JP4691228B2 - Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery - Google Patents
Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery Download PDFInfo
- Publication number
- JP4691228B2 JP4691228B2 JP2000030751A JP2000030751A JP4691228B2 JP 4691228 B2 JP4691228 B2 JP 4691228B2 JP 2000030751 A JP2000030751 A JP 2000030751A JP 2000030751 A JP2000030751 A JP 2000030751A JP 4691228 B2 JP4691228 B2 JP 4691228B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- composite oxide
- manganese
- secondary battery
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、改良された非水リチウム二次電池用リチウム−マンガン複合酸化物の製造法に関する。
【0002】
【従来の技術】
近年、電気機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有する非水電解液二次電池に対する期待が高まっている。非水電解液二次電池用の活物質としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO2などのリチウムと遷移金属との複合酸化物が知られている。
【0003】
その中でも特に最近は、安価な材料として、リチウムとマンガンの複合酸化物の研究が盛んに行なわれており、これらを正極活物質に用いて、リチウムを吸蔵、放出することができる炭素材料等の負極活物質と組み合わせることによる、高電圧、高エネルギー密度の非水電解液二次電池の開発が進められている。
【0004】
一般に、非水電解液二次電池に用いられる正極活物質は、主活物質であるリチウムにコバルト、ニッケル、マンガンをはじめとする遷移金属を固溶させた複合酸化物からなる。用いられる遷移金属の種類によって、電気容量、可逆性、作動電圧などの電極特性が異なる。
【0005】
例えば、LiCoO2、LiNi0.8Co0.2O2のように、コバルトやニッケルを固溶させた岩塩層状複合酸化物を正極活物質に用いた非水電解液二次電池は、それぞれ140〜160mAh/gおよび190〜210mAh/gと比較的高い容量密度を達成できるとともに、2.7〜4.3Vといった高い電圧域での充放電で良好な可逆性を示す。しかしながら、原料となるコバルトやニッケルが高価であるので活物質のコストが高くなるという問題や、2.5V以下の低電圧領域では可逆性が悪化するという問題がある。
【0006】
一方、比較的安価なマンガンを原料とする種々のリチウム−マンガン複合酸化物が提案されている。この種のリチウム−マンガン複合酸化物は、LixMnyOzとして表すことができる。なかでも、電池活物質としては、0.66≦x≦5、1≦y≦5、2≦z≦12のものが知られている。例えば、LiMn2O4、LiMnO2、Li4Mn5O12、Li2Mn2−xCrxO4、Li2/3Mn1−xMxO2である。但し、上式中のサフィックス記号x、y及びzは、本発明の式中で用いているサフィックス記号x、y及びzとは無関係である。
【0007】
これらリチウム−マンガン複合酸化物の製造法としては、通常、リチウム化合物粉末固体とマンガン化合物粉末固体との高温固相反応や、リチウム化合物溶液とマンガン化合物溶液を出発原料とするゾル−ゲル法等が知られているが、高容量、高エネルギー密度、高耐久性かつ低コストで量産可能な活物質の製造法が望まれている。
【0008】
LiMn2O4からなるスピネル型複合酸化物を活物質に用いた非水電解液二次電池は、容量が上述のコバルト系およびニッケル系活物質にくらべ100〜120mAh/gと低く、充放電サイクル耐久性が乏しいという問題に加えて、3V未満の低い電圧領域で急速に劣化するという問題もある。
【0009】
同じく、安価なマンガンを原料とするLiMnO2からなる複合酸化物を活物質に用いた非水電解液二次電池は、LiMn2O4より2V前後の低い電圧領域まで作動できるので高い容量が期待できるが、充放電耐久性がLiMn2O4よりさらに乏しいという問題がある。
【0010】
このLiMnO2としては、β−NaMnO2型構造からなる斜方晶LiMnO2と、α−NaMnO2型構造からなる層状岩塩型構造の単斜晶相LiMnO2とが知られている。斜方晶LiMnO2は、充放電サイクル耐久性に乏しい。単斜晶LiMnO2の合成は、通常の固相反応法で合成したα−NaMnO2をLiイオンを含む非水溶媒中で300℃以下の温度でイオン交換に供することにより行われている(A.R.Armstrong and P.G.Bruce,NATURE,Vol.381,p499,1996)。
【0011】
また、アルカリ金属水酸化物共存下のリチウム塩水溶液中でマンガン酸化物を水熱処理することにより直接合成することもすでに提案されている(田淵ら、特開平11−21128号公報)。また、Young−I Jangら(Electrochemical and Solid−State Letters Vol.1,p13〜16,1998)およびYet−Ming Chiangら(Electrochemical and Solid−State Letters Vol.2,p107〜110,1999)により、950℃前後での固相反応により、単斜晶系層状岩塩構造ならびに斜方晶系LiAl0.05Mn0.95O2および単斜晶系層状岩塩構造LiMnO2の合成が報告されている。
【0012】
また、固相法により、LiMnO2のMnを一部Fe、Ni、Co、CrまたはAlで置換した、LiMnMO2(M=Fe、Co、Ni、Cr、Al)が特開平10−134812号公報に開示されている。また、芳賀ら(電気化学、63巻、941〜946頁、1995年,電気化学、64巻、388〜393頁、1996年)は、固相法に改良を加え、溶融含浸法によるリチウム−マンガン複合酸化物の合成法を提案している。この溶融含浸法は、酸化マンガン粉末と、水酸化リチウム粉末または硝酸リチウム粉末とを所望の組成のリチウム−マンガン複合酸化物となるような比率で混合したのち、この混合粉体を昇温することにより、水酸化リチウムあるいは硝酸リチウムを融解せしめて酸化マンガン粉体の細孔内に含浸せしめて反応させる方法である。
【0013】
同じく、反応に寄与するリチウム化合物粉末を必要量の1.5〜2倍用いて、遷移金属化合物粉末と混合し、その混合粉末を昇温することにより、リチウム化合物粉末を融解させ、遷移金属化合物粉体の細孔内に含浸させて反応させる方法が提案されている(特開平08−138668号公報)。
【0014】
さらに、リチウム化合物粉体と遷移金属化合物粉体を用い、直接反応に寄与しないリチウム塩を融剤として粉末状態で混合し、昇温することにより融剤を融解させ、リチウム化合物と遷移金属化合物を反応させる方法も提案されている(特開平06−064928号公報)。
【0015】
【発明が解決しようとする課題】
しかしながら、かかる方法では、リチウム塩を含む粉末と遷移金属化合物粉末との混合状態により、リチウム−マンガン複合酸化物の電池特性が大きく変わってしまうという問題がある。また、リチウム塩を含む溶融塩を形成する原料粉末とマンガン化合物粉末を混合し、しかる後にその混合物粉末を昇温し、溶融塩とマンガン化合物とを反応させることは、反応速度が遅い、均一な反応が困難である、また、副反応が起こり易い等の問題があり好ましくない。
【0016】
これらの水熱法、固相法、溶融含浸法、イオン交換法等は、いずれもリチウム−マンガンあるいはリチウム−マンガン−金属元素(M)複合酸化物の生成反応に4〜40時間と長時間を要するという問題がある。また、固相法で製造した複合酸化物をリチウム二次電池の正極材料として用いた場合、初期の容量が低く、充放電を数〜100サイクル程度繰り返さないと、高い電気容量が発現しない。加えて、固相法および溶融含浸法では、粉末の混合を均一にしないと性能が充分に発現し難いという問題や、充放電サイクル劣化が大きい等の問題があった。
【0017】
このようなことから、短時間で容易に合成でき、初期容量が高く、使用可能な電圧範囲が広く、かつ高容量の充放電サイクル耐久性のある活物質が望まれていた。
【0018】
したがって、本発明の目的は、大きな初期容量を有する、充放電サイクル耐久性に優れた非水電解液二次電池用正極材料として、短時間で合成できる複合酸化物の製造法を提供することにある。
【0019】
【課題を解決するための手段】
本発明によれば、この目的は、リチウム塩を含む塩を溶融させて溶融塩とした後、該溶融塩中にマンガンを含有する化合物を添加して反応させることにより達成される(第1の製造法)。このようして得られるリチウム−マンガン複合酸化物は、LiaMnbOcなる式で表される。式中のa、b及びcは、電池活物質としては、0.66≦a≦5、1≦b≦5、2≦c≦12が好ましい。例えば、LiMn2O4、LiMnO2、Li4Mn5O12、Li2Mn2O4、Li2/3MnO2が挙げられる。
【0020】
また、本発明は、リチウム塩を含む塩を溶融させて溶融塩とした後、該溶融塩中にマンガンと金属元素Qを含有する化合物を添加して反応させることを特徴としており、これによっても上記目的が達成される(第2の製造法)。但しQは、Al、Fe、Co、Ni、Cr、V、Mo、Ti、Mg、Nb、Ta、B、Ca、Ce、Ag、Zn、Zr、Sn、Pb、Siのいずれかである。このようにして得られるリチウム−マンガン複合酸化物は、LidMneQfOgなる式で表される。なかでも、電池活物質としては、0.66≦d≦5、1≦e≦5、0≦f≦3.0、2≦g≦12が好ましい。例えば、LiMn1.95Cr0.05O4、LiMn0.9Al0.1O2、Li4Mn2.9Cr2.1O12、Li2Mn1.6Cr0.4O4、Li2/3Mn1−hCohO2が挙げられる。
【0021】
本発明において、上記第1の製造法により得られる非水リチウム二次電池用リチウム−マンガン複合酸化物は、LiyMnO2なる式1が好ましく挙げられる。但し式1中、yは0.3≦y≦1.3である。
【0022】
また、本発明において、上記第2の製造法により得られる非水リチウム二次電池用リチウム−マンガン複合酸化物は、LizMnxM1−xO2なる式2が好ましく挙げられる。但し式2中Mは、Al、Fe、Co、Ni、Cr、V、Mo、Ti、Mg、Nb、Ta、B、Ca、Ce、Ag、Zn、Zr、Sn、Pb、Siの群から選択される1種以上の元素である。また、式2中zは0.3≦z≦1.3であり、xは0.4≦x<1である。
【0023】
本発明において用いられるリチウム塩は、水酸化リチウム、塩化リチウム、硝酸リチウムおよび炭酸リチウムの内の少なくとも1種以上であり、その溶融塩には、直接反応に寄与するリチウム塩が含まれることが特に好ましい。
【0024】
さらに言えば、リチウム塩と大過剰のカリウム塩からなる混合物を用いることがより好適であり、これによれば、リチウム−マンガン複合酸化物の生成反応が容易となる結果、副生成物(例えばLi2MnO3)の生成が抑止され、非水リチウム二次電池とした際に電池容量の大きい電池が得られるリチウム−マンガン複合酸化物を、選択率良く製造することができる。
【0025】
本発明において用いられるカリウム塩は、水酸化カリウム、塩化カリウム、硝酸カリウムおよび炭酸カリウムの内の少なくとも1種以上が好ましく挙げられ、具体的には、水酸化リチウム−水酸化カリウム混合溶融塩が特に好ましくい。
【0026】
リチウム塩とカリウム塩のモル比は、リチウム塩1モルに対し、カリウム塩1.5モル以上が好ましい。カリウム塩が1.5モル以下であると、カリウム添加効果が少なくなり、反応速度が低下し、副反応が進行し易くなる結果、得られた複合酸化物である活物質の選択率の低下ならびに得られた複合酸化物を活物質として用いた電池の性能が低下するので好ましくない。カリウム塩の比率の上限は複合酸化物に組み込まれるリチウム原子の量から自ずと決まる。リチウム塩1モルに対するカリウム塩は3モル以上が特に好ましい。
【0027】
層状岩塩型の単斜晶相であるリチウム−マンガン複合酸化物を合成する場合、従来の固相反応で得られた複合酸化物を活物質として用いた電池は、25℃では初期の放電容量が著しく低く充放電サイクルと共に容量が増加する問題があったが、本発明の製造方法により得られた複合酸化物を活物質として用いた電池は通常の放電レートにおいても、25℃において、1サイクル目から高い放電容量を示す特徴がある。
【0028】
本発明において、反応に用いる溶融塩の体積は、反応に用いるマンガン化合物の体積の3倍以上であることが好ましい。3倍以下であると反応を均一に行うことが困難となるので好ましくない。一方、1000倍以上であると反応装置が大きくなるので好ましくない。このような理由により、反応に用いる溶融塩の体積は、反応に用いるマンガン化合物の体積の5〜50倍が好ましい。
【0029】
本発明において、マンガンを含有する化合物には、酸化物、オキシ水酸化物、炭酸塩、塩化物、蓚酸塩、酢酸塩、硝酸塩および硫酸塩のうちの少なくとも1種以上が用いられる。特には、マンガンと上記した各種の金属元素Qおよび/またはMとの少なくとも共沈水酸化物、共沈オキシ水酸化物、共沈酸化物、混合酸化物、混合水酸化物のいずれかであることが好ましい。
【0030】
本発明の製造方法においては、溶融塩とマンガンを含有する化合物を反応させた後、その反応混合物を急冷することが好ましく、この点も本発明の特徴の一つである。本発明によれば、結晶構造が層状岩塩型の単斜晶相である複合酸化物が得られる。
【0031】
【発明の実施の形態】
本発明の式1(LiyMnO2)におけるyは0.3〜1.3が好ましい。yが0.3未満であると二次電池として作動させるために負極にリチウム合金の使用を必要としたり、負極炭素に金属リチウムを予めドープすることがリチウムイオン電池製造時に必要となるので好ましくない。yが1.3超であると放電容量が低下するので好ましくない。yは特に好ましくは0.85〜1.15であり、さらに好ましくは1付近である。
【0032】
本発明の式2(LizMnxM1−xO2)におけるxは0.4〜1未満が好ましい。xが0.4未満であると層状構造を維持出来なくなるので好ましくない。xは特に好ましくは0.8〜0.99が採用される。上記式2におけるzは0.3〜1.3が好ましい。zが0.3未満であると二次電池として作動させるために負極にリチウム合金の使用を必要としたり、負極炭素に金属リチウムを予めドープすることがリチウムイオン電池製造時に必要となるので好ましくない。zが1.3超であると放電容量が低下するので好ましくない。zは特に好ましくは0.85〜1.15であり、さらに好ましくは1付近である。
【0033】
本発明において、式1におけるyおよび式2におけるzはマンガン含有化合物とリチウム含有溶融塩との浴組成と反応温度、反応時間等により制御される。
【0034】
上記式1および式2の複合酸化物は、結晶構造として斜方晶、単斜晶およびLiCoO2と同様な菱面体晶系(Rhombohedral)空間群R−3mからなる層状構造を取りうるが、本発明の複合酸化物の中でも結晶構造が単斜晶層状岩塩型構造のものが、充放電サイクル耐久性が高いことから好ましい結晶構造である。
【0035】
本発明の製造法において、反応に供するマンガンを含有する化合物(以下、「マンガン源原料」ともいう)および、金属元素(Q)および/または金属元素(M)を含有する化合物(以下、「金属元素源原料」ともいう。また「金属元素(Q)および/または金属元素(M)」を単に「金属元素」と略す)の添加方法としては、あらかじめ、両者を均一な混合物としてから用いるとマンガンと金属元素が均一に固溶した本発明の複合酸化物を形成し易いので好ましい。
【0036】
なかでも、マンガン源原料および金属元素源原料が、マンガンと金属元素の共沈水酸化物、共沈酸化物または共沈オキシ水酸化物の少なくともいずれかであることがマンガンと金属元素がより均一な固溶体である本発明の複合酸化物ができるので特に好ましい。
【0037】
また、金属元素源原料を溶液状態で共存させてから、その水溶液中にマンガン源原料を加えて乾燥・焼成することにより、マンガンと金属元素Mからなる酸化物を得る方法は、溶液状態の金属元素源原料がマンガン源原料と反応しやすいため、比較的均一に固溶した本発明の複合酸化物を形成し易いので好ましい。また、別の方法として、水酸化リチウム(LiOH・H2O)と金属元素の塩(例えば、硝酸銅(Cu(NO3)2・9H2O))との混合物を溶融塩とした中にマンガンを含有する化合物を添加して反応させる方法もある。
【0038】
本発明の製造法において、マンガン源原料としては、酸化物(Mn2O3、MnO、MnO2など)、これら酸化物の水和物、オキシ水酸化物などが挙げられる。マンガン源原料としては、3価のマンガンの化合物がより好ましい。これらのマンガン源原料は、単独で使用してもよく、2種以上を併用しても良い。
【0039】
本発明の製造法において、金属元素源原料としては、単体金属、水酸化物、酸化物、オキシ水酸化物、塩化物、硝酸塩等が使用される。これらの金属元素源原料は、単独で使用してもよく、2種以上を併用しても良い。
【0040】
本発明の製造法の具体例としては、例えば、まず水酸化リチウム粉末と水酸化カリウム粉末を混合し、加熱溶融させる(水酸化リチウムの融点は450℃、水酸化カリウムの融点は360℃)。本発明は、溶融塩の融点以上の温度で反応を行なう必要がある。複数の塩からなる混合溶融塩の場合は、単独塩の場合より融点が低下する場合があるため、反応温度は300〜1200℃の範囲で適宜選択される。温度が高い方が反応速度は高いが、あまり反応速度が高すぎると副反応が進みやすく反応の選択率が低下するので好ましくない。反応温度が低すぎると反応速度が低下し、反応に長時間を要するので好ましくない。好ましくは、500〜900℃が選ばれる。
【0041】
本発明において、溶融塩中にマンガン源原料を添加、投入することにより反応が開始される。本発明の反応雰囲気は特に限定されないが、層状リチウム−マンガン複合酸化物を選択率良く得るためには、窒素あるいはアルゴン等の不活性ガス雰囲気であることが好ましい。反応雰囲気が酸素ガスを含有すると層状リチウム−マンガン複合酸化物の選択率が低下することがある。反応雰囲気中の酸素濃度は、好ましくは5000ppm以下、特に好ましくは50ppm以下である。
【0042】
本発明の目的の一つである層状リチウム−マンガン複合酸化物は、リチウム塩からなる溶融塩とマンガンを含有する化合物との反応により生成されるが、この複合酸化物は、反応時間が長いとリチウム塩からなる溶融塩とさらに接触して、Li2MnO3に転化し、目的とする層状構造のリチウム−マンガン複合酸化物の選択率が低下する。したがって、反応時間が長すぎるのは好ましくない。
【0043】
本発明の別目的の一つであるリチウム−マンガンスピネル複合酸化物合成時の反応雰囲気は10%以上の酸素含有雰囲気が必要である。
【0044】
本発明は、従来の合成法に較べて著しく反応時間が短く、生産性が良い特徴を有する。本発明における反応時間は反応温度との組み合わせにより適宜選択され、反応温度にもよるが、0.3〜60分が採用される。反応時間が0.3分以下であると反応が激しく起こるため、副反応が起こり易く、また、反応を制御するのが困難となるので好ましくない。
【0045】
好ましい反応時間は1〜20分である。また、同じ理由により、層状構造のリチウム−マンガン複合酸化物が生成したら速やかに系の温度を低下させ、反応を停止することが好ましい。例えば、リチウム−マンガン複合酸化物からなる沈殿生成物を含有する溶融塩を入れた容器を水冷により急冷する。しかる後に、その容器内に純水を添加し、過剰のリチウム塩、ナトリウム塩、カリウム塩等を水洗除去することにより、リチウム−マンガン複合酸化物、例えばLiMnO2を単離し、乾燥することにより活物質粉末を得る。
【0046】
本発明における複合酸化物としては、マンガンの一部を金属元素Mで置換したLizMnxM1−xO2が、非水リチウム二次電池に用いた際に、電池の初期容量あるいは充放電サイクル耐久性が向上するので特に好ましい。金属元素Mとしては、Al、Fe、Co、Ni、Cr、V、Mo、Ti、Mg、Nb、Ta、Agが好ましい。Mは、特に好ましくはCr、Al、Fe、Mgである。
【0047】
本発明の複合酸化物の粉末に、アセチレンブラック、黒鉛、ケッチエンブラック等のカーボン系導電材と結合材を混合することにより正極合剤が形成される。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。
【0048】
本発明の複合酸化物の粉末と導電材と結合材ならびに結合材の溶媒または分散媒からなる、スラリーまたは混練物をアルミニウム箔、ステンレス箔等の正極集電体に塗布/担持させて正極板とする。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムが使用される。
【0049】
この正極板が用いられる非水リチウム二次電池において、その電解質溶液の溶媒は炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)等が例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。
【0050】
上記炭酸エステルを単独で、または2種以上を混合して使用することもできる。また、他の溶媒と混合して使用してもよい。なお、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。また、これらの有機溶媒にフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えば、アトケム社製カイナー)を添加し、下記の溶質を加えることによりゲルポリマー電解質としても良い。
【0051】
溶質としては、ClO4−、CF3SO3−、BF4−、PF6−、AsF6−、SbF6−、CF3CO2−、(CF3SO2)2N−等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液またはポリマー電解質は、リチウム塩からなる電解質を上記溶媒または溶媒含有ポリマーに0.2〜2.0mol/lの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質の電気伝導度が低下する。より好ましくは0.5〜1.5mol/lが選定される。
【0052】
負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。
【0053】
炭素材料としては、様々な熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔等が用いられる。
【0054】
本発明における正極は、活物質を有機溶媒と混練してスラリとし、該スラリを金属箔集電体に塗布、乾燥、プレスして得ることが好ましい。本発明のリチウム電池の形状には特に制約はない。シート状(いわゆるフイルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が用途に応じて選択される。
【0055】
【実施例】
次に、本発明の具体的ないくつかの実施例について説明するが、本発明はこれらの実施例に限定されない。
【0056】
[実施例1]
水酸化リチウム粉末(LiOH・H2O)30gをニッケル製坩堝に入れ、アルゴン雰囲気下、電気炉で600℃に加熱し、LiOH溶融塩とした。この溶融塩に三酸化二マンガン粉末6gを投下し、5分後に溶融塩中にリチウム−マンガン複合酸化物固体が沈殿している坩堝を電気炉から取り出し、水で坩堝を急冷した。しかる後に内容物に純水を添加して、水酸化リチウムと溶融塩表面に浮上した副生成物とを除去し、坩堝内の沈殿物を回収した。沈殿物の収量は5.2gであった。この沈殿物のCu−Kα線を用いたX線回折スペクトルを図1に示す。図1より、この沈殿物は斜方晶LiMnO2を主体とし、単斜晶を一部に含む構造であると同定された。同様の方法で上記の副生成物はLi2MnO3であると同定された。
上記の沈殿物を活物質粉末として用い、この活物質粉末とアセチレンブラックとポリテトラフルオロエチレンとを80/15/5の重量比でトルエンを加えつつ混練し、シート状とした。このシートを径13ミリに打ち抜き、180℃にて2時間真空乾燥した。そして、アルゴングローブボックス内で該シートを径18ミリの20μmアルミニウム箔正極集電体上に載置して正極体を得た。
セパレータには厚さ25μmの多孔質ポリプロピレンを用い、負極には厚さ500μmの金属リチウム箔を用い、負極集電体にSUS316を使用し、正極側SUS316Lケースと負極側SUS316キャップを用い、電解液には1M LiPF6/EC+DEC(1:1)を用いて、コインセル径20ミリ,厚さ3.2ミリのコインセル型電池をアルゴングローブボックス内で2セル組み立てた。
2セルの内の一方の電池を、大気中にて25℃恒温槽内において、正極活物質1gにつき30mAで4.3Vまで電圧カットにて定電流充電した後、正極活物質1gにつき30mAで2.0Vまで電圧カットにて定電流放電し、初期の放電容量と放電エネルギーを求めた結果、それぞれ110mAh/g、330mWH/gであった。
また、2セルの内の他方の電池については、大気中にて60℃恒温槽内で、正極活物質1gにつき30mAで4.3Vまで定電流充電した後、正極活物質1gにつき30mAで2.0Vまで定電流放電し、初期の放電容量と放電エネルギーを求めた結果、それぞれ168mAh/g、492mWH/gであった。
【0057】
[実施例2]
水酸化カリウム粉末(KOH)12gと、水酸化リチウム粉末(LiOH・H2O)18gをニッケル製坩堝に入れ、アルゴン雰囲気下、電気炉で600℃に加熱し、LiOH−KOH混合溶融塩とした。この溶融塩に三酸化二マンガン粉末6gを投下し、5分後に溶融塩中にリチウム−マンガン複合酸化物固体が沈殿している坩堝を電気炉から取り出し、水で坩堝を急冷した。しかる後に内容物に純水を添加して、水酸化リチウムと溶融塩表面に浮上した副生成物とを除去し坩堝内の沈殿物を回収した。沈殿物の収量は4.5gであった。
この沈殿物のCu−Kα線を用いたX線回折スペクトルを図2に示す。図2より、この沈殿物は層状岩塩型単斜晶LiMnO2を主体とし、斜方晶を一部に含む構造であると同定された。同様の方法で上記副生成物はLi2MnO3であると同定された。
上記の沈殿物を活物質粉末として用いた他は、上記実施例1と同様な方法でコインセル型電池を2セル組み立てて、電池性能を調べた。25℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ121mAh/g、367mWH/gであった。また、60℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ197mAh/g、617mWH/gであった。
【0058】
[実施例3]
電解二酸化マンガン粉末に硝酸クロム水溶液を含浸させて乾燥した後、650℃にて3時間大気中で焼成することにより、Mn1.9Cr0.1O3粉末を得た。
水酸化リチウム粉末(LiOH・H2O)30gをニッケル製坩堝に入れ、アルゴン雰囲気下、電気炉で600℃に加熱し、LiOH溶融塩とした。この溶融塩にMn1.8Cr0.2O3粉末6gを投下し、5分後に溶融塩中にリチウム−マンガン−クロム複合酸化物固体が沈殿している坩堝を電気炉から取り出し、水で坩堝を急冷した。しかる後に内容物に純水を添加して、水酸化リチウムと溶融塩表面に浮上した副生成物とを除去し坩堝内の沈殿物を回収した。沈殿物の収量は4.5gであった。
この沈殿物のCu−Kα線を用いたX線回折スペクトルを図3に示す。図3より、この沈殿物は層状岩塩型単斜晶LiMn0.95Cr0.05O2であると同定された。同様の方法で上記副生成物はLi2Mn0.95Cr0.05O3であると同定された。
この活物質粉末を用いた他は、上記実施例1と同様な方法でコインセル型電池を2セル組み立てて、電池性能を調べた。25℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ158mAh/g、498mWH/gであった。また、60℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ188mAh/g、599mWH/gであった。
【0059】
[実施例4]
電解二酸化マンガン粉末に硝酸鉄水溶液を含浸させて乾燥した後、650℃にて3時間大気中で焼成することにより、Mn1.9 Fe0.1O3粉末を得た(工程A)。
水酸化カリウム粉末(KOH)10gと、水酸化リチウム粉末(LiOH・H2O)2gをニッケル製坩堝に入れ、アルゴン雰囲気下、電気炉で600℃に加熱し、LiOH−KOH混合溶融塩(LiOH1モルに対しKOH3.7モル)とした。この溶融塩に上記のMn1.9 Fe0.1O3粉末2gを投下し、5分後に溶融塩中にリチウム−マンガン複合酸化物固体が沈殿している坩堝を電気炉から取り出し、水で坩堝を急冷した。しかる後に内容物に純水を添加して、水酸化リチウムと水酸化カリウムを除去した。溶融塩表面に浮上する副生成物は認められなかった。室温下にて純水で水洗後坩堝内の沈殿物を回収した。沈殿物を60℃で乾燥した(工程B)。
沈殿物の収量は1.81gであった。この沈殿物のCu−Kα線を用いたX線回折スペクトルを図4に示す。図4より、この沈殿物は斜方晶LiMnO2構造および単斜晶LiMnO2構造を有することが判る。
上記のMn/Feが0.95/0.05(原子比)であるリチウム含有層状マンガン複合酸化物からなる沈殿物を活物質粉末として用い、この活物質粉末とアセチレンブラックとポリテトラフルオロエチレンとを80/15/5の重量比でトルエンを加えつつ混練し、シート状とした。このシートを径13ミリに打ち抜き、180℃にて2時間真空乾燥した。そして、アルゴングローブボックス内で該シートを直径18ミリの厚さ20μmアルミニウム箔正極集電体上に載置して正極体を得た。
セパレータには厚さ25μmの多孔質ポリプロピレンを用い、負極には厚さ500μmの金属リチウム箔を用い、負極集電体にSUS316を使用し、正極側SUS316Lケースと負極側SUS316キャップを用い、電解液には1M LiPF6/EC+DEC(1:1)を用いて、コインセル径20ミリ,厚さ3.2ミリのコインセル型電池をアルゴングローブボックス内で2セル組み立てた。
この2セルの内の一方の電池を、大気中にて25℃恒温槽内において、正極活物質1gにつき30mAで4.3Vまで電圧カットにて定電流充電した後、正極活物質1gにつき30mAで2.0Vまで電圧カットにて定電流放電し、初期の放電容量と放電エネルギーを求めた結果、それぞれ208mAh/g、626mWH/gであった。
また、2セルの内の他方の電池については、大気中にて60℃恒温槽内で、正極活物質1gにつき30mAで4.3Vまで定電流充電した後、正極活物質1gにつき30mAで2.0Vまで定電流放電し、初期の放電容量と放電エネルギーを求めた結果、それぞれ228mAh/g、702mWH/gであった。
【0060】
[実施例5]
上記実施例4の工程Aにおいて、硝酸鉄の替わりに硝酸アルミニウムを用いた他は実施例4と同様にしてMn1.9 Al0.1O3を合成した。さらに上記実施例4の工程BにおいてMn1.9 Fe0.1O3粉末2gの替わりに、上記のMn1.9 Al0.1O3粉末を2g用いて、上記実施例4と同様にして反応せしめ、沈殿物1.80gを得た。副反応生成物は認められなかった。この生成物のCu−Kα線を用いたX線回折スペクトルを図5に示す。図5より、この沈殿物は単斜晶LiMnO2構造を主体とし、斜方晶LiMnO2構造が共存した混合物であることが判る。
上記のMn/Alが0.95/0.05(原子比)であるリチウム含有層状マンガン複合酸化物からなる沈殿物を活物質粉末として用いた他は、上記実施例4と同様な方法でコインセル型電池を2セル組み立てて、電池性能を調べた。25℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ215mAh/g、664mWH/gであった。また、60℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ247mAh/g、779mWH/gであった。
【0061】
[実施例6]
上記実施例4の工程Aにおいて、硝酸鉄の替わりに硝酸クロムを用いた他は実施例4と同様にしてMn1.9Cr0.1O3を合成した。さらに上記実施例4の工程BにおいてMn1.9 Fe0.1O3粉末2gの替わりに、上記のMn1.9Cr0.1O3粉末を2g用いて、上記実施例4と同様に反応せしめ、沈殿物1.81gを得た。副反応生成物は認められなかった。この生成物のCu−Kα線を用いたX線回折スペクトルを図6に示す。図6より、この沈殿物は単斜晶LiMnO2構造を有することが判る。
上記のMn/Crが0.95/0.05(原子比)であるリチウム含有層状マンガン複合酸化物からなる沈殿物を活物質粉末として用いた他は、上記実施例4と同様な方法でコインセル型電池を2セル組み立てて、電池性能を調べた。25℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ197mAh/g、601mWH/gであった。また、60℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ222mAh/g、696mWH/gであった。
【0062】
[実施例7]
上記実施例4の工程Aにおいて、硝酸鉄の替わりに硝酸コバルトを用いた他は上記実施例4と同様にしてMn1.9Co0.1O3を合成した。さらに上記実施例4の工程BにおいてMn1.9 Fe0.1O3粉末2gの替わりに、上記のMn1.9Co0.1O3粉末を2g用いて、上記実施例4と同様にして反応せしめ、沈殿物1.81gを得た。副反応生成物は認められなかった。この生成物のCu−Kα線を用いたX線回折スペクトルを図7に示す。図7より、この沈殿物は単斜晶LiMnO2構造を有することが判る。
上記のMn/Coが0.95/0.05(原子比)であるリチウム含有層状マンガン複合酸化物からなる沈殿物を活物質粉末として用いた他は、上記実施例4と同様な方法でコインセル型電池を1セル組み立てて、電池性能を調べた。60℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ237mAh/g、741mWH/gであった。
【0063】
[実施例8]
上記実施例4の工程Aにおいて、硝酸鉄の替わりに硝酸銀を用いた他は上記実施例4と同様にしてMn1.9Ag0.1O3を合成した。さらに上記実施例4の工程BにおいてMn1.9 Fe0.1O3粉末2gの替わりに、上記のMn1.9Ag0.1O3粉末を2g用いて、上記実施例4と同様に反応せしめ、沈殿物1.81gを得た。副反応生成物は認められなかった。この生成物のCu−Kα線を用いたX線回折スペクトルを図8に示す。図8より、この沈殿物は単斜晶LiMnO2構造を主体とし、斜方晶LiMnO2構造が共存した混合物であることが判る。
上記のMn/Agが0.95/0.05(原子比)であるリチウム含有層状マンガン複合酸化物からなる沈殿物を活物質粉末として用いた他は、上記実施例4と同様な方法でコインセル型電池を1セル組み立てて、電池性能を調べた。60℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ215mAh/g、659mWH/gであった。
【0064】
[実施例9]
上記実施例4の工程Aにおいて、硝酸鉄の替わりに硝酸ニッケルを用いた他は上記実施例4と同様にしてMn1.9Ni0.1O3を合成した。さらに上記実施例4の工程BにおいてMn1.9Fe0.1O3粉末2gの替わりに、上記のMn1.9Ni0.1O3粉末を2g用いて、上記実施例4と同様に反応せしめ、沈殿物1.80gを得た。副反応生成物は認められなかった。この生成物のCu−Kα線を用いたX線回折スペクトルを図9に示す。図9より、この沈殿物は菱面体晶系(Rhombohedral)空間群R−3mからなる層状構造であることが判る。
上記のMn/Niが0.95/0.05(原子比)であるリチウム含有層状マンガン複合酸化物からなる沈殿物を活物質粉末として用いた他は、上記実施例4と同様な方法でコインセル型電池を1セル組み立てて、電池性能を調べた。60℃恒温槽中における初期の放電容量と放電エネルギーを求めた結果、それぞれ229mAh/g、726mWH/gであった。
【0065】
【発明の効果】
本発明の短時間の合成反応による製造方法により得られた複合酸化物を正極活物質に用いることにより、広い電圧範囲での使用を可能で、初期容量が大きいとともに、サイクル特性の高い非水リチウム二次電池を得ることができる。
また、従来用いられていたコバルトやニッケルに比べて安価なマンガンを主原料に用いることにより、安価なリチウム二次電池用材料を提供できる。
【図面の簡単な説明】
【図1】実施例1における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図2】実施例2における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図3】実施例3における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図4】実施例4における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図5】実施例5における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図6】実施例6における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図7】実施例7における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図8】実施例8における沈殿物のCu−Kα線を用いたX線回折スペクトル図。
【図9】実施例9における沈殿物のCu−Kα線を用いたX線回折スペクトル図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved method for producing a lithium-manganese composite oxide for a non-aqueous lithium secondary battery.
[0002]
[Prior art]
In recent years, as electric devices become portable and cordless, expectations for non-aqueous electrolyte secondary batteries that are small, lightweight, and have high energy density are increasing. As an active material for a non-aqueous electrolyte secondary battery, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 LiMnO 2 A composite oxide of lithium and a transition metal such as is known.
[0003]
In particular, lithium-manganese composite oxides have recently been actively researched as inexpensive materials, and carbon materials that can occlude and release lithium can be used by using them as positive electrode active materials. Development of non-aqueous electrolyte secondary batteries with high voltage and high energy density by combining with a negative electrode active material is underway.
[0004]
In general, a positive electrode active material used for a non-aqueous electrolyte secondary battery is made of a composite oxide in which transition metals such as cobalt, nickel, and manganese are dissolved in lithium as a main active material. Depending on the type of transition metal used, electrode characteristics such as electric capacity, reversibility, and operating voltage are different.
[0005]
For example, LiCoO 2 , LiNi 0.8 Co 0.2 O 2 As described above, the non-aqueous electrolyte secondary battery using a rock salt layered composite oxide in which cobalt or nickel is dissolved as a positive electrode active material has a relatively high capacity of 140 to 160 mAh / g and 190 to 210 mAh / g, respectively. The density can be achieved and good reversibility is exhibited by charge and discharge in a high voltage range of 2.7 to 4.3 V. However, there are problems that the cost of the active material is increased because cobalt and nickel as raw materials are expensive, and that reversibility is deteriorated in a low voltage region of 2.5 V or less.
[0006]
On the other hand, various lithium-manganese composite oxides using relatively inexpensive manganese as a raw material have been proposed. This type of lithium-manganese composite oxide is Li x Mn y O z Can be expressed as Especially, as a battery active material, the thing of 0.66 <= x <= 5, 1 <= y <= 5, 2 <= z <= 12 is known. For example, LiMn 2 O 4 LiMnO 2 , Li 4 Mn 5 O 12 , Li 2 Mn 2-x Cr x O 4 , Li 2/3 Mn 1-x M x O 2 It is. However, the suffix symbols x, y and z in the above formula are irrelevant to the suffix symbols x, y and z used in the formula of the present invention.
[0007]
As a method for producing these lithium-manganese composite oxides, there are usually a high-temperature solid-phase reaction between a lithium compound powder solid and a manganese compound powder solid, a sol-gel method using a lithium compound solution and a manganese compound solution as starting materials, and the like. As is known, there is a demand for a method for producing an active material that can be mass-produced with high capacity, high energy density, high durability, and low cost.
[0008]
LiMn 2 O 4 A non-aqueous electrolyte secondary battery using a spinel-type composite oxide composed of an active material has a capacity as low as 100 to 120 mAh / g compared to the above-described cobalt-based and nickel-based active materials, and has poor charge / discharge cycle durability. In addition to the above problem, there is also a problem that it rapidly deteriorates in a low voltage region of less than 3V.
[0009]
Similarly, LiMnO made from inexpensive manganese 2 A non-aqueous electrolyte secondary battery using a composite oxide composed of 2 O 4 High capacity can be expected because it can operate up to a low voltage range around 2V, but the charge / discharge durability is LiMn. 2 O 4 There is the problem of being even scarce.
[0010]
This LiMnO 2 As β-NaMnO 2 Orthorhombic LiMnO consisting of a mold structure 2 And α-NaMnO 2 Layered monolithic LiMnO with layered rock salt structure 2 Is known. Orthorhombic LiMnO 2 Has poor charge / discharge cycle durability. Monoclinic LiMnO 2 The synthesis of α-NaMnO synthesized by the usual solid phase reaction method 2 Is subjected to ion exchange in a non-aqueous solvent containing Li ions at a temperature of 300 ° C. or less (AR Armstrong and PG Bruce, NATURE, Vol. 381, p499, 1996).
[0011]
It has also been proposed to directly synthesize manganese oxide by hydrothermal treatment in an aqueous lithium salt solution in the presence of an alkali metal hydroxide (Tanabe et al., Japanese Patent Application Laid-Open No. 11-21128). Also, Young-I Jang et al. (Electrochemical and Solid-State Letters Vol. 1, p13-16, 1998) and Yet-Ming Chang et al. (Electrochemical and Solid-State Letters Vol. 2, 1999, p107-110). Monoclinic layered rock salt structure and orthorhombic LiAl 0.05 Mn 0.95 O 2 And monoclinic layered rock salt structure LiMnO 2 The synthesis of has been reported.
[0012]
Also, LiMnO can be obtained by solid phase 2 LiMnMO partially substituted with Mn of Fe, Ni, Co, Cr or Al 2 (M = Fe, Co, Ni, Cr, Al) is disclosed in JP-A-10-134812. Haga et al. (Electrochemistry, Vol. 63, pages 941-946, 1995, Electrochemistry, Vol. 64, pages 388-393, 1996) improved the solid-phase method, and developed lithium-manganese by the melt impregnation method. A synthesis method for complex oxides is proposed. In this melt impregnation method, manganese oxide powder and lithium hydroxide powder or lithium nitrate powder are mixed in such a ratio that a lithium-manganese composite oxide having a desired composition is formed, and then the mixed powder is heated. In this method, lithium hydroxide or lithium nitrate is melted and impregnated in the pores of the manganese oxide powder and reacted.
[0013]
Similarly, the lithium compound powder contributing to the reaction is used 1.5 to 2 times the required amount, mixed with the transition metal compound powder, and the mixed powder is heated to melt the lithium compound powder. There has been proposed a method of impregnating and reacting in the fine pores of a powder (Japanese Patent Laid-Open No. 08-138668).
[0014]
Furthermore, using lithium compound powder and transition metal compound powder, lithium salt that does not directly contribute to the reaction is mixed in a powder state as a flux, and the temperature is raised to melt the flux. A reaction method has also been proposed (Japanese Patent Laid-Open No. 06-064928).
[0015]
[Problems to be solved by the invention]
However, such a method has a problem that the battery characteristics of the lithium-manganese composite oxide are greatly changed depending on the mixed state of the powder containing lithium salt and the transition metal compound powder. Also, mixing the raw material powder that forms the molten salt containing lithium salt and the manganese compound powder, and then raising the temperature of the mixture powder to react the molten salt and the manganese compound, the reaction rate is slow, uniform This is not preferred because there are problems such as difficulty in reaction and the possibility of side reactions.
[0016]
These hydrothermal methods, solid phase methods, melt impregnation methods, ion exchange methods, etc. all take a long time of 4 to 40 hours for the formation reaction of lithium-manganese or lithium-manganese-metal element (M) composite oxide. There is a problem that it takes. Moreover, when the composite oxide manufactured by the solid phase method is used as the positive electrode material of the lithium secondary battery, the initial capacity is low, and high electric capacity is not exhibited unless charging and discharging are repeated for several to about 100 cycles. In addition, the solid-phase method and the melt-impregnation method have problems that it is difficult to achieve sufficient performance unless the powders are mixed uniformly, and that charge / discharge cycle deterioration is large.
[0017]
Therefore, an active material that can be easily synthesized in a short time, has a high initial capacity, has a wide usable voltage range, and has a high capacity charge / discharge cycle durability has been desired.
[0018]
Therefore, an object of the present invention is to provide a method for producing a composite oxide that can be synthesized in a short time as a positive electrode material for a non-aqueous electrolyte secondary battery having a large initial capacity and excellent charge / discharge cycle durability. is there.
[0019]
[Means for Solving the Problems]
According to the present invention, this object is achieved by melting a salt containing a lithium salt to form a molten salt, and then adding and reacting a compound containing manganese in the molten salt (first step). Manufacturing method). The lithium-manganese composite oxide thus obtained is Li a Mn b O c It is expressed by the following formula. In the formula, a, b and c are preferably 0.66 ≦ a ≦ 5, 1 ≦ b ≦ 5 and 2 ≦ c ≦ 12 as the battery active material. For example, LiMn 2 O 4 LiMnO 2 , Li 4 Mn 5 O 12 , Li 2 Mn 2 O 4 , Li 2/3 MnO 2 Is mentioned.
[0020]
In addition, the present invention is characterized in that after a salt containing a lithium salt is melted to form a molten salt, a compound containing manganese and the metal element Q is added to the molten salt and reacted. The above object is achieved (second production method). However, Q is any one of Al, Fe, Co, Ni, Cr, V, Mo, Ti, Mg, Nb, Ta, B, Ca, Ce, Ag, Zn, Zr, Sn, Pb, and Si. The lithium-manganese composite oxide thus obtained is Li d Mn e Q f O g It is expressed by the following formula. Especially, as a battery active material, 0.66 <= d <= 5, 1 <= e <= 5, 0 <= f <= 3.0, 2 <= g <= 12 is preferable. For example, LiMn 1.95 Cr 0.05 O 4 , LiMn 0.9 Al 0.1 O 2 , Li 4 Mn 2.9 Cr 2.1 O 12 , Li 2 Mn 1.6 Cr 0.4 O 4 , Li 2/3 Mn 1-h Co h O 2 Is mentioned.
[0021]
In the present invention, the lithium-manganese composite oxide for a non-aqueous lithium secondary battery obtained by the first production method is Li y MnO 2 The following formula 1 is preferred. However, in Formula 1, y is 0.3 <= y <= 1.3.
[0022]
In the present invention, the lithium-manganese composite oxide for a non-aqueous lithium secondary battery obtained by the second production method is Li z Mn x M 1-x O 2 The following formula 2 is preferred. However, in Formula 2, M is selected from the group of Al, Fe, Co, Ni, Cr, V, Mo, Ti, Mg, Nb, Ta, B, Ca, Ce, Ag, Zn, Zr, Sn, Pb, and Si. One or more elements. In Formula 2, z is 0.3 ≦ z ≦ 1.3, and x is 0.4 ≦ x <1.
[0023]
The lithium salt used in the present invention is at least one of lithium hydroxide, lithium chloride, lithium nitrate and lithium carbonate, and the molten salt particularly includes a lithium salt that contributes directly to the reaction. preferable.
[0024]
Furthermore, it is more preferable to use a mixture of a lithium salt and a large excess of potassium salt. According to this, as a result of facilitating the formation reaction of the lithium-manganese composite oxide, a byproduct (for example, Li 2 MnO 3 ) Can be suppressed, and a lithium-manganese composite oxide can be produced with high selectivity by which a battery having a large battery capacity can be obtained when a non-aqueous lithium secondary battery is obtained.
[0025]
The potassium salt used in the present invention is preferably at least one of potassium hydroxide, potassium chloride, potassium nitrate and potassium carbonate. Specifically, a lithium hydroxide-potassium hydroxide mixed molten salt is particularly preferred. Yes.
[0026]
The molar ratio of the lithium salt to the potassium salt is preferably 1.5 mol or more per 1 mol of the lithium salt. When the potassium salt is 1.5 mol or less, the effect of adding potassium is reduced, the reaction rate is lowered, and the side reaction is likely to proceed. As a result, the selectivity of the active material that is the obtained composite oxide is reduced. Since the performance of the battery using the obtained composite oxide as an active material is lowered, it is not preferable. The upper limit of the potassium salt ratio is naturally determined by the amount of lithium atoms incorporated into the composite oxide. As for the potassium salt with respect to 1 mol of lithium salts, 3 mol or more is especially preferable.
[0027]
When synthesizing a lithium-manganese composite oxide that is a monolithic phase of a layered rock salt type, a battery using a composite oxide obtained by a conventional solid phase reaction as an active material has an initial discharge capacity at 25 ° C. Although there was a problem that the capacity increased significantly with charge / discharge cycles, the battery using the composite oxide obtained by the production method of the present invention as the active material had a first cycle at 25 ° C. even at a normal discharge rate. Therefore, there is a feature that shows a high discharge capacity.
[0028]
In this invention, it is preferable that the volume of the molten salt used for reaction is 3 times or more of the volume of the manganese compound used for reaction. If it is 3 times or less, it is difficult to carry out the reaction uniformly, which is not preferable. On the other hand, if it is 1000 times or more, the reactor becomes large, which is not preferable. For these reasons, the volume of the molten salt used for the reaction is preferably 5 to 50 times the volume of the manganese compound used for the reaction.
[0029]
In the present invention, as the compound containing manganese, at least one of oxides, oxyhydroxides, carbonates, chlorides, oxalates, acetates, nitrates and sulfates is used. In particular, it should be at least one of a coprecipitated hydroxide, a coprecipitated oxyhydroxide, a coprecipitated oxide, a mixed oxide, and a mixed hydroxide of manganese and the various metal elements Q and / or M described above. Is preferred.
[0030]
In the production method of the present invention, it is preferable to rapidly cool the reaction mixture after reacting the molten salt and the compound containing manganese, which is also a feature of the present invention. According to the present invention, a composite oxide whose crystal structure is a monoclinic phase of a layered rock salt type is obtained.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Formula 1 (Li y MnO 2 Y) is preferably 0.3 to 1.3. If y is less than 0.3, it is not preferable to use a lithium alloy for the negative electrode in order to operate as a secondary battery, or to dope metallic lithium to the negative electrode carbon in advance during the production of a lithium ion battery. . If y exceeds 1.3, the discharge capacity decreases, which is not preferable. y is particularly preferably 0.85 to 1.15, and more preferably around 1.
[0032]
Formula 2 (Li z Mn x M 1-x O 2 X in ()) is preferably 0.4 to less than 1. If x is less than 0.4, the layered structure cannot be maintained, which is not preferable. x is particularly preferably 0.8 to 0.99. Z in the formula 2 is preferably 0.3 to 1.3. If z is less than 0.3, it is not preferable because it is necessary to use a lithium alloy for the negative electrode in order to operate as a secondary battery, or it is necessary to dope metallic lithium to the negative electrode carbon in advance during the manufacture of the lithium ion battery. . If z is more than 1.3, the discharge capacity decreases, which is not preferable. z is particularly preferably 0.85 to 1.15, and more preferably around 1.
[0033]
In the present invention, y in Formula 1 and z in Formula 2 are controlled by the bath composition, reaction temperature, reaction time, and the like of the manganese-containing compound and the lithium-containing molten salt.
[0034]
The composite oxides of the above formulas 1 and 2 are orthorhombic, monoclinic and LiCoO as crystal structures. 2 The layer structure of rhombohedral space group R-3m can be taken, but among the complex oxides of the present invention, those with a monoclinic layered rock-salt structure have a charge / discharge cycle durability. This is a preferred crystal structure because of its high properties.
[0035]
In the production method of the present invention, a manganese-containing compound (hereinafter also referred to as “manganese source material”) and a compound containing a metal element (Q) and / or a metal element (M) (hereinafter “metal”) It is also referred to as “element source material.” In addition, “metal element (Q) and / or metal element (M)” is simply abbreviated as “metal element”). And the metal element are preferable because the composite oxide of the present invention in which the metal element is uniformly dissolved is easily formed.
[0036]
In particular, the manganese source and the metal element source are at least one of manganese and a metal element co-precipitated hydroxide, co-precipitated oxide, or co-precipitated oxyhydroxide. The composite oxide of the present invention which is a solid solution is particularly preferable because it can be formed.
[0037]
In addition, a method for obtaining an oxide composed of manganese and a metal element M by adding a manganese source material to the aqueous solution after drying the metal element source material in a solution state and drying and firing the solution is a metal in a solution state. Since the element source material easily reacts with the manganese source material, it is preferable because the composite oxide of the present invention which is relatively uniformly solid-solved can be easily formed. As another method, lithium hydroxide (LiOH.H 2 O) and metal element salts (eg, copper nitrate (Cu (NO 3 ) 2 ・ 9H 2 There is also a method of adding and reacting a compound containing manganese in a mixture of O)) and molten salt.
[0038]
In the production method of the present invention, the manganese source material is an oxide (Mn 2 O 3 , MnO, MnO 2 Etc.), hydrates of these oxides, oxyhydroxides, and the like. As the manganese source material, a trivalent manganese compound is more preferable. These manganese source materials may be used alone or in combination of two or more.
[0039]
In the production method of the present invention, single metal, hydroxide, oxide, oxyhydroxide, chloride, nitrate, etc. are used as the metal element source. These metal element source materials may be used alone or in combination of two or more.
[0040]
As a specific example of the production method of the present invention, for example, lithium hydroxide powder and potassium hydroxide powder are first mixed and melted by heating (the melting point of lithium hydroxide is 450 ° C. and the melting point of potassium hydroxide is 360 ° C.). In the present invention, it is necessary to carry out the reaction at a temperature higher than the melting point of the molten salt. In the case of a mixed molten salt composed of a plurality of salts, the melting point may be lower than in the case of a single salt, so the reaction temperature is appropriately selected within the range of 300 to 1200 ° C. The higher the temperature, the higher the reaction rate. However, if the reaction rate is too high, the side reaction tends to proceed and the selectivity of the reaction decreases, which is not preferable. If the reaction temperature is too low, the reaction rate decreases, and the reaction takes a long time, which is not preferable. Preferably, 500-900 degreeC is chosen.
[0041]
In the present invention, the reaction is initiated by adding and introducing a manganese source material into the molten salt. The reaction atmosphere of the present invention is not particularly limited, but is preferably an inert gas atmosphere such as nitrogen or argon in order to obtain a layered lithium-manganese composite oxide with good selectivity. When the reaction atmosphere contains oxygen gas, the selectivity of the layered lithium-manganese composite oxide may decrease. The oxygen concentration in the reaction atmosphere is preferably 5000 ppm or less, particularly preferably 50 ppm or less.
[0042]
A layered lithium-manganese composite oxide, which is one of the objects of the present invention, is produced by a reaction between a molten salt composed of a lithium salt and a compound containing manganese. This composite oxide has a long reaction time. In further contact with a molten salt comprising a lithium salt, Li 2 MnO 3 And the selectivity of the target lithium-manganese composite oxide having a layered structure is lowered. Therefore, it is not preferable that the reaction time is too long.
[0043]
The reaction atmosphere during the synthesis of the lithium-manganese spinel composite oxide, which is another object of the present invention, requires an oxygen-containing atmosphere of 10% or more.
[0044]
The present invention has the characteristics that the reaction time is remarkably short and the productivity is good as compared with the conventional synthesis method. The reaction time in the present invention is appropriately selected depending on the combination with the reaction temperature, and depending on the reaction temperature, 0.3 to 60 minutes is adopted. If the reaction time is 0.3 minutes or less, the reaction occurs vigorously, and therefore, side reactions are likely to occur and it is difficult to control the reaction, which is not preferable.
[0045]
The preferred reaction time is 1 to 20 minutes. For the same reason, it is preferable that the reaction is stopped by quickly reducing the temperature of the system once the layered lithium-manganese composite oxide is formed. For example, a container containing a molten salt containing a precipitation product composed of a lithium-manganese composite oxide is quenched by water cooling. After that, pure water is added to the container, and excess lithium salt, sodium salt, potassium salt, etc. are washed away with water to remove lithium-manganese composite oxide such as LiMnO. 2 Is isolated and dried to obtain an active material powder.
[0046]
As the composite oxide in the present invention, Li in which a part of manganese is substituted with the metal element M z Mn x M 1-x O 2 However, when used in a non-aqueous lithium secondary battery, the initial capacity or charge / discharge cycle durability of the battery is improved, which is particularly preferable. As the metal element M, Al, Fe, Co, Ni, Cr, V, Mo, Ti, Mg, Nb, Ta, and Ag are preferable. M is particularly preferably Cr, Al, Fe, or Mg.
[0047]
A positive electrode mixture is formed by mixing the composite oxide powder of the present invention with a carbon-based conductive material such as acetylene black, graphite, and Ketchen black and a binder. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used.
[0048]
A slurry or a kneaded material composed of the composite oxide powder of the present invention, a conductive material, a binder, and a solvent or dispersion medium of the binder is applied / supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil, To do. For the separator, porous polyethylene or porous polypropylene film is used.
[0049]
In the nonaqueous lithium secondary battery in which the positive electrode plate is used, the solvent of the electrolyte solution is preferably a carbonate. The carbonate ester can be either cyclic or chain. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.
[0050]
The above carbonate esters can be used alone or in admixture of two or more. Moreover, you may mix and use with another solvent. Depending on the material of the negative electrode active material, the combined use of a chain carbonate ester and a cyclic carbonate ester may improve the discharge characteristics, cycle durability, and charge / discharge efficiency. Moreover, it is good also as a gel polymer electrolyte by adding a vinylidene fluoride-hexafluoropropylene copolymer (for example, Kyner manufactured by Atchem Corp.) to these organic solvents and adding the following solute.
[0051]
As the solute, ClO 4 -, CF 3 SO 3 -, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, CF 3 CO 2 -, (CF 3 SO 2 ) 2 It is preferable to use at least one lithium salt having N- or the like as an anion. In the electrolyte solution or polymer electrolyte, it is preferable to add an electrolyte composed of a lithium salt to the solvent or the solvent-containing polymer at a concentration of 0.2 to 2.0 mol / l. If it deviates from this range, the ionic conductivity is lowered and the electrical conductivity of the electrolyte is lowered. More preferably, 0.5 to 1.5 mol / l is selected.
[0052]
For the negative electrode active material, a material capable of inserting and extracting lithium ions is used. The material for forming this negative electrode active material is not particularly limited, but for example, lithium metal, lithium alloy, carbon material, periodic table 14, oxide mainly composed of group 15 metal, carbon compound, silicon carbide compound, silicon oxide compound, Examples thereof include titanium sulfide and boron carbide compounds.
[0053]
As the carbon material, those obtained by pyrolyzing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scale-like graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil or the like is used.
[0054]
The positive electrode in the present invention is preferably obtained by kneading an active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying and pressing. There is no restriction | limiting in particular in the shape of the lithium battery of this invention. A sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
[0055]
【Example】
Next, some specific examples of the present invention will be described, but the present invention is not limited to these examples.
[0056]
[Example 1]
Lithium hydroxide powder (LiOH · H 2 O) 30 g was put in a nickel crucible and heated to 600 ° C. in an electric furnace in an argon atmosphere to obtain a LiOH molten salt. 6 g of dimanganese trioxide powder was dropped into the molten salt, and after 5 minutes, the crucible in which the lithium-manganese composite oxide solid was precipitated in the molten salt was taken out of the electric furnace, and the crucible was rapidly cooled with water. Thereafter, pure water was added to the contents to remove lithium hydroxide and by-products floating on the surface of the molten salt, and the precipitate in the crucible was recovered. The yield of the precipitate was 5.2 g. FIG. 1 shows an X-ray diffraction spectrum of the precipitate using Cu—Kα rays. From FIG. 1, this precipitate is orthorhombic LiMnO. 2 It was identified as a structure mainly containing monoclinic crystals. In a similar manner, the above by-product is Li 2 MnO 3 Was identified.
The above precipitate was used as an active material powder, and the active material powder, acetylene black, and polytetrafluoroethylene were kneaded while adding toluene at a weight ratio of 80/15/5 to form a sheet. This sheet was punched out to a diameter of 13 mm and vacuum dried at 180 ° C. for 2 hours. Then, the sheet was placed on a 20 μm aluminum foil positive electrode current collector having a diameter of 18 mm in an argon glove box to obtain a positive electrode body.
The separator is made of 25 μm thick porous polypropylene, the negative electrode is made of 500 μm thick metal lithium foil, the negative electrode current collector is made of SUS316, the positive electrode side SUS316L case and the negative electrode side SUS316 cap are used, and the electrolyte solution 1M LiPF 6 Using / EC + DEC (1: 1), two coin cell batteries having a coin cell diameter of 20 mm and a thickness of 3.2 mm were assembled in an argon glove box.
One battery of the two cells was charged at a constant current with a voltage cut to 4.3 V at 30 mA per 1 g of the positive electrode active material in a 25 ° C. thermostatic chamber in the atmosphere, and then 2 at 30 mA per 1 g of the positive electrode active material. A constant current discharge was performed with a voltage cut to 0.0 V, and the initial discharge capacity and discharge energy were determined. As a result, they were 110 mAh / g and 330 mWH / g, respectively.
The other battery of the two cells was charged at a constant current of 4.3 mA at 30 mA per 1 g of the positive electrode active material in a constant temperature bath at 60 ° C. in the atmosphere, and then 2. at 30 mA per 1 g of the positive electrode active material. As a result of constant current discharge to 0 V and determination of initial discharge capacity and discharge energy, they were 168 mAh / g and 492 mWH / g, respectively.
[0057]
[Example 2]
12 g of potassium hydroxide powder (KOH) and lithium hydroxide powder (LiOH.H 2 18) was put in a nickel crucible and heated to 600 ° C. in an electric furnace under an argon atmosphere to obtain a LiOH-KOH mixed molten salt. 6 g of dimanganese trioxide powder was dropped into the molten salt, and after 5 minutes, the crucible in which the lithium-manganese composite oxide solid was precipitated in the molten salt was taken out of the electric furnace, and the crucible was rapidly cooled with water. Thereafter, pure water was added to the contents to remove lithium hydroxide and by-products floating on the surface of the molten salt, and the precipitate in the crucible was recovered. The yield of the precipitate was 4.5 g.
FIG. 2 shows an X-ray diffraction spectrum of the precipitate using Cu—Kα rays. From FIG. 2, this precipitate is a layered rock salt type monoclinic LiMnO. 2 It was identified as a structure containing orthorhombic crystals in part. In a similar manner, the by-product is Li 2 MnO 3 Was identified.
Two coin cell batteries were assembled in the same manner as in Example 1 except that the precipitate was used as an active material powder, and the battery performance was examined. As a result of obtaining the initial discharge capacity and discharge energy in a 25 ° C. constant temperature bath, they were 121 mAh / g and 367 mWH / g, respectively. Moreover, as a result of calculating | requiring the initial stage discharge capacity and discharge energy in a 60 degreeC thermostat, they were 197 mAh / g and 617 mWH / g, respectively.
[0058]
[Example 3]
After impregnating the electrolytic manganese dioxide powder with an aqueous chromium nitrate solution and drying, the powder is fired at 650 ° C. for 3 hours in the air, so that Mn 1.9 Cr 0.1 O 3 A powder was obtained.
Lithium hydroxide powder (LiOH · H 2 O) 30 g was put in a nickel crucible and heated to 600 ° C. in an electric furnace in an argon atmosphere to obtain a LiOH molten salt. Mn is added to this molten salt. 1.8 Cr 0.2 O 3 6 g of the powder was dropped, and after 5 minutes, the crucible in which the lithium-manganese-chromium composite oxide solid was precipitated in the molten salt was taken out of the electric furnace, and the crucible was quenched with water. Thereafter, pure water was added to the contents to remove lithium hydroxide and by-products floating on the surface of the molten salt, and the precipitate in the crucible was recovered. The yield of the precipitate was 4.5 g.
FIG. 3 shows an X-ray diffraction spectrum of the precipitate using Cu—Kα rays. From FIG. 3, this precipitate is a layered rock salt type monoclinic LiMn. 0.95 Cr 0.05 O 2 Was identified. In a similar manner, the by-product is Li 2 Mn 0.95 Cr 0.05 O 3 Was identified.
Two coin cell batteries were assembled in the same manner as in Example 1 except that this active material powder was used, and the battery performance was examined. As a result of obtaining the initial discharge capacity and discharge energy in a constant temperature bath at 25 ° C., they were 158 mAh / g and 498 mWH / g, respectively. Moreover, as a result of calculating | requiring the initial stage discharge capacity and discharge energy in a 60 degreeC thermostat, they were 188 mAh / g and 599 mWH / g, respectively.
[0059]
[Example 4]
After impregnating the electrolytic manganese dioxide powder with an iron nitrate aqueous solution and drying, the powder is fired at 650 ° C. for 3 hours in the air to obtain Mn 1.9 Fe 0.1 O 3 A powder was obtained (Step A).
10 g of potassium hydroxide powder (KOH) and lithium hydroxide powder (LiOH.H 2 O) 2 g was put in a nickel crucible and heated to 600 ° C. in an electric furnace in an argon atmosphere to obtain a LiOH-KOH mixed molten salt (KOH 3.7 mol with respect to 1 mol of LiOH). To this molten salt, the above Mn 1.9 Fe 0.1 O 3 2 g of the powder was dropped, and after 5 minutes, the crucible in which the lithium-manganese composite oxide solid was precipitated in the molten salt was taken out from the electric furnace, and the crucible was quenched with water. Thereafter, pure water was added to the contents to remove lithium hydroxide and potassium hydroxide. By-products that float on the surface of the molten salt were not observed. After washing with pure water at room temperature, the precipitate in the crucible was recovered. The precipitate was dried at 60 ° C. (Step B).
The yield of the precipitate was 1.81 g. FIG. 4 shows an X-ray diffraction spectrum of the precipitate using Cu—Kα rays. From FIG. 4, this precipitate is orthorhombic LiMnO. 2 Structure and monoclinic LiMnO 2 It can be seen that it has a structure.
Using a precipitate comprising a lithium-containing layered manganese composite oxide having an Mn / Fe ratio of 0.95 / 0.05 (atomic ratio) as an active material powder, the active material powder, acetylene black, polytetrafluoroethylene, Was kneaded while adding toluene at a weight ratio of 80/15/5 to form a sheet. This sheet was punched out to a diameter of 13 mm and vacuum dried at 180 ° C. for 2 hours. Then, the sheet was placed on a 20 μm thick aluminum foil positive electrode collector having a diameter of 18 mm in an argon glove box to obtain a positive electrode body.
The separator is made of 25 μm thick porous polypropylene, the negative electrode is made of 500 μm thick metal lithium foil, the negative electrode current collector is made of SUS316, the positive electrode side SUS316L case and the negative electrode side SUS316 cap are used, and the electrolyte solution 1M LiPF 6 Using / EC + DEC (1: 1), two coin cell batteries having a coin cell diameter of 20 mm and a thickness of 3.2 mm were assembled in an argon glove box.
One battery of these two cells was charged in a constant current with a voltage cut to 4.3 V at 30 mA per 1 g of the positive electrode active material in a constant temperature bath at 25 ° C. in the atmosphere, and then at 30 mA per 1 g of the positive electrode active material. As a result of constant current discharge by voltage cut to 2.0 V and obtaining the initial discharge capacity and discharge energy, they were 208 mAh / g and 626 mWH / g, respectively.
The other battery of the two cells was charged at a constant current of 4.3 mA at 30 mA per 1 g of the positive electrode active material in a constant temperature bath at 60 ° C. in the atmosphere, and then 2. at 30 mA per 1 g of the positive electrode active material. As a result of constant current discharge to 0 V and determination of initial discharge capacity and discharge energy, they were 228 mAh / g and 702 mWH / g, respectively.
[0060]
[Example 5]
In step A of Example 4 above, Mn was performed in the same manner as in Example 4 except that aluminum nitrate was used instead of iron nitrate. 1.9 Al 0.1 O 3 Was synthesized. Further, in step B of Example 4 above, Mn 1.9 Fe 0.1 O 3 Instead of 2g of powder, the above Mn 1.9 Al 0.1 O 3 Using 2 g of the powder, the reaction was carried out in the same manner as in Example 4 to obtain 1.80 g of a precipitate. Side reaction products were not observed. FIG. 5 shows an X-ray diffraction spectrum of this product using Cu—Kα rays. From FIG. 5, this precipitate is monoclinic LiMnO. 2 Structure-based, orthorhombic LiMnO 2 It can be seen that the structure is a coexisting mixture.
A coin cell was produced in the same manner as in Example 4 except that the precipitate comprising the lithium-containing layered manganese composite oxide having Mn / Al of 0.95 / 0.05 (atomic ratio) was used as the active material powder. Two cells were assembled and the battery performance was examined. As a result of obtaining the initial discharge capacity and discharge energy in a 25 ° C. constant temperature bath, they were 215 mAh / g and 664 mWH / g, respectively. Moreover, as a result of calculating | requiring the initial stage discharge capacity and discharge energy in a 60 degreeC thermostat, they were 247 mAh / g and 779 mWH / g, respectively.
[0061]
[Example 6]
In step A of Example 4, the same procedure as in Example 4 was repeated except that chromium nitrate was used instead of iron nitrate. 1.9 Cr 0.1 O 3 Was synthesized. Further, in step B of Example 4 above, Mn 1.9 Fe 0.1 O 3 Instead of 2g of powder, the above Mn 1.9 Cr 0.1 O 3 Using 2 g of the powder, the reaction was carried out in the same manner as in Example 4 to obtain 1.81 g of a precipitate. Side reaction products were not observed. FIG. 6 shows an X-ray diffraction spectrum of this product using Cu—Kα rays. From FIG. 6, this precipitate is monoclinic LiMnO. 2 It can be seen that it has a structure.
A coin cell was produced in the same manner as in Example 4 except that the precipitate comprising the lithium-containing layered manganese composite oxide having Mn / Cr of 0.95 / 0.05 (atomic ratio) was used as the active material powder. Two cells were assembled and the battery performance was examined. As a result of obtaining the initial discharge capacity and discharge energy in a constant temperature bath at 25 ° C., they were 197 mAh / g and 601 mWH / g, respectively. Moreover, as a result of calculating | requiring the initial stage discharge capacity and discharge energy in a 60 degreeC thermostat, they were 222 mAh / g and 696 mWH / g, respectively.
[0062]
[Example 7]
In the process A of Example 4, the same procedure as in Example 4 was performed except that cobalt nitrate was used instead of iron nitrate. 1.9 Co 0.1 O 3 Was synthesized. Further, in step B of Example 4 above, Mn 1.9 Fe 0.1 O 3 Instead of 2g of powder, the above Mn 1.9 Co 0.1 O 3 Using 2 g of the powder, the reaction was carried out in the same manner as in Example 4 to obtain 1.81 g of a precipitate. Side reaction products were not observed. FIG. 7 shows an X-ray diffraction spectrum of this product using Cu—Kα rays. From FIG. 7, this precipitate is monoclinic LiMnO. 2 It can be seen that it has a structure.
A coin cell was produced in the same manner as in Example 4 except that the precipitate comprising the lithium-containing layered manganese composite oxide having Mn / Co of 0.95 / 0.05 (atomic ratio) was used as the active material powder. One cell was assembled and the battery performance was examined. As a result of obtaining the initial discharge capacity and discharge energy in a 60 ° C. constant temperature bath, they were 237 mAh / g and 741 mWH / g, respectively.
[0063]
[Example 8]
In the process A of Example 4, the same procedure as in Example 4 was performed except that silver nitrate was used instead of iron nitrate. 1.9 Ag 0.1 O 3 Was synthesized. Further, in step B of Example 4 above, Mn 1.9 Fe 0.1 O 3 Instead of 2g of powder, the above Mn 1.9 Ag 0.1 O 3 Using 2 g of the powder, the reaction was carried out in the same manner as in Example 4 to obtain 1.81 g of a precipitate. Side reaction products were not observed. FIG. 8 shows an X-ray diffraction spectrum of this product using Cu—Kα rays. From FIG. 8, this precipitate is monoclinic LiMnO. 2 Structure-based, orthorhombic LiMnO 2 It can be seen that the structure is a coexisting mixture.
A coin cell was produced in the same manner as in Example 4 except that the precipitate comprising the lithium-containing layered manganese composite oxide having Mn / Ag of 0.95 / 0.05 (atomic ratio) was used as the active material powder. One cell was assembled and the battery performance was examined. As a result of obtaining the initial discharge capacity and discharge energy in a 60 ° C. constant temperature bath, they were 215 mAh / g and 659 mWH / g, respectively.
[0064]
[Example 9]
In the process A of Example 4, the same procedure as in Example 4 was conducted except that nickel nitrate was used instead of iron nitrate. 1.9 Ni 0.1 O 3 Was synthesized. Further, in step B of Example 4 above, Mn 1.9 Fe 0.1 O 3 Instead of 2g of powder, the above Mn 1.9 Ni 0.1 O 3 Using 2 g of the powder, the reaction was conducted in the same manner as in Example 4 to obtain 1.80 g of a precipitate. Side reaction products were not observed. FIG. 9 shows an X-ray diffraction spectrum of this product using Cu—Kα rays. From FIG. 9, it can be seen that this precipitate has a layered structure composed of a rhombohedral space group R-3m.
A coin cell was produced in the same manner as in Example 4 except that the precipitate comprising the lithium-containing layered manganese composite oxide having Mn / Ni of 0.95 / 0.05 (atomic ratio) was used as the active material powder. One cell was assembled and the battery performance was examined. As a result of obtaining the initial discharge capacity and discharge energy in a constant temperature bath at 60 ° C., they were 229 mAh / g and 726 mWH / g, respectively.
[0065]
【The invention's effect】
By using the composite oxide obtained by the production method based on the short-time synthesis reaction of the present invention as the positive electrode active material, it can be used in a wide voltage range, has a large initial capacity, and has high cycle characteristics. A secondary battery can be obtained.
Further, by using manganese, which is cheaper than conventionally used cobalt or nickel, as a main material, an inexpensive material for a lithium secondary battery can be provided.
[Brief description of the drawings]
1 is an X-ray diffraction spectrum diagram using Cu-Kα rays of a precipitate in Example 1. FIG.
2 is an X-ray diffraction spectrum diagram using Cu-Kα rays of the precipitate in Example 2. FIG.
3 is an X-ray diffraction spectrum diagram using Cu-Kα rays of the precipitate in Example 3. FIG.
4 is an X-ray diffraction spectrum diagram using Cu-Kα rays of precipitates in Example 4. FIG.
5 is an X-ray diffraction spectrum diagram using Cu—Kα rays of precipitates in Example 5. FIG.
6 is an X-ray diffraction spectrum diagram using Cu-Kα rays of the precipitate in Example 6. FIG.
7 is an X-ray diffraction spectrum diagram using Cu—Kα rays of the precipitate in Example 7. FIG.
8 is an X-ray diffraction spectrum diagram using Cu—Kα rays of the precipitate in Example 8. FIG.
9 is an X-ray diffraction spectrum diagram using Cu—Kα rays of the precipitate in Example 9. FIG.
Claims (7)
但しMは、Al、Fe、Co、Ni、Cr、V、Mo、Ti、Mg、Nb、Ta、B、Ca、Ce、Ag、Zn、Zr、Sn、Pb、Siの群から選択される1種以上の元素を示す。 Lithium hydroxide and 1.5 mol or more of potassium hydroxide per 1 mol of lithium hydroxide are melted to form a molten salt, and then manganese and metal element M are added to the molten salt in an inert gas atmosphere. Li z Mn x M 1-x O 2 (provided that 0.3 ≦ z ≦ 1.3, 0.8 ≦ x ≦ 0.99) by adding and reacting the contained compound; A method for producing a lithium-manganese composite oxide for a non-aqueous lithium secondary battery, comprising obtaining a monoclinic structure, or a composite oxide having a monoclinic structure and an orthorhombic structure.
M is selected from the group consisting of Al, Fe, Co, Ni, Cr, V, Mo, Ti, Mg, Nb, Ta, B, Ca, Ce, Ag, Zn, Zr, Sn, Pb, and Si. Indicates more than seed elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000030751A JP4691228B2 (en) | 1999-11-02 | 2000-02-08 | Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31208599 | 1999-11-02 | ||
JP11-312085 | 1999-11-02 | ||
JP1999312085 | 1999-11-02 | ||
JP2000030751A JP4691228B2 (en) | 1999-11-02 | 2000-02-08 | Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001192210A JP2001192210A (en) | 2001-07-17 |
JP4691228B2 true JP4691228B2 (en) | 2011-06-01 |
Family
ID=26567028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000030751A Expired - Fee Related JP4691228B2 (en) | 1999-11-02 | 2000-02-08 | Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4691228B2 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4769998B2 (en) * | 2000-04-20 | 2011-09-07 | 株式会社豊田中央研究所 | Method for producing lithium manganese composite oxide |
JP4650648B2 (en) * | 2000-04-20 | 2011-03-16 | 株式会社豊田中央研究所 | Method for producing lithium manganese composite oxide |
JP3890185B2 (en) * | 2000-07-27 | 2007-03-07 | 松下電器産業株式会社 | Positive electrode active material and non-aqueous electrolyte secondary battery including the same |
EP1296391A4 (en) | 2001-03-22 | 2006-06-28 | Matsushita Electric Ind Co Ltd | POSITIVE ELECTRODE ACTIVE MATERIAL AND NON-AQUEOUS ELECTROLYTE BATTERY CONTAINING THE MATERIAL |
JP5076258B2 (en) * | 2001-04-27 | 2012-11-21 | 堺化学工業株式会社 | Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries |
JP4510331B2 (en) | 2001-06-27 | 2010-07-21 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
KR101036743B1 (en) * | 2001-08-07 | 2011-05-24 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Cathode composition for lithium ion battery |
JP3827545B2 (en) | 2001-09-13 | 2006-09-27 | 松下電器産業株式会社 | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery |
US8658125B2 (en) | 2001-10-25 | 2014-02-25 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US8241790B2 (en) | 2002-08-05 | 2012-08-14 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
JP4554911B2 (en) | 2003-11-07 | 2010-09-29 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
JP2005339887A (en) * | 2004-05-25 | 2005-12-08 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
KR100765970B1 (en) | 2006-09-29 | 2007-10-10 | 대정화금주식회사 | Manganese composite oxide using coprecipitation method and its manufacturing method, spinel type cathode active material for lithium secondary battery using same and manufacturing method |
JP2008105912A (en) * | 2006-10-27 | 2008-05-08 | National Institute Of Advanced Industrial & Technology | Method for producing nano-double oxide AxMyOz |
JP2010108912A (en) * | 2008-09-30 | 2010-05-13 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery, positive electrode active material used in the battery, and method of manufacturing the positive electrode active material |
CN102300811B (en) | 2009-02-04 | 2014-03-05 | 独立行政法人产业技术综合研究所 | Manufacturing method of lithium silicate compound |
JP5013622B2 (en) * | 2009-03-09 | 2012-08-29 | 独立行政法人産業技術総合研究所 | Method for producing lithium borate compound |
JP5699436B2 (en) | 2009-03-23 | 2015-04-08 | 住友化学株式会社 | Method for producing layered structure lithium composite metal oxide |
WO2011078389A1 (en) * | 2009-12-25 | 2011-06-30 | 株式会社豊田自動織機 | Method for producing complex oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
KR101347126B1 (en) | 2010-02-08 | 2014-01-02 | 가부시키가이샤 도요다 지도숏키 | Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery, lithium-ion secondary battery and vehicle |
JP5116177B2 (en) * | 2010-06-28 | 2013-01-09 | 株式会社豊田自動織機 | Method for producing lithium silicate compound |
JP5674055B2 (en) * | 2010-09-09 | 2015-02-25 | 株式会社豊田自動織機 | Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery |
JP5552685B2 (en) * | 2010-10-07 | 2014-07-16 | 株式会社豊田自動織機 | Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
JP5733571B2 (en) * | 2011-06-02 | 2015-06-10 | 株式会社豊田自動織機 | Method for producing lithium-containing composite oxide, positive electrode active material, and secondary battery |
JP2013004421A (en) * | 2011-06-20 | 2013-01-07 | Namics Corp | Lithium ion secondary battery |
US20140134491A1 (en) * | 2011-06-24 | 2014-05-15 | Kabushiki Kaisha Toyota Jidoshokki | Lithium containing composite oxide powder and manufacturing process for the same |
JP5387631B2 (en) * | 2011-08-01 | 2014-01-15 | 堺化学工業株式会社 | Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries |
US20150325837A1 (en) * | 2011-12-30 | 2015-11-12 | Robert Bosch Gmbh | Lithium-metal oxide nanoparticles, preparation method and use thereof |
CN102730765A (en) * | 2012-07-11 | 2012-10-17 | 中国第一汽车股份有限公司 | High-capacity positive pole material prepared by using carbonate precipitation type molten-salt method |
WO2015136604A1 (en) * | 2014-03-10 | 2015-09-17 | 株式会社日立製作所 | Positive electrode active material for secondary batteries and lithium ion secondary battery using same |
KR102131738B1 (en) | 2017-07-13 | 2020-07-08 | 주식회사 엘지화학 | Method for producing positive electrode active material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09326255A (en) * | 1996-03-26 | 1997-12-16 | Sharp Corp | Manufacture of positive electrode active material and nonaqueous secondary battery |
JPH1021961A (en) * | 1996-07-04 | 1998-01-23 | Matsushita Electric Ind Co Ltd | Organic electrolyte lithium secondary battery |
JPH10324521A (en) * | 1997-05-23 | 1998-12-08 | Ube Ind Ltd | Lithium manganese composite oxide, method for producing the same and use thereof |
JPH10330118A (en) * | 1997-05-29 | 1998-12-15 | Showa Denko Kk | Production of lithium-manganese oxide by quenching method |
JPH11510467A (en) * | 1995-08-02 | 1999-09-14 | ウエスターム テクノロジーズ インコーポレイテッド | Preparation of lithiated transition metal oxides |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09110431A (en) * | 1995-10-16 | 1997-04-28 | Agency Of Ind Science & Technol | Production of lithium-manganese oxide based on limno2 |
JPH103916A (en) * | 1996-06-12 | 1998-01-06 | Sony Corp | Manufacture of positive electrode active material |
JP3667468B2 (en) * | 1996-10-31 | 2005-07-06 | 松下電器産業株式会社 | Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof |
-
2000
- 2000-02-08 JP JP2000030751A patent/JP4691228B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11510467A (en) * | 1995-08-02 | 1999-09-14 | ウエスターム テクノロジーズ インコーポレイテッド | Preparation of lithiated transition metal oxides |
JPH09326255A (en) * | 1996-03-26 | 1997-12-16 | Sharp Corp | Manufacture of positive electrode active material and nonaqueous secondary battery |
JPH1021961A (en) * | 1996-07-04 | 1998-01-23 | Matsushita Electric Ind Co Ltd | Organic electrolyte lithium secondary battery |
JPH10324521A (en) * | 1997-05-23 | 1998-12-08 | Ube Ind Ltd | Lithium manganese composite oxide, method for producing the same and use thereof |
JPH10330118A (en) * | 1997-05-29 | 1998-12-15 | Showa Denko Kk | Production of lithium-manganese oxide by quenching method |
Also Published As
Publication number | Publication date |
---|---|
JP2001192210A (en) | 2001-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4691228B2 (en) | Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery | |
KR100694567B1 (en) | Raw materials for positive electrode active materials for lithium-nickel-cobalt-manganese-containing composite oxides and lithium secondary batteries, and their preparation methods | |
JP3571671B2 (en) | Lithium oxide material and method for producing the same | |
JP4756715B2 (en) | Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material | |
JP4326041B2 (en) | Doped intercalation compound and method for producing the same | |
KR100752703B1 (en) | Cathode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using same | |
KR101131479B1 (en) | Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it | |
JP5552685B2 (en) | Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery | |
JP4318002B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JPH11307094A (en) | Lithium secondary battery positive electrode active material and lithium secondary battery | |
US10505189B2 (en) | Cathode material and lithium secondary battery using same as cathode | |
EP1875537A2 (en) | Layered core-shell cathode active materials for lithium secondary batteries, method for preparing thereof and lithium secondary batteries using the same | |
JP2013506945A (en) | Positive electrode active material for lithium secondary battery, same material and method for making lithium secondary battery | |
JP2002145623A (en) | Lithium-containing transition metal multiple oxide and manufacturing method thereof | |
JP2000133262A (en) | Nonaqueous electrolyte secondary battery | |
JP2008521196A (en) | Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same | |
JP4519220B2 (en) | Lithium secondary battery | |
JP2001023617A (en) | Manufacture of lithium secondary battery | |
JP4189457B2 (en) | Lithium ion secondary battery | |
JPH10106566A (en) | Manufacture of positive electrode active material for lithium secondary battery | |
JP4560168B2 (en) | Method for producing composite oxide for non-aqueous lithium secondary battery | |
JP2000264638A (en) | Method for producing lithium manganese composite oxide for lithium secondary battery positive electrode active material | |
JP2001126731A (en) | Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell | |
KR100668050B1 (en) | Manganese Composite Oxide, Lithium Secondary Battery Spinel Type Cathode Active Material Using the Same and Method for Manufacturing the Same | |
KR100633287B1 (en) | Anode active material for a lithium secondary battery having a double layer structure of high capacity and high rate characteristics, a method of manufacturing the same, and a lithium secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110221 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |