[go: up one dir, main page]

JP4696478B2 - Plasma X-ray generator - Google Patents

Plasma X-ray generator Download PDF

Info

Publication number
JP4696478B2
JP4696478B2 JP2004171155A JP2004171155A JP4696478B2 JP 4696478 B2 JP4696478 B2 JP 4696478B2 JP 2004171155 A JP2004171155 A JP 2004171155A JP 2004171155 A JP2004171155 A JP 2004171155A JP 4696478 B2 JP4696478 B2 JP 4696478B2
Authority
JP
Japan
Prior art keywords
plasma
electrode
vacuum vessel
discharge
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004171155A
Other languages
Japanese (ja)
Other versions
JP2005353736A (en
Inventor
一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004171155A priority Critical patent/JP4696478B2/en
Publication of JP2005353736A publication Critical patent/JP2005353736A/en
Application granted granted Critical
Publication of JP4696478B2 publication Critical patent/JP4696478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Plasma Technology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Description

本発明は、半導体リソグラフィー等に用いられ、極端紫外光(EUV)を発光するプラズマX線源を備えたプラズマX線発生装置に関するものである。   The present invention relates to a plasma X-ray generator that includes a plasma X-ray source that emits extreme ultraviolet light (EUV) and is used in semiconductor lithography and the like.

放電生成によるプラズマX線源を備えたX線発生装置は、プラズマ生成放電電極間にXe等の作動ガスを導入して、それを高速パルス放電により高密度、高電離プラズマ化し、このプラズマからX線を取り出す装置である。そのX線を取り出す過程を高速で繰り返すことで、X線を高出力化している(高繰り返し運転)。   An X-ray generator equipped with a plasma X-ray source by discharge generation introduces a working gas such as Xe between plasma generation discharge electrodes, converts it into high density and high ionization plasma by high-speed pulse discharge, A device for taking out a wire. By repeating the process of taking out the X-rays at a high speed, the output of the X-rays is increased (high repetition operation).

プラズマX線源の主なものとして、キャピラリ放電型といった放電方式のX線源がある(例えば、非特許文献1参照)。   As a main plasma X-ray source, there is a discharge type X-ray source such as a capillary discharge type (for example, see Non-Patent Document 1).

キャピラリ放電型のプラズマX線源は、作動ガスが封入された細管(キャピラリ)内に電流を流すことによって大電流を得て、ジュール加熱により高温プラズマを得ようとするもので、プラズマの閉じ込めをキャピラリ内で行うものである。   A capillary discharge type plasma X-ray source is a device that obtains a large current by flowing a current through a capillary (capillary) filled with a working gas and obtains a high-temperature plasma by Joule heating. It is performed in the capillary.

また、キャピラリ放電型のX線源の他に、Zピンチ型のプラズマX線源がある。Zピンチ型のプラズマX線源は、プラズマ中を流れる軸電流とこれにより生成される方位角方向磁界により、プラズマを強力に圧縮して衝撃波加熱を行うと共に、ジュール加熱を行って、高温、高密度のプラズマ柱を放電管軸上に生成し、閉じ込めるものである。   In addition to the capillary discharge X-ray source, there is a Z-pinch plasma X-ray source. The Z-pinch plasma X-ray source uses a shaft current flowing in the plasma and an azimuthal magnetic field generated thereby to compress the plasma strongly and perform shock wave heating, as well as Joule heating, A plasma column of density is generated on the discharge tube axis and confined.

X線の発光効率を良くするために、プラズマの密度分布の不均一性や非対称性を改善した回転プラズマをピンチ電極間に生成放電させたX線発生装置がある(例えば、特許文献1参照)。   In order to improve the X-ray emission efficiency, there is an X-ray generator that generates and discharges rotating plasma between pinch electrodes with improved nonuniformity and asymmetry of the density distribution of plasma (see, for example, Patent Document 1). .

特開2001−155896号公報JP 2001-155896 A 特開2003−22950号公報JP 2003-22950 A 堀田,「リソグラフィ用EUV(極端紫外)光源研究の現状と将来展望」,プラズマ核融合学会,2003,第79巻,第3号,p.245-251Hotta, “Current Status and Future Prospects of EUV (Extreme Ultraviolet) Light Source Research for Lithography”, Plasma Fusion Society, 2003, 79, No. 3, p.245-251

しかしながら、従来のX線発生装置では、X線を発光し、発光有効時間を経過した残留プラズマを構成する質量数の大きい荷電粒子(イオン、微粒子等であり、電子を除く)がミラーやレンズ等の光学系へ衝突して起こすスパッタ効果によって、光学系を損傷させてしまう等、X線発光後のプラズマの拡散、光学系への入射が大きな問題であった。   However, in the conventional X-ray generator, charged particles having a large mass number (excluding ions, fine particles, etc., excluding electrons) constituting residual plasma that emits X-rays and has passed the effective emission time are mirrors, lenses, etc. Diffusion of plasma after X-ray emission and incidence on the optical system were major problems such as damage to the optical system due to the sputtering effect caused by collision with the optical system.

また、X線を高出力発生させるために、プラズマX線源を高繰り返し運転する際、真空ポンプによる排気では排気速度に限界があり、次のショットまでの間の残留プラズマの排出が不十分であるため、X線発生部近傍の残留プラズマの濃度が高くなり、X線の吸収損失が大きくなってしまう事も、高出力化への大きな障害となっていた。   In addition, when a plasma X-ray source is operated at a high repetition rate in order to generate a high output of X-rays, the exhaust speed by the vacuum pump is limited, and the residual plasma is not sufficiently discharged until the next shot. For this reason, the concentration of residual plasma in the vicinity of the X-ray generation portion increases and the absorption loss of X-rays increases, which is a major obstacle to higher output.

これに対し、レーザを用いたEUV光源において、EUV光を発生させた際に生じる、プラズマを構成する質量数の大きい荷電粒子等のデブリの除去を目的とした露光装置がある(例えば、特許文献2参照)。   On the other hand, in an EUV light source using a laser, there is an exposure apparatus for the purpose of removing debris such as charged particles having a large mass number constituting plasma generated when EUV light is generated (for example, Patent Documents). 2).

しかしながら、従来のプラズマ生成放電を利用したX線発生装置においては、残留プラズマを積極的に除去して、前記の課題を解決することを目的とした装置がなかった。   However, in the conventional X-ray generator using plasma generation discharge, there has been no device intended to solve the above-mentioned problems by positively removing residual plasma.

そこで、本発明の目的は、上記課題を解決し、プラズマX線源付近の残留プラズマを排気して光学系の損傷及びX線の吸収損失を抑制したプラズマX線発生装置を提供することにある。   Accordingly, an object of the present invention is to provide a plasma X-ray generator that solves the above-described problems and exhausts residual plasma in the vicinity of the plasma X-ray source to suppress damage to the optical system and X-ray absorption loss. .

上記目的を達成するために、請求項1の発明は、真空容器と、真空容器の側壁に形成された排気孔と、該排気孔に接続された排気手段と、上記排気孔近くの真空容器内に設置され、両端にプラズマ発生電極が設けられたキャピラリからなり、プラズマ生成放電電極間に形成されるキャピラリ内のプラズマ生成部に供給される作動ガスをプラズマ化してX線を発生させるキャピラリ放電型プラズマX線源と、真空容器の側壁の排気孔付近に設けられ真空容器内に磁場を発生させる磁場発生手段と、上記プラズマ生成放電電極に接続されたプラズマ生成用パルス電圧印加手段と、上記プラズマX線源のプラズマ生成放電電極から離れて形成された電子放出電極と、上記プラズマ生成部において発光有効時間を経過したのちにプラズマ生成放電電極より電位の低い低電圧を電子放出電極に印加する排出用パルス電圧印加手段とを備え、
上記プラズマ生成部において生成したプラズマからX線を発光させ、発光有効時間を経過した残留プラズマを上記磁場発生手段で発生させた磁場に電子放出電極から電子を放出、供給して形成された低電位電極による静電気力により加速させて上記排気孔から高速排気するプラズマX線発生装置である。
In order to achieve the above object, the invention of claim 1 includes a vacuum vessel, an exhaust hole formed in a side wall of the vacuum vessel, an exhaust means connected to the exhaust hole, and an interior of the vacuum vessel near the exhaust hole. Capillary discharge type comprising a capillary with plasma generating electrodes provided at both ends and generating X-rays by converting the working gas supplied to the plasma generating part in the capillary formed between the plasma generating and discharging electrodes into plasma A plasma X-ray source; a magnetic field generating means provided in the vicinity of the exhaust hole on the side wall of the vacuum vessel; and generating a magnetic field in the vacuum vessel; a plasma generating pulse voltage applying means connected to the plasma generating discharge electrode; and the plasma An electron emission electrode formed away from a plasma generation discharge electrode of an X-ray source, and a plasma generation discharge electrode after a light emission effective time has elapsed in the plasma generation unit Ri low low voltage electric potential and a discharge pulse voltage applying means for applying to the electron-emitting electrode,
A low potential formed by emitting X-rays from the plasma generated in the plasma generation unit and emitting and supplying electrons from the electron emission electrode to the magnetic field generated by the magnetic field generation means after the effective emission time has elapsed. A plasma X-ray generator that accelerates by an electrostatic force generated by an electrode and exhausts the gas from the exhaust hole at a high speed.

請求項の発明は、上記電子放出電極は、LaB6やタングステン或いはタングステン化合物等、熱電子を低温で熱放出可能な物質で形成された熱電子供給体である請求項1記載のプラズマX線発生装置である。 The invention according to claim 2 is the plasma X-ray according to claim 1, wherein the electron emission electrode is a thermoelectron supply body formed of a material capable of emitting heat electrons at a low temperature such as LaB 6 , tungsten, or a tungsten compound. Generator.

本発明によれば、各ショット毎にX線源付近に残留するプラズマを構成するイオン等の荷電粒子を高速排気して、これらの粒子による光学系の損傷、X線の吸収損失を大幅に低減できるといった優れた効果を発揮する。   According to the present invention, charged particles such as ions constituting the plasma remaining in the vicinity of the X-ray source are exhausted at high speed for each shot, and optical system damage and X-ray absorption loss due to these particles are greatly reduced. Exhibits excellent effects such as

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本発明は、プラズマX線源付近に残留してX線の吸収損失の要因となるプラズマを、静電加速させて急速排気させる装置であり、本発明に係るプラズマX線発生装置は、以下の実施の形態に限られるものではない。   The present invention is an apparatus for electrostatically accelerating and rapidly exhausting plasma that remains in the vicinity of a plasma X-ray source and causes X-ray absorption loss. The plasma X-ray generator according to the present invention includes the following: The present invention is not limited to the embodiment.

図1は本発明に係るプラズマX線発生装置の好適な実施の形態を示した構成図である。   FIG. 1 is a block diagram showing a preferred embodiment of a plasma X-ray generator according to the present invention.

図1に示すように、本実施の形態に係るプラズマX線発生装置10は、真空容器11と、真空容器11内を排気する排気手段12と、真空容器11内に設けられ、X線を発生させるプラズマX線源13とを備える。   As shown in FIG. 1, a plasma X-ray generator 10 according to the present embodiment is provided with a vacuum vessel 11, an exhaust means 12 for exhausting the inside of the vacuum vessel 11, and generates X-rays. And a plasma X-ray source 13 to be operated.

真空容器11には、その側壁23に形成される排気孔24を介して、真空容器11内のガスを排気して真空度を上げる排気手段12が接続されている。図中では、排気手段12をプラズマX線源13の上側と下側に設けたが、排気手段12を真空容器側壁23のいずれの側に設けてもよく、例えば、プラズマX線源13の左右側(紙面垂直方向)の側壁に設けてもよい。真空容器11内の気圧は略1Pa(10-2torr)となっている。作動ガス(Xeガス等)の供給時の排気手段12としては、慣用の真空ポンプが挙げられ、高速排気可能なターボ分子ポンプ等が好ましい。 The vacuum vessel 11 is connected to an exhaust means 12 for exhausting the gas in the vacuum vessel 11 and raising the degree of vacuum through an exhaust hole 24 formed in the side wall 23. In the drawing, the evacuation means 12 is provided on the upper side and the lower side of the plasma X-ray source 13, but the evacuation means 12 may be provided on either side of the vacuum vessel side wall 23. It may be provided on the side wall (in the direction perpendicular to the paper surface). The atmospheric pressure in the vacuum vessel 11 is approximately 1 Pa (10 −2 torr). As the exhaust means 12 at the time of supplying the working gas (Xe gas or the like), a conventional vacuum pump can be used, and a turbo molecular pump capable of high-speed exhaust is preferable.

プラズマX線源13は生成放電プラズマを利用したX線源である。本実施の形態ではキャピラリ放電型のプラズマX線源を用いた。プラズマX線源13は、キャピラリ14とキャピラリ14の両端に設けられたプラズマ生成放電電極(以下、放電電極)15,16とを備える。キャピラリ14内の中空部は、キャピラリ14内に供給された作動ガスGをプラズマ化させるプラズマ生成部17である。キャピラリ14を形成する材料は、アルミナ(Al23)やセラミック等、絶縁体で、スパッタ係数が低く、熱安定性が良好なものが好ましい。 The plasma X-ray source 13 is an X-ray source using generated discharge plasma. In this embodiment, a capillary discharge type plasma X-ray source is used. The plasma X-ray source 13 includes a capillary 14 and plasma generation discharge electrodes (hereinafter referred to as discharge electrodes) 15 and 16 provided at both ends of the capillary 14. The hollow portion in the capillary 14 is a plasma generation unit 17 that converts the working gas G supplied into the capillary 14 into plasma. The material for forming the capillary 14 is preferably an insulator such as alumina (Al 2 O 3 ) or ceramic, having a low sputtering coefficient and good thermal stability.

放電電極15,16は、図中左側の放電電極16をGNDとして図中右側の放電電極15を高電位とするようにプラズマ生成用パルス電圧印加手段(図示せず)が接続されている。すなわち、右側のX線が発生する放電電極が正放電電極(アノード)15、対して左側の放電電極が負放電電極(カソード)16となっている。プラズマ化させるターゲットとなる作動ガスGが、負放電電極16側からプラズマ生成部17に供給されるべく、作動ガス供給手段(図示せず)が設けられている。本実施の形態では、リソグラフィー等に利用する13.5nmのX線を発生させるために、作動ガスGとしてXeガスを用いたが、作動ガスGはこれに限られるものではない。   The discharge electrodes 15 and 16 are connected to a pulse voltage applying means (not shown) for plasma generation so that the left discharge electrode 16 in the figure is GND and the right discharge electrode 15 in the figure is at a high potential. That is, the discharge electrode that generates X-rays on the right side is a positive discharge electrode (anode) 15 and the discharge electrode on the left side is a negative discharge electrode (cathode) 16. A working gas supply means (not shown) is provided so that the working gas G to be converted into plasma is supplied to the plasma generation unit 17 from the negative discharge electrode 16 side. In this embodiment, Xe gas is used as the working gas G in order to generate 13.5 nm X-rays used for lithography or the like, but the working gas G is not limited to this.

図2に示すように、プラズマ生成用パルス電圧印加手段は、プラズマ生成部17に供給された作動ガスGをプラズマ化させるために放電用の極短パルス電圧31を印加(ショット)するものであり、その電圧は数k〜10kV、一回の電圧印加時間が100ns程度であり、パルス周期は約100μs(10k〜100kHz)である。   As shown in FIG. 2, the pulse voltage applying means for plasma generation applies (shots) an extremely short pulse voltage 31 for discharge in order to turn the working gas G supplied to the plasma generation unit 17 into plasma. The voltage is several k to 10 kV, the voltage application time for one time is about 100 ns, and the pulse period is about 100 μs (10 k to 100 kHz).

本実施の形態の特徴は、プラズマX線発生装置10の真空容器11内のX線源13付近に低電圧電極を形成したことにある。   The feature of this embodiment is that a low voltage electrode is formed in the vicinity of the X-ray source 13 in the vacuum vessel 11 of the plasma X-ray generator 10.

低電圧電極は、真空容器11内に設けた電子放出電極19と磁場発生手段21との作用により形成される。   The low voltage electrode is formed by the action of the electron emission electrode 19 provided in the vacuum vessel 11 and the magnetic field generation means 21.

電子放出電極19は、プラズマ生成放電電極15,16から離れて設けられ、正放電電極15に対して低電位(負電位)となるように排気用パルス電圧印加手段22が接続されている。より詳細には、電子放出電極19は、排気すべき作動ガスGのプラズマが電子放出電極19に衝突するのを避けるべく、X線の発光点25より後方に配置される(図中では、正放電電極15より左側)。   The electron emission electrode 19 is provided apart from the plasma generation discharge electrodes 15 and 16, and an exhaust pulse voltage application unit 22 is connected to the positive discharge electrode 15 so as to be at a low potential (negative potential). More specifically, the electron emission electrode 19 is disposed behind the X-ray emission point 25 in order to avoid the plasma of the working gas G to be evacuated from colliding with the electron emission electrode 19 (in the figure, the positive emission electrode 19 is positive). Left side of the discharge electrode 15).

電子放出電極19には、低温で熱電子を放出させるために、LaB6 、或いはW(純タングステン)やBaW(バリウムタングステン)、ThW(トリウムタングステン)等のタングステン化合物で形成された熱電子供給体を用いた。 The electron emission electrode 19 is a thermoelectron supplier formed of LaB 6 or a tungsten compound such as W (pure tungsten), BaW (barium tungsten), or ThW (thorium tungsten) in order to emit thermoelectrons at a low temperature. Was used.

排気用パルス電圧印加手段22は、熱電子供給体19から熱電子を放出させるために、排気用パルス電圧32(図2)を印加するものである。また、印加する電圧は1kV以下とした。   The exhaust pulse voltage application means 22 applies the exhaust pulse voltage 32 (FIG. 2) in order to emit the thermoelectrons from the thermoelectron supply body 19. The applied voltage was 1 kV or less.

磁場発生手段21は真空容器11の側壁23の排気孔24付近に設けられ、磁場発生手段21により真空容器11内に常時磁場Hを発生させるものである。磁場Hは放電電極15と電子放出電極19間で熱電子の移動を妨げる向き、すなわち、X線の照射方向と略平行に発生している。本実施の形態では、磁場発生手段21として、慣用のコイルで形成されたものを用いた。   The magnetic field generating means 21 is provided in the vicinity of the exhaust hole 24 of the side wall 23 of the vacuum vessel 11, and the magnetic field generating means 21 constantly generates a magnetic field H in the vacuum vessel 11. The magnetic field H is generated in a direction that prevents the movement of thermoelectrons between the discharge electrode 15 and the electron emission electrode 19, that is, substantially parallel to the X-ray irradiation direction. In the present embodiment, the magnetic field generating means 21 is formed of a conventional coil.

次に、本実施の形態のプラズマX線発生装置10の作用について説明する。   Next, the operation of the plasma X-ray generator 10 of the present embodiment will be described.

まず、プラズマX線源13よりX線が発生する動作について説明する。   First, an operation for generating X-rays from the plasma X-ray source 13 will be described.

プラズマX線源13のプラズマ生成部17に作動ガスGを供給する。作動ガスGはプラズマ生成部17で高密度で封入されており、プラズマ生成放電電極間15,16に高電圧の極短パルス電圧31を印加することで、プラズマ生成部17内の作動ガスGがプラズマ化され、そのプラズマからX線が発光する。このとき、プラズマ生成部17に高温、高密度のプラズマを長時間保持する事は困難なため、X線等の極短紫外光を連続的に励起するのは困難であり、瞬間的に電圧を印加させて発光させるのが通例である。よって、X線の高出力化のために、ショットを繰り返し行ってX線を発生させている(高繰り返し運転)。   The working gas G is supplied to the plasma generation unit 17 of the plasma X-ray source 13. The working gas G is enclosed at a high density in the plasma generation unit 17, and a high voltage ultrashort pulse voltage 31 is applied between the plasma generation discharge electrodes 15 and 16, so that the working gas G in the plasma generation unit 17 is changed. It is turned into plasma and X-rays are emitted from the plasma. At this time, since it is difficult to hold high-temperature and high-density plasma for a long time in the plasma generation unit 17, it is difficult to continuously excite ultrashort ultraviolet light such as X-rays. It is customary to apply light to emit light. Therefore, in order to increase the output of X-rays, X-rays are generated by repeatedly performing shots (high repetition operation).

高繰り返し運転において、X線の発光有効時間は放電開始から100ns程度であり、発光有時間を経過したプラズマ(残留プラズマ)Dがプラズマ生成部17や発光点25付近に存在する。   In the high repetition operation, the X-ray emission effective time is about 100 ns from the start of discharge, and the plasma (residual plasma) D that has passed the light emission time exists in the vicinity of the plasma generation unit 17 and the light emission point 25.

ここで、図3を用いて残留プラズマDを排気する作用について説明する。   Here, the effect | action which exhausts the residual plasma D is demonstrated using FIG.

発光有効時間の終了と共に電子放出電極19に排気用パルス電圧を印加して熱電子Eを放出する。真空容器11内は、常時、磁場発生手段21により磁場Hが発生しているので、熱電子Eが電子放出電極19を通過する磁場H1に沿って移動し、その磁場H1上に供給された多数の熱電子Eは、磁場H1の周囲を漂うように固定されるので負電位の平行電極を形成したものと同等になる。この磁場H1に保持された熱電子群で形成される低電圧電極を仮想電極18と称する。   With the end of the effective light emission time, an exhaust pulse voltage is applied to the electron emission electrode 19 to emit thermoelectrons E. Since the magnetic field H is always generated by the magnetic field generating means 21 in the vacuum vessel 11, the thermoelectrons E move along the magnetic field H1 passing through the electron emission electrode 19, and a large number supplied on the magnetic field H1. The thermoelectrons E are fixed so as to float around the magnetic field H1, so that they are equivalent to those formed with parallel electrodes having a negative potential. The low voltage electrode formed by the thermoelectron group held in the magnetic field H1 is referred to as a virtual electrode 18.

プラズマ生成部17近傍に存在している残留プラズマDは数〜十数価の正イオンであり、仮想電極18との静電力により仮想電極18の方向に加速される。ただし、仮想電極18の熱電子Eは磁場H1上に略固定されている。仮想電極18方向に静電加速された残留プラズマDは排気手段12により排気孔24から真空容器11外へ排気される。このように、静電加速により次のショットまでに残留プラズマDを排気できるので、プラズマ生成部17付近の真空度を高く(気圧を低く)することができ、X線の吸収損失を大幅に低減することができる。   The residual plasma D existing in the vicinity of the plasma generation unit 17 is several to dozens of positive ions, and is accelerated in the direction of the virtual electrode 18 by an electrostatic force with the virtual electrode 18. However, the thermoelectrons E of the virtual electrode 18 are substantially fixed on the magnetic field H1. The residual plasma D electrostatically accelerated in the direction of the virtual electrode 18 is exhausted from the exhaust hole 24 to the outside of the vacuum vessel 11 by the exhaust means 12. As described above, since the residual plasma D can be exhausted by the next shot by electrostatic acceleration, the degree of vacuum in the vicinity of the plasma generation unit 17 can be increased (atmospheric pressure), and the X-ray absorption loss can be greatly reduced. can do.

さらに、プラズマX線発生装置10は、残留プラズマDをX線ミラー等の光学系のある方向(X線照射方向)とは異なる方向に高速排気することができるので、光学系の損傷を防止することができる。   Furthermore, since the plasma X-ray generator 10 can exhaust the residual plasma D at a high speed in a direction different from a direction in which the optical system such as an X-ray mirror (X-ray irradiation direction) is present, damage to the optical system is prevented. be able to.

また、電子放出電極19である熱電子供給体を、熱電子Eを低温で放出させることのできる材料で形成しているので、排出用パルス電圧32を小さくすることができると共に、プラズマX線源13に熱の影響を与えることがない。   In addition, since the thermoelectron supply body that is the electron emission electrode 19 is formed of a material that can emit the thermoelectrons E at a low temperature, the discharge pulse voltage 32 can be reduced and the plasma X-ray source can be reduced. 13 is not affected by heat.

ここで、図2に示したように、プラズマ生成放電パルス電圧31と排気用パルス電圧32が交互に印加されて、X線発生装置10は高繰り返し運転される。残留プラズマDを静電加速させた熱電子群は次第に拡散していくので、高繰り返し運転を行うにあたり、放電パルス電圧31を印加する毎に排気パルス電圧を印加して、新たなる仮想電極18を形成し、X線の発光と残留プラズマDの排気を繰り返している。よって、X線が発生されて、プラズマの発光有効時間が経過する度に残留プラズマDを排気することができ、常にプラズマ生成部17付近の真空度を高く保持することができる。   Here, as shown in FIG. 2, the plasma generation discharge pulse voltage 31 and the exhaust pulse voltage 32 are alternately applied, and the X-ray generator 10 is operated at a high repetition rate. Since the thermoelectron group electrostatically accelerating the residual plasma D is gradually diffused, when performing a high repetition operation, an exhaust pulse voltage is applied every time the discharge pulse voltage 31 is applied, and a new virtual electrode 18 is formed. Then, X-ray emission and residual plasma D exhaust are repeated. Therefore, the residual plasma D can be exhausted whenever X-rays are generated and the plasma emission effective time elapses, and the degree of vacuum in the vicinity of the plasma generation unit 17 can always be kept high.

また、残留プラズマDを加速させる方向は仮想電極18の位置と形状に依存するので、仮想電極18の形状を変えることで、残留プラズマDの静電加速方向を調整することができる。仮想電極18は、真空容器11内に発生させる磁場Hの向きや電子放出電極19の位置等により、その位置と形状を調整することができる。   Further, since the direction in which the residual plasma D is accelerated depends on the position and shape of the virtual electrode 18, the electrostatic acceleration direction of the residual plasma D can be adjusted by changing the shape of the virtual electrode 18. The position and shape of the virtual electrode 18 can be adjusted by the direction of the magnetic field H generated in the vacuum vessel 11 and the position of the electron emission electrode 19.

本実施の形態のプラズマX線発生装置10では、低電位電極として仮想電極を形成したが、本発明に係るプラズマX線発生装置の低電位電極は仮想電極18に限定されない。   In the plasma X-ray generator 10 of the present embodiment, the virtual electrode is formed as the low potential electrode, but the low potential electrode of the plasma X-ray generator according to the present invention is not limited to the virtual electrode 18.

例えば、低電位電極は、平板状や弧状に形成された金属製の金属電極でもよい。しかしながら、金属電極を用いると、残留プラズマDが金属電極に衝突して、残留プラズマDを真空容器11内に留まらせて排気効率が低下する可能性や、残留プラズマDが金属電極をスパッタして飛散物が発生する可能性がある。よって、静電加速させた残留プラズマDが電極に衝突せず透過できるように、低電位電極は、細かい網目状(メッシュ状)に形成された金属電極が好ましく、上述した熱電子群で形成された仮想電極18が最も好ましい。   For example, the low potential electrode may be a metal electrode made of metal formed in a flat plate shape or an arc shape. However, if a metal electrode is used, the residual plasma D may collide with the metal electrode, causing the residual plasma D to remain in the vacuum vessel 11 and reducing exhaust efficiency, or the residual plasma D may sputter the metal electrode. Flying objects may be generated. Therefore, the low potential electrode is preferably a fine mesh (mesh) metal electrode so that the electrostatically accelerated residual plasma D can be transmitted without colliding with the electrode. The virtual electrode 18 is most preferable.

本実施の形態のX線発生装置10に用いたプラズマX線源13は、キャピラリ放電型のプラズマX線源であるが、本発明に係るプラズマX線源は、キャピラリ放電型に限らず、Zピンチ或いはプラズマフォーカス等を用いた放電生成のプラズマX線源でもよく、X線源の放電方式を問わず、本実施の形態と同様の作用効果を有する。   The plasma X-ray source 13 used in the X-ray generation apparatus 10 of the present embodiment is a capillary discharge type plasma X-ray source. However, the plasma X-ray source according to the present invention is not limited to the capillary discharge type, and Z A plasma X-ray source generated by discharge using a pinch or a plasma focus may be used, and has the same effect as this embodiment regardless of the discharge method of the X-ray source.

本発明の一実施形態であるプラズマX線発生装置を示す構成図である。It is a block diagram which shows the plasma X-ray generator which is one Embodiment of this invention. プラズマ生成放電パルス電圧と、排気用パルス電圧の特性を示す図である。It is a figure which shows the characteristic of a plasma generation discharge pulse voltage and the pulse voltage for exhaust. 図1のプラズマX線発生装置の仮想電極を説明する図である。It is a figure explaining the virtual electrode of the plasma X-ray generator of FIG.

符号の説明Explanation of symbols

10 プラズマX線発生装置
11 真空容器
12 排気手段
13 プラズマX線源
15,16 プラズマ生成放電電極
17 プラズマ生成部
18 仮想電極
19 電子放出電極
21 磁場発生手段
22 排気用パルス電圧印加手段
G 作動ガス
D 残留プラズマ
H 磁場
DESCRIPTION OF SYMBOLS 10 Plasma X-ray generator 11 Vacuum vessel 12 Exhaust means 13 Plasma X-ray source 15,16 Plasma generation discharge electrode 17 Plasma generation part 18 Virtual electrode 19 Electron emission electrode 21 Magnetic field generation means 22 Exhaust pulse voltage application means G Working gas D Residual plasma H magnetic field

Claims (2)

真空容器と、真空容器の側壁に形成された排気孔と、該排気孔に接続された排気手段と、上記排気孔近くの真空容器内に設置され、両端にプラズマ発生電極が設けられたキャピラリからなり、プラズマ生成放電電極間に形成されるキャピラリ内のプラズマ生成部に供給される作動ガスをプラズマ化してX線を発生させるキャピラリ放電型プラズマX線源と、真空容器の側壁の排気孔付近に設けられ真空容器内に磁場を発生させる磁場発生手段と、上記プラズマ生成放電電極に接続されたプラズマ生成用パルス電圧印加手段と、上記プラズマX線源のプラズマ生成放電電極から離れて形成された電子放出電極と、上記プラズマ生成部において発光有効時間を経過したのちにプラズマ生成放電電極より電位の低い低電圧を電子放出電極に印加する排出用パルス電圧印加手段とを備え、
上記プラズマ生成部において生成したプラズマからX線を発光させ、発光有効時間を経過した残留プラズマを上記磁場発生手段で発生させた磁場に電子放出電極から電子を放出、供給して形成された低電位電極による静電気力により加速させて上記排気孔から高速排気することを特徴とするプラズマX線発生装置。
A vacuum vessel, an exhaust hole formed in the side wall of the vacuum vessel, an exhaust means connected to the exhaust hole, and a capillary installed in a vacuum vessel near the exhaust hole and provided with plasma generating electrodes at both ends. A capillary discharge type plasma X-ray source that generates X-rays by converting the working gas supplied to the plasma generation part in the capillary formed between the plasma generation discharge electrodes into plasma, and in the vicinity of the exhaust hole on the side wall of the vacuum vessel A magnetic field generating means for generating a magnetic field in the vacuum vessel, a plasma generating pulse voltage applying means connected to the plasma generating discharge electrode, and electrons formed away from the plasma generating discharge electrode of the plasma X-ray source A low voltage having a lower potential than the plasma generation discharge electrode is applied to the electron emission electrode after the emission effective time has elapsed in the emission electrode and the plasma generation unit. And a pulse voltage applying means for output,
A low potential formed by emitting X-rays from the plasma generated in the plasma generation unit and emitting and supplying electrons from the electron emission electrode to the magnetic field generated by the magnetic field generation means after the effective emission time has elapsed. A plasma X-ray generator characterized in that it is accelerated by electrostatic force by an electrode and exhausted at a high speed from the exhaust hole .
上記電子放出電極は、LaB6やタングステン或いはタングステン化合物等、熱電子を低温で熱放出可能な物質で形成された熱電子供給体である請求項1記載のプラズマX線発生装置。 The electron emission electrode, LaB 6, tungsten or tungsten compounds, the plasma X-ray generating apparatus of claim 1, wherein the thermal electron supply body formed thermionic by heat releasable material at low temperature.
JP2004171155A 2004-06-09 2004-06-09 Plasma X-ray generator Expired - Fee Related JP4696478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171155A JP4696478B2 (en) 2004-06-09 2004-06-09 Plasma X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171155A JP4696478B2 (en) 2004-06-09 2004-06-09 Plasma X-ray generator

Publications (2)

Publication Number Publication Date
JP2005353736A JP2005353736A (en) 2005-12-22
JP4696478B2 true JP4696478B2 (en) 2011-06-08

Family

ID=35587958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171155A Expired - Fee Related JP4696478B2 (en) 2004-06-09 2004-06-09 Plasma X-ray generator

Country Status (1)

Country Link
JP (1) JP4696478B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954584B2 (en) * 2006-03-31 2012-06-20 株式会社小松製作所 Extreme ultraviolet light source device
JP4937643B2 (en) * 2006-05-29 2012-05-23 株式会社小松製作所 Extreme ultraviolet light source device
JP5312837B2 (en) * 2008-04-14 2013-10-09 ギガフォトン株式会社 Extreme ultraviolet light source device
JP5659543B2 (en) * 2010-04-09 2015-01-28 株式会社Ihi Plasma light source and plasma light generation method
DE102010055889B4 (en) * 2010-12-21 2014-04-30 Ushio Denki Kabushiki Kaisha Method and device for generating short-wave radiation by means of a gas-discharge-based high-frequency high-current discharge
DE102016213830B3 (en) * 2016-07-27 2017-12-07 Carl Zeiss Smt Gmbh Source hollow body and EUV plasma light source with such a hollow source body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101344A (en) * 1990-08-17 1992-04-02 Nec Corp Cylindrical electron beam generating apparatus and, method for exposure to electron beam
JPH0817371A (en) * 1994-06-30 1996-01-19 Kansai Electric Power Co Inc:The Method and device for removing debris of laser plasma x-ray source
JPH10221499A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Laser plasma X-ray source, semiconductor exposure apparatus and semiconductor exposure method using the same
JPH10290053A (en) * 1997-02-12 1998-10-27 Sony Corp Optical device and optical wavelength shortening method
JP2003007611A (en) * 2001-01-10 2003-01-10 Asml Netherlands Bv Lithographic projection system, method of manufacturing element, and element manufactured by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101344A (en) * 1990-08-17 1992-04-02 Nec Corp Cylindrical electron beam generating apparatus and, method for exposure to electron beam
JPH0817371A (en) * 1994-06-30 1996-01-19 Kansai Electric Power Co Inc:The Method and device for removing debris of laser plasma x-ray source
JPH10221499A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Laser plasma X-ray source, semiconductor exposure apparatus and semiconductor exposure method using the same
JPH10290053A (en) * 1997-02-12 1998-10-27 Sony Corp Optical device and optical wavelength shortening method
JP2003007611A (en) * 2001-01-10 2003-01-10 Asml Netherlands Bv Lithographic projection system, method of manufacturing element, and element manufactured by the method

Also Published As

Publication number Publication date
JP2005353736A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US7085351B2 (en) Method and apparatus for controlling electron beam current
US6850595B2 (en) X-ray generating mechanism using electron field emission cathode
JP5454881B2 (en) Extreme ultraviolet light source device and method for generating extreme ultraviolet light
JP5479723B2 (en) Plasma light source and plasma light generation method
JP2006522941A (en) Nanostructure-based systems and methods for charging photoconductive surfaces
JP2011505668A (en) Laser heating discharge plasma EUV light source
JP4696478B2 (en) Plasma X-ray generator
JPH02248094A (en) X-ray pre-ionization pulse laser device
WO2018055715A1 (en) Electron microscope
JPS6324532A (en) X-ray source
CN113841216B (en) Ion Sources and Neutron Generators
JP5622081B2 (en) Plasma light source
JP2005243331A (en) X-ray tube
JP4406311B2 (en) Energy beam irradiation apparatus and pattern making method using the same
US7034322B2 (en) Fluid jet electric discharge source
JP4483395B2 (en) Ion generator
JP5659543B2 (en) Plasma light source and plasma light generation method
JPWO2006035748A1 (en) EUV generator
JPH0373101B2 (en)
EP0101043A2 (en) Plasma cathode electron beam generating system
JPH0135509B2 (en)
JP5379591B2 (en) Electron beam irradiation device
JPH06265696A (en) High-speed atomic beam source
JPH0621546A (en) Pumping method of alkali halide ion excimer laser
JPH06289197A (en) Fast atomic beam source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R151 Written notification of patent or utility model registration

Ref document number: 4696478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees