[go: up one dir, main page]

JP4695793B2 - Optical observation device for light-reflective spherical surface - Google Patents

Optical observation device for light-reflective spherical surface Download PDF

Info

Publication number
JP4695793B2
JP4695793B2 JP2001281504A JP2001281504A JP4695793B2 JP 4695793 B2 JP4695793 B2 JP 4695793B2 JP 2001281504 A JP2001281504 A JP 2001281504A JP 2001281504 A JP2001281504 A JP 2001281504A JP 4695793 B2 JP4695793 B2 JP 4695793B2
Authority
JP
Japan
Prior art keywords
light
test
cylinder
translucent
shadowless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001281504A
Other languages
Japanese (ja)
Other versions
JP2003083906A (en
JP2003083906A5 (en
Inventor
剛 九谷
Original Assignee
株式会社コスシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コスシステム filed Critical 株式会社コスシステム
Priority to JP2001281504A priority Critical patent/JP4695793B2/en
Publication of JP2003083906A publication Critical patent/JP2003083906A/en
Publication of JP2003083906A5 publication Critical patent/JP2003083906A5/ja
Application granted granted Critical
Publication of JP4695793B2 publication Critical patent/JP4695793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光反射性球面、特に微小球の鏡面反射性球面の観察に適した光学的観察装置に関するものである。
【0002】
【従来の技術】
光反射性球面、特に半田ボール等の微小球における鏡面反射性球面の状態を、通常の室内照明によって光学的且つ視覚的に観察しようとしても、上方及び四方からの光が球面の極小凸面鏡効果により観察視線の方向に高輝度で反射し、スポット又は微小リング状の輝きだけが見えたり、ハレーションが生じて、きずや微小な凹凸などの異常を検出することは困難であった。
【0003】
そのため、上方及び四方からの光が比較的均一に観察側半球面に入射するようにリング状や円錐斜面状の上部光源を用い、又はこれと下方からの淡い透過照明とを併用して、被検球体の円周を際立たせる等の観察法が試みられてきた。しかし、この方法においても、通常0.5〜1.0mmφ程度の半田ボール等、光反射性の極微球の場合には、被検半球面を上方から見て、どの部位も適当な明るさで輝点や影を生じることなく明瞭に観察するのは困難であった。
【0004】
【発明が解決しようとする課題】
従って、本発明は、光反射性の球面を明瞭に観察又は撮影するための光学的観察装置を提供しようとするものである。
【0005】
【課題を解決するための手段】
上記の課題を解決するため、本発明は、a)実質上水平配置される光透過性板体からなり、上面に被検球の下側部分球面を受容するための、少なくとも一つの位置決めスポットを配設した被検球固定板と、
b)下端が被検球固定板の上面に接するか、又は近接したレベルに維持され、外径が被検球径より約1mm大きい値から被検球径の約4倍までとされ、観察対象となる1個の被検球を貫く垂直軸と同軸に配置されるべき半透明筒と、
c)前記半透明筒を同軸包囲し且つ截頭部を上向きにした中空状の截頭錐体の錐斜面に沿った内向き面光源として機能し、前記半透明筒を通じて前記被検球の上部半球面を無影照射するための無影照射構造と、
d)上端が被検球固定板の下面に接するか、又は僅かに間隔を置いたレベルにおいて、前記垂直軸と同軸に配置される、前記半透明筒の外径より大きい直径又は辺長を有した上向き面光源からなる透過照明構造と、を備えたことにより、
e)前記無影照射構造の錐体截頭部に形成された開口を通じて上方より被検球の上部半球面を、拡大観察又は撮影するようにしたことを特徴とする光反射性球面の光学的観察装置を構成した。
【0006】
なお上記中、「半透明筒」における「半透明」とは、いわゆる「半透明媒質」による光散乱透過のことであり、「半透明膜」や「半透明鏡(ハーフミラー)」の1/2透過:1/2反射における1/2透過のことではない。以下、他の要素について「半透明」の語を用いる場合も、同じく散乱透過性を意味するものとする。また、「透過照明」の語は、被検球体を「透かし見るための照明」という意味で用いられたものである。
【0007】
本発明において、前記錐斜面に沿った内向き面光源は、截頭錐体の錐斜面を半透明板より形成し、その半透明板の錐体外側部に多数の発光素子を配列して、それらの発光素子から半透明板を通して光照射する構造によって与えられる。
【0008】
本発明において、前記錐斜面に沿った内向き面光源の第2の形態は、截頭錐体の錐斜面をプラスチック板により形成し、そのプラスチック板の錐体内側面に多数の発光素子を配列することにより、それらの発光素子配列を横断する面をもって、前記面光源とするものである。
【0009】
これらの形態における無影照射構造の截頭錐体は、典型的には円錐台形からなるものであるが、設計上の要請により角錐台形にしてもよい。なお、「截頭錐体の錘斜面に沿った内向き面光源」というときは、円錐斜面、角錐斜面そのものが光源となる場合の外、それら錐斜面の上下縁間がドーム状に湾曲した壁面からの発光をも含むものとする。
【0010】
また、本発明の中核的要素である前記半透明筒の高さは、筒上端からの入射光が、筒下端に位置する被検球体に直射しない程度のレベルにあればよいが、典型的には筒上端が、前記無影照射構造における截頭錐体の截頭部開口縁を貫いて上方に突出したものであり、前記無影照射構造は、この突出部分を保護するために、前記半透明筒の先端と同一レベル以上の高さとした頂上面と、その頂上面に開口して前記半透明筒の突出部分を包囲するように前記開口縁に対向する保護孔とを有する筒保護ブロックを備えたものである。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態について図面を参照して説明する。図1はその典型的な実施形態を示すために、主要部を断面で描いた装置構成図であり、1は本発明の光学的観察装置の本体、2は装置本体1内の光源素子(ここではLED)を付勢するための照明用電源、3は装置本体1の上方から被検球体を観測・撮影するためのCCDカメラ、4はCCDカメラ3からの画像信号を監視し、印刷及び記録するためのモニターである。
【0012】
更に、図1において、装置本体1は、複数個の光反射性球面を有する微小被検球5を支持するための光透過性板体からなる被検球固定板6と、その固定板6上の測定スポットに位置する被検球5aを通る垂直軸と同軸に、同固定板6上に直立せしめられた半透明筒7と、その固定板6に実質的に支持されるか僅かに間隔を置いて配置され、被検球5aの上部半球面を、半透明筒7(特に、その筒壁)を通して光照射するための無影照射構造8と、被検球固定板6を実質的に支持するか又は僅かに間隔を置いて、前記垂直軸と同軸となるように配置された透過照明構造9とを備えている。
【0013】
光透過性、すなわち透明又は半透明な被検球固定板6は、透過照明構造9上において実質上水平配置された光透過性板体からなり、上面に被検球の下側部分球面を受容するための、部分球面状窪みからなる少なくとも一つの位置決めスポットを配設したものである。半透明筒7は、後述の実施例から類推されるように外径を被検球径+約1mm〜同球径の約4倍とし、その下端が被検球固定板6の上面に接するか、又は近接したレベルにおいて直立せしめられたものである。
【0014】
無影照射構造8は、半透明筒7を同軸包囲した半透明板からなる円錐斜面10を有した中空状の截頭錐体を備え、円錐斜面10を内向き面光源として半透明筒7下端の中心部(被検球の上部半球面)を照射するために、その截頭部を上向きにして配置され、円錐斜面10の外側部に、例えば、LED11等の光源素子配列を設けたものである。かくして無影照射構造8は、光源素子配列に端を発する円錐斜面(内向き面光源)10からの散乱透過光を、更に半透明筒7を通して被検球5aの上部半球面に無影照射の形で入射させることができる。
【0015】
本発明の中核的要素である半透明筒7の高さは、筒上端からの入射光が、筒下端に位置する被検球体に直射しない程度のレベルにあればよいが、図1に示すように、典型的には筒上端が、無影照射構造8における截頭錐体の截頭部開口縁10aを貫いて上方に突出し、他方、無影照射構造8は、この突出部分を保護するために、半透明筒7の先端と同一レベルとした頂上面12aと、その頂上面12aに開口して半透明筒7の突出部分を包囲するように前記開口縁10aに対向する保護孔12bとを有する筒保護ブロック12を備えたものである。
【0016】
筒保護ブロック12の下側部は、円錐斜面10の外側に対向する外周部を平形とした大角円錐面13を有し、その垂下した外周壁(ブロック12の周面下端部)の内面にLED支持台11aを支持している。更に、ブロック12の前記垂下した外周壁12cの先端縁は、円錐斜面10の外側フランジ10b(図2)の外周を嵌着している。図2は、半透明筒7、円錐斜面10、及び筒保護ブロック12の垂下外周壁12cの同軸配置関係を、図1のA−A矢視線に従って下方から見た図であり、これによって上記の説明がよく理解されるであろう。
【0017】
図3は、装置本体1の最下部構造である透過照明構造9を上方から見た平面図である。ここに9aは、例えば角形シャーレ状の基礎フレームであり、この4側壁の内側にLED取り付け枠14を有し、これらの上面はプラスチック製半透明カバー15により全面的に覆われ、更に、この半透明カバー15の上面周囲にはLED16の先端部を隠す程度の範囲において、光遮断フレーム17が設置され、このフレーム17の開口から露出した半透明カバー15が上向き面光源を形成するようになっている。
【0018】
【実施例】
図4〜図8は、上記実施形態における光学的観察装置の、設計を決定するための実験結果を示している。実験に用いた機材は、円錐面光源を構成する無影照射構造8として、出願人会社が製造販売する無影リング照明機(KKR−50型)を、その円錐フランジ面と被検球固定板との間隔ゼロ(接置)において使用した。KKR−50の規格の概略は、発光色:赤、照射円錐面の水平に対する角:40°、照射エリア:30mmφ、LED数:54個、消費電力2.2Wである。また、上向き面光源を構成する透過照明構造9としては、出願人会社が製造販売するエッジライト式透過照明機(KE−100LE型)を用いた。KE−100LEの規格の概略は、発光色:赤、発光面積:80×100mm2 、LED数:84個、消費電力3.4Wである。
【0019】
被検球体は、球径0.76mmφの半田ボールであり、これを厚さ約2mmの透明アクリル樹脂板上に固定(半没)し、この樹脂板を上記エッジライト式透過照明器上に、半田ボールが垂直中心軸と一致するように載置するとともに、上記の通り無影リング照明機を配置し、半田ボールの上半球部を同軸円周状に包囲したものである。以下、実験の方法と結果を説明する。
【0020】
実験1:上半球への無影照射構造(無影リング照明)がない場合
図4は、下からの照明(エッジライト式透過照明)のみで、被検球をCCD撮影した場合の撮影画像を模式的に作図したものであり、Aは半透明筒7(図1及び図2)も用いず、Bは半透明筒7として内径4mmφ、長さ50mmの半透明プラスチック製ストローを用いたものである。いずれも周辺部のみがうっすらと明るく、その内側は筒なし(A)では真っ黒、筒あり(B)では筒に若干の集光効果があるためか、黒っぽさが弱まり球面がかすかに観察される程度である。これは、上からの照明が不可欠であることを示している。
【0021】
実験2:下からの照明(エッジライト式透過照明)がない場合
図5は、無影照射構造(無影リング照明)のみで、被検球をCCD撮影した場合の撮影画像を模式的に作図したものであり、Aは半透明筒7(図1及び図2)も用いず、Bは半透明筒7として外径4mmφ、長さ50mmの半透明プラスチック製ストローを用いたものである。筒なし(A)では、いわゆる「無影リング照明」であっても、被検半球面上にリング照明反射環18が形成されるとともに、CCDカメラのレンズ部3aの鏡像19が写り込み、その周縁領域20は眩しい。ある程度観察可能な領域は外周とリング照明反射環18の内側及び外側の狭い環状域21a、21bのみである。筒あり(B)では、その半透明筒7により、リング照明反射及びレンズ鏡像効果が除去されるが、下からの照明がない分だけ、周辺部が暗くなっている。
【0022】
実験3:半透明筒(紙製)の長さを変えた場合
図6は、本発明の構成に従い、前述した上半球への無影照射構造及び下方からの照明を具備し且つ半透明筒も用いて実験した場合の模式図であり、Aは半透明筒7(上質紙で作成した外径2mmφの筒)の長さを10mmとし、Bは同じ半透明筒7の長さを50mmとしたものである。筒長10mm(A)では、相対的に低レベルとなる筒上端から光が入るため、半球面上には比較的細い反射環22が形成されるとともに、半球頂点部には筒で絞られたレンズ部鏡像23が形成される。但し、反射環22と頂点部鏡像23の比較的広い中間域には球面についた傷24a、24bがうっすらと観察される。また筒長50mm(B)では、筒上端から殆ど光が入らず、半球面は筒を通って来た弱い散乱光のみで照射されるため、やや暗くはあるが半球面全体が均一に観察され、傷24a、24bも明瞭に観察される。
【0023】
実験4:半透明筒(ストロー)の長さを変えた場合
図7は、同じく本発明の構成に従った照明構造を用い、且つ半透明筒としては、外径4mmφ、半透明プラスチック製ストローを用いて実験した場合の模式図であり、Aはその半透明筒7の長さを10mmとし、Bは50mmとしたものである。筒長10mm(A)では相対的に低レベルとなり、紙筒より広口の筒上端から比較的多量の光が入るため、中心部の黒点が大きく、その周辺もぼやけたものとなり、傷24a、24bも不明瞭である。また筒長50mm(B)では、筒上端から殆ど光が入らず、半球面は筒を通って来た散乱光と下からの光との合成光で照射されるため、周辺の僅かなぼやけを除き、半球面全体が略均一に観察され、傷24a、24bもほぼ明瞭に観察される。
【0024】
実験5:上半球への無影照射構造の高さを上げた場合
図8は、同じく本発明の構成に従い、且つ半透明筒としては、外径2mmφ、長さ50mmの上質紙製筒を被検球固定板上に直立させた状態において、被検球固定板から包囲照明の下端までの距離を、これまでの実験におけるゼロ(接置)ではなく、A:50mm、及びB:20mmとした場合の模式図である。A(50mm)では、この光源パワー2.2Wでは距離が遠すぎて(逆に、光源パワーを強くすれば、球面反射の問題を生ずるかも知れないが)球面上に観察可能な照度が得られず、輪郭環25が淡く浮きだしただけで、他は真っ黒となる。またB(20mm)程度に包囲照明を接近させても、やはり輪郭環25が淡く浮きだし、内側大部分の薄暗い画像中には、傷24a、24bが不明瞭に観察されるのみである。
【0025】
以上の実験結果より、球径0.76mmの半田ボールに対しては、本発明を具体化した実験使用装置の構成において、且つ実験(1〜4)の態様に従い、円錐面光源の下端フランジ部を被検球固定板上に接触させた状態において、半透明筒7の外径は、2mm、すなわち被検球径の2.00/0.76=2,63倍であったときの方が、4mm、すなわち被検球径の5.26倍のときよりも画像として明瞭であり、いずれの場合も筒長は10mmでは筒上端からの入光による反射があるため、円錐斜面光源の上端を十分に突出する長さ(この場合、50mm)を要すると考えられる。
【0026】
但し、筒の材質は、実験4で用いたストローのように、上質紙よりも光透過性のよい半透明材料である方が、より明るい画像になると思料される。また、この実験の場合の半田ボールの球径は0.76mmであったが、その製造公差や、近似規格のもので実験し、1.00mmφ程度までの球径であれば、この2mmφの紙筒で同様に測定できることが追認された。更に、4mmφのストローでも比較的明瞭に観察できたことを考慮すれば、半透明筒の外径は、被検球径より約1mm大きい値から、被検球径の4倍程度までの値であればよいと結論される。
【0027】
本発明装置の典型例において、上半球への無影照射構造の高さ(被検球固定板に対する円錐斜面光源の下端レベル)はゼロであり、実験5により実質的な高さを与えることは不都合であることが検証されたが、これは定まった規格及びパワーを有する装置(KKR−50:赤)を用いた結果であり、これよりもパワーや光散乱性のすぐれた無影照射光源を用いるか、被検球面が観察容易な表面状態を有するとき等は、無影照射光源をより高い位置にした方がよい場合がある。図9は、このような趣旨で無影照射光源の位置を高くした光学的観察装置1’を示している。
【0028】
図9において、図1と同一参照数字で指示した部分は、図1に示した当該指示部分と同一のものであり、説明を省略する。この変形例の装置は、無影照射構造8’における円錐斜面10の下端フランジ10bを支持する形で、構造8’と外周が連なった外筒26を有し、この外筒26の下端が、被検球固定板6に近接して位置するように構成される。
【0029】
図10〜13は、図1及び図9に示した光学的観察装置において、被検球上半部を実質的に無影照射する光源として代用可能な変形例を示すもので、図10は四角錐の各錐面部に斜面光源27〜28を配置した角型斜光照明機、図11は円錐斜面に各法線に沿った光軸を有するLED等の光源素子31を配列したダイレクトリング照明機、図12は光源素子31の垂直配列から側方に出射した光束を垂直半透明(光散乱)板32を通じて45°配置したハーフミラー33に当て、下向きの均一散光を生じるための同軸面発光型照明機、図13は図11のものより円錐斜面の垂直軸に対する角度が小さいローアングル型ダイレクトリング照明機34の典型例(A)とローアングルの究極(0°)の場合(B)を、それぞれ示している。
【0030】
【発明の効果】
以上述べた通り、本発明によれば、光反射性の球面、特に半田ボール等の微小球面の明瞭な観察又は撮影するための光学的観察装置を提供する。観察対象の他の例としては、ボールベアリングの鋼球、ボールバルブのバルブ球、半導体レーザーの集光部、真珠、ボールペンのボール等があり、場合によってはレンズ等の透明球の表面観察にも適用可能である。
【図面の簡単な説明】
【図1】本発明の好ましい実施形態につき主要部を断面で描いた装置構成図である。
【図2】図1のA−A矢視線に沿って下方から見た無影照射構造の下面図である。
【図3】図1に示した装置本体の最下部構造である透過照明構造を上方から見た平面図である。
【図4】本発明の効果を検証するため、装置本体の無影照射構造を用いないで、半透明筒をも省略した場合の被検半球面の撮影画像(A)及び半透明筒を用いた場合の被検半球面の撮影画像(B)を模式的に示す図である。
【図5】本発明の効果を検証するため、装置本体の透過照明構造を用いないで、半透明筒をも省略した場合の被検半球面の撮影画像(A)及び半透明筒を用いた場合の被検半球面の撮影画像(B)を模式的に示す図である。
【図6】本発明の効果を検証するため、装置本体の全構成を用い、紙製2mmφ半透明筒の長さを10mmとした場合の被検半球面の撮影画像(A)及び同じ半透明筒の長さを50mmとしたを用いた場合の被検半球面の撮影画像(B)を模式的に示す図である。
【図7】本発明の効果を検証するため、装置本体の全構成を用い、プラスチック製ストロー4mmφからなる半透明筒の長さを10mmとした場合の被検半球面の撮影画像(A)及び同じ半透明筒の長さを50mmとしたを用いた場合の被検半球面の撮影画像(B)を模式的に示す図である。
【図8】本発明の効果を検証するため、装置本体の無影照射構造の、被検球固定板からの高さを50mmとした場合の被検半球面の撮影画像(A)及び20mmとした場合の被検半球面の撮影画像(B)を模式的に示す図である。
【図9】本発明の第2の実施形態において主要部を断面で描いた装置構成図である。
【図10】無影照射構造の第2の実施形態における側断面(A)及び下面(B)を示す図である。
【図11】無影照射構造の第3の実施形態を示す側断面図である。
【図12】無影照射構造の第4の実施形態における側断面(A)及び下面(B)を示す図である。
【図13】無影照射構造の第5の実施形態におけるローアングル型ダイレクトリング照明機34の典型例(A)とローアングルの究極(0°)の場合(B)を、それぞれ示す側断面図である。
【符号の説明】
1 光学的観察装置の本体
2 照明用電源
3 CCDカメラ
4 モニター
5 微小被検球
6 被検球固定板
7 半透明筒
8 無影照射構造
9 透過照明構造
10 円錐斜面
11 LED
12 筒保護ブロック
13 大角円錐面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical observation apparatus suitable for observation of a light-reflective spherical surface, particularly a specular reflective spherical surface of a microsphere.
[0002]
[Prior art]
Even when trying to optically and visually observe the state of the specular reflective spherical surface of a light reflecting spherical surface, particularly a microsphere such as a solder ball, by ordinary indoor lighting, the light from above and from the four sides is caused by the minimal convex mirror effect of the spherical surface. It was difficult to detect abnormalities such as flaws and minute irregularities due to reflection with high brightness in the direction of the viewing line of sight, and only spot or minute ring-like brightness was seen or halation occurred.
[0003]
For this reason, an upper light source having a ring shape or a conical slope shape is used so that light from the upper side and the four sides is incident on the observation-side hemisphere relatively uniformly, or this is used in combination with light transmitted illumination from the lower side. Attempts have been made to make observations such as making the circumference of the spheres stand out. However, even in this method, in the case of a light-reflective microsphere, such as a solder ball of about 0.5 to 1.0 mmφ, all parts have appropriate brightness when viewed from above. It was difficult to observe clearly without producing bright spots or shadows.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an optical observation device for clearly observing or photographing a light-reflecting spherical surface.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides: a) a light-transmitting plate that is arranged substantially horizontally; and at least one positioning spot for receiving the lower partial spherical surface of the test ball on the upper surface. A placed test ball fixing plate,
b) The lower end is kept in contact with or close to the upper surface of the test ball fixing plate, and the outer diameter is about 1 mm larger than the test ball diameter to about four times the test ball diameter. A translucent tube to be placed coaxially with the vertical axis that passes through one of the test balls,
c) Functions as an inward surface light source along the conical slope of a hollow truncated cone with the semi-transparent cylinder coaxially surrounded and with the truncated head facing upward, and passes through the semi-transparent cylinder to the upper portion of the subject ball Shadowless illumination structure for shadowless illumination of the hemisphere,
d) having a diameter or side length larger than the outer diameter of the translucent tube, which is arranged coaxially with the vertical axis at a level slightly spaced from the lower surface of the test ball fixing plate. By having a transmission illumination structure consisting of an upward facing surface light source,
e) The optical surface of the light-reflecting sphere, wherein the upper hemisphere of the test sphere is magnified or observed from above through an opening formed in the cone head of the shadowless irradiation structure. An observation apparatus was configured.
[0006]
In the above, “semi-transparent” in the “semi-transparent tube” means light scattering transmission by a so-called “semi-transparent medium”, and is 1 / of “semi-transparent film” and “semi-transparent mirror (half mirror)”. 2 transmission: It does not mean 1/2 transmission in 1/2 reflection. Hereinafter, when the term “semi-transparent” is used for other elements, the term “scattering transmission” is also used. Further, the term “transmission illumination” is used to mean “illumination for seeing through a watermark” of the subject sphere.
[0007]
In the present invention, the inward surface light source along the conical slope is formed by forming a conical slope of the truncated cone from a semi-transparent plate, and arranging a large number of light emitting elements on the outer side of the semi-transparent plate, The light is emitted from the light emitting elements through a semitransparent plate.
[0008]
In the present invention, the second form of the inwardly facing surface light source along the cone slope is formed by forming the cone slope of the truncated cone with a plastic plate and arranging a large number of light emitting elements on the side surface of the plastic plate in the cone. Thus, the surface light source has a surface crossing these light emitting element arrays.
[0009]
The frustoconical pyramid having a shadowless irradiation structure in these forms is typically a truncated cone, but may be a truncated pyramid according to design requirements. Note that the term “inward surface light source along the conical slope of the truncated cone” refers to a wall surface that is curved in a dome shape between the upper and lower edges of the conical slope, in addition to the case where the conical and pyramidal slope itself is the light source. It also includes light emission from.
[0010]
The height of the translucent cylinder, which is a core element of the present invention, may be at a level such that incident light from the upper end of the cylinder does not directly hit the test sphere positioned at the lower end of the cylinder. The upper end of the cylinder protrudes upwardly through the fringe opening edge of the truncated cone in the shadowless irradiation structure, and the shadowless irradiation structure protects the protruding portion. A cylinder protection block having a top surface having a height equal to or higher than the tip of the transparent cylinder, and a protective hole that opens on the top surface and faces the opening edge so as to surround the protruding portion of the translucent cylinder It is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an apparatus configuration diagram in which a main part is drawn in cross section to show a typical embodiment of the invention. 1 is a main body of the optical observation apparatus of the present invention, 2 is a light source element (herein) Power supply for illuminating the LED), 3 is a CCD camera for observing and photographing the subject sphere from above the apparatus body 1, 4 is for monitoring and printing and recording image signals from the CCD camera 3. It is a monitor to do.
[0012]
Further, in FIG. 1, the apparatus main body 1 includes a test ball fixing plate 6 made of a light transmissive plate for supporting a small test ball 5 having a plurality of light-reflecting spherical surfaces, and the fixing plate 6. The semi-transparent cylinder 7 is made upright on the fixed plate 6 coaxially with the vertical axis passing through the test ball 5a located at the measurement spot, and is substantially supported by the fixed plate 6 or slightly spaced. The shadowless irradiation structure 8 for irradiating the upper hemisphere of the test ball 5a through the semi-transparent tube 7 (particularly, its wall) and the test ball fixing plate 6 are substantially supported. Or a transmission illumination structure 9 arranged so as to be coaxial with the vertical axis at a slight interval.
[0013]
The test ball fixing plate 6 that is light-transmitting, that is, transparent or translucent, is composed of a light-transmitting plate body arranged substantially horizontally on the transmission illumination structure 9 and receives the lower partial spherical surface of the test ball on the upper surface. For this purpose, at least one positioning spot made of a partially spherical depression is provided. As can be inferred from the examples described later, the translucent cylinder 7 has an outer diameter of about 1 mm to about 4 mm of the same spherical diameter, and its lower end is in contact with the upper surface of the test ball fixing plate 6. Or upright at close levels.
[0014]
The shadowless irradiation structure 8 includes a hollow truncated cone having a conical slope 10 made of a semitransparent plate coaxially surrounding the semitransparent cylinder 7, and the lower end of the semitransparent cylinder 7 using the conical slope 10 as an inward surface light source. In order to irradiate the central part (the upper hemispherical surface of the test sphere), the head portion thereof is arranged upward, and a light source element array such as an LED 11 is provided on the outer side of the conical slope 10. is there. Thus, the shadowless irradiation structure 8 irradiates the scattered transmitted light from the conical inclined surface (inwardly facing light source) 10 that originates from the light source element array, and further passes through the semitransparent cylinder 7 to the upper hemisphere of the subject sphere 5a. Can be incident in the form.
[0015]
The height of the translucent cylinder 7 which is a core element of the present invention may be at a level such that incident light from the upper end of the cylinder does not directly hit the test sphere positioned at the lower end of the cylinder, as shown in FIG. In addition, typically, the upper end of the cylinder protrudes upward through the truncated cone opening edge 10a of the truncated cone in the shadowless irradiation structure 8, while the shadowless irradiation structure 8 protects this protruding portion. Further, a top surface 12a at the same level as the tip of the semitransparent tube 7 and a protective hole 12b that opens to the top surface 12a and faces the opening edge 10a so as to surround the protruding portion of the semitransparent tube 7 are provided. The cylinder protection block 12 is provided.
[0016]
The lower part of the cylinder protection block 12 has a large-angle conical surface 13 whose outer periphery facing the outside of the conical slope 10 is flat, and an LED is formed on the inner surface of the suspended outer peripheral wall (the lower end of the peripheral surface of the block 12). The support base 11a is supported. Further, the outer edge of the outer peripheral wall 12c of the block 12 is fitted to the outer periphery of the outer flange 10b (FIG. 2) of the conical slope 10. FIG. 2 is a view of the coaxial arrangement relationship of the translucent cylinder 7, the conical slope 10, and the hanging outer peripheral wall 12c of the cylinder protection block 12 as viewed from below along the line AA in FIG. The explanation will be well understood.
[0017]
FIG. 3 is a plan view of the transmitted illumination structure 9 which is the lowermost structure of the apparatus main body 1 as viewed from above. Here, 9a is a square petri dish-like basic frame, for example, having an LED mounting frame 14 inside the four side walls, the upper surface of which is entirely covered by a plastic translucent cover 15, and further this semi-transparent cover. A light blocking frame 17 is installed around the upper surface of the transparent cover 15 in such a range that the tip of the LED 16 is hidden, and the translucent cover 15 exposed from the opening of the frame 17 forms an upward surface light source. Yes.
[0018]
【Example】
FIGS. 4-8 has shown the experimental result for determining the design of the optical observation apparatus in the said embodiment. The equipment used in the experiment is the shadowless illumination structure 8 constituting the conical surface light source, the shadowless ring illuminator (KKR-50 type) manufactured and sold by the applicant company, the conical flange surface and the test ball fixing plate. Used at zero distance (adjacent). The outline of the standard of KKR-50 is: emission color: red, angle of irradiation cone surface with respect to horizontal: 40 °, irradiation area: 30 mmφ, number of LEDs: 54, power consumption 2.2 W. As the transmissive illumination structure 9 constituting the upward surface light source, an edge light type transmissive illuminator (KE-100LE type) manufactured and sold by the applicant company was used. The outline of the standard of KE-100LE is emission color: red, emission area: 80 × 100 mm 2 , number of LEDs: 84, power consumption 3.4 W.
[0019]
The test sphere is a solder ball having a sphere diameter of 0.76 mmφ, which is fixed (half-immersed) on a transparent acrylic resin plate having a thickness of about 2 mm, and this resin plate is placed on the edge light type transmission illuminator. The solder ball is placed so as to coincide with the vertical center axis, and the shadowless ring illuminator is arranged as described above, and the upper hemisphere portion of the solder ball is surrounded coaxially. The experimental method and results will be described below.
[0020]
Experiment 1: When there is no shadow irradiation structure (shadowless ring illumination) on the upper hemisphere Fig. 4 shows a case where the subject sphere is imaged by CCD only with illumination from the bottom (edge light type transmitted illumination) A is a schematic drawing of the photographed image, A is not using the translucent cylinder 7 (FIGS. 1 and 2), and B is a translucent plastic straw having an inner diameter of 4 mmφ and a length of 50 mm as the translucent cylinder 7. It is what was used. In all cases, only the peripheral part is slightly bright, and the inside is completely black when there is no cylinder (A), and when there is a cylinder (B), the cylinder has a slight light condensing effect, or the darkness is faint and the spherical surface is faintly observed It is a grade. This shows that lighting from above is essential.
[0021]
Experiment 2: When there is no illumination from the bottom (edge light type transmitted illumination) FIG. 5 shows a photographed image when the subject ball is imaged with a CCD only with a shadowless illumination structure (shadowless ring illumination). A schematic drawing, A does not use the translucent cylinder 7 (FIGS. 1 and 2), and B uses a translucent plastic straw having an outer diameter of 4 mmφ and a length of 50 mm as the translucent cylinder 7. It is. Without the cylinder (A), even in the so-called “shadowless ring illumination”, the ring illumination reflecting ring 18 is formed on the test hemisphere, and the mirror image 19 of the lens portion 3a of the CCD camera is reflected. The peripheral area 20 is dazzling. The regions that can be observed to some extent are only the outer ring and the narrow annular regions 21a and 21b inside and outside the ring illumination reflecting ring 18. In the case with the cylinder (B), the ring illumination reflection and the lens mirror image effect are removed by the translucent cylinder 7, but the peripheral portion is darkened by the absence of illumination from below.
[0022]
Experiment 3: When the length of a semi-transparent tube (made of paper) is changed FIG. 6 includes the above-described shadowless irradiation structure for the upper hemisphere and illumination from below according to the configuration of the present invention, and It is a schematic diagram when experimenting also using a semi-transparent cylinder, A is the length of the semi-transparent cylinder 7 (cylinder having an outer diameter of 2 mmφ made of fine paper) is 10 mm, and B is the length of the same translucent cylinder 7 Is 50 mm. When the cylinder length is 10 mm (A), light enters from the upper end of the cylinder which is at a relatively low level, so that a relatively thin reflecting ring 22 is formed on the hemispherical surface, and the hemispherical apex is constricted with a cylinder. A lens part mirror image 23 is formed. However, scratches 24a and 24b on the spherical surface are slightly observed in a comparatively wide intermediate region between the reflection ring 22 and the vertex mirror image 23. In addition, when the tube length is 50 mm (B), almost no light enters from the upper end of the tube, and the hemisphere is irradiated only by weak scattered light that has passed through the tube. Scratches 24a and 24b are also clearly observed.
[0023]
Experiment 4: When the length of the semi-transparent tube (straw) is changed FIG. 7 shows the same illumination structure according to the configuration of the present invention, and the translucent tube has an outer diameter of 4 mmφ and translucent. It is a schematic diagram at the time of experimenting using a plastic straw, A is the length of the translucent cylinder 7 being 10 mm, and B is 50 mm. When the tube length is 10 mm (A), the level is relatively low, and a relatively large amount of light enters from the upper end of the tube having a wider opening than the paper tube. Therefore, the black spot at the center is large and the surrounding area is blurred, and scratches 24a and 24b Is also unclear. In addition, when the tube length is 50 mm (B), almost no light enters from the upper end of the tube, and the hemisphere is irradiated with the combined light of the scattered light that has passed through the tube and the light from below. Except for this, the entire hemisphere is observed almost uniformly, and the scratches 24a and 24b are also observed almost clearly.
[0024]
Experiment 5: Increasing the height of the shadowless irradiation structure on the upper hemisphere FIG. 8 is a high- quality paper having an outer diameter of 2 mmφ and a length of 50 mm as a translucent cylinder, similarly according to the configuration of the present invention. In a state in which the tube making is made upright on the test ball fixing plate, the distance from the test ball fixing plate to the lower end of the surrounding illumination is not zero (abutment) in the previous experiments, A: 50 mm, and B : It is a schematic diagram at the time of setting to 20 mm. At A (50 mm), this light source power of 2.2 W is too far away (on the contrary, if the light source power is increased, it may cause a problem of spherical reflection), and an illuminance that can be observed on the spherical surface is obtained. Instead, the contour ring 25 only appears light and the others are black. Further, even when the surrounding illumination is brought close to about B (20 mm), the contour ring 25 still appears light, and only the scratches 24a and 24b are observed indistinctly in the dim image of the innermost part.
[0025]
From the above experimental results, for the solder balls having a sphere diameter of 0.76 mm, the lower end flange portion of the conical surface light source is used in the configuration of the experimental use apparatus embodying the present invention and according to the modes of the experiments (1 to 4). When the outer diameter of the semitransparent tube 7 is 2 mm, that is, 2.00 / 0.76 = 2,63 times the diameter of the test ball. 4mm, that is, the image is clearer than when the diameter of the test ball is 5.26 times. In any case, when the tube length is 10 mm, there is reflection due to incident light from the upper end of the tube. It is considered that a sufficiently long length (in this case, 50 mm) is required.
[0026]
However, the material of the cylinder is considered to be a brighter image if it is a translucent material having better light transmission than fine paper, like the straw used in Experiment 4. Further, the ball diameter of the solder ball in this experiment was 0.76 mm. However, if the ball diameter is up to about 1.00 mmφ by experimenting with manufacturing tolerances and approximate standards, this 2 mmφ paper It was confirmed that similar measurements could be made with a tube. Furthermore, taking into account that a 4 mmφ straw could be observed relatively clearly, the outer diameter of the translucent tube is a value from about 1 mm larger than the test ball diameter to about four times the test ball diameter. It is concluded that it is necessary.
[0027]
In the typical example of the device of the present invention, the height of the shadowless irradiation structure to the upper hemisphere (the lower end level of the conical slope light source with respect to the test ball fixing plate) is zero, and the substantial height is given by Experiment 5 Although it has been verified that this is inconvenient, this is a result of using a device (KKR-50: red) having a defined standard and power, and a shadowless irradiation light source with better power and light scattering than this is used. It may be better to use the shadowless illumination light source at a higher position when it is used or when the test spherical surface has a surface state that is easy to observe. FIG. 9 shows an optical observation apparatus 1 ′ in which the position of the shadowless irradiation light source is increased for such a purpose.
[0028]
9, the parts indicated by the same reference numerals as those in FIG. 1 are the same as the instruction parts shown in FIG. The apparatus of this modification has an outer cylinder 26 that is connected to the outer periphery of the structure 8 ′ and supports the lower end flange 10b of the conical slope 10 in the shadowless irradiation structure 8 ′, and the lower end of the outer cylinder 26 is It is configured to be positioned close to the test ball fixing plate 6.
[0029]
FIGS. 10 to 13 show modifications of the optical observation apparatus shown in FIGS. 1 and 9 that can be used as a light source for substantially shadowless irradiation of the upper half of the test ball. A rectangular oblique illuminator in which inclined light sources 27 to 28 are arranged on each pyramidal surface portion of the pyramid, FIG. 11 is a direct ring illuminator in which light source elements 31 such as LEDs having optical axes along respective normal lines are arranged on a conical inclined surface, FIG. 12 shows a coaxial surface-emitting illumination for producing a downward uniform diffused light by applying a light beam emitted from the vertical arrangement of the light source elements 31 to a half mirror 33 disposed at 45 ° through a vertical translucent (light scattering) plate 32. 13 shows a typical example (A) of the low angle direct ring illuminator 34 having a smaller angle with respect to the vertical axis of the conical slope than that of FIG. 11, and a case (B) of the ultimate low angle (0 °), respectively. Show.
[0030]
【The invention's effect】
As described above, according to the present invention, there is provided an optical observation device for clearly observing or photographing a light-reflecting spherical surface, particularly a microspherical surface such as a solder ball. Other examples of objects to be observed include steel balls for ball bearings, bulb balls for ball valves, condensing parts for semiconductor lasers, pearls, ballpoint pen balls, etc. Applicable.
[Brief description of the drawings]
FIG. 1 is an apparatus configuration diagram illustrating a main part in cross section according to a preferred embodiment of the present invention.
FIG. 2 is a bottom view of the shadowless irradiation structure as viewed from below along the line AA in FIG.
FIG. 3 is a plan view of the transmitted illumination structure, which is the lowermost structure of the apparatus main body shown in FIG. 1, viewed from above.
FIG. 4 is a diagram illustrating the effect of the present invention, in which a photographed image (A) of a test hemisphere and a translucent cylinder are used when the translucent cylinder is omitted without using the shadowless irradiation structure of the apparatus main body. It is a figure which shows typically the picked-up image (B) of the to-be-tested hemisphere in the case of having met.
FIG. 5 is a view showing the effect of the present invention, in which a photographed image (A) of a test hemisphere and a translucent cylinder are used when the translucent illumination structure of the apparatus main body is not used and the translucent cylinder is omitted. It is a figure which shows typically the picked-up image (B) of the test hemisphere in a case.
FIG. 6 shows a photographed image (A) of the hemispherical surface to be tested and the same translucent when the entire configuration of the apparatus main body is used and the length of a paper 2 mmφ translucent cylinder is 10 mm in order to verify the effect of the present invention. It is a figure which shows typically the picked-up image (B) of the to-be-tested hemisphere at the time of using the pipe | tube length set to 50 mm.
FIG. 7 shows a photographed image (A) of a hemispherical surface to be examined when the length of a semitransparent cylinder made of plastic straw 4 mmφ is 10 mm, using the entire configuration of the apparatus main body in order to verify the effect of the present invention; It is a figure which shows typically the picked-up image (B) of a to-be-tested hemisphere at the time of using the length of the same semi-transparent cylinder which was 50 mm.
FIG. 8 is a photograph of a hemispherical surface to be examined (A) and 20 mm of the shadowless irradiation structure of the apparatus main body when the height from the test ball fixing plate is 50 mm in order to verify the effect of the present invention; It is a figure which shows typically the picked-up image (B) of the to-be-tested hemisphere at the time of doing.
FIG. 9 is an apparatus configuration diagram illustrating a main part in cross section in a second embodiment of the present invention.
FIG. 10 is a view showing a side cross section (A) and a lower surface (B) in the second embodiment of the shadowless irradiation structure.
FIG. 11 is a side sectional view showing a third embodiment of a shadowless irradiation structure.
FIG. 12 is a view showing a side cross section (A) and a lower surface (B) in a fourth embodiment of a shadowless irradiation structure.
FIG. 13 is a side sectional view showing a typical example (A) of a low-angle direct ring illuminator 34 and a case (B) of a low-angle ultimate (0 °) in the fifth embodiment having a shadowless irradiation structure. It is.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical observation apparatus main body 2 Illumination power supply 3 CCD camera 4 Monitor 5 Small test ball 6 Test ball fixing plate 7 Translucent tube 8 Shadowless irradiation structure 9 Transmission illumination structure 10 Conical slope 11 LED
12 Tube protection block 13 Large angle conical surface

Claims (1)

a)実質上水平配置される光透過性板体からなり、上面に被検球の下側部分球面を受容するための、少なくとも一つの位置決めスポットを配設した被検球固定板と、
b)下端が前記被検球固定板の上面に接するか、又は近接したレベルに維持され、外径が被検球径より約1mm大きい値から被検球径の約4倍までとされ、観察対象となる1個の被検球を貫く垂直軸と同軸に配置されるべき半透明筒と、
c)前記半透明筒を同軸包囲し且つ截頭部を上向きにした中空状の截頭錐体の錐斜面を半透明板で形成して、前記半透明板の錐体外側部に多数の発光素子を配列することにより、前記半透明板を内向き面光源として機能させ、前記半透明筒を通じて前記被検球の上部半球面を無影照射するための無影照射構造と、
d)上端が前記被検球固定板の下面に接するか、又は僅かに間隔を置いたレベルにおいて、前記垂直軸と同軸に配置される、前記半透明筒の外径より大きい直径又は辺長を有した上向き面光源からなる透過照明構造と、を備え
e)前記半透明筒は、上端が前記無影照射構造における前記截頭錐体の截頭部開口縁を貫いて上方に突出したものであり、
f)前記無影照射構造が、前記半透明筒の上端と同一レベル以上の高さとした頂上面と、その頂上面に開口して前記半透明筒の突出部分を非接触で包囲するように前記截頭部開口縁に対向する保護孔とを有する筒保護ブロックを備えたことにより、
)前記無影照射構造における前記截頭錐体の截頭部開口を通じて上方より前記被検球の上部半球面を、拡大観察又は撮影するようにしたことを特徴とする光反射性球面の光学的観察装置。
a) a test ball fixing plate comprising a light-transmitting plate arranged substantially horizontally and having an upper surface provided with at least one positioning spot for receiving the lower partial spherical surface of the test ball;
or b) a lower end in contact with the upper surface of the test sphere fixed plate, or is maintained in close levels, the outer diameter is from about 1mm greater than the test spherical diameter up to about four times the test sphere diameter, observed A translucent tube to be placed coaxially with the vertical axis that passes through one subject ball,
c) A conical slope of a hollow frustoconical cone that coaxially surrounds the translucent cylinder and has a truncated head facing upward is formed of a semitransparent plate, and a large number of light emission is formed on the outer side of the semitransparent plate. By arranging the elements, the semitransparent plate functions as an inward surface light source, and the shadowless irradiation structure for shadowlessly irradiating the upper hemisphere of the test ball through the semitransparent tube,
or d) the upper end is in contact with the lower surface of the test sphere fixed plate, or in a level spaced slightly intervals, is disposed in the vertical and coaxial larger diameter or side length than the outer diameter of the translucent tube A transmission illumination structure comprising an upwardly facing surface light source ,
e) The translucent tube has an upper end that protrudes upward through the truncated cone opening edge of the truncated cone in the shadowless irradiation structure,
f) The shadowless irradiation structure has a top surface that is at the same level or higher as the upper end of the translucent tube, and is open to the top surface so as to surround the projecting portion of the translucent tube in a non-contact manner. By having a cylinder protection block having a protective hole facing the head opening edge ,
g ) A light-reflective spherical optical system characterized in that the upper hemisphere of the test sphere is magnified or observed from above through the truncated cone opening of the truncated cone in the shadowless irradiation structure . Observation device.
JP2001281504A 2001-09-17 2001-09-17 Optical observation device for light-reflective spherical surface Expired - Fee Related JP4695793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281504A JP4695793B2 (en) 2001-09-17 2001-09-17 Optical observation device for light-reflective spherical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281504A JP4695793B2 (en) 2001-09-17 2001-09-17 Optical observation device for light-reflective spherical surface

Publications (3)

Publication Number Publication Date
JP2003083906A JP2003083906A (en) 2003-03-19
JP2003083906A5 JP2003083906A5 (en) 2008-10-23
JP4695793B2 true JP4695793B2 (en) 2011-06-08

Family

ID=19105317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281504A Expired - Fee Related JP4695793B2 (en) 2001-09-17 2001-09-17 Optical observation device for light-reflective spherical surface

Country Status (1)

Country Link
JP (1) JP4695793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111204B (en) * 2013-04-22 2017-05-24 联想(北京)有限公司 Wear resistance testing device and base plates

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437980B (en) * 2006-05-13 2010-05-19 Optical Reference Systems Ltd Apparatus for measuring semiconductor physical characteristics
JP4919502B2 (en) * 2007-05-21 2012-04-18 有限会社シマテック LED lighting device
CN118294459B (en) * 2024-06-06 2024-10-18 宁德时代新能源科技股份有限公司 Explosion-proof valve defect detection method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271143A (en) * 1987-04-28 1988-11-09 Sankyo Seiki Mfg Co Ltd Device for observing body to be inspected
JPH1021717A (en) * 1996-07-08 1998-01-23 C C S Kk Lighting system
JPH11242005A (en) * 1998-12-25 1999-09-07 Lion Engineerring Kk Article appearance inspecting device
JP2000294680A (en) * 1999-04-07 2000-10-20 Rohm Co Ltd Solder ball aligning and feeding mechanism of bga type electronic parts manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271143A (en) * 1987-04-28 1988-11-09 Sankyo Seiki Mfg Co Ltd Device for observing body to be inspected
JPH1021717A (en) * 1996-07-08 1998-01-23 C C S Kk Lighting system
JPH11242005A (en) * 1998-12-25 1999-09-07 Lion Engineerring Kk Article appearance inspecting device
JP2000294680A (en) * 1999-04-07 2000-10-20 Rohm Co Ltd Solder ball aligning and feeding mechanism of bga type electronic parts manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111204B (en) * 2013-04-22 2017-05-24 联想(北京)有限公司 Wear resistance testing device and base plates

Also Published As

Publication number Publication date
JP2003083906A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
US5777244A (en) Method for inspecting the outer appearance of a golf ball and illuminating means used therefor
US5051872A (en) Hemispherical non-glare illuminator
KR101249121B1 (en) Inspection system and method for identifying surface and body defects in a glass sheet
JP2003098093A (en) Lighting system for examination
US4735497A (en) Apparatus for viewing printed circuit boards having specular non-planar topography
US20140185136A1 (en) Multi directional illumination for a microscope and microscope
KR20070119607A (en) Lighting method and apparatus for measuring the presence of defects on the surface of container collars
JP4695793B2 (en) Optical observation device for light-reflective spherical surface
TWI812178B (en) An optical device
JP2005512041A (en) Ophthalmic article inspection system
JPS60262591A (en) Illumination apparatus for optical evaluation of microbiological object
US20130335976A1 (en) Dark field illumination method and a dark field illuminator
JP2003107006A (en) Method and apparatus for illumination
JP2014044059A (en) Inspection device and inspection method
JP2005331302A (en) Outside surface inspection method and outside surface inspection device
JP2007040783A (en) Container for visual inspection
JP3561189B2 (en) Illumination device and optical characteristic evaluation device using the same
JPH0329682Y2 (en)
JPS61270720A (en) Dark field illuminating device
US5613753A (en) Spherical illuminator
KR100540442B1 (en) Lighting method and lighting device
JP3122004B2 (en) Liquid dispersion particle image measurement device
JPH02251943A (en) Lighting device
JPH02155106A (en) Lighting system
JPH02171607A (en) Lighting method and apparatus and appearance inspection for object

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080728

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees