以下、本発明の実施の形態を図面を参照して説明する。図1は、本実施の形態にかかるダイレクトドライブモータを用いたフロッグレッグアーム式搬送装置の斜視図である。図1において、4つのダイレクトドライブモータD1、D2、D2、D1をこの順序で上から直列に連結している。ダイレクトドライブモータD1のロータには、それぞれ第1アームA1が連結され、第1アームA1の先端には第1リンクL1が枢動可能に連結されている。一方、ダイレクトドライブモータD2のロータには、それぞれ第2アームA2が連結され、第2アームA2の先端には第2リンクL2が枢動可能に連結されている。リンクL1,L2は、ウエハWを載置するテーブルTに、それぞれ枢動可能に連結されている。
図1より明らかであるが、対となったダイレクトドライブモータD1、D2のロータがそれぞれ同方向に回転すれば、テーブルTも同方向に回転し、かかるロータが逆方向に回転すれば、テーブルTは、ダイレクトドライブモータD1、D2に接近もしくは離隔するようになっている。従って、ダイレクトドライブモータD1、D2を任意の角度で回転させれば、テーブルTが届く範囲内で、任意の2次元位置にウエハWを搬送させることができる。対になったダイレクトドライブモータD1、D2は独立的に駆動されるので、2つのテーブルTは独立して移動可能となっている。
このように例えば半導体製造装置における真空槽内に配置されるウエハ搬送アーム、例えばスカラ型や図に示すフロッグレッグ型のように複数のアームを備えた装置では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極力小さくすると同時に、スぺースを有効に活用するためにモータ等の取付穴はなるべく少なくする必要がある。また、ウエハWを水平にまっすぐに、振動を極力少なくして搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保持する必要がある。そこで、ダイレクトドライブモータD1、D2を複数、ハウジング部分で同軸に連結し、連結部分はシールで密に接合(溶接、Oリング、金属ガスケット、等による密な接合)して、モータロータの配設された空間とハウジング外部空間とを離隔することも必要となる。
また、ウエハWを水平にまっすぐ、振動を少なく搬送するためにはアームA1、A2の先端に作用するモーメントを、ロータ支持部で強固に保持する必要がある。更に、又、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームの回転位置を認識しないと真空槽の壁や、真空槽のシャッタにアームA1,A2等をぶつけてしまう可能性がある。このような要求に応じることができるダイレクトドライブモータを同軸に連結したモータシステムについて説明する。
本実施の形態は、表面磁石型の32極36スロットアウターロータ式ブラシレスタイプのダイレクトドライブモータを用いる。32極36スロットというスロットコンビネーションは、コギング力は小さいが径方向に磁気吸引力が発生し回転時の振動は大きいことが一般的に知られている8極9スロットというスロットコンビネーションの4倍の構成である。2n倍(nは整数)にしたことにより、径方向の磁気吸引力は相殺されるので、固定子と回転子の真円度や同軸度および機構部品の剛性を高めることなく回転時の振動を小さくでき、かつ、本来的にコギングが小さい構成であるので、非常に滑らかな回転が得られる。一方、このような非常に多極なモータとすることにより、機械角の周期に対する電気角の周期が多いので、位置決め制御性が良い。よって、本発明の如く、減速器を用いずにロボット装置を駆動するようなダイレクトドライブモータには好適である。また、総磁束量を下げることなく固定子連結部の肉厚と突極幅、および回転子のヨーク肉厚を狭くできるので、本発明の如く、薄型かつ大径幅狭のダイレクトドライブモータには好適である。
図2は、図1の構成をII-II線で切断して矢印方向に見た図である。図2を参照して、4軸のモータシステム(上方のダイレクトドライブモータD1,D2がモータユニットMU1を構成し、下方のダイレクトドライブモータD1,D2がモータユニットMU2を構成する)の内部構造について詳細に説明する。まず、モータユニットMU2のダイレクトドライブモータD1から説明する。定盤Gに据え付けた円板10Bの中央開口10aに嵌合しボルト11により相互に固定された中空円筒状の本体12Bは、その中央に、ステータへの配線やレゾルバへの配線などを通すために用いることができる貫通孔12kを形成している。貫通孔12kの上端は拡径しており、ここに短円筒部113bを嵌合させる形で、ドーナツ円盤状の隔壁ホルダ113aを取り付けており、隔壁ホルダ113aは、ボルト12bにより本体12Bに固定されている。隔壁ホルダ113aの外周には、底が抜けたカップ状の隔壁13Bを取り付けている。本体12Bと,円板10Bとによりハウジングを構成する。
隔壁13Bは、非磁性体であるステンレス製であり、隔壁ホルダ113aに係合するフランジ部13aと、その周縁から軸線方向にダイレクトドライブモータD1、D2を貫くようにして延在する薄肉の円筒部13bと、ホルダ15Bとからなる。従って、隔壁13Bは、モータユニットMU2のダイレクトドライブモータD1、D2に共通に用いられる。円筒部13bの下端は、TIG溶接にて封止可能にホルダ15Bに接合され、ホルダ15Bは、円板10Bにボルト16により固定されている。ここで、円筒部13bとホルダ15Bの溶接部を略同一厚さとすることにより、片側への部品にのみ熱が逃げることを抑制し、嵌合部を均一に溶接できる構造となっている。ホルダ15Bと円板10Bの接触面には、シール部材を填め込む溝加工が施してあり、シール部材ORを溝に填め込んだ後にホルダ15Bと円板10Bをボルト16により締結することにより、締結部分を大気側から分離隔絶している。隔壁13Bは耐食性が高く、特に磁性の少ないオーステナイト系ステンレスのSUS316を材料としており、ホルダ15Bは隔壁13Bとの溶接性から同じくSUS316を材料としている。
更に、隔壁13Bとホルダ15Bとは気密的に接合され、且つホルダ15Bと円板10B、及び円板10Bと定盤Gとは、それぞれO−リングORによって気密されている。従って、円板10Bと、隔壁13Bとで囲われる内部空間は、その外部から気密されている。尚、隔壁13Bは必ずしも非磁性体である必要はない。又、O−リングORを用いて気密する代わりに、電子ビーム溶接やレーザビーム溶接などで部材間を気密しても良い。
円板10Bの外周上面において、軸受ホルダ17がボルト18により固定されている。軸受ホルダ17には、真空中で用いられる4点接触式玉軸受19の外輪が嵌合的に取り付けられ、ボルト20により固定されている。一方、軸受19の内輪は、第1外側ロータ21の外周に嵌合し、ボルト22により固定されている。すなわち、第1外側ロータ21は、隔壁13Bに対して回転自在に支持されており、またアームA1(図1)を支持する円筒状部材23を、ボルト24によって固定している。ここで、ボルト24は、半径方向内方に延在する磁気シールド板25を、円筒状部材23に共締めしている。
円板10Bおよび軸受ホルダ17は、耐食性が高いオーステナイト系ステンレスを材料としており、円板10Bは、チャンバである定盤Gとの嵌合固定およびシール装置を兼ねており、その下面に、O−リングORを填め込む溝10bが設けられている。
磁気シールド板25は、磁性体であるSPCC鋼板をプレス成型加工後に、防錆および耐食性を高めるためにニッケルめっきを施している。その効果については後述する。
軸受19は、ラジアル、アキシアル、モーメント荷重を1個の軸受で負荷できる4点接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータD1の軸受は1個で済むため、本発明の多軸同軸モータシステムを薄型化できる。軸受19は、内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし、転動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用いている。
尚、軸受19は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中でもアウトガス放出のない金属潤滑としたものを用いてもよく、また4点接触式玉軸受であるので、アームA1からの第1外側ロータ21がチルトする方向のモーメントを受けることができるが、4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜処理(DFO)を行っても良い。
第1外側ロータ21は、永久磁石21aと、磁路を形成するため磁性体から成る円環状のヨーク21bと、永久磁石21aとヨーク21bを機械的に締結するための非磁性体からなるくさび(不図示)によって構成されている。永久磁石21aは、32極の構成でN極、S極の磁石が各16個交互に磁性金属からなり、極ごとに分割されたセグメント形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一であるが、円周方向端面の接線交点を永久磁石21a寄りとすることで、くさびをヨーク21b外径側からねじで締め上げることにより永久磁石21aをヨーク21bに締結している。このような構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いることなく永久磁石を締結できる。永久磁石21aはエネルギー積の高いネオジウム(Nd−Fe−B)系磁石であり、耐食性を高めるためにニッケルコーティングを施してある。ヨーク21bは高い磁性を有する低炭素鋼を材料とし、加工成型後に、防錆および耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施している。
また、第1外側ロータ21は、軸受19の内輪と円筒状部材23を嵌合固定する面を有している。4点接触玉軸受19は非常に薄肉の軸受であり、組みつけられる部材の精度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よって本実施の形態の場合は、回転輪である軸受19の内輪を、加工精度を出しやすくかつ線膨張係数が軸受の軌道輪材質と略同一であるヨーク21bに締まり嵌めあるいは中間嵌めとし、固定輪である軸受19の外輪を、オーステナイト系ステンレス製の軸受ホルダやアルミニウム製のボスにすきま嵌めとすることで、軸受19の回転精度の低下や温度上昇による摩擦トルクの上昇を防ぐ構成となっている。
隔壁13Bの半径方向内側において、第1外側ロータ21の内周面に対向するようにして、第1ステータ29が配置されている。第1ステータ29は、本体12Bの中央で半径方向に延在したフランジ部12aの円筒状に変形した下部に取り付けられており、電磁鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモータコイルが集中巻されている。第1ステータ29の外径は隔壁13Bの内径と略同一もしくは小さい寸法としている。
第1ステータ29の半径方向内側に、第1内側ロータ30が配置されている。第1内側ロータ30は、本体12Bの外周面にボルト固定されたレゾルバホルダ32に対して、玉軸受33により回転自在に支持されている。第1内側ロータ30の外周面には、バックヨーク30bを介して永久磁石30aが取り付けられている。永久磁石30aは、第1外側ロータ21の永久磁石21aと同様に32極の構成でN極、S極の磁石が各16個交互に磁性金属からなっている。従って、第1内側ロータ30は、第1ステータ29によって駆動される第1外側ロータ21に同期して連れ回されるようになっている。
第1内側ロータ30を回転自在に支持する軸受33は、ラジアル、アキシアル、モーメント荷重を1個の軸受で負荷できる4点接触玉軸受である。この形式の軸受を用いることにより、1個の軸受で済むため、ダイレクトドライブモータD1を薄型化できる。隔壁13Bの内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑を用いた軸受を適用できる。
隔壁13B内部は大気環境であるため、永久磁石30aはバックヨーク30bに接着固定してある。永久磁石30aはエネルギー積の高いネオジウム(Nd−Fe−B)系磁石であり、錆による減磁を防ぐためにニッケルコーティングを施してある。ヨーク30bは高い磁性を有する低炭素鋼を材料とし、加工成形後に防錆のためにクロメートめっきを施している。
第1内側ロータ30の内周には、回転角度を計測する検出器として、レゾルバロータ34a及び34bを組みつけており、それに対向する形で、レゾルバホルダ32の外周に、レゾルバステータ35,36を取り付けているが、本実施の形態では、高分解能のインクリメンタルレゾルバステータ35と、1回転のいずれの位置にロータがあるかを検出できるアブソリュートレゾルバステータ36とを2層に配置している。このため電源投入時にも、アブソリュートレゾルバロータ34bの回転角度がわかり、原点復帰が不要であり、また、コイルに対する磁石の電気的位相角度がわかるため、ダイレクトドライブモータD1の駆動電流制御に使用する回転角度検出が、極検出センサを用いることなく可能となっている。
レゾルバホルダ32と第1内側ロータ30は、モータの界磁およびモータコイルからの電磁ノイズが角度検出器であるレゾルバステータ35,36に伝達されないように、磁性体である炭素鋼を材料とし、加工成型後に防錆のためにクロメートめっきを施している。
本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、インクリメンタルレゾルバロータ34aは、一定のピッチを有する複数のスロツト歯列を有し、インクリメンタルレゾルバステータ35の外周面には、回転軸と平行に各磁極でインクリメンタルレゾルバロータ34aに対して位相をずらした歯が設けられており、コイルが各磁極に巻回されている。第1内側ロータ30と一体でインクリメンタルレゾルバロータ34aが回転すると、インクリメンタルレゾルバステータ35の磁極との間のリラクタンスが変化し、インクリメンタルレゾルバロータ34aの1回転でリラクタンス変化の基本波成分がn周期となるようにして、そのリラクタンス変化を検出して、図3に例を示すレゾルバ制御回路によりデジタル化し、位置信号として利用することでインクリメンタルレゾルバロータ34a即ち第1内側ロータ30の回転角度(又は回転速度)を検出するようになっている。レゾルバロータ34a、34bと、レゾルバステータ35,36とで検出器を構成する。
本実施の形態によれば、第1外側ロータ21に対して、磁気カップリング作用により第1内側ロータ30が同速で回転し、すなわち連れ回るので、第1外側ロータ21の回転角を隔壁13B越しに検出することができる。また、本実施の形態では、モータを形成する部品やハウジングを用いることなくレゾルバ単体で軸受33を有しており、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整やレゾルバコイルの位置調整などの精度調整が行えるので、ハウジングや両フランジに調整用の穴や切り欠きを別途設ける必要がない。又、第1外側ロータ21と回転自在に支持する軸受装置19の回転輪を、加工精度が出しやすくかつ線膨張係数が軸受装置19の駆動輪と略同一であるロータヨーク21bに嵌合することで、回転精度の向上と温度変化による摩擦トルクの変動防止を図ることができる。
次に、モータユニットMU2のダイレクトドライブモータD2について説明するが、ここでは本体12Bがハウジングを構成する。上述したダイレクトドライブモータD1の円筒状部材23は、ダイレクトドライブモータD2に重合する位置まで上方に延在しており、その内周面に、真空中で用いられる4点接触式玉軸受19’の外輪が嵌合的に取り付けられ、ボルト20’により固定されている。一方、軸受19’の内輪は、第2外側ロータ21’の外周に嵌合し、ボルト22’により固定されている。ここで、ボルト22’は、半径方向内方に延在する磁気シールド板41を共締めしている。第2外側ロータ21’は、隔壁13Bに対して回転自在に支持されており、またアームA2(図1)を支持するリング状部材23’を、ボルト24’によって固定している。更に、ボルト24’は、半径方向内方に延在する磁気シールド板25’を、リング状部材23’に共締めしている。
磁気シールド板41,25’は、磁性体であるSPCC鋼板をプレス成型加工後に、防錆および耐食性を高めるためにニッケルめっきを施している。磁気シールド板41,25’は、第1外側ロータ21及び第2外側ロータ21’の間に介在して磁気的シールドを形成し、それらからの磁束漏れによるお互いの連れ回しを防止している。即ち、磁気シールド板25’は、非磁性体であるリング状部材23’挟んでヨーク21b’に締結しており、それにより不要な磁気回路を生成することを防いでいる。この磁気シールド板41,25’により、ロータ相互の磁気干渉を防ぐことができるので、2軸同軸モータシステムでありながら全体の軸長を抑えた構成が可能である。磁気シールド板41は外部からの異物吸引を防止している。
軸受19’は、ラジアル、アキシアル、モーメント荷重を1個の軸受で負荷できる4点接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータD2の軸受は1個で済むため、本発明の多軸同軸モータを薄型化できる。内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし。転動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用いている。
尚、軸受19’は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中でもアウトガス放出のない金属潤滑としたものを用いてもよく、また4点接触式玉軸受であるので、アームA1からの第1外側ロータ21’がチルトする方向のモーメントを受けることができるが、4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜処理(DFO)を行っても良い。
第2外側ロータ21’は、永久磁石21a’と、磁路を形成するため磁性体から成る円環状のヨーク21b’と、永久磁石21a’とヨーク21b’を機械的に締結するための非磁性体からなるくさび(不図示)によって構成されている。永久磁石21a’は、32極の構成でN極、S極の磁石が各16個交互に磁性金属からなり、極ごとに分割されたセグメント形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一であるが、円周方向端面の接線交点を永久磁石21a’寄りとすることで、くさびをヨーク21b’外径側からねじで締め上げることにより永久磁石21a’をヨーク21b’に締結している。このような構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いることなく永久磁石を締結できる。永久磁石21a’はエネルギー積の高いネオジウム(Nd−Fe−B)系磁石であり、耐食性を高めるためにニッケルコーティングを施してある。ヨーク21b’は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防錆および耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施している。
また、第2外側ロータ21’は、軸受19’の内輪とリング状部材23’を嵌合固定する面を有している。4点接触玉軸受19’は非常に薄肉の軸受であり、組みつけられる部材の精度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よって本実施の形態の場合は、軸受19’の内輪を、加工精度を出しやすくかつ線膨張係数が軸受の軌道輪材質と略同一であるヨーク21bに締まり嵌めあるいは中間嵌めとし、軸受19’の外輪を、オーステナイト系ステンレス製の軸受ホルダやアルミニウム製のボスにすきま嵌めとすることで、軸受19’の回転精度の低下や温度上昇による摩擦トルクの上昇を防ぐ構成となっている。
隔壁13Bの半径方向内側において、第2外側ロータ21’の内周面に対向するようにして、第2ステータ29’が配置されている。第2ステータ29’は、本体12Bの中央で半径方向に延在したフランジ部12aの円筒状に変形した上部に取り付けられており、電磁鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモータコイルが集中巻されている。第2ステータ29’の外径は隔壁13Bの内径と略同一もしくは小さい寸法としている。
第2ステータ29’の半径方向内側に、第2内側ロータ30’が配置されている。第2内側ロータ30’は、本体12の外周面にボルト固定されたレゾルバホルダ32’に対して、玉軸受33’により回転自在に支持されている。第2内側ロータ30’の外周面には、バックヨーク30b’を介して永久磁石30a’が取り付けられている。永久磁石30a’は、第2外側ロータ21’の永久磁石21a’と同様に32極の構成でN極、S極の磁石が各16個交互に磁性金属からなっている。従って、第2内側ロータ30’は、第2ステータ29’によって第2外側ロータ21’に同期して回転駆動されるようになっている。
第1内側ロータ30’を回転自在に支持する軸受33’は、ラジアル、アキシアル、モーメント荷重を1個の軸受で負荷できる4点接触玉軸受である。この形式の軸受を用いることにより、1個の軸受で済むため、ダイレクトドライブモータD2を薄型化できる。隔壁13Bの内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑を用いた軸受を適用できる。
隔壁13B内部は大気環境であるため、永久磁石30a’はバックヨーク30b’に接着固定してある。永久磁石30a’はエネルギー積の高いネオジウム(Nd−Fe−B)系磁石であり、錆による減磁を防ぐためにニッケルコーティングを施してある。ヨーク30b’は高い磁性を有する低炭素鋼を材料とし、加工成形後に防錆のためにクロメートめっきを施している。
第2内側ロータ30’の内周には、回転角度を計測する検出器として、レゾルバロータ34a’及び34b’を組みつけており、それに対向する形で、レゾルバホルダ32’の外周に、レゾルバステータ35’,36’を取り付けているが、本実施の形態では、高分解能のインクリメンタルレゾルバステータ35’と、1回転のいずれの位置にロータがあるかを検出できるアブソリュートレゾルバステータ36’とを2層に配置している。このため電源投入時にも、アブソリュートレゾルバロータ34b’の回転角度がわかり、原点復帰が不要であり、また、コイルに対する磁石の電気的位相角度がわかるため、ダイレクトドライブモータD2の相対回転角度を、極検出センサを用いることなく可能となっている。
レゾルバホルダ32’と第2内側ロータ30’は、モータの界磁およびモータコイルからの電磁ノイズが角度検出器であるレゾルバステータ35’,36’に伝達されないように、磁性体である炭素鋼を材料とし、加工成型後に防錆のためにクロメートめっきを施している。
本実施の形態によれば、第2外側ロータ21’に対して、磁気カップリング作用により第2内側ロータ30’が同速で回転し、すなわち連れ回るので、第2外側ロータ21’の回転角を隔壁13B越しに検出することができる。また、本実施の形態では、モータを形成する部品やハウジングを用いることなくレゾルバ単体で軸受33を有しており、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整やレゾルバコイルの位置調整などの精度調整が行えるので、ハウジングや両フランジに調整用の穴や切り欠きを別途設ける必要がない。又、第2外側ロータ21’と回転自在に支持する軸受装置19’の回転輪を、加工精度が出しやすくかつ線膨張係数が軸受装置19’の駆動輪と略同一であるロータヨーク21b’に嵌合することで、回転精度の向上と温度変化による摩擦トルクの変動防止を図ることができる。
本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、インクリメンタルレゾルバロータ34a’は、一定のピッチを有する複数のスロツト歯列を有し、インクリメンタルレゾルバステータ35’の外周面には、回転軸と平行に各磁極でインクリメンタルレゾルバロータ34a’に対して位相をずらした歯が設けられており、コイルが各磁極に巻回されている。第2内側ロータ30’と一体でインクリメンタルレゾルバロータ34a’が回転すると、インクリメンタルレゾルバステータ35’の磁極との間のリラクタンスが変化し、インクリメンタルレゾルバロータ34a’の1回転でリラクタンス変化の基本波成分がn周期となるようにして、そのリラクタンス変化を検出して、図3に例を示すレゾルバ制御回路によりデジタル化し、位置信号として利用することでインクリメンタルレゾルバロータ34a’即ち第2内側ロータ30’の回転角度(又は回転速度)を検出するようになっている。レゾルバロータ34a’、34b’と、レゾルバステータ35’,36’とで検出器を構成する。
本実施の形態によれば、第1外側ロータ21と第2外側ロータ21’との間に、磁気シールド板25,41を配置しているので、相互の磁気的干渉を抑制し、誤駆動や連れ周りなどの不具合を回避している。
本体12Bにおいて、ダイレクトドライブモータD1,D2の間を延在するフランジ部12aを、半径方向外方に延在する少なくとも2つの通し孔12dが、半径方向に貫通するようにして形成されており、本体12Bの下方から本体12B内に挿通されたステータ用の配線HSb、HSbは、通し孔12dを介してステータ29,29’に接続されるようになっている。このとき、内側ロータ30,30’は、静電遮蔽の効果を与えることとなる。
尚、フランジ部12aを中心として第1ステータ29と第2ステータ29’を上下に配置し、その半径方向内側にレゾルバを配置している。一方、本体12Bの両端部にはそれぞれ少なくとも1つの切り欠き12e、12eが設けてあり、本体12Bの下方から本体12B内に挿通されたレゾルバへの配線HRb、HRbを、切り欠き12e、12eを介してレゾルバ側に引き出す構造となっている。ステータ用の配線HSb、HSbとレゾルバ用の配線HRb、HRbとを分離して取り回すことで、配線間に誘導が生じることを抑制できる。
図4は、モータユニットMU1におけるダイレクトドライブモータD1、D2の駆動回路を示すブロック図である。外部のコンピュータからモータ回転指令が入力されたとき、ダイレクトドライブモータD1用のモータ制御回路DMC1及びダイレクトドライブモータD2用のモータ制御回路DMC2は、それぞれ、そのCPUから3相アンプ(AMP)に駆動信号を出力し、3相アンプ(AMP)からダイレクトドライブモータD1、D2に駆動電流が供給される。それによりダイレクトドライブモータD1、D1の外側ロータ21,21’が独立して回転し、アームA1,A2(図1)を移動させるようになっている。外側ロータ21,21’が回転すると、上述のようにして回転角度を検出したレゾルバステータ35,36,35’、36’からレゾルバ信号が出力されるので、それをレゾルバデジタル変換器(RDC)でデジタル変換した後に入力したCPUは、外側ロータ21,21’が指令位置に到達したか否かを判断し、指令位置に到達すれば、3相アンプ(AMP)への駆動信号を停止することで外側ロータ21,21’の回転を停止させる。これにより外側ロータ21,21’のサーボ制御が可能となる。
真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームA1およびA2の回転位置を認識しないと真空槽の壁や、真空槽のシャッタにアームA1等をぶつけてしまう可能性があるが、本実施の形態では、回転軸の1回転の絶対位置を検出するアブソリュートレゾルバステータ36および36’と、より分解能の細かい回転位置を検出するインクリメンタルレゾルバステータ35および35’からなる可変リラクタンス型レゾルバを採用しているので、外側ロータ21、21’即ちアームA1,A2の回転位置制御を高精度に行える。
尚、ここでは内側ロータ30の回転検出にレゾルバを採用したが、検出器を隔壁13の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモータにおいては高精度で滑らかに駆動するための位置検出手段として採用されている光学式エンコーダや、磁気抵抗素子を使用した磁気式エンコーダ等も使用できる。
続いて、図2を参照してモータユニットMU1について説明する。かかるモータユニットMU1は、モータユニットMU2に対して基本的に同様の構造で鏡像の関係となっているので、異なる構成を中心として説明し、同様の構成は同じ符号を付すことで説明を省略する。
モータユニットMU2の本体12Bの上端に固定された隔壁ホルダ113aに対し、モータユニットMU1の本体12Aの下端にボルト12bにより固定された隔壁ホルダ113a’は同様のドーナツ円板形状を有するが、その下面(隔壁ホルダ113aに対向する面)に開口を取り巻くようにして周溝113c’を形成している。周溝13c’内には、封止体であるO−リングORが配置されており、隔壁ホルダ113aの上面と、隔壁ホルダ113a’の下面とが接触したときに、両者間を密封するようにしている。隔壁ホルダ113a’の外周には、底が抜けたカップ状の隔壁13Aを取り付けている。本体12Aと,円板10Aとによりハウジングを構成する。隔壁13Aの作用効果については、隔壁13Bと同様である。
図2で上方から、ボルト127がモータユニットMU1の本体12A及び隔壁ホルダ113a’を貫通し、モータユニットMU2の隔壁ホルダ113aに螺合することによって、モータユニットMU1、MU2は同軸的に連結されている。モータユニットMU1の本体12Aの上面に、円板部10Aを取り付けており、その中央開口は、シール板101により密閉されている。
このように隔壁13A,13Bを二分割構成とすることで、モータユニットMU1、MU2との間に、細い絞り部を設けることができる。よって、モータユニットMU1、MU2のそれぞれにテーブルTと、リンクL1、L2と、アームA1,A2とを取り付けた2台同軸のフロッグレッグアーム式搬送装置を構成した場合、テーブルTは、隔壁ホルダ113a、113a’の外径近くまで位置決め可能となり、可動範囲が広がるという利点を有する。
本体12Aにおいて、ダイレクトドライブモータD1,D2の間を延在するフランジ部12aを、半径方向外方に延在する少なくとも2つの通し孔12dが、半径方向に貫通するようにして形成されており、本体12Bの下方から本体12Bの貫通孔12b内に挿通され且つ本体12Aの貫通孔12bに導入されたステータ用の配線HSa、HSaは、本体12Aの通し孔12dを介してステータ29,29’に接続されるようになっている。
更に、本体12Aの両端部にはそれぞれ少なくとも1つの切り欠き12e、12eが設けてあり、本体12Bの下方から本体12B内の貫通孔12b内に挿通され且つ本体12Aの貫通孔12bに導入されたレゾルバへの配線HRa、HRaを、切り欠き12e、12eを介してレゾルバ側に引き出す構造となっている。なお、ステータ用の配線HSa、HSa及びレゾルバ用の配線HRa、HRaは途中で分断されて、その分断された端部は、本体12A、12Bの貫通孔12k内で、コネクタを構成する雄コネクタCMと雌コネクタCFにそれぞれ接続されている。雄コネクタCMと雌コネクタCFを接続した状態では、ステータ用の配線HSa、HSa及びレゾルバ用の配線HRa、HRaを介して、外部とモータユニットMU1との間で信号の授受を行えるようになっている。
図5は、モータユニットMU1、MU2を分解した状態を示す図である。モータユニットMU1、MU2を分解するには、図2において、円板10Aを本体12Aより取り外した後、ボルト127を緩めて取り外すことで可能になる。このとき、モータユニットMU1のステータ用の配線HSa、HSa及びレゾルバ用の配線HRa、HRaがつながったままであると分解の妨げになる。そこで、本実施の形態においては、雄コネクタCMと雌コネクタCFとを離脱させることで、ステータ用の配線HSa、HSa及びレゾルバ用の配線HRa、HRaを分断し、それによりステータ用の配線HSa、HSa及びレゾルバ用の配線HRa、HRaの一部を接続した状態で、モータユニットMU1をモータユニットMU2から分離させることができる。このようにすれば、配線の被覆を傷つける恐れも少ない。
なお、モータユニットMU1、MU2とを分離すると、気密構造を分解してしまうが、O−リングOR、128はその直径が小さく、且つ組み立てやすい箇所に配置されているので、再組立時に気密漏れを生じる可能性は低い。
分解した状態では、モータユニットMU1の下側に配置されたダイレクトドライブモータD2のステータとレゾルバの角度調整を行うことができ、且つモータユニットMU2の上側に配置されたダイレクトドライブモータD2のステータとレゾルバの角度調整を行うことができる。なお、モータユニットMU1の上側に配置されたダイレクトドライブモータD1のステータとレゾルバの角度調整は、本体12Aから円板12Aを取り外すことで行うことができ、一方、モータユニットMU1の下側に配置されたダイレクトドライブモータD1のステータとレゾルバの角度調整は、定盤Gに据え付けられた円板10Bから本体12Bを取り外すことで行える。
本実施の形態のモータシステムによれば、それぞれハウジングを構成する本体12A,12Bと、隔壁13A,13Bとを装着したまま分離可能となっているので、それ以上ダイレクトドライブモータD1,D2を分解することなく、モータユニットMU1の下側に配置されたダイレクトドライブモータD2のステータとレゾルバの角度調整を容易に行うことができ、且つモータユニットMU2の上側に配置されたダイレクトドライブモータD2のステータとレゾルバの角度調整を容易に行うことができる。また、軸受19’の点検や交換も容易に行うことができる。尚、以上から明らかであるが、6軸、8軸、10軸以上、というようにスペースが許す限りダイレクトドライブモータD1,D2を組み合わせてなるモータシステムを形成することは容易である。
以上の実施の形態では、表面磁石型の32極36スロットアウターロータ式ブラシレスモータを用いた例を用いて説明したが、この形式のモータに限定されるものではなく、ブラシレスモータであれば適用できるものであり、他の磁極形式、例えば永久磁石埋め込み型であっても良いし、他のスロットコンビネーションでも良いし、あるいはインナロータ型であっても良い。
また、各軸の干渉対策として、軸方向に隣接する軸同士の回転子の極数およびスロット数が異なる構成としても良い。例えば、2軸同軸の場合は、第一軸が32極36スロット、第二軸が24極27スロット、4軸同軸の場合は、第一軸および第三軸が32極36スロット、第二軸および第四軸が24極27スロットといった構成にすれば、各軸の磁界による回転子および磁気カップリング装置への回転方向の推力発生といった相互干渉を防ぐことができる。
また、ロータの永久磁石は、ネオジウム(Nd−Fe−B)系磁石を用い、耐食性を高めるためのコーティングとして、ニッケルコーティングを施した例を用いて説明したが、この材質、表面処理に限定されるものではなく、使用される環境などによって適宜変更されるものであり、例えばべークアウト時の温度条件によっては高温減磁しにくいサマリウム・コバルト(Sm・Co)系の磁石を用いるべきであり、超真空中で使用されるのであればアウトガス遮断性の高い窒化チタンコーティングを施すべきである。
また、ヨークは、低炭素鋼を材料とし、ニッケルめっきを施した例を用いて説明したが、この材質、表面処理に限定されるものではなく、使用される環境などによって適宜変更されるものであり、特に表面処理に関しては、超真空中で使用されるのであればピンホールの少ないカニゼンめっきやクリーンエスめっき、窒化チタンコーティング等を施すべきである。
また、永久磁石をヨークに締結する方法は、非磁性のくさびをヨーク外径側からねじで締め上げる例を用いて説明したが、使用される環境などによって適宜変更されるものであり、環境によっては接着でも良いし、他の締結方法でも良い。
また、軸受19,19’は真空用グリス潤滑の4点接触玉軸受を用いた例を説明したが、この形式、材質、潤滑方法に限定されるものではなく、使用される環境、荷重条件、回転速度などによって適宜変更されるものであり、クロスローラ軸受であっても良いし、4軸同軸モータの場合、さらに機械的な剛性を高めるために、別な軸受で支持する構造としても良いし、高速回転する場合など、多点接触軸受を用いることができない場合は各軸の回転子を支持する軸受および別な軸受を深溝玉軸受やアンギュラ軸受として予圧をかける構造としても良いし、超真空中で使用される場合は、軌道輪に金や銀などの軟質金属をプレーティングしたような、ガス放出のない金属潤滑としたものを用いても良い。
また、磁気カップリングとして機能する内側ロータとして、永久磁石とバックヨークを用いた形式で説明したが、永久磁石とバックヨークの材質および形状はこれに限定されるものではない。例えば、レゾルバの質量と軸受の摩擦トルクによっては、外側ロータと同極数でなくても良いし、同幅でなくても良い。永久磁石を用いない突極でも良い。
また、角度検出器としてレゾルバを用いた例で説明したが、製造コストや分解能によって適宜変更されるものであり、例えば光学式のロータリエンコーダでも良い。
また、角度検出器の回転側を回転自在に支持する軸受33,33’として、グリス潤滑の4点接触玉軸受を用いた例を説明したが、この形式、潤滑方法に限定されるものではなく、設置スぺースや摩擦トルク、回転速度などによって適宜変更されるものであり、高速回転や摩擦トルクの低減など、多点接触軸受を用いることができない場合は、アンギュラ軸受や深溝玉軸受を各軸ごとに2個配置して、予圧をかける構造としても良い。
また、その他の隔壁の外、中に配置される構造部品および隔壁の材質、形状、製造方法は、製造コストや使用される環境、荷重条件、構成などによって適宜変更されるものである。
以上述べたモータシステムは、各軸のロータや、ステータや、レゾルバに用いた磁気カップリングから漏れる磁束によって、互いのロータや回転検出器に用いた磁気カップリングに回転方向の推力を発生させないように、互いの磁界を遮蔽するための磁気シールドを各軸のロータ間に配設したり、各軸のロータ、ステータ、レゾルバから発生する電磁界によって互いのレゾルバに干渉しないように、互いの電磁界を遮蔽するための磁気シールドを配設したり、軸方向に隣接する軸同士のロータの極数やステータのスロット数を変えたりすることによって、各軸相互に発生する磁気的干渉を防止しているので、各軸の軸方向長さと、各軸の軸方向距離を短くすることができる。よって、2軸同軸、4軸同軸といった多軸同軸モータシステムでありながら、全体の軸長を抑えた構成が可能である。特に、4軸同軸といった多軸構成のダイレクトドライブモータを用いたシステムにおいては、チャンバ構造を大きく変えることなく高精度な位置決めが出来るフロッグレッグアーム式ロボットを2台設置できるので、装置全体の性能および稼働率を高めることができる。
以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。例えば、本実施の形態のダイレクトドライブモータは、真空雰囲気に限らず、大気外の雰囲気で使用することができる。例えば、半導体製造工程の場合、真空排気後に真空槽内部にエッチング用の反応性ガスが導入されることがあるが、本実施の形態のダイレクトドライブモータでは、隔壁により内部と外部とが遮蔽されているため、モータコイルや絶縁材等がエッチングされてしまうおそれもない。