[go: up one dir, main page]

JP4687645B2 - Magnetic recording medium, magnetic recording / reproducing apparatus, and concave / convex depth inspection method for concave / convex pattern - Google Patents

Magnetic recording medium, magnetic recording / reproducing apparatus, and concave / convex depth inspection method for concave / convex pattern Download PDF

Info

Publication number
JP4687645B2
JP4687645B2 JP2006348575A JP2006348575A JP4687645B2 JP 4687645 B2 JP4687645 B2 JP 4687645B2 JP 2006348575 A JP2006348575 A JP 2006348575A JP 2006348575 A JP2006348575 A JP 2006348575A JP 4687645 B2 JP4687645 B2 JP 4687645B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording
concave
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006348575A
Other languages
Japanese (ja)
Other versions
JP2008159196A (en
Inventor
明政 海津
秀一 大川
佳一 添野
和也 嶋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006348575A priority Critical patent/JP4687645B2/en
Publication of JP2008159196A publication Critical patent/JP2008159196A/en
Application granted granted Critical
Publication of JP4687645B2 publication Critical patent/JP4687645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、所定の凹凸パターンで多数の記録要素に分割された記録層を有する磁気記録媒体、これを備える磁気記録再生装置及び凹凸パターンの凹部深さ検査方法に関する。   The present invention relates to a magnetic recording medium having a recording layer divided into a large number of recording elements in a predetermined concavo-convex pattern, a magnetic recording / reproducing apparatus including the recording layer, and a method for inspecting the concave portion depth of the concavo-convex pattern.

従来、磁気記録媒体は、記録層を構成する磁性粒子の微細化、材料の変更、ヘッド加工の微細化等の改良により著しい面記録密度の向上が図られている。更に近年、記録層と基板との間に軟磁性層が設置された垂直記録式の磁気記録媒体が普及しつつあり今後も一層の面記録密度の向上が期待されている。   2. Description of the Related Art Conventionally, magnetic recording media have been remarkably improved in surface recording density through improvements such as miniaturization of magnetic particles constituting a recording layer, change of materials, and miniaturization of head processing. In recent years, a perpendicular recording type magnetic recording medium in which a soft magnetic layer is provided between a recording layer and a substrate is becoming widespread, and further improvement in surface recording density is expected in the future.

しかしながら、磁気ヘッドの加工限界、磁気ヘッドの記録磁界の広がりに起因する記録対象のトラックに隣接する他のトラックへの誤った情報の記録、再生時のクロストークなどの問題が顕在化し、これら従来の改良手法による面記録密度の向上は限界にきている。   However, problems such as erroneous recording of information on other tracks adjacent to the track to be recorded due to the processing limit of the magnetic head, the spread of the recording magnetic field of the magnetic head, and crosstalk at the time of reproduction have become obvious. The improvement of the surface recording density by the improved method has reached the limit.

そこで、一層の面記録密度の向上を実現可能である磁気記録媒体の候補として、記録層がデータ領域においてトラックの形状の多数の記録要素に分割されたディスクリートトラックメディアや、トラックが周方向にも分割された形状の多数の記録要素に分割されたパターンドメディアが提案されている。尚、サーボ情報の記録効率の向上のためにサーボ領域において記録層をサーボパターンの形状で形成することも提案されている。このようなディスクリートトラックメディアや、パターンドメディアも垂直記録式とすることで相乗的な面記録密度の向上が期待される。   Therefore, as a candidate for a magnetic recording medium capable of further improving the surface recording density, a discrete track medium in which the recording layer is divided into a number of recording elements in the shape of a track in the data area, or a track in the circumferential direction as well. Patterned media divided into a large number of divided recording elements has been proposed. In order to improve the servo information recording efficiency, it has also been proposed to form a recording layer in the shape of a servo pattern in the servo area. Such discrete track media and patterned media are also expected to be synergistically improved in surface recording density by adopting a perpendicular recording type.

記録層を多数の記録要素に分割する方法としては、半導体の製造分野で用いられるドライエッチングの手法を利用することが提案されている(例えば、特許文献1参照)。   As a method of dividing the recording layer into a large number of recording elements, it has been proposed to use a dry etching technique used in the semiconductor manufacturing field (see, for example, Patent Document 1).

良好な記録/再生特性を得るためには記録層をその基板側の面までエッチングし、記録層を分割することが好ましいと考えられている。一方、良好な記録/再生特性を得るためには軟磁性層をエッチングしないことが好ましいと考えられている。   In order to obtain good recording / reproducing characteristics, it is considered preferable to divide the recording layer by etching the recording layer to the surface on the substrate side. On the other hand, in order to obtain good recording / reproducing characteristics, it is considered preferable not to etch the soft magnetic layer.

従って、記録層の凹凸パターンの凹部深さを正確に制御すると共に、エッチングされた記録層の凹凸パターンの凹部深さを正確に確認できることが重要である。TEM(透過型電子顕微鏡)やSEM(走査型電子顕微鏡)を用いれば、凹部深さを確認することができる。   Therefore, it is important to be able to accurately control the recess depth of the concavo-convex pattern of the recording layer and to accurately confirm the recess depth of the concavo-convex pattern of the etched recording layer. If a TEM (transmission electron microscope) or SEM (scanning electron microscope) is used, the depth of the recess can be confirmed.

特開平9−97419号公報JP-A-9-97419

しかしながら、TEMやSEMを用いる場合、凹凸パターンの記録層を有する被検査体を切断してサンプルを作製する必要がある。一方、品質管理という点では実際に出荷される製品又はその製造工程における中間製品も検査できることが好ましく、記録層の凹凸パターンの凹部深さを非破壊で確認したいというニーズがある。更に、TEMやSEMを用いる場合、サンプルの作製やサンプルの観察に要する時間が長いという問題もある。   However, in the case of using TEM or SEM, it is necessary to produce a sample by cutting an object to be inspected having a recording layer with a concavo-convex pattern. On the other hand, in terms of quality control, it is preferable to be able to inspect products that are actually shipped or intermediate products in the manufacturing process, and there is a need to check the depth of the concave portions of the concave-convex pattern of the recording layer in a non-destructive manner. Furthermore, when using TEM or SEM, there is also a problem that the time required for sample preparation and sample observation is long.

本発明は、以上の問題に鑑みてなされたものであって、記録層の凹凸パターンの凹部深さを非破壊で迅速に確認可能である磁気記録媒体、これを備える磁気記録再生装置及び被検査体を切断することなく記録層の凹凸パターンの凹部深さを迅速に確認できる凹凸パターンの凹部深さ検査方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a magnetic recording medium capable of quickly and non-destructively confirming the recess depth of the concavo-convex pattern of the recording layer, a magnetic recording / reproducing apparatus including the same, and an inspection target It is an object of the present invention to provide a method for inspecting the concave / convex pattern of the concave / convex pattern, which can quickly confirm the concave / convex depth of the concave / convex pattern of the recording layer without cutting the body.

本発明は、基板と、該基板の上に形成された軟磁性層と、軟磁性層の上に形成され、且つ、所定の凹凸パターンで多数の記録要素に分割された記録層と、厚さ方向の核形成磁界の大きさが記録層の厚さ方向の核形成磁界の大きさと異なり該記録層及び軟磁性層の間に形成された中間磁性層と、を含み、凹凸パターンの凹部の底面が中間磁性層の領域に位置している磁気記録媒体により上記目的を達成するものである。   The present invention relates to a substrate, a soft magnetic layer formed on the substrate, a recording layer formed on the soft magnetic layer and divided into a plurality of recording elements in a predetermined uneven pattern, and a thickness. An intermediate magnetic layer formed between the recording layer and the soft magnetic layer, the magnitude of the direction nucleation magnetic field being different from the magnitude of the nucleation magnetic field in the thickness direction of the recording layer, and the bottom surface of the concave portion of the concave-convex pattern Is achieved by a magnetic recording medium positioned in the region of the intermediate magnetic layer.

又、本発明は、基板、該基板の上に形成された軟磁性層、軟磁性層の上に形成され、且つ、所定の凹凸パターンで多数の記録要素に分割された記録層及び厚さ方向の核形成磁界の大きさが記録層の厚さ方向の核形成磁界の大きさと異なり該記録層及び軟磁性層の間に形成された中間磁性層を含む被検査体の記録層側の面に光を照射すると共にその反射光を測定して磁気カー効果特性を測定する磁気カー効果特性測定工程と、該磁気カー効果特性の測定結果に基づいて凹凸パターンの凹部の底面の位置を判別する凹部深さ判別工程と、を含む凹凸パターンの凹部深さ検査方法により上記目的を達成するものである。   The present invention also relates to a substrate, a soft magnetic layer formed on the substrate, a recording layer formed on the soft magnetic layer and divided into a plurality of recording elements in a predetermined uneven pattern, and the thickness direction. The nucleation magnetic field of the recording layer differs from the nucleation magnetic field in the thickness direction of the recording layer on the surface on the recording layer side of the object to be inspected including the intermediate magnetic layer formed between the recording layer and the soft magnetic layer. A magnetic Kerr effect characteristic measuring step for measuring the magnetic Kerr effect characteristic by irradiating light and measuring the reflected light, and a concave part for determining the position of the bottom of the concave part of the concave and convex pattern based on the measurement result of the magnetic Kerr effect characteristic The above-described object is achieved by a method for inspecting a recess depth of a concavo-convex pattern including a depth discrimination step.

発明者らは、凹凸パターンで多数の記録要素に分割された記録層と軟磁性層との間に厚さ方向の核形成磁界の大きさが記録層の厚さ方向の核形成磁界と異なる中間磁性層を設けることで、凹凸パターンの凹部の底面が中間磁性層の領域に位置している場合と、中間磁性層の領域に位置していない場合とで磁気記録媒体(被検査体)に照射される光の磁気カー効果特性に差異が生じることを見出した。   The inventors have found that the nucleation magnetic field in the thickness direction is different from the nucleation magnetic field in the thickness direction of the recording layer between the recording layer and the soft magnetic layer which are divided into a large number of recording elements by the concavo-convex pattern. By providing the magnetic layer, the magnetic recording medium (inspected object) is irradiated depending on whether the bottom surface of the concave portion of the concave-convex pattern is located in the intermediate magnetic layer region or not in the intermediate magnetic layer region. It has been found that there is a difference in the magnetic Kerr effect characteristics of the emitted light.

凹凸パターンの凹部の底面が記録層の領域に位置している場合には記録層の磁気特性だけが磁気カー効果特性に反映されるのに対し、凹凸パターンの凹部の底面が中間磁性層の領域に位置している場合には凸部の記録層の磁気特性及び凹部の中間磁性層の磁気特性の両方が磁気カー効果特性に反映されるため、このような磁気カー効果特性の差異が生じると考えられる。   When the bottom surface of the concave portion of the concavo-convex pattern is located in the recording layer region, only the magnetic characteristics of the recording layer are reflected in the magnetic Kerr effect characteristic, whereas the bottom surface of the concave portion of the concavo-convex pattern is the region of the intermediate magnetic layer. When the magnetic Kerr effect characteristic is present, both the magnetic characteristic of the convex recording layer and the magnetic characteristic of the concave intermediate magnetic layer are reflected in the magnetic Kerr effect characteristic. Conceivable.

従って、上記の磁気記録媒体は、記録層が分割されているか否かを非破壊で迅速に確認可能である。   Therefore, in the above magnetic recording medium, it is possible to quickly confirm whether or not the recording layer is divided without breaking.

又、発明者らは、分割されていない中間磁性層が記録層の下に存在しても、中間磁性層の飽和磁束密度を記録層の飽和磁束密度よりも小さく抑制することで凹部の下の中間磁性層からのノイズが小さく抑制され、記録層の下に中間磁性層が存在しない場合と同様の記録/再生特性が得られることを見出した。   In addition, even if an undivided intermediate magnetic layer exists below the recording layer, the inventors suppress the saturation magnetic flux density of the intermediate magnetic layer to be smaller than the saturation magnetic flux density of the recording layer, thereby It has been found that noise from the intermediate magnetic layer is suppressed to a small level, and that the same recording / reproducing characteristics as when the intermediate magnetic layer is not present under the recording layer can be obtained.

即ち、次のような本発明により、上記目的を達成することができる。   That is, the above-described object can be achieved by the following present invention.

(1)基板と、該基板の上に形成された軟磁性層と、該軟磁性層の上に形成され、且つ、所定の凹凸パターンで多数の記録要素に分割された記録層と、厚さ方向の核形成磁界の大きさが前記記録層の厚さ方向の核形成磁界の大きさと異なり該記録層及び前記軟磁性層の間に形成された中間磁性層と、を含み、前記凹凸パターンの凹部の底面が前記中間磁性層の領域に位置していることを特徴とする磁気記録媒体。 (1) a substrate, a soft magnetic layer formed on the substrate, a recording layer formed on the soft magnetic layer and divided into a plurality of recording elements in a predetermined uneven pattern, and a thickness An intermediate magnetic layer formed between the recording layer and the soft magnetic layer, the magnitude of the direction nucleation magnetic field being different from the magnitude of the nucleation magnetic field in the thickness direction of the recording layer, A magnetic recording medium, wherein the bottom surface of the recess is located in the region of the intermediate magnetic layer.

(2) (1)において、前記中間磁性層の厚さ方向の核形成磁界の大きさが前記記録層の厚さ方向の核形成磁界の大きさよりも小さいことを特徴とする磁気記録媒体。 (2) The magnetic recording medium according to (1), wherein the nucleation magnetic field in the thickness direction of the intermediate magnetic layer is smaller than the nucleation magnetic field in the thickness direction of the recording layer.

(3) (1)又は(2)において、前記中間磁性層の飽和磁束密度が前記記録層の飽和磁束密度よりも小さいことを特徴とする磁気記録媒体。 (3) The magnetic recording medium according to (1) or (2), wherein a saturation magnetic flux density of the intermediate magnetic layer is smaller than a saturation magnetic flux density of the recording layer.

(4) (3)において、前記中間磁性層の飽和磁束密度が0.15T以下であることを特徴とする磁気記録媒体。 (4) The magnetic recording medium according to (3), wherein a saturation magnetic flux density of the intermediate magnetic layer is 0.15 T or less.

(5) (1)乃至(4)のいずれかにおいて、前記凹凸パターンの凹部に充填された透光性の充填材を更に含むことを特徴とする磁気記録媒体。 (5) The magnetic recording medium according to any one of (1) to (4), further comprising a translucent filler filled in the concave portion of the concave-convex pattern.

(6) (5)において、前記記録要素の上面及び前記充填材の上面を被覆する透光性の保護層を更に含むことを特徴とする磁気記録媒体。 (6) The magnetic recording medium according to (5), further comprising a translucent protective layer covering the upper surface of the recording element and the upper surface of the filler.

(7) (1)乃至(6)のいずれかに記載の磁気記録媒体を有することを特徴とする磁気記録再生装置。 (7) A magnetic recording / reproducing apparatus comprising the magnetic recording medium according to any one of (1) to (6).

(8)基板、該基板の上に形成された軟磁性層、該軟磁性層の上に形成され、且つ、所定の凹凸パターンで多数の記録要素に分割された記録層及び厚さ方向の核形成磁界の大きさが前記記録層の厚さ方向の核形成磁界の大きさと異なり該記録層及び前記軟磁性層の間に形成された中間磁性層を含む被検査体の前記記録層側の面に光を照射すると共にその反射光を測定して磁気カー効果特性を測定する磁気カー効果特性測定工程と、該磁気カー効果特性の測定結果に基づいて前記凹凸パターンの凹部の底面の位置を判別する凹部深さ判別工程と、を含むことを特徴とする凹凸パターンの凹部深さ検査方法。 (8) Substrate, soft magnetic layer formed on the substrate, recording layer formed on the soft magnetic layer and divided into a large number of recording elements in a predetermined uneven pattern, and a nucleus in the thickness direction The surface on the recording layer side of the object to be inspected includes an intermediate magnetic layer formed between the recording layer and the soft magnetic layer, the magnitude of the forming magnetic field being different from the magnitude of the nucleation magnetic field in the thickness direction of the recording layer The magnetic Kerr effect characteristic measuring step of measuring the magnetic Kerr effect characteristic by irradiating the light and measuring the reflected light, and determining the position of the bottom surface of the concave portion of the concave / convex pattern based on the measurement result of the magnetic Kerr effect characteristic And a concave portion depth determining step. The concave portion concave portion depth inspection method comprising:

(9) (8)において、前記凹部深さ判別工程において、前記磁気カー効果特性の測定結果に基づいて前記凹凸パターンの凹部の底面が前記中間磁性層の領域に位置しているか否かを判別することを特徴とする凹凸パターンの凹部深さ検査方法。 (9) In (8), in the recess depth determining step, it is determined whether or not the bottom surface of the recess of the uneven pattern is located in the region of the intermediate magnetic layer based on the measurement result of the magnetic Kerr effect characteristic. A method for inspecting a recess depth of a concavo-convex pattern, comprising:

(10) (8)又は(9)において、前記凹部深さ判別工程において、前記磁気カー効果特性の測定結果に基づいて前記凹凸パターンの凹部の底面が前記記録層の領域、前記中間磁性層の領域、前記軟磁性層の領域のいずれの領域に位置しているかを判別することを特徴とする凹凸パターンの凹部深さ検査方法。 (10) In (8) or (9), in the concave portion depth determining step, the bottom surface of the concave portion of the concave / convex pattern is the region of the recording layer, the intermediate magnetic layer based on the measurement result of the magnetic Kerr effect characteristic. A method for inspecting a recess depth of a concavo-convex pattern, comprising determining whether the region is located in a region or a region of the soft magnetic layer.

(11) (8)乃至(10)のいずれかにおいて、前記磁気カー効果特性測定工程において前記被検査体に外部磁場をその大きさを変動させつつ印加して前記磁気カー効果特性としてカー回転角を測定し、前記凹部深さ判別工程において前記外部磁場の大きさ及び前記カー回転角の関係を示すヒステリシス曲線に基づいて前記凹凸パターンの凹部の底面の位置を判別することを特徴とする凹凸パターンの凹部深さ検査方法。 (11) In any one of (8) to (10), in the magnetic Kerr effect characteristic measurement step, an external magnetic field is applied to the object to be inspected while varying the magnitude thereof, and the Kerr rotation angle is set as the magnetic Kerr effect characteristic. And determining the position of the bottom surface of the concave portion of the concave / convex pattern based on a hysteresis curve indicating the relationship between the magnitude of the external magnetic field and the Kerr rotation angle in the concave depth determining step. Recess depth inspection method.

(12) (11)において、前記凹部深さ判別工程において前記ヒステリシス曲線の段部の有無に基づいて前記凹部の底面が前記中間磁性層の領域に位置しているか否かを判別することを特徴とする凹凸パターンの凹部深さ検査方法。 (12) In (11), it is determined whether or not the bottom surface of the recess is located in the region of the intermediate magnetic layer based on the presence or absence of a step portion of the hysteresis curve in the recess depth determination step. A method for inspecting the recess depth of the uneven pattern.

(13) (8)乃至(12)のいずれかにおいて、前記磁気カー効果特性の測定により得られる核形成磁界の大きさに基づいて前記凹部の底面の位置を判別することを特徴とする凹凸パターンの凹部深さ検査方法。 (13) The concave / convex pattern according to any one of (8) to (12), wherein the position of the bottom surface of the concave portion is determined based on the magnitude of a nucleation magnetic field obtained by measuring the magnetic Kerr effect characteristic. Recess depth inspection method.

尚、本出願において、「所定の凹凸パターンで多数の記録要素に分割された記録層」とは、連続記録層が所定のパターンで多数の記録要素に分割された記録層の他、例えばトラックの形状の記録要素同士が端部で連続する記録層や記録要素が螺旋状の渦巻き形状である記録層のように基板上に部分的に形成される記録層も含む意義で用いることとする。   In the present application, the “recording layer divided into a large number of recording elements with a predetermined uneven pattern” means a recording layer in which a continuous recording layer is divided into a large number of recording elements with a predetermined pattern, for example, a track The term “recording layer” is used to include a recording layer that is partially formed on a substrate, such as a recording layer in which recording elements having a shape are continuous at the end or a recording layer in which a recording element has a spiral shape.

又、本出願において「磁気記録媒体」という用語は、情報の記録、読み取りに磁気のみを用いるハードディスク、フロッピー(登録商標)ディスク等に限定されず、磁気と光を併用するMO(Magneto Optical)等の光磁気記録媒体、磁気と熱を併用する熱アシスト型の記録媒体も含む意義で用いることとする。   Further, in the present application, the term “magnetic recording medium” is not limited to a hard disk or floppy (registered trademark) disk that uses only magnetism for recording and reading information, and MO (Magneto Optical) that uses both magnetism and light. The magneto-optical recording medium and the heat-assisted recording medium using both magnetism and heat are also used in the meaning.

又、本出願において「凹凸パターンの凹部の底面が中間磁性層の領域に位置している」とは、凹部の底面が中間磁性層の上面に一致する場合、凹部の底面の全部が中間磁性層の厚さ方向の途中の領域に存在している場合を含む意義で用いることとする。「凹凸パターンの凹部の底面が軟磁性層の領域に位置している」についても同様である。   In this application, “the bottom surface of the concave portion of the concave / convex pattern is located in the region of the intermediate magnetic layer” means that when the bottom surface of the concave portion coincides with the top surface of the intermediate magnetic layer, the entire bottom surface of the concave portion is the intermediate magnetic layer. In the meaning including the case where it exists in the area | region in the middle of the thickness direction of this. The same applies to “the bottom surface of the concave portion of the concave / convex pattern is located in the region of the soft magnetic layer”.

又、本出願において「凹凸パターンの凹部の底面が記録層の領域に位置している」とは、凹部の底面の全部が記録層の厚さ方向の途中の領域に存在している場合、及び凹部が形成されておらず記録層が一様な連続膜であり、いわば凹部の底面が記録層の上面に一致する場合を含む意義で用いることとする。   Further, in the present application, “the bottom surface of the concave portion of the concave / convex pattern is located in the region of the recording layer” means that the entire bottom surface of the concave portion is present in the middle region in the thickness direction of the recording layer, and The concave layer is not formed and the recording layer is a uniform continuous film. In other words, the recording layer is used in a meaning including the case where the bottom surface of the concave portion coincides with the upper surface of the recording layer.

本発明によれば、記録層の凹凸パターンの凹部深さを非破壊で迅速に確認可能である磁気記録媒体、これを備える磁気記録媒体及び被検査体を切断することなく記録層の凹凸パターンの凹部深さを迅速に確認できる凹凸パターンの凹部深さ検査方法を実現できる。   According to the present invention, a magnetic recording medium capable of quickly and non-destructively confirming the concave depth of the concave-convex pattern of the recording layer, a magnetic recording medium including the same, and the concave-convex pattern of the recording layer without cutting the object to be inspected are provided. A concave / convex depth inspection method for a concave / convex pattern that can quickly confirm the concave depth can be realized.

以下、本発明の好ましい実施形態について図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1に示されるように、本実施形態に係る磁気記録再生装置1は、磁気記録媒体10と、磁気記録媒体10に対してデータの記録/再生を行うために磁気記録媒体10の表面に近接して浮上可能であるように設置された浮上式の磁気ヘッド2と、を備え、磁気記録媒体10の構成に特徴を有している。他の構成については本実施形態の理解のために特に必要とは思われないため、説明を適宜省略することとする。   As shown in FIG. 1, the magnetic recording / reproducing apparatus 1 according to the present embodiment is close to the magnetic recording medium 10 and the surface of the magnetic recording medium 10 for recording / reproducing data on the magnetic recording medium 10. The magnetic recording medium 10 is characterized in that the magnetic recording medium 10 has a floating magnetic head 2 installed so that it can float. Since other configurations are not considered particularly necessary for understanding the present embodiment, the description thereof will be omitted as appropriate.

尚、磁気記録媒体10は中心孔を有し、中心孔においてチャック3に固定され、該チャック3と共に回転自在とされている。又、磁気ヘッド2は、アーム4の先端近傍に装着され、アーム4はベース5に回動自在に取付けられている。これにより、磁気ヘッド2は磁気記録媒体10の表面に近接して浮上しつつ磁気記録媒体10の径方向に沿う円弧軌道で可動とされている。   The magnetic recording medium 10 has a center hole, is fixed to the chuck 3 in the center hole, and is rotatable with the chuck 3. The magnetic head 2 is mounted near the tip of the arm 4, and the arm 4 is rotatably attached to the base 5. As a result, the magnetic head 2 is movable along an arc orbit along the radial direction of the magnetic recording medium 10 while flying close to the surface of the magnetic recording medium 10.

磁気記録媒体10は、円板形状の垂直記録型のディスクリートトラックメディアであり、図2に示されるように、基板12と、基板12の上に形成された軟磁性層14と、軟磁性層14の上に形成され、且つ、所定の凹凸パターンで多数の記録要素16Aに分割された記録層16と、厚さ方向の核形成磁界の大きさが記録層16の厚さ方向の核形成磁界の大きさと異なり記録層16及び軟磁性層14の間に形成された中間磁性層18と、を含み、凹凸パターンの凹部20の底面20Aが中間磁性層18の領域に位置することを特徴としている。尚、厚さ方向とは、磁気記録媒体10の表面に垂直な方向である。   The magnetic recording medium 10 is a disc-shaped perpendicular recording type discrete track medium. As shown in FIG. 2, the magnetic recording medium 10 includes a substrate 12, a soft magnetic layer 14 formed on the substrate 12, and a soft magnetic layer 14. And a nucleation magnetic field in the thickness direction of the recording layer 16 in which the magnitude of the nucleation magnetic field in the thickness direction Unlike the size, it includes an intermediate magnetic layer 18 formed between the recording layer 16 and the soft magnetic layer 14, and the bottom surface 20 </ b> A of the concave portion 20 of the concave / convex pattern is located in the region of the intermediate magnetic layer 18. The thickness direction is a direction perpendicular to the surface of the magnetic recording medium 10.

記録層16は表面に垂直な方向に磁気異方性を有するように配向されている。又、記録層16と中間磁性層18とは接している。   The recording layer 16 is oriented so as to have magnetic anisotropy in a direction perpendicular to the surface. The recording layer 16 and the intermediate magnetic layer 18 are in contact with each other.

又、磁気記録媒体10は、凹凸パターンの凹部20を充填する透光性の充填材22を有している。   The magnetic recording medium 10 also has a translucent filler 22 that fills the recesses 20 of the uneven pattern.

更に、磁気記録媒体10は、記録要素16Aの上面及び充填材20の上面を被覆する透光性の保護層24を有している。   Further, the magnetic recording medium 10 has a translucent protective layer 24 that covers the upper surface of the recording element 16 </ b> A and the upper surface of the filler 20.

尚、保護層24の上には透光性の潤滑層26が形成されている。又、中間磁性層18と軟磁性層14との間には、下地層28が形成されている。   Note that a light-transmitting lubricating layer 26 is formed on the protective layer 24. An underlayer 28 is formed between the intermediate magnetic layer 18 and the soft magnetic layer 14.

他の構成については本実施形態の理解のために特に必要とは思われないため、説明を適宜省略することとする。   Since other configurations are not considered particularly necessary for understanding the present embodiment, the description thereof will be omitted as appropriate.

基板12は、記録層16側の面が鏡面研磨されている。基板22の材料としては、ガラス、NiPで被覆したAl合金、Si、Al23等の非磁性材料を用いることができる。 The surface of the substrate 12 on the recording layer 16 side is mirror-polished. As the material of the substrate 22, a nonmagnetic material such as glass, NiP-coated Al alloy, Si, Al 2 O 3 or the like can be used.

軟磁性層14は、厚さが50〜300nmである。軟磁性層14の材料としては、Fe合金、Coアモルファス合金、フェライト等を用いることができる。尚、軟磁性層14は、軟磁性を有する層と、非磁性層と、の積層構造であってもよい。軟磁性層14の厚さ方向の核形成磁界Hnは、0.01〜0.15kA/mであり、記録層16及び中間磁性層18よりも小さい。又、軟磁性層14の飽和磁束密度は、1.2〜1.8Tである。   The soft magnetic layer 14 has a thickness of 50 to 300 nm. As a material of the soft magnetic layer 14, an Fe alloy, a Co amorphous alloy, ferrite, or the like can be used. The soft magnetic layer 14 may have a laminated structure of a soft magnetic layer and a nonmagnetic layer. The nucleation magnetic field Hn in the thickness direction of the soft magnetic layer 14 is 0.01 to 0.15 kA / m, which is smaller than that of the recording layer 16 and the intermediate magnetic layer 18. The saturation magnetic flux density of the soft magnetic layer 14 is 1.2 to 1.8T.

記録層16は、厚さが5〜40nmである。記録層16の材料としては、CoCrPt合金等のCo及びCrを含む合金、Co及びPtを含む合金、Co及びPdを含む合金、Fe及びPtを含む合金、Fe及びCoを含む合金これらの積層体、SiO等の酸化物材料の中にCoPt等の強磁性粒子をマトリックス状に含ませた材料等を用いることができる。記録層16の厚さ方向の核形成磁界Hnrは135〜400kA/mであることが好ましい。又、記録層16の飽和磁束密度Bsは0.3〜1.0Tであることが好ましい。 The recording layer 16 has a thickness of 5 to 40 nm. As the material of the recording layer 16, an alloy containing Co and Cr, such as a CoCrPt alloy, an alloy containing Co and Pt, an alloy containing Co and Pd, an alloy containing Fe and Pt, an alloy containing Fe and Co, and a laminate thereof A material in which ferromagnetic particles such as CoPt are included in a matrix in an oxide material such as SiO 2 can be used. The nucleation magnetic field Hnr in the thickness direction of the recording layer 16 is preferably 135 to 400 kA / m. The saturation magnetic flux density Bs of the recording layer 16 is preferably 0.3 to 1.0T.

記録要素16Aは、データ領域において同心円状のトラックの形状で径方向に微細な間隔で形成されており、図2はこれを図示したものである。又、記録要素16Aは、サーボ領域において所定のサーボパターンで形成されている(図示省略)。   The recording elements 16A are formed in a concentric track shape in the data area and are formed at fine intervals in the radial direction, and FIG. 2 illustrates this. The recording element 16A is formed with a predetermined servo pattern in the servo area (not shown).

中間磁性層18は、厚さが2〜40nmである。中間磁性層18の材料としては、Coを含む合金、Co及びPtを含む合金、Feを含む合金、Fe及びCoを含む合金、Fe及びNiを含む合金、Fe及びNを含む合金、Fe及びAlを含む合金、Fe及びPtを含む合金等を用いることができる。中間磁性層18の厚さ方向の核形成磁界Hnは記録層よりも小さい。中間磁性層18の厚さ方向の核形成磁界Hnmは25〜180kA/mであることが好ましい。又、中間磁性層18は、飽和磁束密度Bsも記録層16よりも低い。中間磁性層18の飽和磁束密度Bsは0.05〜0.15Tであることが好ましい。   The intermediate magnetic layer 18 has a thickness of 2 to 40 nm. The material of the intermediate magnetic layer 18 includes an alloy containing Co, an alloy containing Co and Pt, an alloy containing Fe, an alloy containing Fe and Co, an alloy containing Fe and Ni, an alloy containing Fe and N, Fe and Al. An alloy containing Fe, an alloy containing Fe and Pt, or the like can be used. The nucleation magnetic field Hn in the thickness direction of the intermediate magnetic layer 18 is smaller than that of the recording layer. The nucleation magnetic field Hnm in the thickness direction of the intermediate magnetic layer 18 is preferably 25 to 180 kA / m. The intermediate magnetic layer 18 also has a saturation magnetic flux density Bs lower than that of the recording layer 16. The saturation magnetic flux density Bs of the intermediate magnetic layer 18 is preferably 0.05 to 0.15T.

凹部20は、中間磁性層18の厚さ方向の途中まで形成され、底面20Aの全部が中間磁性層18の厚さ方向の途中の領域に存在している。凹部20は、中間磁性層18における底面20Aの下の部分の厚さが2nm以上であるように形成されることが好ましい。   The recess 20 is formed halfway in the thickness direction of the intermediate magnetic layer 18, and the entire bottom surface 20 </ b> A exists in a region in the middle of the thickness direction of the intermediate magnetic layer 18. The recess 20 is preferably formed such that the thickness of the portion below the bottom surface 20A of the intermediate magnetic layer 18 is 2 nm or more.

充填材22の材料としては、SiO2を主成分とする酸化ケイ素、Al23、TiO2等の酸化物、AlN等の窒化物や透光性の樹脂材料等の透光性の材料を用いることができる。 As a material of the filler 22, a light-transmitting material such as silicon oxide containing SiO 2 as a main component, an oxide such as Al 2 O 3 or TiO 2 , a nitride such as AlN, or a light-transmitting resin material is used. Can be used.

保護層24は、厚さが1〜5nmである。保護層24の材料としては、例えば、ダイヤモンドライクカーボンと呼称される透光性の硬質炭素膜等を用いることができる。尚、本出願において「ダイヤモンドライクカーボン(以下、「DLC」という)」という用語は、炭素を主成分とし、アモルファス構造であって、ビッカース硬度測定で2×109〜8×1010Pa程度の硬さを示す材料という意義で用いることとする。 The protective layer 24 has a thickness of 1 to 5 nm. As a material of the protective layer 24, for example, a translucent hard carbon film called diamond-like carbon can be used. In the present application, the term “diamond-like carbon (hereinafter referred to as“ DLC ”)” is mainly composed of carbon, has an amorphous structure, and has a Vickers hardness measurement of about 2 × 10 9 to 8 × 10 10 Pa. It is used in the meaning of a material that exhibits hardness.

潤滑層26は、厚さが1〜2nmである。潤滑層26の材料としては、PFPE(パーフロロポリエーテル)等を用いることができる。   The lubricating layer 26 has a thickness of 1 to 2 nm. As a material of the lubricating layer 26, PFPE (perfluoropolyether) or the like can be used.

下地層28は、厚さが2〜40nmである。下地層28の材料としては、非磁性のCoCr合金、Ti、Ru、RuとTaの積層体、MgO等を用いることができる。   The underlayer 28 has a thickness of 2 to 40 nm. As the material of the underlayer 28, nonmagnetic CoCr alloy, Ti, Ru, a laminate of Ru and Ta, MgO, or the like can be used.

次に、磁気記録媒体10の作用について説明する。   Next, the operation of the magnetic recording medium 10 will be described.

磁気記録媒体10は、凹凸パターンの凹部20の底面20Aが中間磁性層18の領域に位置し、記録層16の記録要素16A同士が分割されているので記録/再生特性が良好である。   The magnetic recording medium 10 has good recording / reproducing characteristics because the bottom surface 20A of the concave portion 20 of the concave / convex pattern is located in the region of the intermediate magnetic layer 18 and the recording elements 16A of the recording layer 16 are divided.

尚、分割されていない中間磁性層18が記録層16の下に存在するが、中間磁性層18の飽和磁束密度が記録層16の飽和磁束密度よりも小さく抑制されているので、凹部20の下の中間磁性層18からのノイズが小さく抑制され、記録層16の下に中間磁性層18が存在しない場合と同様の記録/再生特性が得られる。これについては後述するシミュレーション例で更に詳細に説明する。   Although the non-divided intermediate magnetic layer 18 exists under the recording layer 16, the saturation magnetic flux density of the intermediate magnetic layer 18 is suppressed to be smaller than the saturation magnetic flux density of the recording layer 16. The noise from the intermediate magnetic layer 18 is suppressed to a small level, and the same recording / reproducing characteristics as when the intermediate magnetic layer 18 does not exist under the recording layer 16 can be obtained. This will be described in more detail in a simulation example described later.

又、中間磁性層18が分割されておらず凹部20の深さがそれだけ浅いので、凹部20の加工が容易である。更に、凹部20の深さが浅いので、凹部20を充填して平坦化することもそれだけ容易である。   Further, since the intermediate magnetic layer 18 is not divided and the depth of the concave portion 20 is so shallow, the processing of the concave portion 20 is easy. Furthermore, since the depth of the recess 20 is shallow, it is easy to fill the recess 20 and flatten it.

又、磁気記録媒体10は、中間磁性層18の厚さ方向の核形成磁界Hnが記録層16の厚さ方向の核形成磁界Hnよりも小さいので、記録時における記録層16の磁化反転が円滑である。   Further, in the magnetic recording medium 10, since the nucleation magnetic field Hn in the thickness direction of the intermediate magnetic layer 18 is smaller than the nucleation magnetic field Hn in the thickness direction of the recording layer 16, the magnetization reversal of the recording layer 16 during recording is smooth. It is.

又、磁気記録媒体10は、凹凸パターンで多数の記録要素16Aに分割された記録層16と軟磁性層14との間に記録層16よりも厚さ方向の核形成磁界Hnが小さい中間磁性層18が設けられているので、凹凸パターンの凹部20の底面20Aが中間磁性層18の領域に位置している場合と、中間磁性層18の領域に位置していない場合とで記録層16側に照射される光の磁気カー効果特性に差異が生じる。   Further, the magnetic recording medium 10 includes an intermediate magnetic layer having a nucleation magnetic field Hn in the thickness direction smaller than that of the recording layer 16 between the recording layer 16 and the soft magnetic layer 14 divided into a large number of recording elements 16A in an uneven pattern. 18 is provided on the recording layer 16 side when the bottom surface 20A of the concave portion 20 of the concave / convex pattern is located in the region of the intermediate magnetic layer 18 and when it is not located in the region of the intermediate magnetic layer 18. Differences occur in the magnetic Kerr effect characteristics of the irradiated light.

凹凸パターンの凹部20の底面20Aが記録層16の領域に位置する場合には記録層16の磁気特性だけが反射光の磁気カー効果特性に反映されるのに対し、凹凸パターンの凹部20の底面20Aが中間磁性層18の領域に位置している場合には凸部の記録層16(記録要素16A)の磁気特性及び凹部20の中間磁性層18の磁気特性の両方が磁気カー効果特性に反映されるため、このような磁気カー効果特性の差異が生じると考えられる。   When the bottom surface 20A of the concave portion 20 of the concave / convex pattern is located in the region of the recording layer 16, only the magnetic characteristic of the recording layer 16 is reflected in the magnetic Kerr effect characteristic of the reflected light, whereas the bottom surface of the concave portion 20 of the concave / convex pattern When 20A is located in the region of the intermediate magnetic layer 18, both the magnetic characteristics of the convex recording layer 16 (recording element 16A) and the magnetic characteristics of the intermediate magnetic layer 18 of the concave 20 are reflected in the magnetic Kerr effect characteristics. Therefore, it is considered that such a difference in magnetic Kerr effect characteristics occurs.

従って、磁気記録媒体10は、記録層16の凹凸パターンの凹部20の深さを非破壊で迅速に確認可能である。   Therefore, the magnetic recording medium 10 can quickly and non-destructively confirm the depth of the concave portion 20 of the concave / convex pattern of the recording layer 16.

以下、磁気記録媒体10の凹凸パターンの凹部深さ検査方法について図3のフローチャートに沿って説明する。   Hereinafter, a method for inspecting the recess depth of the uneven pattern of the magnetic recording medium 10 will be described with reference to the flowchart of FIG.

まず、磁気記録媒体10(被検査体)の記録層16側の面に直線偏光の光を照射すると共にその反射光を測定して磁気カー効果特性を測定する(S102)。   First, the surface of the magnetic recording medium 10 (inspected object) on the recording layer 16 side is irradiated with linearly polarized light and the reflected light is measured to measure the magnetic Kerr effect characteristic (S102).

例えば、図4に示されるようなカー回転角測定装置30を用いて、磁気記録媒体10に外部磁場Hをその大きさを変動させつつ印加して磁気カー効果特性としてカー回転角θkを測定する。   For example, by using a Kerr rotation angle measuring device 30 as shown in FIG. 4, the Kerr rotation angle θk is measured as the magnetic Kerr effect characteristic by applying the external magnetic field H to the magnetic recording medium 10 while changing the magnitude thereof. .

ここでカー回転角測定装置30の構成について簡単に説明しておく。   Here, the configuration of the car rotation angle measurement device 30 will be briefly described.

カー回転角測定装置30は、単色レーザ光を発する光源30Aと、直線偏光を得るための偏光子30Cと、ハーフミラー30Eと、ミラー30Fと、電磁石30Gとを有し、これらがこの順で磁気記録媒体10にレーザ光を照射するための照射系の光路上に配置されている。尚、電磁石30Gには照射系の光路に相当する部分に孔が形成されている。   The Kerr rotation angle measuring device 30 includes a light source 30A that emits monochromatic laser light, a polarizer 30C for obtaining linearly polarized light, a half mirror 30E, a mirror 30F, and an electromagnet 30G, which are magnetized in this order. It is arranged on the optical path of an irradiation system for irradiating the recording medium 10 with laser light. Note that a hole is formed in the electromagnet 30G at a portion corresponding to the optical path of the irradiation system.

更に、カー回転角測定装置30は、電磁石30G、ミラー30Fを介してハーフミラー30Eに到達し、偏光子30Cと異なる方向に反射される磁気記録媒体10からの反射光をその偏光方向により2方向に分けるためのビームスプリッタ30Hと、一方の方向の偏光が入射する検光子30Jと、他方の方向の偏光が入射する検光子30Kと、検光子30J及び30Kに入射した各方向の偏光の強さの差を検出するための差動アンプ30Lと、を有している。   Furthermore, the Kerr rotation angle measuring device 30 reaches the half mirror 30E via the electromagnet 30G and the mirror 30F, and reflects the reflected light from the magnetic recording medium 10 reflected in a direction different from the polarizer 30C in two directions depending on the polarization direction. A beam splitter 30H for splitting, an analyzer 30J on which polarized light in one direction is incident, an analyzer 30K on which polarized light in the other direction is incident, and the intensity of polarized light in each direction incident on the analyzers 30J and 30K Differential amplifier 30L for detecting the difference between the two.

磁気記録媒体10には、電磁石30Dにより表面に垂直な方向に外部磁場をその大きさを変動させつつ印加する。   An external magnetic field is applied to the magnetic recording medium 10 while changing its magnitude in a direction perpendicular to the surface by the electromagnet 30D.

予め標準試料を用いて差動アンプ30Lが検出する各方向の偏光の強さの差とカー回転角θkとの関係を測定しておくことで、差動アンプ30Lの検出値に基づいて、磁気記録媒体10(被検査体)のカー回転角θkを求めることができる。   By measuring the relationship between the difference in the intensity of polarized light detected by the differential amplifier 30L in each direction and the Kerr rotation angle θk in advance using a standard sample, the magnetic field is determined based on the detection value of the differential amplifier 30L. The Kerr rotation angle θk of the recording medium 10 (inspected object) can be obtained.

次に、磁気カー効果特性の測定結果に基づいて記録層16の凹凸パターンの凹部20の底面20Aが、中間磁性層18の領域に位置しているか否かを判別する(S104)。   Next, based on the measurement result of the magnetic Kerr effect characteristic, it is determined whether or not the bottom surface 20A of the concave portion 20 of the concave / convex pattern of the recording layer 16 is located in the region of the intermediate magnetic layer 18 (S104).

例えば、外部磁場Hの大きさとカー回転角θkとの関係を示すヒステリシス曲線に基づいて記録層16の凹凸パターンの凹部20の底面20Aが、中間磁性層18の領域に位置しているか否かを判別する。   For example, based on a hysteresis curve indicating the relationship between the magnitude of the external magnetic field H and the Kerr rotation angle θk, whether or not the bottom surface 20A of the concave portion 20 of the concave / convex pattern of the recording layer 16 is located in the region of the intermediate magnetic layer 18 is determined. Determine.

前記図2に示されるように凹部20の底面20Aが中間磁性層18の領域に位置している場合には、図5に示されるように外部磁場Hの大きさとカー回転角θkとの関係を示すヒステリシス曲線に段部Sが存在する。これは、図6に拡大して示されるように、中間磁性層18が磁化反転し始める外部磁場Hの大きさである中間磁性層18の厚さ方向の核形成磁界Hnmが記録層16の厚さ方向の核形成磁界Hnrよりも小さく、且つ、これらの間に中間磁性層18の厚さ方向の飽和磁界Hsmが存在するためである。   When the bottom surface 20A of the recess 20 is located in the region of the intermediate magnetic layer 18 as shown in FIG. 2, the relationship between the magnitude of the external magnetic field H and the Kerr rotation angle θk is shown in FIG. A step S exists in the hysteresis curve shown. As shown in an enlarged view in FIG. 6, the nucleation magnetic field Hnm in the thickness direction of the intermediate magnetic layer 18, which is the magnitude of the external magnetic field H at which the intermediate magnetic layer 18 starts to reverse magnetization, is the thickness of the recording layer 16. This is because the saturation magnetic field Hsm in the thickness direction of the intermediate magnetic layer 18 exists between them, which is smaller than the nucleation magnetic field Hnr in the vertical direction.

本出願において核形成磁界Hn、飽和磁界Hsとは、図6に示されるように外部磁場Hの大きさとカー回転角θkとの関係を示すヒステリシス曲線における直線部の延長線の交点に相当する外部磁場Hの大きさという意味で用いる。又、核形成磁界Hn、飽和磁界Hsが大きい(又は小さい)とは、これらの絶対値が大きい(又は小さい)という意味で用いる。   In the present application, the nucleation magnetic field Hn and the saturation magnetic field Hs are the externals corresponding to the intersections of the extension lines of the linear portion in the hysteresis curve showing the relationship between the magnitude of the external magnetic field H and the Kerr rotation angle θk as shown in FIG. Used to mean the magnitude of the magnetic field H. Further, the phrase “the nucleation magnetic field Hn and the saturation magnetic field Hs are large (or small)” means that the absolute values thereof are large (or small).

尚、中間磁性層18の厚さ方向の核形成磁界Hnmが記録層16の厚さ方向の核形成磁界Hnrよりも大きい場合も、記録層16の厚さ方向の飽和磁界Hsrが中間磁性層18の厚さ方向の核形成磁界Hnmよりも小さければ、図6と同様にヒステリシス曲線に段部Sが現れる。   Even when the nucleation magnetic field Hnm in the thickness direction of the intermediate magnetic layer 18 is larger than the nucleation magnetic field Hnr in the thickness direction of the recording layer 16, the saturation magnetic field Hsr in the thickness direction of the recording layer 16 does not exceed the intermediate magnetic layer 18. If it is smaller than the nucleation magnetic field Hnm in the thickness direction, a step S appears in the hysteresis curve as in FIG.

一方、記録層16の飽和磁界Hsr及び中間磁性層18の飽和磁界Hsmがいずれも記録層16の核形成磁界Hnr及び中間磁性層18の核形成磁界Hnmよりも大きい場合には、図7又は図8に示されるように、ヒステリシス曲線に段部Sは現れず、ヒステリシス曲線には中間磁性層18の核形成磁界Hnm、記録層16の核形成磁界Hnr、中間磁性層18の飽和磁界Hsm(又は記録層16の飽和磁界Hsr)に相当する3つの屈曲部が現れる。   On the other hand, when both the saturation magnetic field Hsr of the recording layer 16 and the saturation magnetic field Hsm of the intermediate magnetic layer 18 are larger than the nucleation magnetic field Hnr of the recording layer 16 and the nucleation magnetic field Hnm of the intermediate magnetic layer 18, FIG. As shown in FIG. 8, the step S does not appear in the hysteresis curve, and the nucleation magnetic field Hnm of the intermediate magnetic layer 18, the nucleation magnetic field Hnr of the recording layer 16, the saturation magnetic field Hsm of the intermediate magnetic layer 18 (or Three bent portions corresponding to the saturation magnetic field Hsr) of the recording layer 16 appear.

尚、図7において中間磁性層18の飽和磁界Hsmと記録層16の核形成磁界Hnrとの値がほぼ等しい場合には、図9に示されるように、屈曲部が1つしか現れないことがある。図8において記録層16の飽和磁界Hsrと中間磁性層18の核形成磁界Hnmとの値がほぼ等しい場合も同様である。   In FIG. 7, when the value of the saturation magnetic field Hsm of the intermediate magnetic layer 18 and the nucleation magnetic field Hnr of the recording layer 16 are substantially equal, only one bent portion may appear as shown in FIG. is there. The same applies when the saturation magnetic field Hsr of the recording layer 16 and the nucleation magnetic field Hnm of the intermediate magnetic layer 18 are substantially equal in FIG.

一方、図14に示されるような凹部20の底面20Aが記録層16の厚さ方向の途中の領域に位置している磁気記録媒体40や凹部が全く形成されておらず記録層が連続膜である磁気記録媒体の場合には、記録層16の磁化状態だけがカー回転角θkに反映され、中間磁性層18の磁化状態はカー回転角θkに反映されないので、図13に示されるように外部磁場Hの大きさと反射光のカー回転角θkとの関係を示すヒステリシス曲線に段部は存在せず、図7及び8に示されるような複数の屈曲部も存在しない。   On the other hand, the bottom surface 20A of the recess 20 as shown in FIG. 14 is located in a region in the middle of the thickness direction of the recording layer 16, and no recess is formed, and the recording layer is a continuous film. In the case of a certain magnetic recording medium, only the magnetization state of the recording layer 16 is reflected in the Kerr rotation angle θk, and the magnetization state of the intermediate magnetic layer 18 is not reflected in the Kerr rotation angle θk. Therefore, as shown in FIG. There are no steps in the hysteresis curve showing the relationship between the magnitude of the magnetic field H and the Kerr rotation angle θk of the reflected light, and there are no multiple bent portions as shown in FIGS.

従って、例えば、ヒステリシス曲線に段部がないことを確認することにより凹部20の底面20Aが中間磁性層1の領域に位置していないと判別し、ヒステリシス曲線に段部があることを確認することにより凹部20の底面20Aが中間磁性層18の領域に位置していると判別することができる。   Therefore, for example, by confirming that there is no step in the hysteresis curve, it is determined that the bottom surface 20A of the recess 20 is not located in the region of the intermediate magnetic layer 1, and it is confirmed that there is a step in the hysteresis curve. Thus, it can be determined that the bottom surface 20 </ b> A of the recess 20 is located in the region of the intermediate magnetic layer 18.

又、ヒステリシス曲線における外部磁場が正の領域(又は負の領域)において屈曲部が1つだけあることを確認することにより凹部20の底面20Aが中間磁性層18の領域に位置していないと判別し、ヒステリシス曲線における外部磁場が正の領域(又は負の領域)において3つ又は2つの屈曲部があることを確認することにより凹部20の底面20Aが中間磁性層18の領域に位置していると判別することができる。このようにヒステリシス曲線の屈曲部の個数に基づいて凹部20の底面20Aの位置を判別することができる。   Further, it is determined that the bottom surface 20A of the concave portion 20 is not located in the region of the intermediate magnetic layer 18 by confirming that there is only one bent portion in the region (positive region) where the external magnetic field in the hysteresis curve is positive. The bottom surface 20A of the recess 20 is located in the region of the intermediate magnetic layer 18 by confirming that there are three or two bent portions in the region where the external magnetic field in the hysteresis curve is positive (or a negative region). Can be determined. Thus, the position of the bottom surface 20A of the recess 20 can be determined based on the number of bent portions of the hysteresis curve.

即ち、記録層16の凹凸パターンの凹部20の底面20Aの位置を非破壊で迅速に確認できる。   That is, the position of the bottom surface 20A of the concave portion 20 of the concave / convex pattern of the recording layer 16 can be quickly confirmed without destruction.

尚、中間磁性層18の核形成磁界Hnmが記録層16の核形成磁界Hnrよりも小さい場合において、図9のように中間磁性層18の飽和磁界Hsmと記録層16の核形成磁界Hnrとの値がほぼ等しい場合(屈曲部が1つしか現れない場合)には、凹部20の底面20Aが中間磁性層18の領域に位置していれば中間磁性層18の核形成磁界Hnmに相当する屈曲部が現れ、凹部20の底面20Aが記録層16の厚さ方向の途中の領域に位置していれば記録層16の核形成磁界Hnrに相当する屈曲部が現れるので、1つだけ現れる屈曲部に相当する磁界の大きさに基づいて凹部20の底面20Aの位置を判別することができる。   When the nucleation magnetic field Hnm of the intermediate magnetic layer 18 is smaller than the nucleation magnetic field Hnr of the recording layer 16, the saturation magnetic field Hsm of the intermediate magnetic layer 18 and the nucleation magnetic field Hnr of the recording layer 16 are shown in FIG. When the values are almost equal (when only one bent portion appears), if the bottom surface 20A of the recess 20 is located in the region of the intermediate magnetic layer 18, the bending corresponding to the nucleation magnetic field Hnm of the intermediate magnetic layer 18 is obtained. And a bent portion corresponding to the nucleation magnetic field Hnr of the recording layer 16 appears if the bottom surface 20A of the concave portion 20 is located in the middle of the recording layer 16 in the thickness direction. The position of the bottom surface 20A of the recess 20 can be determined based on the magnitude of the magnetic field corresponding to.

又、中間磁性層18の核形成磁界Hnmが記録層16の核形成磁界Hnrよりも大きい場合において、記録層16の飽和磁界Hsrと中間磁性層18の核形成磁界Hnmとの値がほぼ等しい場合も、図9に示されるヒステリシス曲線ように、Hが正でθkが負の領域においては記録層16の核形成磁界Hnrに相当する1つの屈曲部しか現われず、凹部20の底面20Aが中間磁性層18の領域に位置していれば、H及びθkが正の領域において中間磁性層18の飽和磁界Hsmに相当する1つの屈曲部が現れる。一方、凹部20の底面20Aが記録層16の厚さ方向の途中の領域に位置していれば、中間磁性層18の磁気特性がθkに反映されないため、H及びθkが正の領域において記録層16の飽和磁界Hsrに相当する屈曲部が現れる。従って、このような場合にもヒステリシス曲線に基いて凹部20の底面20Aの位置を判別することができる。   When the nucleation magnetic field Hnm of the intermediate magnetic layer 18 is larger than the nucleation magnetic field Hnr of the recording layer 16, the saturation magnetic field Hsr of the recording layer 16 and the nucleation magnetic field Hnm of the intermediate magnetic layer 18 are substantially equal. However, as shown in the hysteresis curve of FIG. 9, in the region where H is positive and θk is negative, only one bent portion corresponding to the nucleation magnetic field Hnr of the recording layer 16 appears, and the bottom surface 20A of the recess 20 is intermediate magnetic. If it is located in the region of the layer 18, one bent portion corresponding to the saturation magnetic field Hsm of the intermediate magnetic layer 18 appears in a region where H and θk are positive. On the other hand, if the bottom surface 20A of the recess 20 is located in the middle region in the thickness direction of the recording layer 16, the magnetic characteristics of the intermediate magnetic layer 18 are not reflected in θk, and therefore the recording layer in the region where H and θk are positive. A bent portion corresponding to 16 saturation magnetic fields Hsr appears. Accordingly, even in such a case, the position of the bottom surface 20A of the recess 20 can be determined based on the hysteresis curve.

ヒステリシス曲線における段部の有無の確認や屈曲部の個数の確認、屈曲部に相当する磁界の大きさの確認は作業者が目視で行ってもよい。又、カー回転角測定装置30に画像処理装置を備え、ヒステリシス曲線の段部の有無の確認や屈曲部の個数の確認、屈曲部に相当する磁界の大きさの確認を自動的に行ってもよい。   The operator may visually check the presence or absence of a step portion in the hysteresis curve, the number of bent portions, and the magnitude of the magnetic field corresponding to the bent portion. Further, the Kerr rotation angle measuring device 30 may be provided with an image processing device so that the presence or absence of a step portion of the hysteresis curve, the number of bent portions, and the magnitude of the magnetic field corresponding to the bent portion can be automatically checked. Good.

このように、磁気記録媒体10は、記録層16の凹凸パターンの凹部20の深さを非破壊で迅速に確認可能であるので、実際に出荷される製品の抽出検査や全数検査も可能であり品質管理の信頼性の向上に寄与する。例えば、凹部20の底面20Aが中間磁性層18の領域に位置するものを良品、それ以外のものを不良品とすることができる。   As described above, the magnetic recording medium 10 can quickly and non-destructively confirm the depth of the concave portion 20 of the concave / convex pattern of the recording layer 16, so that an extraction inspection and a total inspection of products actually shipped can be performed. Contributes to improving the reliability of quality control. For example, a product in which the bottom surface 20 </ b> A of the recess 20 is located in the region of the intermediate magnetic layer 18 can be a non-defective product, and the other can be a defective product.

尚、中間磁性層18が凹部20で分割され凹部20の底面20Aが下地層28の厚さ方向の途中の領域に位置している場合や、凹部20の底面20Aが軟磁性層14の厚さ方向の途中の領域に位置している場合も、記録層16の磁化状態と共に下地層28の非磁性の特性や軟磁性層14の磁化状態が、測定されるカー回転角θkに反映され、それぞれの場合に特有の磁気カー効果特性を示すので、凹部20の底面20Aが下地層28の厚さ方向の途中の領域や軟磁性層14の厚さ方向の途中の領域に位置していることを判別することが可能である。   The intermediate magnetic layer 18 is divided by the recess 20 and the bottom surface 20A of the recess 20 is located in the middle of the thickness direction of the underlayer 28, or the bottom surface 20A of the recess 20 is the thickness of the soft magnetic layer 14. Even in the region in the middle of the direction, the nonmagnetic characteristics of the underlayer 28 and the magnetization state of the soft magnetic layer 14 as well as the magnetization state of the recording layer 16 are reflected in the measured Kerr rotation angle θk, respectively. Since the magnetic Kerr effect characteristic peculiar to the above case is shown, the bottom surface 20A of the recess 20 is located in the middle region in the thickness direction of the underlayer 28 and in the middle region in the thickness direction of the soft magnetic layer 14. It is possible to determine.

例えば、凹部20の底面20Aが下地層28の厚さ方向の途中の領域に位置している場合、凹部20の底面20Aが中間磁性層18の領域に位置している場合に対して、カー回転角θkが小さく測定されるので、凹部20の底面20Aが下地層28の厚さ方向の途中の領域に位置していることを判別できる。   For example, when the bottom surface 20 </ b> A of the recess 20 is located in an intermediate region in the thickness direction of the underlayer 28, the Kerr rotation is performed with respect to the case where the bottom surface 20 </ b> A of the recess 20 is located in the region of the intermediate magnetic layer 18. Since the angle θk is measured to be small, it can be determined that the bottom surface 20 </ b> A of the recess 20 is located in an intermediate region in the thickness direction of the foundation layer 28.

又、記録層16、中間磁性層18、軟磁性層14のそれぞれの厚さ方向の核形成磁界Hnを予め把握しておくことで、磁気カー効果特性の測定により得られる核形成磁界Hnの大きさに基づいて凹部20の底面20Aが、これらの層のうちのいずれの層の領域に位置しているかを判別することも可能である。   In addition, the nucleation magnetic field Hn obtained by measuring the magnetic Kerr effect characteristic can be obtained by previously grasping the nucleation magnetic field Hn in the thickness direction of each of the recording layer 16, the intermediate magnetic layer 18, and the soft magnetic layer 14. Based on this, it is also possible to determine which of these layers the bottom surface 20A of the recess 20 is located in.

例えば、軟磁性層14の厚さ方向の核形成磁界Hnは、記録層16、中間磁性層18の厚さ方向の核形成磁界Hnよりも小さく、この小さい核形成磁界Hnに相当する屈曲部がヒステリシス曲線に現れていることを確認することで、凹部20の底面20Aが軟磁性層14の厚さ方向の途中の領域に位置していることを判別できる。   For example, the nucleation magnetic field Hn in the thickness direction of the soft magnetic layer 14 is smaller than the nucleation magnetic field Hn in the thickness direction of the recording layer 16 and the intermediate magnetic layer 18, and a bent portion corresponding to this small nucleation magnetic field Hn is present. By confirming that it appears in the hysteresis curve, it can be determined that the bottom surface 20 </ b> A of the recess 20 is located in an intermediate region in the thickness direction of the soft magnetic layer 14.

核形成磁界Hnの求め方は、ヒステリシス曲線から求める方法に限定されず、例えば磁気カー効果特性の測定により得られた数値データを演算して求めることもできる。   The method of obtaining the nucleation magnetic field Hn is not limited to the method of obtaining from the hysteresis curve, and can be obtained, for example, by calculating numerical data obtained by measuring the magnetic Kerr effect characteristic.

尚、本実施形態では完成品である磁気記録媒体10の凹凸パターンの凹部20の深さを検査しているが、磁気記録媒体10の製造工程における中間製品の凹凸パターンの凹部深さを検査してもよい。   In this embodiment, the depth of the concave portion 20 of the concave / convex pattern of the magnetic recording medium 10 which is a finished product is inspected, but the concave portion depth of the concave / convex pattern of the intermediate product in the manufacturing process of the magnetic recording medium 10 is inspected. May be.

磁気記録媒体10は、例えば、記録層16をドライエッチング等で凹凸パターンに加工し、充填材22を成膜して凹部20を充填材22で充填し、余剰の充填材22をドライエッチング等で除去して平坦化し、保護層24を成膜し、潤滑層を塗布することで製造される。例えば、記録層16をドライエッチング等で凹凸パターンに加工した後であって、充填材22を成膜する前に中間製品の凹凸パターンの凹部深さを検査し、記録層16が分割されておらず凹部20の底面20Aが中間磁性層18の領域に位置しない中間製品を製造ラインから取り除くようにすれば、記録層16が分割されていない不適切な中間製品に充填材22の成膜等の後工程を実施する必要がなくなるので生産効率の向上に寄与する。   In the magnetic recording medium 10, for example, the recording layer 16 is processed into a concavo-convex pattern by dry etching or the like, a filler 22 is formed, the concave portion 20 is filled with the filler 22, and the excess filler 22 is dry etched or the like. It is manufactured by removing and flattening, forming a protective layer 24, and applying a lubricating layer. For example, after processing the recording layer 16 into a concavo-convex pattern by dry etching or the like, and before forming the filler 22, the concave depth of the concavo-convex pattern of the intermediate product is inspected, and the recording layer 16 is not divided. If the intermediate product in which the bottom surface 20A of the recess 20 is not located in the region of the intermediate magnetic layer 18 is removed from the production line, the filler 22 is formed on the inappropriate intermediate product in which the recording layer 16 is not divided. This eliminates the need for post-processing and contributes to improved production efficiency.

又、本実施形態において、充填材22、保護層24、潤滑層26は透光性を有しているが、磁気記録媒体10の製造工程における中間製品の凹凸パターンの凹部深さを検査する場合には、充填材22、保護層24、潤滑層26の材料として透光性を有していない材料又は透光性が不充分な材料を用いてもよい。   In the present embodiment, the filler 22, the protective layer 24, and the lubricating layer 26 are translucent, but in the case of inspecting the recess depth of the uneven pattern of the intermediate product in the manufacturing process of the magnetic recording medium 10. For the filler 22, the protective layer 24, and the lubricating layer 26, a material that does not have translucency or a material that has insufficient translucency may be used.

又、本実施形態において、保護層24は記録要素16A及び充填材22に直接接しているが、記録要素16Aの上に例えば平坦化工程におけるエッチングレートが低い隔膜を形成してもよい。又、隔膜は記録要素16Aの側面や凹部20の底面20Aにも形成してもよい。尚、完成品である磁気記録媒体の凹凸パターンの凹部深さを検査する場合には、隔膜の材料として透光性の材料を用いる。一方、磁気記録媒体10の製造工程における中間製品の凹凸パターンの凹部深さを検査する場合には、充填材22、隔膜の材料として透光性を有していない材料又は透光性が不充分な材料を用いてもよい。   In the present embodiment, the protective layer 24 is in direct contact with the recording element 16A and the filler 22, but a diaphragm having a low etching rate in the planarization step may be formed on the recording element 16A. The diaphragm may also be formed on the side surface of the recording element 16A and the bottom surface 20A of the recess 20. In the case of inspecting the depth of the concave portion of the concave / convex pattern of the finished magnetic recording medium, a translucent material is used as the material of the diaphragm. On the other hand, when inspecting the recess depth of the concave / convex pattern of the intermediate product in the manufacturing process of the magnetic recording medium 10, the filler 22, the material having no translucency as the material of the diaphragm, or the translucency is insufficient. Any material may be used.

又、本実施形態において、記録要素16A及び充填材22の上に保護層24及び潤滑層26が形成されているが、要求される性能に応じて保護層24及び潤滑層26の一方又は両方を省略してもよい。   Further, in this embodiment, the protective layer 24 and the lubricating layer 26 are formed on the recording element 16A and the filler 22, but one or both of the protective layer 24 and the lubricating layer 26 are provided depending on the required performance. It may be omitted.

又、本実施形態において、凹部20が中間磁性層18の厚さ方向の途中まで形成され、底面20Aの全部が中間磁性層18の領域に存在しているが、凹部20の底面20Aが中間磁性層18の上面に一致する構成としてもよい。   In this embodiment, the recess 20 is formed partway in the thickness direction of the intermediate magnetic layer 18 and the entire bottom surface 20A exists in the region of the intermediate magnetic layer 18, but the bottom surface 20A of the recess 20 is the intermediate magnetic layer. A configuration matching the upper surface of the layer 18 may be employed.

この場合も、記録層16の記録要素16A同士が分割されるので良好な記録/再生特性が得られる。又、凹凸パターンの凹部20の底面20Aが記録層16の厚さ方向の途中の領域に位置している場合に対する磁気カー効果特性に差異が生じるので記録層16の凹凸パターンの凹部深さを非破壊で確認可能である。   Also in this case, since the recording elements 16A of the recording layer 16 are divided, good recording / reproducing characteristics can be obtained. Further, since the magnetic Kerr effect characteristic is different from the case where the bottom surface 20A of the concave portion 20 of the concave / convex pattern is located in the middle region in the thickness direction of the recording layer 16, the concave portion depth of the concave / convex pattern of the recording layer 16 is reduced. It can be confirmed by destruction.

又、本実施形態において、中間磁性層18は単層構造であるが、中間磁性層は厚さ方向の核形成磁界が記録層の厚さ方向の核形成磁界と異なる複数の層が積層された構造としてもよい。   In the present embodiment, the intermediate magnetic layer 18 has a single layer structure, but the intermediate magnetic layer has a plurality of layers in which the nucleation magnetic field in the thickness direction is different from the nucleation magnetic field in the thickness direction of the recording layer. It is good also as a structure.

又、本実施形態において、中間磁性層18と軟磁性層14との間に下地層28が形成されているが、下地層は省略してもよい。又、中間磁性層18が下地層を兼ねる構成としてもよい。   In the present embodiment, the underlayer 28 is formed between the intermediate magnetic layer 18 and the soft magnetic layer 14, but the underlayer may be omitted. The intermediate magnetic layer 18 may also serve as the underlayer.

又、本実施形態において、中間磁性層18は記録層16に直接接しているが、中間磁性層18と記録層16との間に非磁性の他の層を形成してもよい。この場合も、凹凸パターンの凹部20の底面20Aが中間磁性層18の領域に位置する場合と、凹部20の底面20Aが記録層16や非磁性の他の層の領域に位置している場合とで磁気カー効果特性に差異が生じるので記録層16の凹凸パターンの凹部深さを非破壊で確認可能である。   In this embodiment, the intermediate magnetic layer 18 is in direct contact with the recording layer 16, but another nonmagnetic layer may be formed between the intermediate magnetic layer 18 and the recording layer 16. Also in this case, the bottom surface 20A of the concave portion 20 of the concave / convex pattern is located in the region of the intermediate magnetic layer 18, and the bottom surface 20A of the concave portion 20 is located in the region of the recording layer 16 or other nonmagnetic layer. Thus, since the magnetic Kerr effect characteristic is different, the depth of the concave portion of the concave / convex pattern of the recording layer 16 can be confirmed nondestructively.

又、本実施形態において、中間磁性層18と軟磁性層16との間に下地層28が形成されているが、中間磁性層18と軟磁性層16との間との間に非磁性層の他の層を形成してもよい。   In this embodiment, the underlayer 28 is formed between the intermediate magnetic layer 18 and the soft magnetic layer 16, but the nonmagnetic layer is interposed between the intermediate magnetic layer 18 and the soft magnetic layer 16. Other layers may be formed.

又、本実施形態において、軟磁性層16は基板12に直接接しているが、軟磁性層16と基板12との間に反強磁性層や下地層を形成してもよい。   In this embodiment, the soft magnetic layer 16 is in direct contact with the substrate 12, but an antiferromagnetic layer or an underlayer may be formed between the soft magnetic layer 16 and the substrate 12.

又、本実施形態において、中間磁性層18の厚さ方向の核形成磁界Hnが記録層16の厚さ方向の核形成磁界Hnよりも小さいが、中間磁性層18の厚さ方向の核形成磁界Hnが記録層16の厚さ方向の核形成磁界Hnよりも大きい構成としてもよい。この場合も、両者の厚さ方向の核形成磁界Hnの差異により、凹部20の底面20Aの位置を確認できる。   In this embodiment, the nucleation magnetic field Hn in the thickness direction of the intermediate magnetic layer 18 is smaller than the nucleation magnetic field Hn in the thickness direction of the recording layer 16, but the nucleation magnetic field in the thickness direction of the intermediate magnetic layer 18. A configuration in which Hn is larger than the nucleation magnetic field Hn in the thickness direction of the recording layer 16 may be adopted. Also in this case, the position of the bottom surface 20A of the recess 20 can be confirmed by the difference between the nucleation magnetic fields Hn in the thickness direction of both.

又、本実施形態において、磁気記録媒体10は、基板12の片面に記録層16等が形成されているが、基板の両面に記録層等が形成された両面記録式の磁気記録媒体についても本発明は適用可能である。   In the present embodiment, the magnetic recording medium 10 has the recording layer 16 or the like formed on one side of the substrate 12, but the present invention also applies to a double-sided recording type magnetic recording medium in which the recording layer or the like is formed on both sides of the substrate. The invention is applicable.

又、本実施形態において、磁気記録媒体10はディスクリートトラックメディアであるが、例えば、パターンドメディアや、トラックが螺旋形状をなす磁気ディスクについても本発明は適用可能である。又、光磁気ディスク、磁気と熱を併用する熱アシスト型の磁気ディスクに対しても本発明は適用可能である。   In this embodiment, the magnetic recording medium 10 is a discrete track medium. However, the present invention is applicable to, for example, a patterned medium or a magnetic disk having a spiral track. The present invention is also applicable to magneto-optical disks and heat-assisted magnetic disks that use both magnetism and heat.

上記実施形態と同様の構成を有する磁気記録媒体10について磁気カー効果を利用して記録層16の凹凸パターンの凹部20の深さを検査した。尚、記録要素16A上のマスク層は完全に除去した。作製した磁気記録媒体10の主な構成は下記のとおりであった。   The magnetic recording medium 10 having the same configuration as that of the above embodiment was inspected for the depth of the concave portion 20 of the concave / convex pattern of the recording layer 16 using the magnetic Kerr effect. The mask layer on the recording element 16A was completely removed. The main configuration of the manufactured magnetic recording medium 10 was as follows.

基板12は直径が約45mmで材料はガラスであった。軟磁性層14は、厚さが約100nmで、材料はFeCo合金、厚さ方向の核形成磁界Hnは0.06kA/m、飽和磁束密度Bsは1.5Tであった。記録層16は、厚さが約12nmで、材料はCoCrPt合金、厚さ方向の核形成磁界Hnは270kA/m、飽和磁束密度Bsは0.5Tであった。中間磁性層18は、厚さが約18nmで、材料は記録層とは組成の異なるCoCrPt合金、厚さ方向の核形成磁界Hnは59kA/m、飽和磁束密度Bsは0.12Tであった。中間磁性層18と軟磁性層14との間にはRu(非磁性材)が厚さが約30nmで形成されていた。   The substrate 12 had a diameter of about 45 mm and the material was glass. The soft magnetic layer 14 had a thickness of about 100 nm, a material of FeCo alloy, a nucleation magnetic field Hn in the thickness direction of 0.06 kA / m, and a saturation magnetic flux density Bs of 1.5T. The recording layer 16 was about 12 nm in thickness, made of a CoCrPt alloy, a nucleation magnetic field Hn in the thickness direction of 270 kA / m, and a saturation magnetic flux density Bs of 0.5 T. The intermediate magnetic layer 18 had a thickness of about 18 nm, the material was a CoCrPt alloy having a composition different from that of the recording layer, the nucleation magnetic field Hn in the thickness direction was 59 kA / m, and the saturation magnetic flux density Bs was 0.12T. Ru (nonmagnetic material) was formed between the intermediate magnetic layer 18 and the soft magnetic layer 14 to a thickness of about 30 nm.

又、データ領域におけるトラックピッチ(記録要素16A同士の径方向のピッチ)は約170nm、記録要素16Aの上面の幅(径方向の幅)は約85nmであった。凹部20の深さは18nmだった。即ち、記録層16の凹凸パターンの凹部20は中間磁性層18の厚さ方向の途中まで形成され、凹部20の底面20Aの全部が中間磁性層18の厚さ方向の途中の領域に位置していた。中間磁性層18における凹部20の底面20Aの下の部分の厚さは約12nmだった。   The track pitch in the data area (the pitch in the radial direction between the recording elements 16A) was about 170 nm, and the width of the upper surface of the recording element 16A (the width in the radial direction) was about 85 nm. The depth of the recess 20 was 18 nm. That is, the concave portion 20 of the concave / convex pattern of the recording layer 16 is formed partway along the thickness direction of the intermediate magnetic layer 18, and the entire bottom surface 20 </ b> A of the concave portion 20 is located in the middle portion along the thickness direction of the intermediate magnetic layer 18. It was. The thickness of the portion under the bottom surface 20A of the recess 20 in the intermediate magnetic layer 18 was about 12 nm.

磁気カー効果特性測定工程(S102)では、以下のように条件を設定した。   In the magnetic Kerr effect characteristic measurement step (S102), conditions were set as follows.

光の波長:408nm
光のスポット直径:2mm
Wavelength of light: 408nm
Light spot diameter: 2mm

これにより前記図5に示されるような、外部磁場Hの大きさと反射光のカー回転角θkとの関係を示すヒステリシス曲線が得られた。   As a result, a hysteresis curve showing the relationship between the magnitude of the external magnetic field H and the Kerr rotation angle θk of the reflected light as shown in FIG. 5 was obtained.

[比較例]
上記実施例に対し、前記図14に示されるような凹部20の底面20Aが記録層16の厚さ方向の途中の領域に位置している磁気記録媒体40について、実施例と同様に磁気カー効果特性測定工程(S102)を実行した。尚、凹部20の深さは6nmであった。又、他の条件は実施例と同じ条件とした。
[Comparative example]
In contrast to the above embodiment, the magnetic Kerr effect is applied to the magnetic recording medium 40 in which the bottom surface 20A of the recess 20 as shown in FIG. 14 is located in the middle of the recording layer 16 in the thickness direction. A characteristic measurement step (S102) was performed. The depth of the recess 20 was 6 nm. Other conditions were the same as those in the example.

これにより前記図13に示されるような、外部磁場Hの大きさと反射光のカー回転角θkとの関係を示すヒステリシス曲線が得られた。   As a result, a hysteresis curve showing the relationship between the magnitude of the external magnetic field H and the Kerr rotation angle θk of the reflected light as shown in FIG. 13 was obtained.

実施例は図5に示されるようにヒステリシス曲線に段部Sが存在していた。一方、比較例は図13に示されるようにヒステリシス曲線に段部が存在しなかった。従って、ヒステリシス曲線の段部の有無に基づいて凹部20の底面20Aが中間磁性層18の領域に位置しているか否かを判別できることが確認された。   In the example, as shown in FIG. 5, a step S was present in the hysteresis curve. On the other hand, as shown in FIG. 13, in the comparative example, there was no step on the hysteresis curve. Therefore, it was confirmed that it is possible to determine whether or not the bottom surface 20A of the recess 20 is located in the region of the intermediate magnetic layer 18 based on the presence or absence of the step portion of the hysteresis curve.

[シミュレーション例1]
上記実施例及び比較例と同じ条件の2種類のシミュレーションモデル及びこれらと凹部20の深さが異なる4種類のシミュレーションモデルを作製した。具体的には、凹部20の深さが0、6、12、18、24、30nmである6種類のシミュレーションモデルを作製した。
[Simulation Example 1]
Two types of simulation models under the same conditions as in the above-described examples and comparative examples and four types of simulation models in which the depths of the recesses 20 are different from these were prepared. Specifically, six types of simulation models in which the depth of the recess 20 is 0, 6, 12, 18, 24, and 30 nm were produced.

磁気的ギャップ(記録要素16Aの上面と磁気ヘッドの下面とのギャップ)は18nmに設定した。又、線記録密度は970kbpiに設定した。他の条件は、上記実施例及び比較例と同じ条件に設定した。尚、記録層16の飽和磁束密度Bsは0.5に設定した。   The magnetic gap (gap between the upper surface of the recording element 16A and the lower surface of the magnetic head) was set to 18 nm. The linear recording density was set to 970 kbpi. Other conditions were set to the same conditions as in the above examples and comparative examples. Incidentally, the saturation magnetic flux density Bs of the recording layer 16 was set to 0.5.

以上の条件で記録再生のシミュレーションを実行し、各シミュレーションモデルのS/N比を算出した。凹部20の深さとS/N比との関係を表1及び図10に示す。   The recording / reproduction simulation was executed under the above conditions, and the S / N ratio of each simulation model was calculated. The relationship between the depth of the recess 20 and the S / N ratio is shown in Table 1 and FIG.

又、これら6種類のシミュレーションモデルに対し、記録層16の飽和磁束密度Bsを1.0に設定した6種類のシミュレーションモデルを作製し、シミュレーションを実行し、各シミュレーションモデルのS/N比を算出した。凹部20の深さとS/N比との関係を表1に併記する。   Also, for these six types of simulation models, six types of simulation models are prepared in which the saturation magnetic flux density Bs of the recording layer 16 is set to 1.0, the simulation is executed, and the S / N ratio of each simulation model is calculated. did. Table 1 shows the relationship between the depth of the recess 20 and the S / N ratio.

更に、上記6種類のシミュレーションモデルに対し、記録層16の飽和磁束密度Bsを0.3に設定した6種類のシミュレーションモデルを作製し、シミュレーションを実行し、各シミュレーションモデルのS/N比を算出した。凹部20の深さとS/N比との関係を表1に併記する。   Furthermore, for the above six types of simulation models, six types of simulation models are prepared in which the saturation magnetic flux density Bs of the recording layer 16 is set to 0.3, the simulation is executed, and the S / N ratio of each simulation model is calculated. did. Table 1 shows the relationship between the depth of the recess 20 and the S / N ratio.

Figure 0004687645
Figure 0004687645

表1及び図10に示されるように、凹部20の深さが12nmよりも浅く、凹部20の底面20Aが記録層16の領域に位置する場合は、S/N比が相対的に低く、且つ、凹部20の深さが浅い程S/N比が低下する傾向があった。これに対し、凹部20の深さが12nm以上、30nm未満で凹部20の底面20Aが中間磁性層18の領域に位置する場合は、S/N比は一定であり、S/N比は凹部20の深さが30nmで中間磁性層18が分割されている場合と同じ高い値であった。   As shown in Table 1 and FIG. 10, when the depth of the recess 20 is shallower than 12 nm and the bottom surface 20A of the recess 20 is located in the region of the recording layer 16, the S / N ratio is relatively low, and The S / N ratio tended to decrease as the depth of the recess 20 was shallower. On the other hand, when the depth of the recess 20 is 12 nm or more and less than 30 nm and the bottom surface 20A of the recess 20 is located in the region of the intermediate magnetic layer 18, the S / N ratio is constant, and the S / N ratio is The depth was 30 nm, which was the same high value as when the intermediate magnetic layer 18 was divided.

即ち、分割されていない中間磁性層18が記録層16の下に設置されていても、凹部20の底面20Aが中間磁性層18の領域に位置すれば中間磁性層18が分割されている場合と同様の良好なS/N比が得られることが確認された。   That is, even when the non-divided intermediate magnetic layer 18 is disposed under the recording layer 16, the intermediate magnetic layer 18 is divided if the bottom surface 20 </ b> A of the recess 20 is positioned in the region of the intermediate magnetic layer 18. It was confirmed that the same good S / N ratio was obtained.

[シミュレーション例2]
上記実施例に対し、凹部20の深さが12nmで凹部20の底面20Aが中間磁性層18の上面と一致し、記録層の飽和磁束密度Bsが1.0Tであり、中間磁性層18の飽和磁束密度Bsが0.0、0.05、0.1、0.15、0.2、0.3Tである6種類のシミュレーションモデルを作製した。
[Simulation example 2]
In contrast to the above embodiment, the depth of the recess 20 is 12 nm, the bottom surface 20A of the recess 20 coincides with the upper surface of the intermediate magnetic layer 18, the saturation magnetic flux density Bs of the recording layer is 1.0 T, and the saturation of the intermediate magnetic layer 18 Six types of simulation models having magnetic flux densities Bs of 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3T were produced.

尚、シミュレーション例1と同様に磁気的ギャップ(記録要素16Aの上面と磁気ヘッドの下面とのギャップ)は18nmに設定した。又、線記録密度は970kbpiに設定した。他の条件は、上記実施例と同じに設定した。   As in the simulation example 1, the magnetic gap (gap between the upper surface of the recording element 16A and the lower surface of the magnetic head) was set to 18 nm. The linear recording density was set to 970 kbpi. Other conditions were set to be the same as in the above example.

以上の条件でシミュレーションを実行し、各シミュレーションモデルのS/N比を算出した。中間磁性層18の飽和磁束密度BsとS/N比との関係を図11に示す。   The simulation was executed under the above conditions, and the S / N ratio of each simulation model was calculated. FIG. 11 shows the relationship between the saturation magnetic flux density Bs of the intermediate magnetic layer 18 and the S / N ratio.

又、これら6種類のシミュレーションモデルに対し、記録層の飽和磁束密度Bsを0.3Tに設定した6種類のシミュレーションモデルを作製し、シミュレーションを実行し、各シミュレーションモデルのS/N比を算出した。中間磁性層18の飽和磁束密度BsとS/N比との関係を図12に示す。   Also, for these six types of simulation models, six types of simulation models were prepared in which the saturation magnetic flux density Bs of the recording layer was set to 0.3 T, the simulation was executed, and the S / N ratio of each simulation model was calculated. . FIG. 12 shows the relationship between the saturation magnetic flux density Bs of the intermediate magnetic layer 18 and the S / N ratio.

図11及び図12に示されるように、記録層の飽和磁束密度Bsを1.0Tに設定した場合及び0.3Tに設定した場合のいずれの場合においても、中間磁性層18の飽和磁束密度Bsが0.15Tよりも大きい場合には、S/N比が相対的に低く、且つ、中間磁性層18の飽和磁束密度Bsが増大するにつれてS/N比が低下する傾向があった。これに対し、中間磁性層18の飽和磁束密度Bsが0.15T以下である場合は、S/N比は一定であり、且つ、中間磁性層18の飽和磁束密度Bsが0である場合と同じ高い値であった。   As shown in FIG. 11 and FIG. 12, the saturation magnetic flux density Bs of the intermediate magnetic layer 18 in both cases where the saturation magnetic flux density Bs of the recording layer is set to 1.0T and 0.3T. Is larger than 0.15T, the S / N ratio is relatively low, and the S / N ratio tends to decrease as the saturation magnetic flux density Bs of the intermediate magnetic layer 18 increases. On the other hand, when the saturation magnetic flux density Bs of the intermediate magnetic layer 18 is 0.15 T or less, the S / N ratio is constant and the same as when the saturation magnetic flux density Bs of the intermediate magnetic layer 18 is zero. It was a high value.

即ち、分割されていない中間磁性層18が記録層16の下に設置されていても、中間磁性層18の飽和磁束密度Bsが0.15T以下であれば中間磁性層が存在しない場合と同様の良好なS/N比が得られることが確認された。   That is, even if the non-divided intermediate magnetic layer 18 is disposed under the recording layer 16, it is the same as when no intermediate magnetic layer exists if the saturation magnetic flux density Bs of the intermediate magnetic layer 18 is 0.15 T or less. It was confirmed that a good S / N ratio was obtained.

尚、中間磁性層18の飽和磁束密度Bsが0.05Tよりも小さいとヒステリシス曲線における中間磁性層18や記録層16の核形成磁界Hnの判別が困難となり、これらに相当するヒステリシス曲線の段部、屈曲部の判別が困難となるので、中間磁性層18の飽和磁束密度Bsは0.05T以上であることが好ましい。   If the saturation magnetic flux density Bs of the intermediate magnetic layer 18 is smaller than 0.05T, it becomes difficult to discriminate the nucleation magnetic field Hn of the intermediate magnetic layer 18 and the recording layer 16 in the hysteresis curve, and the steps of the hysteresis curve corresponding to these Since it becomes difficult to discriminate the bent portion, the saturation magnetic flux density Bs of the intermediate magnetic layer 18 is preferably 0.05T or more.

本発明は、例えば、ディスクリートトラック媒体、パターンド媒体等の、記録層が所定の凹凸パターンで多数の記録要素に分割された磁気記録媒体に利用することができる。   The present invention can be used for a magnetic recording medium in which a recording layer is divided into a large number of recording elements in a predetermined uneven pattern, such as a discrete track medium and a patterned medium.

本発明の実施形態に係る磁気記録再生装置の概略構造を模式的に示す斜視図1 is a perspective view schematically showing a schematic structure of a magnetic recording / reproducing apparatus according to an embodiment of the present invention. 同磁気記録再生装置の磁気記録媒体の構造を模式的に示す径方向に沿う断面図Sectional drawing along the radial direction which shows typically the structure of the magnetic recording medium of the magnetic recording / reproducing apparatus 同磁気記録媒体の凹凸パターンの凹部深さ検査方法の概要を示すフローチャートFlowchart showing an outline of a method for inspecting the recess depth of the uneven pattern of the magnetic recording medium 同検査に用いられるカー回転角測定装置の構成の概要を示すブロック図Block diagram showing the outline of the configuration of the car rotation angle measuring device used for the inspection 本発明の実施例に係る磁気記録媒体に印加された外部磁場Hの大きさとカー回転角θkとの関係を示すヒステリシス曲線Hysteresis curve showing the relationship between the magnitude of the external magnetic field H applied to the magnetic recording medium according to the embodiment of the present invention and the Kerr rotation angle θk 図5の一部を拡大して模式的に示すグラフA graph schematically showing an enlarged part of FIG. 本発明の実施形態に係るヒステリシス曲線の他の例の一部を拡大して模式的に示すグラフThe graph which expands and schematically shows some other examples of the hysteresis curve concerning the embodiment of the present invention. 本発明の実施形態に係るヒステリシス曲線の他の例の一部を拡大して模式的に示すグラフThe graph which expands and schematically shows some other examples of the hysteresis curve concerning the embodiment of the present invention. 本発明の実施形態に係るヒステリシス曲線の他の例の一部を拡大して模式的に示すグラフThe graph which expands and schematically shows some other examples of the hysteresis curve concerning the embodiment of the present invention. シミュレーション例1に係る凹部の深さとS/N比との関係を示すグラフThe graph which shows the relationship between the depth of the recessed part which concerns on the simulation example 1, and S / N ratio シミュレーション例2に係る中間磁性層の飽和磁束密度BsとS/N比との関係を示すグラフThe graph which shows the relationship between the saturation magnetic flux density Bs and S / N ratio of the intermediate | middle magnetic layer which concerns on the simulation example 2 シミュレーション例2に係る他のシミュレーションで算出された中間磁性層の飽和磁束密度BsとS/N比との関係を示すグラフThe graph which shows the relationship between the saturation magnetic flux density Bs and S / N ratio of the intermediate | middle magnetic layer which were calculated by the other simulation which concerns on the simulation example 2. 比較例に係る磁気記録媒体に印加された外部磁場Hの大きさとカー回転角θkとの関係を示すヒステリシス曲線Hysteresis curve showing the relationship between the magnitude of the external magnetic field H applied to the magnetic recording medium according to the comparative example and the Kerr rotation angle θk 比較例に係る磁気記録媒体の構造を模式的に示す径方向に沿う断面図Sectional drawing which follows the radial direction which shows the structure of the magnetic recording medium which concerns on a comparative example typically

符号の説明Explanation of symbols

1…磁気記録再生装置
10…磁気記録媒体(被検査体)
12…基板
14…軟磁性層
16…記録層
16A…記録要素
18…中間磁性層
20…凹部
22…充填材
24…保護層
26…潤滑層
28…下地層
S…段部
S102…磁気カー効果特性測定工程
S104…凹部深さ判別工程
DESCRIPTION OF SYMBOLS 1 ... Magnetic recording / reproducing apparatus 10 ... Magnetic recording medium (inspection object)
DESCRIPTION OF SYMBOLS 12 ... Substrate 14 ... Soft magnetic layer 16 ... Recording layer 16A ... Recording element 18 ... Intermediate magnetic layer 20 ... Recess 22 ... Filler 24 ... Protective layer 26 ... Lubricating layer 28 ... Underlayer S ... Step part S102 ... Magnetic Kerr effect characteristic Measurement step S104 ... Depression depth discrimination step

Claims (10)

基板と、該基板の上に形成された軟磁性層と、該軟磁性層の上に形成され、且つ、所定の凹凸パターンで多数の記録要素に分割された記録層と、厚さ方向の核形成磁界の大きさが前記記録層の厚さ方向の核形成磁界の大きさと異なり該記録層及び前記軟磁性層の間に形成された中間磁性層と、を含み、前記中間磁性層の飽和磁束密度が前記記録層の飽和磁束密度よりも小さく、且つ、前記中間磁性層の飽和磁束密度が0.05〜0.15Tの範囲であり、前記凹凸パターンの凹部の底面が前記中間磁性層の領域に位置していることを特徴とする磁気記録媒体。 A substrate, a soft magnetic layer formed on the substrate, a recording layer formed on the soft magnetic layer and divided into a plurality of recording elements in a predetermined uneven pattern, and a nucleus in the thickness direction An intermediate magnetic layer formed between the recording layer and the soft magnetic layer, the magnitude of the forming magnetic field being different from the magnitude of the nucleation magnetic field in the thickness direction of the recording layer, and a saturation magnetic flux of the intermediate magnetic layer The density is smaller than the saturation magnetic flux density of the recording layer, the saturation magnetic flux density of the intermediate magnetic layer is in the range of 0.05 to 0.15 T, and the bottom surface of the concave portion of the concave / convex pattern is the region of the intermediate magnetic layer A magnetic recording medium characterized by being located in 請求項1において、
前記中間磁性層の厚さ方向の核形成磁界の大きさが前記記録層の厚さ方向の核形成磁界の大きさよりも小さいことを特徴とする磁気記録媒体。
In claim 1,
A magnetic recording medium wherein the nucleation magnetic field in the thickness direction of the intermediate magnetic layer is smaller than the nucleation magnetic field in the thickness direction of the recording layer.
請求項1又は2において、
前記凹凸パターンの凹部に充填された透光性の充填材を更に含むことを特徴とする磁気記録媒体。
In claim 1 or 2 ,
A magnetic recording medium further comprising a translucent filler filled in the concave portions of the concave / convex pattern.
請求項において、
前記記録要素の上面及び前記充填材の上面を被覆する透光性の保護層を更に含むことを特徴とする磁気記録媒体。
In claim 3 ,
A magnetic recording medium further comprising a translucent protective layer covering the upper surface of the recording element and the upper surface of the filler.
請求項1乃至のいずれかに記載の磁気記録媒体を有することを特徴とする磁気記録再生装置。 Magnetic recording and reproducing apparatus characterized by having a magnetic recording medium according to any one of claims 1 to 4. 基板、該基板の上に形成された軟磁性層、該軟磁性層の上に形成され、且つ、所定の凹凸パターンで多数の記録要素に分割された記録層及び厚さ方向の核形成磁界の大きさが前記記録層の厚さ方向の核形成磁界の大きさと異なり該記録層及び前記軟磁性層の間に形成された中間磁性層を含む被検査体の前記記録層側の面に光を照射すると共にその反射光を測定して磁気カー効果特性を測定する磁気カー効果特性測定工程と、該磁気カー効果特性の測定結果に基づいて前記凹凸パターンの凹部の底面が前記中間磁性層の領域に位置しているか否かを判別する凹部深さ判別工程と、を含むことを特徴とする凹凸パターンの凹部深さ検査方法。 A substrate, a soft magnetic layer formed on the substrate, a recording layer formed on the soft magnetic layer and divided into a plurality of recording elements in a predetermined uneven pattern, and a nucleation magnetic field in the thickness direction Unlike the magnitude of the nucleation magnetic field in the thickness direction of the recording layer, the light is applied to the surface on the recording layer side of the object to be inspected including the intermediate magnetic layer formed between the recording layer and the soft magnetic layer. A magnetic Kerr effect characteristic measuring step for measuring the magnetic Kerr effect characteristic by irradiating and measuring the reflected light, and the bottom surface of the concave portion of the concave and convex pattern is a region of the intermediate magnetic layer based on the measurement result of the magnetic Kerr effect characteristic And a recess depth determining step for determining whether or not the recess is located on the recess pattern. 請求項において、
前記凹部深さ判別工程において、前記磁気カー効果特性の測定結果に基づいて前記凹凸パターンの凹部の底面が前記記録層の領域、前記中間磁性層の領域、前記軟磁性層の領域のいずれの領域に位置しているかを判別することを特徴とする凹凸パターンの凹部深さ検査方法。
In claim 6 ,
In the recess depth determining step, the bottom surface of the recess of the concavo-convex pattern is any of the recording layer region, the intermediate magnetic layer region, and the soft magnetic layer region based on the measurement result of the magnetic Kerr effect characteristic. It is discriminate | determined whether it is located in the recessed part depth inspection method of the uneven | corrugated pattern characterized by the above-mentioned.
請求項6又は7において、
前記磁気カー効果特性測定工程において前記被検査体に外部磁場をその大きさを変動させつつ印加して前記磁気カー効果特性としてカー回転角を測定し、前記凹部深さ判別工程において前記外部磁場の大きさ及び前記カー回転角の関係を示すヒステリシス曲線に基づいて前記凹凸パターンの凹部の底面の位置を判別することを特徴とする凹凸パターンの凹部深さ検査方法。
In claim 6 or 7 ,
In the magnetic Kerr effect characteristic measurement step, an external magnetic field is applied to the object to be inspected while varying the magnitude thereof, and the Kerr rotation angle is measured as the magnetic Kerr effect characteristic. In the recess depth determination step, the external magnetic field is measured. A concave / convex pattern concave portion depth inspection method, comprising: determining a position of a bottom surface of a concave portion of the concave / convex pattern based on a hysteresis curve indicating a relationship between a size and the Kerr rotation angle.
請求項において、
前記凹部深さ判別工程において前記ヒステリシス曲線の段部の有無に基づいて前記凹部の底面が前記中間磁性層の領域に位置しているか否かを判別することを特徴とする凹凸パターンの凹部深さ検査方法。
In claim 8 ,
In the step of determining the depth of the recess, it is determined whether or not the bottom surface of the recess is located in the region of the intermediate magnetic layer based on the presence or absence of a step portion of the hysteresis curve. Inspection method.
請求項乃至のいずれかにおいて、
前記磁気カー効果特性の測定により得られる核形成磁界の大きさに基づいて前記凹部の底面の位置を判別することを特徴とする凹凸パターンの凹部深さ検査方法。
In any one of Claims 6 thru | or 9 .
A concave / convex pattern concave portion depth inspection method, comprising: determining a position of a bottom surface of the concave portion based on a magnitude of a nucleation magnetic field obtained by measuring the magnetic Kerr effect characteristic.
JP2006348575A 2006-12-25 2006-12-25 Magnetic recording medium, magnetic recording / reproducing apparatus, and concave / convex depth inspection method for concave / convex pattern Expired - Fee Related JP4687645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348575A JP4687645B2 (en) 2006-12-25 2006-12-25 Magnetic recording medium, magnetic recording / reproducing apparatus, and concave / convex depth inspection method for concave / convex pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348575A JP4687645B2 (en) 2006-12-25 2006-12-25 Magnetic recording medium, magnetic recording / reproducing apparatus, and concave / convex depth inspection method for concave / convex pattern

Publications (2)

Publication Number Publication Date
JP2008159196A JP2008159196A (en) 2008-07-10
JP4687645B2 true JP4687645B2 (en) 2011-05-25

Family

ID=39659928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348575A Expired - Fee Related JP4687645B2 (en) 2006-12-25 2006-12-25 Magnetic recording medium, magnetic recording / reproducing apparatus, and concave / convex depth inspection method for concave / convex pattern

Country Status (1)

Country Link
JP (1) JP4687645B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070744A (en) * 2009-09-28 2011-04-07 Showa Denko Kk Method of inspecting magnetic recording medium and manufacturing method
US8541116B2 (en) 2010-10-18 2013-09-24 HGST Netherlands B.V. Patterned perpendicular magnetic recording disk drive and medium with patterned exchange bridge layer below the data islands

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351058A (en) * 2005-06-13 2006-12-28 Tohoku Univ Negative anisotropic exchange coupled magnetic recording medium and magnetic recording / reproducing apparatus
JP2008084432A (en) * 2006-09-27 2008-04-10 Hoya Corp Magnetic recording medium and manufacturing method of magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351058A (en) * 2005-06-13 2006-12-28 Tohoku Univ Negative anisotropic exchange coupled magnetic recording medium and magnetic recording / reproducing apparatus
JP2008084432A (en) * 2006-09-27 2008-04-10 Hoya Corp Magnetic recording medium and manufacturing method of magnetic recording medium

Also Published As

Publication number Publication date
JP2008159196A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP3063022B2 (en) Surface unevenness detection method and device, and magnetic disk inspection method
JP4284049B2 (en) Magnetoresistive sensor, magnetoresistive head and manufacturing method thereof
Wachenschwanz et al. Design of a manufacturable discrete track recording medium
US7881022B2 (en) Magnetic head and method for fabricating the same
JP2005317188A (en) Flat type perpendicular recording head
JP4560433B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus using magnetic recording medium, and information processing apparatus using magnetic recording / reproducing apparatus
JP2007004921A (en) Magnetic recording medium, magnetic recording reproducing device and manufacturing method for magnetic recording medium
JP3881350B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US7443622B2 (en) Magnetic recording medium, magnetic recording/reproducing apparatus, and stamper for manufacturing the magnetic recording medium
JP4687645B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and concave / convex depth inspection method for concave / convex pattern
JP2006086275A (en) Magnetoresistive effect element, thin film magnetic head, head gimbal assembly, and hard disk device
JP2008146809A (en) Magnetic recording medium and its manufacturing method
JP3924301B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US8355223B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2011070744A (en) Method of inspecting magnetic recording medium and manufacturing method
JP2008090905A (en) Measuring method of recording magnetic field strength distribution of magnetic head, measuring apparatus therefor, and manufacturing method of magnetic head
JP3887625B2 (en) Flight height measuring method and measuring system
JP4557994B2 (en) Method for manufacturing magnetic recording medium
JP2006236474A (en) Magnetic recording medium and magnetic recording/reproducing device
US20100007985A1 (en) Method for producing magnetic medium, magnetic record reproduction device, and magnetic recording medium
JP2007122823A (en) Measuring method of recording magnetic field strength distribution of magnetic head, measuring apparatus therefor, and manufacturing method of magnetic head
US8305850B2 (en) Method of evaluating magnetic recording medium and method of manufacturing magnetic recording medium
JP5439117B2 (en) Inspection method of magnetic recording medium
CN101419807B (en) System, method, and apparatus for performing metrology on patterned media disks with test pattern areas
JP3810303B2 (en) Thin film inspection method and apparatus, and micro device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees