention is to promote the deterioration of the exhaust gas sensor while satisfying the requirements of electric load reduction and restartability / fuel efficiency improvement during automatic stop to some extent. An object of the present invention is to provide a control device for an internal combustion engine that can slow down the condition.

上記目的を達成するために、請求項1に係る発明は、内燃機関の排出ガスの酸素濃度等のガス成分濃度、空燃比、リッチ/リーンのいずれかを検出する排出ガスセンサと、この排出ガスセンサに設けられたヒータの通電を制御して該排出ガスセンサを活性状態に加熱するヒータ制御手段と、前記排出ガスセンサの出力に基づいて内燃機関に供給する混合気の空燃比を制御する空燃比制御手段と、内燃機関の運転中に所定の自動停止条件が成立したときに内燃機関を自動的に停止する自動停止制御手段とを備えた内燃機関の制御装置において、前記ヒータ制御手段は、前記自動停止制御手段による内燃機関の自動停止に前記排出ガスセンサのヒータ通電を停止せずに継続する手段と、自動停止中のヒータ通電時間を自動停止中の電気負荷増加や再始動性・燃費の悪化の観点から許容できる許容ヒータ通電時間以内に制限する手段と、前記自動停止制御手段による自動停止回数をカウントして記憶する手段と、前記自動停止回数に応じて前記許容ヒータ通電時間を変更する手段とを備えていることを特徴とするものである。 In order to achieve the above object, an invention according to claim 1 is directed to an exhaust gas sensor for detecting any one of a gas component concentration, such as an oxygen concentration of an exhaust gas of an internal combustion engine, an air-fuel ratio, and rich / lean, and to the exhaust gas sensor. Heater control means for controlling the energization of the heater provided to heat the exhaust gas sensor to an active state; air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine based on the output of the exhaust gas sensor; And an automatic stop control means for automatically stopping the internal combustion engine when a predetermined automatic stop condition is satisfied during operation of the internal combustion engine, wherein the heater control means includes the automatic stop control electrical load increase during the automatic stop means to continue without stopping the heater energization of the exhaust gas sensor during the automatic stop of the internal combustion engine, the heater energizing time during the automatic stop by means And means for limiting within allowable heater energization time acceptable in view of deterioration of re-startability and fuel consumption, and means for storing a count of the automatic stop count by the automatic stop control means, the allowable according to the automatic stop count And a means for changing the heater energization time.

要するに、本発明は、自動停止に排出ガスセンサのヒータ通電を停止せずに継続することで、ヒータ通電のオフ/オン回数を減らして排出ガスセンサの劣化の進み具合を遅くするものであるが、自動停止中に排出ガスセンサのヒータ通電を常に再始動時まで継続すると、自動停止中の電気負荷増加や再始動性・燃費の悪化につながるため、自動停止中のヒータ通電時間を許容ヒータ通電時間以内に制限すると共に、この許容ヒータ通電時間を排出ガスセンサの劣化の進み具合と相関関係のある自動停止回数に応じて変更することで、排出ガスセンサの劣化の進み具合に応じて許容ヒータ通電時間を変更するという制御が可能となる。これにより、自動停止中の電気負荷低減と再始動性・燃費向上の要求をある程度満たしながら、排出ガスセンサの劣化の進み具合を遅くすることが可能となり、排出ガスセンサの劣化による空燃比制御性の悪化やエミッション・ドライバビリティの悪化を長期間にわたって防止することができる。
In short, the present invention continues without stopping the heater energization of the exhaust gas sensor at the time of automatic stop, thereby reducing the number of times the heater energization is turned off / on and slowing down the deterioration of the exhaust gas sensor. Continued energization of the exhaust gas sensor to the time of restart during automatic stop will lead to an increase in electrical load during automatic stop and deterioration of restartability and fuel consumption, so the heater energization time during automatic stop is within the allowable heater energization time. The allowable heater energization time is changed according to the progress of exhaust gas sensor degradation by changing the allowable heater energization time according to the number of automatic stops correlated with the progress of exhaust gas sensor degradation. It is possible to perform control. As a result, it is possible to slow down the progress of deterioration of the exhaust gas sensor while satisfying the requirements of electric load reduction during automatic stop, restartability and fuel consumption to some extent, and deterioration of air-fuel ratio controllability due to deterioration of the exhaust gas sensor And deterioration of emission drivability can be prevented over a long period of time.

この場合、許容ヒータ通電時間が長くなるほど、その許容ヒータ通電時間以内に再始動される確率(つまり自動停止中にヒータ通電がオフされずに再始動時まで続く確率)が高くなるため、許容ヒータ通電時間が長くなるほど、ヒータ通電のオフ/オン回数が少なくなって、排出ガスセンサの劣化の進み具合を遅くなるという関係がある。   In this case, the longer the allowable heater energization time is, the higher the probability of restart within the allowable heater energization time (that is, the probability that the heater energization is not turned off during automatic stop and continues until the restart). There is a relationship that the longer the energization time is, the less the heater energization is turned off / on, and the slower the deterioration of the exhaust gas sensor.

従って、請求項2のように、自動停止回数が多いほど、許容ヒータ通電時間を長い時間に設定するようにすれば、排出ガスセンサの劣化の度合が進むほど、許容ヒータ通電時間を長く設定して、ヒータ通電のオフ/オン回数を減らして排出ガスセンサの劣化の進み具合を遅くすることができる。   Therefore, as the number of automatic stops is increased and the allowable heater energization time is set to a longer time as in claim 2, the longer the allowable heater energization time is set as the degree of deterioration of the exhaust gas sensor proceeds. In addition, the progress of deterioration of the exhaust gas sensor can be delayed by reducing the number of times the heater energization is turned off / on.

或は、請求項3のように、自動停止回数が少ないほど、許容ヒータ通電時間を短い時間に設定するようにすれば、排出ガスセンサの劣化の度合が小さいほど、許容ヒータ通電時間を短くして、自動停止中の電気負荷低減と再始動性・燃費向上の効果を増大させることができる。   Alternatively, as described in claim 3, the shorter the number of automatic stops, the shorter the allowable heater energization time is set, and the smaller the degree of deterioration of the exhaust gas sensor, the shorter the allowable heater energization time. In addition, it is possible to increase the effect of reducing the electric load during automatic stop and improving the restartability and fuel consumption.

更に、請求項4のように、自動停止中に車載機器の電気負荷(消費電力)に基づいてヒータ通電の継続/停止を判定するようにしても良い。この際、車載機器の電気負荷は、例えば、バッテリの充電電圧、空調装置(エアコン)のオン/オフ、ヘッドランプ・リアランプ等のランプ類の点灯/消灯等に基づいて判定すれば良い。車載機器の電気負荷に基づいてヒータ通電の継続/停止を判定すれば、自動停止中や再始動時の電気負荷が大きくなり過ぎないようにヒータ通電の継続/停止を決めることができる。   Further, as described in claim 4, during the automatic stop, the continuation / stop of heater energization may be determined based on the electric load (power consumption) of the in-vehicle device. At this time, the electric load of the in-vehicle device may be determined based on, for example, the charging voltage of the battery, on / off of an air conditioner (air conditioner), lighting / extinguishing of lamps such as a headlamp and a rear lamp. If the continuation / stop of the heater energization is determined based on the electric load of the in-vehicle device, the continuation / stop of the heater energization can be determined so that the electric load during the automatic stop or restart is not excessively increased.

具体的には、請求項5のように、自動停止中に車載機器の電気負荷が所定値以上のときにヒータ通電を停止するようにしたり、或は、請求項6のように、自動停止中に車載機器の電気負荷が所定値以下のときに、許容ヒータ通電時間を越えない範囲でヒータ通電を継続するようにすれば良い。このようにすれば、自動停止中や再始動時の電気負荷が大きくなり過ぎないように確実に制限することができる。   Specifically, as in claim 5, the heater energization is stopped when the electric load of the in-vehicle device is greater than or equal to a predetermined value during automatic stop, or in automatic stop as in claim 6. In addition, when the electric load of the in-vehicle device is equal to or less than a predetermined value, the heater energization may be continued within a range not exceeding the allowable heater energization time. In this way, it is possible to reliably limit the electric load during the automatic stop or during the restart so as not to become too large.

また、前記自動停止制御手段として機能する自動停止制御装置と、前記ヒータ制御手段及び前記空燃比制御手段として機能するエンジン制御装置とを備えたシステムにおいては、請求項7のように、自動停止制御装置の動作状態の異常の有無と前記自動停止制御装置との間の通信系の異常の有無を監視し、いずれかの異常を検出したときに自動停止中のヒータ通電を禁止するようにすると良い。このようにすれば、自動停止制御装置自体又は通信系に異常が発生した時には、自動停止中のヒータ通電が強制的に停止されるため、自動停止制御装置自体又はその通信系の異常によって、ヒータ通電のオフ/オン回数が異常に増加する事態を回避することができる。   In a system comprising an automatic stop control device functioning as the automatic stop control device, and an engine control device functioning as the heater control device and the air-fuel ratio control device, the automatic stop control device as in claim 7. It is preferable to monitor the presence or absence of an abnormality in the operation state of the apparatus and the presence or absence of an abnormality in the communication system with the automatic stop control device, and to prohibit heater energization during automatic stop when any abnormality is detected. . In this way, when an abnormality occurs in the automatic stop control device itself or the communication system, the heater energization during the automatic stop is forcibly stopped. It is possible to avoid a situation where the number of energization off / on times abnormally increases.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側には、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、スロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。また、吸気管12には、スロットルバルブ15をバイパスするバイパス通路25が設けられ、このバイパス通路25に、アイドルスピードコントロールバルブ(ISCバルブ)26が設けられている。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 which is an internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. A throttle valve 15 and a throttle opening sensor 16 for detecting the throttle opening are provided on the downstream side of the air flow meter 14. The intake pipe 12 is provided with a bypass passage 25 that bypasses the throttle valve 15, and an idle speed control valve (ISC valve) 26 is provided in the bypass passage 25.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17に、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、各気筒のシリンダヘッドには、点火プラグ21が取り付けられている。エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ27や、エンジン回転速度を検出するクランク角センサ28が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. A spark plug 21 is attached to the cylinder head of each cylinder. A cooling water temperature sensor 27 that detects the cooling water temperature and a crank angle sensor 28 that detects the engine rotation speed are attached to the cylinder block of the engine 11.

一方、エンジン11の排気管22の途中には、排出ガス中のCO,HC,NOx等を低減させる三元触媒等の触媒23が設けられ、この触媒23の上流側と下流側に、それぞれ排出ガスの酸素濃度等のガス成分濃度、空燃比、リッチ/リーンのいずれかを検出する排出ガスセンサ24,25(酸素センサ、空燃比センサ等)が設けられている。各排出ガスセンサ24,25の素子部は、活性温度が高いため(約600〜700℃以上)、排出ガスの熱のみでは、エンジン始動後に各排出ガスセンサ24,25の素子部を早期に活性化させることは困難である。   On the other hand, a catalyst 23 such as a three-way catalyst for reducing CO, HC, NOx, etc. in the exhaust gas is provided in the middle of the exhaust pipe 22 of the engine 11, and the exhaust is discharged upstream and downstream of the catalyst 23, respectively. Exhaust gas sensors 24 and 25 (oxygen sensor, air-fuel ratio sensor, etc.) for detecting any of gas component concentrations such as oxygen concentration of gas, air-fuel ratio, and rich / lean are provided. Since the element portions of the exhaust gas sensors 24 and 25 have a high activation temperature (about 600 to 700 ° C. or more), the element portions of the exhaust gas sensors 24 and 25 are activated early after engine startup only by the heat of the exhaust gas. It is difficult.

そこで、各排出ガスセンサ24,25は、ヒータ(図示せず)を内蔵し、このヒータの発熱により素子部を早期に活性温度域まで昇温させると共に、エンジン運転中に各排出ガスセンサ24,25を活性温度域に維持するようにヒータ通電をデューティ制御等により実施する。尚、本発明は、触媒23の下流側に排出ガスセンサ25が設けられていない構成のものにも適用して実施できることは言うまでもない。   Therefore, each exhaust gas sensor 24, 25 has a built-in heater (not shown), and heats the heater to quickly raise the temperature of the element portion to the active temperature range, and also enables each exhaust gas sensor 24, 25 during engine operation. Heater energization is performed by duty control or the like so as to maintain the activation temperature range. Needless to say, the present invention can be applied to a configuration in which the exhaust gas sensor 25 is not provided on the downstream side of the catalyst 23.

上述した各種のセンサ出力は、エンジン制御装置(以下「エンジンECU」と表記する)29に入力される。このエンジンECU29は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。このエンジンECU29は、エンジン運転中に各排出ガスセンサ24,25の出力に基づいてエンジン11に供給する混合気の空燃比を目標空燃比にフィードバック制御する空燃比制御手段として機能する。   The various sensor outputs described above are input to an engine control device (hereinafter referred to as “engine ECU”) 29. The engine ECU 29 is mainly composed of a microcomputer, and executes various control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 20 according to the engine operating state. The ignition timing of the spark plug 21 is controlled. The engine ECU 29 functions as air-fuel ratio control means for feedback-controlling the air-fuel ratio of the air-fuel mixture supplied to the engine 11 to the target air-fuel ratio based on the outputs of the exhaust gas sensors 24 and 25 during engine operation.

また、燃費節減、排気エミッション低減等を目的として、エンジン自動停止・再始動を制御する自動停止制御手段として、自動停止制御装置(以下「エコランECU」と表記する)30がエンジンECU29と相互に通信できるように設けられている。このエコランECU30はマイクロコンピュータを主体として構成され、エンジン運転中に所定の自動停止条件(例えば暖機後のアイドルでブレーキスイッチがオンし且つ車速が所定値以下であること)が成立した時点で、自動停止要求(燃料カット要求)をエンジンECU29に出力する。エンジンECU29は、エコランECU30から自動停止要求を受信した時点で、燃料噴射弁20の燃料噴射を停止させてエンジン11を停止させると共に、自動停止中フラグをONにセットする。その後、エコランECU30は、運転者が車両を発進させようとする操作(例えばブレーキ解除操作、Dレンジへのシフト操作等)を検出した時点で、自動停止中フラグをOFFにリセットして、燃料噴射弁20の燃料噴射を再開させてエンジン11を再始動させる。   An automatic stop control device (hereinafter referred to as “eco-run ECU”) 30 communicates with the engine ECU 29 as automatic stop control means for controlling automatic engine stop / restart for the purpose of reducing fuel consumption and exhaust emissions. It is provided so that it can. This eco-run ECU 30 is mainly composed of a microcomputer, and when a predetermined automatic stop condition (for example, the brake switch is turned on at idle after warm-up and the vehicle speed is equal to or lower than a predetermined value) is established during engine operation. An automatic stop request (fuel cut request) is output to the engine ECU 29. When the engine ECU 29 receives the automatic stop request from the eco-run ECU 30, the engine ECU 29 stops the fuel injection of the fuel injection valve 20 to stop the engine 11, and sets the automatic stop flag to ON. Thereafter, the eco-run ECU 30 resets the automatic stop flag to OFF when the driver detects an operation (for example, a brake release operation, a shift operation to the D range, etc.) to start the vehicle, and fuel injection is performed. The fuel injection of the valve 20 is restarted and the engine 11 is restarted.

一方、エンジンECU29は、排出ガスセンサ24,25のヒータ通電をデューティ制御により制御するヒータ制御手段として機能し、エンジン11の冷間始動時(排出ガスセンサ24,25の未活性時)にはヒータデューティを大きいデューティ(例えば100%デューティ)に設定してヒータの発熱量を多くすることで、排出ガスセンサ24,25を速やかに活性温度域まで昇温させ、排出ガスセンサ24,25の活性後はヒータデューティを小さいデューティ(例えば30%デューティ)に低下させて排出ガスセンサ24,25を活性温度域に維持する。各排出ガスセンサ24,25を活性温度域に維持する際のヒータデューティは、予め決められた一定値に固定するようにしても良いし、或は、各排出ガスセンサ24,25の素子部の温度を素子部のインピーダンス等により検出してその検出温度に応じてヒータデューティをフィードバック制御するようにしても良い。   On the other hand, the engine ECU 29 functions as a heater control means for controlling the heater energization of the exhaust gas sensors 24 and 25 by duty control. When the engine 11 is cold started (when the exhaust gas sensors 24 and 25 are inactive), the heater duty is set. By setting a large duty (for example, 100% duty) and increasing the amount of heat generated by the heater, the exhaust gas sensors 24 and 25 are quickly raised to the activation temperature range, and after the exhaust gas sensors 24 and 25 are activated, the heater duty is increased. The exhaust gas sensors 24 and 25 are maintained in the active temperature range by reducing the duty to a small duty (for example, 30% duty). The heater duty when maintaining each exhaust gas sensor 24, 25 in the activation temperature range may be fixed to a predetermined constant value, or the temperature of the element part of each exhaust gas sensor 24, 25 may be set. The heater duty may be feedback-controlled according to the detected temperature by detecting the impedance of the element portion or the like.

更に、エンジンECU29は、排出ガスセンサ24,25の劣化の進み具合をできるだけ遅くするために、自動停止中にも排出ガスセンサ24,25のヒータ通電を継続すると共に、自動停止中の電気負荷低減と再始動性・燃費向上の要求にも配慮するために、自動停止中のヒータ通電時間を許容ヒータ通電時間以内に制限する。   Further, the engine ECU 29 continues energization of the heaters of the exhaust gas sensors 24 and 25 even during the automatic stop, and reduces the electric load during the automatic stop and restarts in order to delay the progress of the deterioration of the exhaust gas sensors 24 and 25 as much as possible. In order to consider the demand for improved startability and fuel consumption, the heater energization time during automatic stop is limited within the allowable heater energization time.

要するに、自動停止中に排出ガスセンサ24,25のヒータ通電を継続することで、ヒータ通電のオフ/オン回数を減らして排出ガスセンサ24,25の劣化の進み具合を遅くするものであるが、自動停止中に排出ガスセンサ24,25のヒータ通電を再始動時まで継続すると、自動停止中の電気負荷増加や再始動性・燃費の悪化につながるため、自動停止中のヒータ通電時間を許容ヒータ通電時間以内に制限するものである。   In short, by continuing the heater energization of the exhaust gas sensors 24 and 25 during the automatic stop, the heater energization is turned off / on and the progress of deterioration of the exhaust gas sensors 24 and 25 is delayed. If the heater energization of the exhaust gas sensors 24 and 25 is continued until restart, the electrical load during the automatic stop will increase and the restartability and fuel consumption will deteriorate, so the heater energization time during the automatic stop will be within the allowable heater energization time. It is limited to.

この場合、許容ヒータ通電時間が長くなるほど、その許容ヒータ通電時間以内に再始動される確率(つまり自動停止中にヒータ通電がオフされずに再始動時まで続く確率)が高くなるため、許容ヒータ通電時間が長くなるほど、ヒータ通電のオフ/オン回数が少なくなって、排出ガスセンサ24,25の劣化の進み具合を遅くなるという関係がある。   In this case, the longer the allowable heater energization time is, the higher the probability of restart within the allowable heater energization time (that is, the probability that the heater energization is not turned off during automatic stop and continues until the restart). As the energization time becomes longer, the heater energization is turned off / on less frequently, and the progress of deterioration of the exhaust gas sensors 24, 25 is delayed.

この関係を考慮して、本実施例では、排出ガスセンサ24,25の劣化の進み具合と相関関係のある新車時からの自動停止回数をカウントして、その自動停止回数のデータをエンジンECU29に設けられた書き換え可能な不揮発性メモリ(バッテリからのバックアップ電源を必要としないEEPROM等)に記憶し、自動停止回数が多いほど、許容ヒータ通電時間を長い時間に設定し、自動停止回数が少ないほど、許容ヒータ通電時間を短い時間に設定する。このようにすれば、自動停止回数が多くなって排出ガスセンサ24,25の劣化の度合が進むほど、許容ヒータ通電時間を長く設定して、ヒータ通電のオフ/オン回数を減らして排出ガスセンサ24,25の劣化の進み具合を遅くすることができる。また、自動停止回数が少ないほど(つまり排出ガスセンサ24,25の劣化の度合が小さいほど)、許容ヒータ通電時間を短くして、自動停止中の電気負荷低減と再始動性・燃費向上の効果を増大させることができる。   In consideration of this relationship, in the present embodiment, the number of automatic stops from the time of a new vehicle having a correlation with the progress of deterioration of the exhaust gas sensors 24 and 25 is counted, and data on the number of automatic stops is provided in the engine ECU 29. Stored in a rewritable non-volatile memory (such as an EEPROM that does not require a backup power source from a battery), the greater the number of automatic stops, the longer the allowable heater energization time, and the smaller the number of automatic stops, The allowable heater energization time is set to a short time. In this way, as the number of automatic stops increases and the degree of deterioration of the exhaust gas sensors 24, 25 progresses, the allowable heater energization time is set longer and the heater energization off / on times are reduced to reduce the exhaust gas sensors 24, 25. The progress of the deterioration of 25 can be delayed. In addition, the smaller the number of automatic stops (that is, the smaller the degree of deterioration of the exhaust gas sensors 24, 25), the shorter the allowable heater energization time, thereby reducing the electric load during automatic stop and improving the restartability and fuel consumption. Can be increased.

更に、本実施例では、自動停止中に車載機器の電気負荷(消費電力)に基づいてヒータ通電の継続/停止を判定するようにしている。この際、車載機器の電気負荷は、例えば、バッテリの充電電圧、空調装置(エアコン)のオン/オフ、ヘッドランプ・リアランプ等のランプ類の点灯/消灯等に基づいて判定すれば良い。   Furthermore, in this embodiment, the continuation / stop of heater energization is determined based on the electric load (power consumption) of the in-vehicle device during the automatic stop. At this time, the electric load of the in-vehicle device may be determined based on, for example, the charging voltage of the battery, on / off of an air conditioner (air conditioner), lighting / extinguishing of lamps such as a headlamp and a rear lamp.

具体的には、自動停止中に車載機器の電気負荷が所定値以上のときには、許容ヒータ通電時間以内であっても、ヒータ通電を停止し、自動停止中に車載機器の電気負荷が所定値以下のときに、許容ヒータ通電時間を越えない範囲でヒータ通電を継続するようにしている。このようにすれば、自動停止中や再始動時の電気負荷が大きくなり過ぎないように確実に制限することができる。   Specifically, when the electric load of the in-vehicle device is greater than or equal to a predetermined value during automatic stop, the heater energization is stopped even within the allowable heater energization time, and the electric load of the in-vehicle device is less than or equal to the predetermined value during automatic stop In this case, the heater energization is continued within a range not exceeding the allowable heater energization time. In this way, it is possible to reliably limit the electric load during the automatic stop or during the restart so as not to become too large.

自動停止中のヒータデューティは、自動停止直前と同じヒータデューティ(例えば30%デューティ)に設定しても良いし、或は、ヒータ消費電力を下げるために、自動停止直前のヒータデューティよりも少し低いデューティに設定するようにしても良く、要は、自動停止中の排出ガスセンサ24,25の温度を活性温度域又はその付近に維持する(自動停止中の排出ガスセンサ24,25の温度低下を少なくする)のに必要なヒータデューティに設定すれば良い。   The heater duty during the automatic stop may be set to the same heater duty (for example, 30% duty) as that immediately before the automatic stop, or slightly lower than the heater duty immediately before the automatic stop in order to reduce the heater power consumption. The duty may be set. In short, the temperature of the exhaust gas sensors 24 and 25 during automatic stop is maintained at or near the activation temperature range (to reduce the temperature drop of the exhaust gas sensors 24 and 25 during automatic stop). It is sufficient to set the heater duty necessary for the above.

また、エンジンECU29は、エコランECU30の動作状態の異常の有無とエコランECU30との間の通信系の異常の有無を監視する異常診断機能を搭載し、エコランECU30の動作状態の異常を検出したときにエコランECU異常フラグをONし、通信系の異常を検出したときに通信系異常フラグをONすると共に、いずれかの異常を検出したときに自動停止中のヒータ通電を禁止する(ヒータデューティを0%にする)。このようにすれば、エコランECU30自体又は通信系に異常が発生した時には、自動停止中のヒータ通電が強制的に停止されるため、エコランECU30自体又はその通信系の異常によって、ヒータ通電のオフ/オン回数が異常に増加する事態を回避することができる。   In addition, the engine ECU 29 is equipped with an abnormality diagnosis function that monitors whether there is an abnormality in the operating state of the eco-run ECU 30 and whether there is an abnormality in the communication system with the eco-run ECU 30, and when detecting an abnormality in the operating state of the eco-run ECU 30 The eco-run ECU abnormality flag is turned ON, and when a communication system abnormality is detected, the communication system abnormality flag is turned ON, and when any abnormality is detected, heater energization during automatic stop is prohibited (heater duty is 0%) ). In this way, when an abnormality occurs in the eco-run ECU 30 or the communication system, the heater energization during the automatic stop is forcibly stopped. It is possible to avoid a situation in which the number of ONs increases abnormally.

以上説明した排出ガスセンサ24,25のヒータ通電制御は、エンジンECU29とエコランECU30によって図2のヒータ通電制御ルーチンに従って次のように実行される。本ルーチンが起動されると、まず、ステップ101で、エンジン11の冷間始動から排出ガスセンサ24,25を活性温度域まで昇温させるのに必要な所定時間が経過したか否かを判定し、所定時間が経過していなければ、排出ガスセンサ24,25がまだ活性温度域まで昇温していないと判断して、ステップ102に進み、ヒータデューティを大きいデューティ(例えば100%デューティ)に設定してヒータの発熱量を多くすることで、排出ガスセンサ24,25を速やかに昇温させる。この際、排出ガスセンサ24,25の温度が活性温度域に近付くに従ってヒータデューティを徐々に低下させるようにしても良い。   The heater energization control of the exhaust gas sensors 24 and 25 described above is executed by the engine ECU 29 and the eco-run ECU 30 as follows according to the heater energization control routine of FIG. When this routine is started, first, in step 101, it is determined whether or not a predetermined time required for raising the temperature of the exhaust gas sensors 24, 25 to the activation temperature range has elapsed since the cold start of the engine 11. If the predetermined time has not elapsed, it is determined that the exhaust gas sensors 24 and 25 have not yet been heated to the activation temperature range, and the routine proceeds to step 102 where the heater duty is set to a large duty (for example, 100% duty). By increasing the amount of heat generated by the heater, the exhaust gas sensors 24 and 25 are quickly heated. At this time, the heater duty may be gradually reduced as the temperature of the exhaust gas sensors 24 and 25 approaches the activation temperature range.

その後、エンジン11の冷間始動から所定時間が経過した時点で、排出ガスセンサ24,25が活性温度域まで昇温したと判断して、ステップ103に進み、ヒータデューティを小さいデューティ(例えば30%デューティ)に設定して、排出ガスセンサ24,25を活性温度域(又はその付近)に維持するのに必要なヒータ発熱量を供給する。これらステップ101〜103の処理は、エンジンECU29によって実行される。   Thereafter, when a predetermined time has elapsed from the cold start of the engine 11, it is determined that the exhaust gas sensors 24, 25 have been heated to the activation temperature range, and the routine proceeds to step 103 where the heater duty is set to a small duty (for example, 30% duty). ) To supply the heater heat generation amount necessary for maintaining the exhaust gas sensors 24 and 25 in the active temperature range (or in the vicinity thereof). The processes of steps 101 to 103 are executed by the engine ECU 29.

この後、ステップ104に進み、エンジン運転中に所定の自動停止条件(例えば暖機後のアイドルでブレーキスイッチがオンし且つ車速が所定値以下であること)が成立したか否かを判定し、自動停止条件が成立していなければ、ステップ103に戻り、排出ガスセンサ24,25を活性温度域(又はその付近)に維持するためのヒータ通電を継続する。   Thereafter, the routine proceeds to step 104, where it is determined whether a predetermined automatic stop condition (for example, the brake switch is turned on at idle after warm-up and the vehicle speed is equal to or lower than a predetermined value) is satisfied during engine operation, If the automatic stop condition is not satisfied, the process returns to step 103, and energization of the heater for maintaining the exhaust gas sensors 24, 25 in the activation temperature range (or the vicinity thereof) is continued.

その後、上記自動停止条件が成立した時点で、ステップ105に進み、エコランECU30から自動停止要求(燃料カット要求)をエンジンECU29に出力する。これらステップ104、105の処理は、エコランECU30によって実行される。   Thereafter, when the automatic stop condition is satisfied, the routine proceeds to step 105, where the eco-run ECU 30 outputs an automatic stop request (fuel cut request) to the engine ECU 29. The processing of these steps 104 and 105 is executed by the eco-run ECU 30.

そして、次のステップ106で、エンジンECU29によって燃料噴射弁20の燃料噴射を停止させてエンジン11を停止させると共に、自動停止中フラグをONにセットする。この後、ステップ107に進み、新車時からの自動停止回数をカウントして、その自動停止回数のデータを書き換え可能な不揮発性メモリ(バッテリからのバックアップ電源を必要としないEEPROM等)に記憶する。この自動停止回数のデータは、エンジン11の運転停止中(イグニッションスイッチのオフ中)でも記憶保持され、更に、車両からバッテリが取り外された場合でも記憶保持される。   Then, in the next step 106, the engine ECU 29 stops the fuel injection of the fuel injection valve 20 to stop the engine 11, and the automatic stop flag is set to ON. Thereafter, the routine proceeds to step 107, where the number of automatic stops from the time of a new vehicle is counted, and the data of the number of automatic stops is stored in a rewritable nonvolatile memory (such as an EEPROM that does not require a backup power source from a battery). The data on the number of times of automatic stop is stored and held even when the operation of the engine 11 is stopped (when the ignition switch is turned off), and further stored and held even when the battery is removed from the vehicle.

この後、ステップ108に進み、図3の許容ヒータ通電時間のマップを参照して、新車時から現在までの自動停止回数に応じて許容ヒータ通電時間を設定して、自動停止中もヒータ通電を継続する。図3の許容ヒータ通電時間のマップは、自動停止回数が第1所定値N1以下の領域では、自動停止回数が少ないほど、許容ヒータ通電時間を短い時間に設定し、自動停止回数が第1所定値N1からそれよりも大きい第2所定値N2までの領域では、許容ヒータ通電時間を一定の時間に設定し(又は自動停止回数の増加に対する許容ヒータ通電時間の増加の割合を他の領域よりも小さくし)、自動停止回数が第2所定値N2以上の領域では、自動停止回数が多いほど、許容ヒータ通電時間を長い時間に設定する。   Thereafter, the process proceeds to step 108, where the allowable heater energization time is set according to the number of automatic stops from the time of the new vehicle to the present with reference to the map of the allowable heater energization time in FIG. continue. In the map of the allowable heater energizing time in FIG. 3, in the region where the number of automatic stops is equal to or less than the first predetermined value N1, the allowable heater energizing time is set to a shorter time as the number of automatic stops is smaller, and the number of automatic stops is the first predetermined number. In the region from the value N1 to the second predetermined value N2 larger than that, the allowable heater energization time is set to a constant time (or the rate of increase in the allowable heater energization time relative to the increase in the number of automatic stops is higher than in other regions. In a region where the number of automatic stops is equal to or greater than the second predetermined value N2, the allowable heater energization time is set to a longer time as the number of automatic stops is larger.

この後、ステップ109に進み、自動停止中ヒータ通電時間カウンタTheatをカウントアップして自動停止中のヒータ通電時間(自動停止時間)を計測する。そして、次のステップ110で、自動停止中のヒータ通電停止条件が成立しているか否かを、次の3つの条件(1) 〜(3) のいずれかに該当するか否かで判定する。   Thereafter, the process proceeds to step 109, where the heater energization time counter Theat during automatic stop is counted up to measure the heater energization time (automatic stop time) during automatic stop. Then, in the next step 110, it is determined whether or not the heater energization stop condition during the automatic stop is satisfied by whether or not one of the following three conditions (1) to (3) is satisfied.

(1) 自動停止中の車載機器の電気負荷(消費電力)が所定値以上であること
(2) 自動停止中のヒータ通電時間Theatが許容ヒータ通電時間を越えたこと
(3) エコランECU30が異常(エコランECU異常フラグがON)又は通信系が異常(通信系異常フラグがON)であること
(1) The electric load (power consumption) of the in-vehicle equipment that is automatically stopped must be greater than or equal to the specified value
(2) The heater energization time Theat during automatic stop exceeds the allowable heater energization time.
(3) The eco-run ECU 30 is abnormal (the eco-run ECU abnormal flag is ON) or the communication system is abnormal (the communication system abnormal flag is ON)

これら3つの条件(1) 〜(3) のいずれにも該当しなければ、自動停止中のヒータ通電停止条件が成立せず、ステップ111に進み、自動停止中のヒータ通電を継続し、自動停止中ヒータ通電時間カウンタTheatをカウントアップして自動停止中のヒータ通電時間を計測するという処理を繰り返す(ステップ109)。   If none of these three conditions (1) to (3) is satisfied, the heater energization stop condition during the automatic stop is not satisfied, and the process proceeds to step 111 to continue the heater energization during the automatic stop and automatically stop. The process of counting up the heater energization time during automatic stop by counting up the middle heater energization time counter Theat is repeated (step 109).

その後、上記3つの条件(1) 〜(3) のいずれかに該当した時点で、自動停止中のヒータ通電停止条件が成立したと判断され、ステップ112に進み、自動停止中のヒータ通電を停止する(ヒータデューティを0%にする)。   Thereafter, when any of the above three conditions (1) to (3) is satisfied, it is determined that the heater energization stop condition during the automatic stop is satisfied, and the process proceeds to step 112 to stop the heater energization during the automatic stop. (The heater duty is set to 0%).

例えば、自動停止中に車載機器の電気負荷が所定値未満で、且つ、エコランECU30と通信系が正常な状態が続けば、自動停止中のヒータ通電時間Theatが許容ヒータ通電時間を越えた時点で、自動停止中のヒータ通電を停止する。また、自動停止中のヒータ通電時間Theatが許容ヒータ通電時間以内であっても、車載機器の電気負荷が所定値以上になれば、その時点で、自動停止中のヒータ通電を停止する。また、エコランECU30又は通信系の異常が検出されれば、その時点で、自動停止中のヒータ通電を停止する。   For example, if the electric load of the in-vehicle device is less than a predetermined value during the automatic stop and the eco-run ECU 30 and the communication system continue to be in a normal state, when the heater energization time Theat during the automatic stop exceeds the allowable heater energization time. Stop the heater energization during automatic stop. Further, even if the heater energization time Theat during the automatic stop is within the allowable heater energization time, if the electric load of the in-vehicle device exceeds a predetermined value, the heater energization during the automatic stop is stopped at that time. If an abnormality in the eco-run ECU 30 or the communication system is detected, the heater energization during the automatic stop is stopped at that time.

図4は、本実施例の制御例を示している。図4の例では、時刻t1 で、エンジン11が自動停止されて自動停止中フラグがONにセットされる(自動停止後も排出ガスセンサ24,25のヒータ通電は継続する)。自動停止中は、自動停止中ヒータ通電時間カウンタTheatをカウントアップして自動停止中のヒータ通電時間(自動停止時間)を計測する。   FIG. 4 shows a control example of this embodiment. In the example of FIG. 4, at the time t1, the engine 11 is automatically stopped and the automatic stop flag is set to ON (the heater energization of the exhaust gas sensors 24 and 25 continues even after the automatic stop). During automatic stop, the heater energization time counter Theat during automatic stop is counted up to measure the heater energization time (automatic stop time) during automatic stop.

本例では、自動停止中に車載機器の電気負荷が所定値未満で、且つ、エコランECU30と通信系が正常な状態(エコランECU異常フラグ=OFF且つ通信系異常フラグ=OFF)が続くため、自動停止中のヒータ通電時間が新車時からの自動停止回数に応じて設定された許容ヒータ通電時間を越えるまで、ヒータ通電が継続される。そして、自動停止中のヒータ通電時間が許容ヒータ通電時間を越えた時点t2 で、自動停止中のヒータ通電が停止される。その後、運転者が車両を発進させようとする操作(例えばブレーキ解除操作、Dレンジへのシフト操作等)が検出された時点t3 で、自動停止中フラグがOFFにリセットされ、燃料噴射弁20の燃料噴射が再開されてエンジン11が再始動される。   In this example, the electric load of the in-vehicle device is less than a predetermined value during the automatic stop, and the eco-run ECU 30 and the communication system are in a normal state (eco-run ECU abnormality flag = OFF and communication system abnormality flag = OFF). The heater energization is continued until the heater energization time during the stop exceeds the allowable heater energization time set according to the number of automatic stops from the time of the new vehicle. Then, at the time t2 when the heater energization time during the automatic stop exceeds the allowable heater energization time, the heater energization during the automatic stop is stopped. Thereafter, at time t3 when an operation for starting the vehicle (for example, a brake release operation, a shift operation to the D range, etc.) is detected, the automatic stop flag is reset to OFF and the fuel injection valve 20 is turned off. Fuel injection is resumed and the engine 11 is restarted.

以上説明した自動停止中のヒータ通電制御は、自動停止中に排出ガスセンサ24,25のヒータ通電を継続することで、ヒータ通電のオフ/オン回数を減らして排出ガスセンサ24,25の劣化の進み具合を遅くするものであるが、自動停止中に排出ガスセンサ24,25のヒータ通電を常に再始動時まで継続すると、自動停止中の電気負荷増加や再始動性・燃費の悪化につながるため、自動停止中のヒータ通電時間を許容ヒータ通電時間以内に制限すると共に、この許容ヒータ通電時間を排出ガスセンサ24,25の劣化の進み具合と相関関係のある自動停止回数に応じて変更することで、排出ガスセンサ24,25の劣化の進み具合に応じて許容ヒータ通電時間を変更するという制御が可能となる。これにより、自動停止中の電気負荷低減と再始動性・燃費向上の要求をある程度満たしながら、排出ガスセンサ24,25の劣化の進み具合を遅くすることが可能となり、排出ガスセンサ24,25の劣化による空燃比制御性の悪化やエミッション・ドライバビリティの悪化を長期間にわたって防止することができる。   The heater energization control during the automatic stop described above continues the heater energization of the exhaust gas sensors 24 and 25 during the automatic stop, thereby reducing the number of times the heater energization is turned off / on and the progress of deterioration of the exhaust gas sensors 24 and 25. However, if the heaters in the exhaust gas sensors 24 and 25 are always energized during the automatic stop until the restart time, the electric load increases during the automatic stop and the restartability and fuel consumption deteriorate. By limiting the heater energization time within the allowable heater energization time and changing the allowable heater energization time according to the number of automatic stops correlated with the progress of deterioration of the exhaust gas sensors 24 and 25, the exhaust gas sensor Control of changing the allowable heater energization time according to the progress of deterioration of 24 and 25 becomes possible. This makes it possible to slow down the progress of the deterioration of the exhaust gas sensors 24 and 25 while satisfying the requirements for reducing the electric load during the automatic stop and improving the restartability and fuel consumption to some extent. It is possible to prevent deterioration of air-fuel ratio controllability and emission drivability over a long period of time.

本発明の一実施例を示すエンジン制御システム全体の概略構成図である。1 is a schematic configuration diagram of an entire engine control system showing an embodiment of the present invention. ヒータ通電制御ルーチンの流れを示すフローチャートである。It is a flowchart which shows the flow of a heater energization control routine. 自動停止回数に応じて許容ヒータ通電時間を設定するマップを概念的に示す図である。It is a figure which shows notionally the map which sets the allowable heater energization time according to the frequency | count of automatic stop. 自動停止中のヒータ通電制御の一例を説明するタイムチャートである。It is a time chart explaining an example of heater energization control during automatic stop.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、20…燃料噴射弁、21…点火プラグ、22…排気管、23…触媒、24,25…排出ガスセンサ、29…エンジンECU(エンジン制御装置,ヒータ制御手段,空燃比制御手段)30…自動停止制御装置,自動停止制御手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 20 ... Fuel injection valve, 21 ... Spark plug, 22 ... Exhaust pipe, 23 ... Catalyst, 24, 25 ... Exhaust gas sensor, 29 ... Engine ECU ( Engine control device, heater control means, air-fuel ratio control means) 30 ... automatic stop control device, automatic stop control means)

Claims (7)

内燃機関の排出ガスの酸素濃度等のガス成分濃度、空燃比、リッチ/リーンのいずれかを検出する排出ガスセンサと、この排出ガスセンサに設けられたヒータの通電を制御して該排出ガスセンサを活性状態に加熱するヒータ制御手段と、前記排出ガスセンサの出力に基づいて内燃機関に供給する混合気の空燃比を制御する空燃比制御手段と、内燃機関の運転中に所定の自動停止条件が成立したときに内燃機関を自動的に停止する自動停止制御手段とを備えた内燃機関の制御装置において、
前記ヒータ制御手段は、前記自動停止制御手段による内燃機関の自動停止に前記排出ガスセンサのヒータ通電を停止せずに継続する手段と、自動停止中のヒータ通電時間を自動停止中の電気負荷増加や再始動性・燃費の悪化の観点から許容できる許容ヒータ通電時間以内に制限する手段と、前記自動停止制御手段による自動停止回数をカウントして記憶する手段と、前記自動停止回数に応じて前記許容ヒータ通電時間を変更する手段とを備えていることを特徴とする内燃機関の制御装置。
An exhaust gas sensor for detecting any one of gas component concentrations such as oxygen concentration of an exhaust gas of an internal combustion engine, air-fuel ratio, rich / lean, and energization of a heater provided in the exhaust gas sensor to control the exhaust gas sensor in an active state Heater control means for heating the air, air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine based on the output of the exhaust gas sensor, and when a predetermined automatic stop condition is satisfied during operation of the internal combustion engine An internal combustion engine control device provided with an automatic stop control means for automatically stopping the internal combustion engine,
The heater control means includes means for continuing the heater energization of the exhaust gas sensor without stopping when the internal combustion engine is automatically stopped by the automatic stop control means, and increasing the electric load during the automatic stop of the heater energization time during the automatic stop. And means for limiting within the allowable heater energization time allowable from the viewpoint of deterioration of restartability and fuel consumption, means for counting and storing the number of automatic stops by the automatic stop control means, and depending on the number of automatic stops A control device for an internal combustion engine, comprising: means for changing an allowable heater energization time.
前記ヒータ制御手段は、前記自動停止回数が多いほど、前記許容ヒータ通電時間を長い時間に設定することを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the heater control unit sets the allowable heater energization time to a longer time as the number of automatic stops is larger. 前記ヒータ制御手段は、前記自動停止回数が少ないほど、前記許容ヒータ通電時間を短い時間に設定することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   3. The control device for an internal combustion engine according to claim 1, wherein the heater control unit sets the allowable heater energization time to a shorter time as the number of automatic stops is smaller. 前記ヒータ制御手段は、自動停止中に車載機器の電気負荷に基づいてヒータ通電の継続/停止を判定することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。   4. The control device for an internal combustion engine according to claim 1, wherein the heater control means determines whether or not the heater energization is continued / stopped based on an electric load of the in-vehicle device during the automatic stop. 前記ヒータ制御手段は、自動停止中に前記車載機器の電気負荷が所定値以上のときにヒータ通電を停止することを特徴とする請求項4に記載の内燃機関の制御装置。   5. The control device for an internal combustion engine according to claim 4, wherein the heater control unit stops energization of the heater when the electric load of the in-vehicle device is equal to or greater than a predetermined value during the automatic stop. 前記ヒータ制御手段は、自動停止中に前記車載機器の電気負荷が所定値以下のときに前記許容ヒータ通電時間を越えない範囲でヒータ通電を継続することを特徴とする請求項4又は5に記載の内燃機関の制御装置。   The heater control means continues the heater energization within a range that does not exceed the allowable heater energization time when the electric load of the in-vehicle device is equal to or less than a predetermined value during the automatic stop. Control device for internal combustion engine. 前記自動停止制御手段として機能する自動停止制御装置と、前記ヒータ制御手段及び前記空燃比制御手段として機能するエンジン制御装置とを備え、
前記エンジン制御装置は、前記自動停止制御装置の動作状態の異常の有無と前記自動停止制御装置との間の通信系の異常の有無を監視し、いずれかの異常を検出したときに自動停止中のヒータ通電を禁止することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の制御装置。
An automatic stop control device functioning as the automatic stop control means, and an engine control device functioning as the heater control means and the air-fuel ratio control means,
The engine control device monitors whether there is an abnormality in the operation state of the automatic stop control device and whether there is an abnormality in the communication system with the automatic stop control device, and is automatically stopped when any abnormality is detected The control device for an internal combustion engine according to any one of claims 1 to 6, wherein the heater energization is prohibited.
JP2006333101A 2006-12-11 2006-12-11 Control device for internal combustion engine Expired - Fee Related JP4697129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333101A JP4697129B2 (en) 2006-12-11 2006-12-11 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333101A JP4697129B2 (en) 2006-12-11 2006-12-11 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008144672A JP2008144672A (en) 2008-06-26
JP4697129B2 true JP4697129B2 (en) 2011-06-08

Family

ID=39605115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333101A Expired - Fee Related JP4697129B2 (en) 2006-12-11 2006-12-11 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4697129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103306833A (en) * 2012-03-12 2013-09-18 株式会社电装 Engine control apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126103B2 (en) * 2009-02-12 2013-01-23 トヨタ自動車株式会社 Heater control device
JP5840829B2 (en) * 2010-05-25 2016-01-06 いすゞ自動車株式会社 SCR system
JP5278485B2 (en) * 2011-04-25 2013-09-04 日産自動車株式会社 Idling stop control device
JP5318179B2 (en) * 2011-05-30 2013-10-16 三菱電機株式会社 Control device for internal combustion engine
EP2716900B1 (en) * 2011-06-02 2015-08-12 Bosch Corporation Heater control device for oxygen concentration sensor
JP6536793B2 (en) * 2015-03-26 2019-07-03 三菱自動車工業株式会社 Engine control device
JP6844555B2 (en) * 2018-02-08 2021-03-17 トヨタ自動車株式会社 Sensor system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156651A (en) * 1987-12-15 1989-06-20 Honda Motor Co Ltd Heater control method for exhaust gas concentration sensor
JPH06200791A (en) * 1992-12-28 1994-07-19 Suzuki Motor Corp Start/stop device for vehicle
JPH08232746A (en) * 1995-02-24 1996-09-10 Hitachi Ltd Control device for internal combustion engine
JPH0988688A (en) * 1995-09-29 1997-03-31 Denso Corp Activation control device for air-fuel ratio sensor
JP2000220488A (en) * 1999-01-29 2000-08-08 Toyota Motor Corp Automatic stop / start device for internal combustion engine
JP2002349371A (en) * 2001-05-23 2002-12-04 Toyota Motor Corp Control device for internal combustion engine and heater control unit for vapor concentration sensor
JP2003172189A (en) * 2001-12-06 2003-06-20 Denso Corp Controller for internal combustion engine
JP2004251278A (en) * 2003-01-31 2004-09-09 Kobelco Contstruction Machinery Ltd Engine controller for construction machinery and management system
JP2006250123A (en) * 2005-03-14 2006-09-21 Denso Corp Electronic control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156651A (en) * 1987-12-15 1989-06-20 Honda Motor Co Ltd Heater control method for exhaust gas concentration sensor
JPH06200791A (en) * 1992-12-28 1994-07-19 Suzuki Motor Corp Start/stop device for vehicle
JPH08232746A (en) * 1995-02-24 1996-09-10 Hitachi Ltd Control device for internal combustion engine
JPH0988688A (en) * 1995-09-29 1997-03-31 Denso Corp Activation control device for air-fuel ratio sensor
JP2000220488A (en) * 1999-01-29 2000-08-08 Toyota Motor Corp Automatic stop / start device for internal combustion engine
JP2002349371A (en) * 2001-05-23 2002-12-04 Toyota Motor Corp Control device for internal combustion engine and heater control unit for vapor concentration sensor
JP2003172189A (en) * 2001-12-06 2003-06-20 Denso Corp Controller for internal combustion engine
JP2004251278A (en) * 2003-01-31 2004-09-09 Kobelco Contstruction Machinery Ltd Engine controller for construction machinery and management system
JP2006250123A (en) * 2005-03-14 2006-09-21 Denso Corp Electronic control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103306833A (en) * 2012-03-12 2013-09-18 株式会社电装 Engine control apparatus
CN103306833B (en) * 2012-03-12 2015-07-01 株式会社电装 Engine control apparatus

Also Published As

Publication number Publication date
JP2008144672A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
CN105840275B (en) Method and system for maintaining DFSO
JP3788424B2 (en) Engine failure diagnosis device
JP4697129B2 (en) Control device for internal combustion engine
US10364716B2 (en) Exhaust gas control apparatus for internal combustion engine and exhaust gas control method for internal combustion engine
US20100006078A1 (en) Engine controller
JP2003148206A (en) Control device for internal combustion engine
JP2003138960A (en) Catalyst pre-warmup control device of internal combustion engine
JP2011007145A (en) Heater controlling device for exhaust gas sensor
JPH0988688A (en) Activation control device for air-fuel ratio sensor
JP4894521B2 (en) Air-fuel ratio sensor deterioration diagnosis device
JP2976824B2 (en) Exhaust purification catalyst device for internal combustion engine
CN109424448B (en) Internal combustion engine control system
JP2004028046A (en) Starting control device for internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JP4244824B2 (en) Fuel injection control device for internal combustion engine
JP4893292B2 (en) Control device for internal combustion engine
JP2008151025A (en) Control device of internal combustion engine
JP5871072B2 (en) Additive supply device for internal combustion engine
GB2416501A (en) System for controlling NOx emissions
JP2011226317A (en) Control device for internal combustion engine
JP4788403B2 (en) Control device for internal combustion engine
EP2233725B1 (en) Elevated-temperature operation controller for internal-combustion engine
JP3899510B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP2005155462A (en) Start control device of internal combustion engine
JP3006367B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R151 Written notification of patent or utility model registration

Ref document number: 4697129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees