[go: up one dir, main page]

JP4684454B2 - Printed wiring board manufacturing method and printed wiring board - Google Patents

Printed wiring board manufacturing method and printed wiring board Download PDF

Info

Publication number
JP4684454B2
JP4684454B2 JP2001107631A JP2001107631A JP4684454B2 JP 4684454 B2 JP4684454 B2 JP 4684454B2 JP 2001107631 A JP2001107631 A JP 2001107631A JP 2001107631 A JP2001107631 A JP 2001107631A JP 4684454 B2 JP4684454 B2 JP 4684454B2
Authority
JP
Japan
Prior art keywords
insulating material
conductor
wiring board
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001107631A
Other languages
Japanese (ja)
Other versions
JP2002305376A (en
Inventor
知久 本村
義孝 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2001107631A priority Critical patent/JP4684454B2/en
Publication of JP2002305376A publication Critical patent/JP2002305376A/en
Application granted granted Critical
Publication of JP4684454B2 publication Critical patent/JP4684454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配線基板に係り、更に詳細には、高密度実装に対応したファインパターン対応型の多層プリント配線基板やMCM−L(マルチチップモジュール)パッケージ用多層配線基板に関する。
【0002】
【従来の技術】
従来より多層板を製造する方法のひとつとして、両面に配線パターンを備えた絶縁材料基板の厚さ方向に円錐状の層間接続部材を貫通させて前記配線パターンの層間接続を形成する「貫通法」と呼ばれる方法が知られている。この貫通法では、金属薄板などの導体板上に金属微粒子などの導電性材料を樹脂中に分散させた導電ペーストを略円錐型に成型して導体バンプ群を形成し、この導体バンプ群の先端側にプリプレグ、即ちガラス繊維シートなどの補強材にエポキシ樹脂などのマトリックス材を含浸させたシート状の絶縁材料基板を重ね、この導体板とプリプレグを押圧して前記プリプレグに前記導体バンプを貫通させ、これにより絶縁材料基板の厚さ方向での電気的導通を形成する方法である。図12は貫通法で製造されるプリント配線基板の製造過程を模式的に示した断面図である。この貫通法では、図12(a)に示すように、銅箔1上に導電ペーストで導体バンプ2を形成し、次に図12(b)のようにプリプレグ3を重ね、加圧することでその厚さ方向に導体バンプ2を貫通させ、図12(c)のような樹脂付銅箔4を作成し、その上にもうひとつの銅箔102を重ねて、加熱下に加圧して両面銅張板502を作成し(図12(e))、回路形成を行って上記貫通法による両面基板602を作成する。図12(c)の樹脂付銅箔4と同様にして作られた銅箔401および402を前記両面基板602に重ね積層配置したものが図13(a)である。これを加熱下に加圧する積層プレスを行なうと図13(b)のような4層基板702が形成できる。同様にして、図14(a)に示すように樹脂付銅箔4(403、404)を重ね加熱下に加圧する積層プレスを行うと図14(b)のような貫通法による6層基板8が形成できる。この多層基板8はめっきを必要としないため表面の銅層は薄い状態で仕上げることができるため、微細なパターンの形成が可能となる。また、ビア9がランダムに配置できるため内層の配線密度を高くすることができ基板面積の小型化も達成できるという利点がある。
【0003】
【発明が解決しようとする課題】
しかし、この貫通法による基板の製造方法では、積層段数が多くなるにつれて積層プレスの回数が増えるため、内側に位置する材料に熱履歴が過度に作用し、特に絶縁材料基板にマイクロクラックが生じたり、積層界面に剥離が発生し、ひいては絶縁特性の劣化やパターン銅のマイグレーションを惹起するという品質上の問題がある。また、積層プレスの回数が多いと工数が増加して製造コストを上昇させるというコスト上の問題や、さらに積層プレスごとに各層間の位置ずれを制御しなければならず歩留も悪いという製造工程上の問題がある。
【0004】
上記問題に対し、積層プレスの回数を1回に削減する方法が提案されている。図15、16、17を用いてその方法を説明する。まず、図15(a)〜(c)のようにして絶縁材料基板付銅箔4を作成する。ここまでは図12(a)〜(c)と同じであり、この時点では上記絶縁材料基板は硬化していない。導体バンプの先端が平らな状態の絶縁材料基板付銅箔4をレジストフィルム11でラミネートすると図15(d)の状態になる。これを選択的に露光と現像とをおこない(図示省略)、銅箔のエッチングを行うと図15(e)のようなパターン1aが形成された樹脂付銅箔12が形成できる。図16に示したように多層基板の構成要素であるパターンが形成された樹脂付銅箔1201、1202、1203、1204、1205および銅箔103を積層配置し、樹脂の硬化温度で加熱下に加圧して積層プレスを行うとプリプレグ中の樹脂が硬化して図17のような断面形状の(貫通法による)積層プレスが1回の6層基板13が得られ、基板のTgも約200℃となり、材料本来の特性を備えた多層板が得られる。
【0005】
しかし、回路形成後レジストフィルム11を剥離して作られる樹脂付銅箔12は剥離時で使用するアルカリなどの溶剤により反応前の接着剤が腐食され、硬化後十分な反応が起こらず、樹脂の接着強度が劣化するという問題がある。特に携帯電話などのモバイル製品用の基板では落下試験があり、この樹脂の接着強度が重要となるが、上記レジストフィルムによるラッピング式の1回プレス方法では、各層の絶縁材料同士が密着するための接着剤が腐食するという問題がある。本発明は上記従来の問題を解決するためになされた発明である。即ち本発明は、製造工程を複雑化することなく層間接続の信頼性や機械的強度が高いプリント配線基板の製造方法及びプリント配線基板を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のプリント配線基板の製造方法は、導体板上に複数の略円錐型の導体バンプを形成する工程と、前記導体バンプ上に未硬化の絶縁材料基板をセットする工程と、前記絶縁材料基板が硬化しない温度で加熱しながら前記導体板および絶縁材料基板を緩衝材を介して加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、前記導体バンプおよび絶縁材料基板を加熱硬化させる工程と、前記導体板をパターニングして所定の配線パターンを備えた単層配線板を形成する工程と、前記単層配線板における加熱硬化後の絶縁材料基板の表面又は配線パターン面に接着剤を塗布して基板ユニットを形成する工程と、複数の基板ユニットを積層して多層板前駆体を形成する工程と、前記多層板前駆体を加熱下に加圧して前記導体バンプと前記配線パターンとを接続すると共に前記接着剤層を硬化させる工程とを具備する。
【0007】
本発明の他のプリント配線基板の製造方法は、第1の導体板上に複数の略円錐型の導体バンプを形成する工程と、前記導体バンプ上に未硬化の絶縁材料基板をセットする工程と、前記絶縁材料基板が硬化しない温度で加熱しながら前記第1の導体板および絶縁材料基板を緩衝材を介して加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、前記導体バンプが貫通した前記絶縁性基板上に第2の導体板と第2の緩衝材を積層して加熱下に加圧して前記導体バンプおよび絶縁材料基板を加熱硬化させる工程と、前記導体板をパターニングして所定の配線パターンを備えた単層配線板を形成する工程と、前記第2の導体板をエッチングにより除去する工程と、前記単層配線板における加熱硬化後の絶縁材料基板の表面又は配線パターン面に接着剤を塗布して基板ユニットを形成する工程と、複数の基板ユニットを積層して多層板前駆体を形成する工程と、前記多層板前駆体を加熱下に加圧して前記導体バンプと前記配線パターンとを接続すると共に前記接着剤層を硬化させる工程とを具備する。
【0008】
上記プリント配線基板の製造方法において、前記導体バンプを前記絶縁材料基板に貫通させる工程として、前記導体バンプの先端を平面化させ、その上面径が平均で底面径の50%以上になるように変形させる工程を挙げることができる。上記プリント配線基板の製造方法において、前記導体バンプを前記絶縁材料基板に貫通させる工程として、前記導体バンプの上面が絶縁材料基板面から5〜20μm突き出た構造になるように変形させる工程を挙げることができる。
【0009】
本発明の更に他のプリント配線基板の製造方法は、導体板上に複数の略円錐型の導体バンプを形成する工程と、前記導体バンプ上に未硬化の絶縁材料基板をセットする工程と、前記絶縁材料基板が硬化しない温度で加熱しながら前記導体板および絶縁材料基板を緩衝材を介して加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、前記導体バンプおよび絶縁材料基板を加熱硬化させる工程と、前記導体板をパターニングして所定の配線パターンを備えた単層配線板を形成する工程と、前記単層配線板における加熱硬化後の絶縁材料基板の表面又は配線パターン面に接着剤を塗布して基板ユニットを形成する工程と、硬化した絶縁材料基板の第1の面と第2の面にそれぞれ配線パターンを備え、前記第1の面と第2の面に形成された配線パターンどうしを電気的に接続する電層間接続部材を内蔵するコア材を形成する工程と、前記基板ユニットを少なくとも1枚ずつ前記コア材の両面に積層配置して多層配線基板前駆体を形成する工程と、前記多層配線基板前駆体を加熱下に加圧して各配線パターンどうしを層間接続すると同時に前記接着剤層を硬化させる工程とを具備する。
【0010】
上記プリント配線基板の製造方法において、前記コア材を形成する工程として、第1の導体板の上に略円錐型の導体バンプを形成する工程と、前記導体バンプの先端側に未硬化の絶縁材料基板を配設する工程と、前記第1の導体板と前記絶縁材料基板とを加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、前記導体バンプの先端が貫通した前記絶縁材料基板表面に第2の導体板をセットする工程と、前記第1の導体板と前記第2の導体板とを加熱下に加圧して前記絶縁材料基板を硬化させる工程と、前記第1の導体板及び前記第2の導体板にパターン形成する工程と、を具備する工程を挙げることができる。
【0011】
上記プリント配線基板の製造方法において、前記コア材として、銅めっきスルーホール基板を挙げることができる。
【0012】
上記プリント配線基板の製造方法において、前記基板ユニットを形成する工程として、前記導体バンプ先端を突き当てる相手側の配線パターン上に前記接着剤を塗布する工程を挙げることができる。
【0013】
上記プリント配線基板の製造方法において、前記接着剤として、前記絶縁材料基板の補強材に含浸させたレジンと同一のレジン、又は前記レジンの粘度を低下させたものを挙げることができる。
【0014】
本発明のプリント配線基板は、複数の絶縁層と、前記絶縁層と絶縁層との間に配設された層間配線層と、最外部の絶縁層の表面に配設された複数の表面配線層と、前記絶縁層内に配設され、前記絶縁層を介して対向する前記層間配線層を接続する層間接続部材と、前記最外部の絶縁層内に配設され、前記表面配線層に先端側が当接する導体バンプ群と、前記導体バンプ群および前記絶縁層を加熱硬化した後の前記絶縁層又は前記層間配線層の表面に接着剤を塗布し、その後、前記接着剤を硬化させて得られた接着剤層とを具備する。
【0015】
上記プリント配線基板において、前記絶縁層は、補強材を含まない接着剤を硬化させた前記接着剤層を含み、この接着剤層と、樹脂内部を補強材シートで補強した補強材層と、の積層物であってもよい。
【0017】
本発明のプリント配線の製造方法では、単層配線板ごとに絶縁材料基板と導体バンプを完全に硬化してから接着剤層を介してコア材の上に積層して多層板前駆体を形成し、多層板前駆体全体として一括して加熱と加圧とにより接着剤層を硬化させるので、6層基板を製造する場合、積層プレスの回数が従来方法での3回から2回に減少する。これにより、全層の絶縁材料基板のプレスによる熱履歴が減る。また、接着材を単層配線板に塗布するため各絶縁材料基板どうしの密着力が向上し、ハンダリフロー時に受ける温度負荷に対してボイドや膨れが生じにくくなるため、内層材料間での剥離や金属のマイグレーションが起きにくくなる。また、積層プレス時の熱収縮率の違いから生じる位置ズレが減少する。更に6層基板の場合に積層プレス回数が2/3回に減少することにより大幅なコストダウンが図られる。この方法をさらに積層段数の多い高多層基板に適用すると従来の多層板より信頼性が向上し、付加価値が増大する。
【0018】
前記導体バンプを前記絶縁材料基板に貫通させる工程が、前記導体バンプの先端を平面化させ、その上面径が平均で底面径の50%以上になるように変形させる工程である場合、導体バンプ先端を平坦にすることにより当接させる配線パターンとの接触面積が増大して接触面での抵抗値が低下する。また、導体バンプ先端を平らにすることにより、積層プレス時の圧力が小さくても導体バンプを十分圧縮できるようになり、基板ユニットを多段に重ねて一度に積層プレスすることが可能になる。
【0019】
前記導体バンプを前記絶縁材料基板に貫通させる工程が、前記導体バンプの上面が絶縁材料基板面から5〜20μm突き出た構造になるように変形させる工程である場合、導体バンプの上面が絶縁材料基板から5〜20μm突き出させることにより、積層プレス時に導体バンプが接着材層を貫通しやすくなり当接させる配線パターンとの接触面積が増大して接続抵抗が低下し、確実な層間接続が形成される。
【0020】
前記基板ユニットを少なくとも1枚ずつ前記コア材の両面に積層配置して多層配線基板前駆体を形成し、この前記多層配線基板前駆体を加熱下に加圧して各配線パターンどうしを層間接続すると同時に前記接着剤層を硬化させる場合には、コア材に導体バンプを突き当てる方式であるため導体バンプの略円錐形状がコア基板(コア材)を中心に上下に対称な構造となり、積層プレス時の熱負荷などに対して信頼性が向上する。
【0021】
多層板のコア材として貫通法により製造したコア材を使用し、このコア材に対して基板ユニットを積層して多層配線基板前駆体を形成し、この多層配線基板前駆体を加熱下に加圧して接着剤層を硬化してプリント配線基板を製造する場合、貫通法によるコア材は単層配線基板と同様に板厚が約0.1mm程度と薄いため、多層板全体の板厚を小さく仕上げることが可能であり、現在の市場の要求並びに将来の高集積化の要求に対応できる。
【0022】
前記コア材として銅めっきによるスルーホール基板をコア材として使用する場合、コア材が銅めっきによるスルーホール基板であるため、この部分が4層板であれば、基板ユニット1セット突き当てることで6層基板がつくれ、作り方に自由度ができる。また、スルーホール基板では板厚の大きなコア材を作れるため多層板全体の板厚を大きくすることができる。
【0023】
前記接着剤として、前記絶縁材料基板の補強材に含浸させたレジンと同一のレジン、又は前記レジンの粘度を低下させたものを用いる場合には、接着剤とプリプレグとの馴染みが良いので、一体化しやすく、積層プレスにより各層の絶縁材料基板を一体化させた後に、それらが異種材料の接合面から腐食劣化し剥離することを防止することができる。
【0025】
【発明の実施の形態】
(第1の実施形態)
本発明の第1の実施の形態に係るプリント配線基板の製造方法を図1〜4を用いて説明する。図1は本実施形態に係るプリント配線基板の製造方法のフローチャートであり、図2〜図4は本実施形態に係るプリント配線基板の製造過程を模式的に示した断面図である。本実施の形態に係るプリント配線基板を製造するには、まず、図2(a)のように例えば厚さ18μmの銅箔1上に例えば銀ペーストを印刷して、例えば直径0.2mmの略円錐型の導体バンプ2,2,…を形成する(ステップ1)。次に、図2(b)のように絶縁材料基板プリプレグ3としてガラスクロスにエポキシ樹脂を含浸したBTレジン材(三菱ガス化学製,型名:GHPL830,厚さ0.06mm)を使用し、銅箔1の導体バンプ2,2,…が形成された側にこの絶縁材料基板プリプレグ3を所定位置に重ねてセットし(ステップ2)、これらを弾性材(図示省略)を介して115〜135℃で加熱下に加圧し(ステップ3)、導体バンプ2,2,…を絶縁材料基板プリプレグ3の厚さ方向に貫通させて樹脂付銅箔4を形成する。(ここまでは図12(a)〜図12(c)および図15(a)〜図15(c)と同じ作業である。)この時、樹脂付銅箔4を加圧して、図2(c)のように略円錐形の導体バンプ2,2,…の先端を平坦な形状にする。この時点では上記絶縁材料プリプレグ3は未硬化のいわゆるBステージの状態である。
【0026】
次に図2(d)のように、導体バンプ先端が平坦化された樹脂付銅箔4の導体バンプ側に厚さ0.1mmの有機系材料から成る緩衝材14を重ね(ステップ4)約190℃で2時間加熱下に加圧を行うと(ステップ5)、図2(e)に示すように緩衝材1402は導体バンプ2,2,…によって加圧変形して一体化する。この時点の絶縁材料基板プリプレグ3及び導体バンプ2,2,…は完全に硬化した状態になる。これを選択的に露光と現像とを行ない(図示省略)、銅箔1をエッチングしてパターニングを行うと(ステップ6)、図2(f)に示した状態のものが得られる。次いで厚さ0.1mmの有機系材料から成る緩衝材1402を剥離すると(ステップ7)、図2(g)のような配線パターンが形成された単層配線板16が形成される。
【0027】
次に液状のエポキシ系接着剤17例えばビスマレイドトリアジンレジンを前記配線パターンが形成された単層配線基板16の導体バンプ2,2,…突出側の絶縁材料基板表面全体に塗布し(ステップ8)、基板ユニット18を形成する。
【0028】
次に、基板ユニット18と同様の基板ユニット1801〜1805を複数個と厚さ18μmの銅箔104と各基板ユニット1801、1802、1803、1804、1805を図3のように積層配置し(ステップ9)、190℃で2時間加熱下に加圧する積層プレスを行うと(ステップ10)、塗布した接着剤が硬化して各基板ユニット1801、1802、1803、1804、1805を接合し、導体バンプ2,2,…は接着剤中を貫通して銅箔104に接続した図4のような各層間が導体バンプ2,2,…で電気的に接続した貫通法による積層プレス回数が2回の6層のプリント配線基板19が得られる。
【0029】
塗布した液状の接着剤が硬化することにより多層基板内部の絶縁材料基板間どうしの密着力が従来技術の1回プレス方法より改善された。また、高温高湿で電圧を印可する試験の耐マイグレーション性も向上した。この方法では、多層基板の層数にかかわらず、積層回数がトータルで2回なので積層段数が多くなる次世代のプリント配線基板製造方法として非常に有効である。
【0030】
(第2の実施形態)
本発明の第2の実施形態に係るプリント配線基板の製造方法について図2、図4、図5及び図6を用いて説明する。図5は本実施形態に係るプリント配線基板の製造方法のフローを示したフローチャートである。本実施形態に係るプリント配線基板を製造するには、まず、上記第1の実施の形態と同様に、図2(a)、図2(b)を経由して図2(c)のような導体バンプの先端が平坦な樹脂付銅箔4を形成する(ステップ1〜3)。この時点では上記絶縁材料は硬化していないBステージの状態である。次に、樹脂付銅箔4の導体バンプ突出側に図6(a)のように厚さ9μmの銅箔20とその上に緩衝材として厚さ0.5mmのクラフト紙(図示省略)を重ねる(ステップ4)。次いでこの状態で約190℃で2時間加熱下に加圧を行うと(ステップ5)、図6(b)のように銅箔が2002のように導体バンプ2によって加圧変形する。このとき絶縁材料基板と導体バンプ2,2,…は完全に硬化した状態になる。これを選択的に露光と現像とをおこない(図示省略)、銅箔のエッチングを行ってパターニングすることによって(ステップ6)、図2(g)のような配線パターンが形成された単層配線基板16が形成される。
【0031】
以下、第1の実施の形態と同様にして緩衝材1402を剥離し(ステップ7)、液状接着剤を塗布し(ステップ8)、各基板ユニットを積層配置し(ステップ9)、積層プレスを行うと(ステップ10)、図4のような各層間が導体バンプ2,2,…で電気的に接続された貫通法による積層プレス回数が2回の6層のプリント配線基板19が得られる。
【0032】
(第3の実施形態)
本発明の第3の実施形態に係るプリント配線基板の製造方法を図12、図2、図4、図7、図8を用いて説明する。図7は本実施形態に係るプリント配線基板の製造方法のフローを示すフローチャートである。本実施形態に係るプリント配線基板を製造するには、まず図12(a)に示すように厚さ18μmの銅箔1上に導電ペーストを印刷して直径0.2mmの略円錐型の導体バンプ2,2,…を形成し(ステップ1a)、次に図12(b)のように例えばガラスクロスにエポキシ樹脂を含浸したBTレジン材からなる絶縁材料基板プリプレグ3を重ね、加圧することでその厚さ方向に導体バンプ2,2,…を貫通させ図12(c)のような樹脂付銅箔4を作成し(ステップ3a)、この樹脂付銅箔4の上に図12(d)のようにもうひとつの厚さ18μmの銅箔102を重ねて(ステップ4a)、190℃で2時間加熱下に加圧する積層プレスを行い(ステップ5a)、図12(e)のような両面銅張板502を作製し、その後パターニング(ステップ6a)を行うことにより、図12(f)に示したような貫通法による両面基板602を作製する。
【0033】
次に前記貫通法による両面基板602をコア材とし、さらに第1の実施形態で図2のようにして作製した基板ユニット18を図8(a)の1806、1807、1808、1809のように積層配置し(ステップ7a)、190℃で2時間加熱下に加圧する積層プレスを行うと(ステップ8a)、塗布した接着剤が硬化して各層の絶縁材料基板を接合し、導体バンプ2,2,…は接着剤中を貫通して、8(b)に示すような、各層間が導体バンプ2,2,…で電気的に接続された貫通法による6層のプリント配線基板21が得られる。この基板では、図4に示した第1の実施の形態の6層基板19と比較して、配設される導体バンプ2,2,…の形状がコア材602を中心として上下対称となる構造をしているため、積層プレス時の熱負荷に対して強い非常に安定した構造を備えている。
【0034】
(第4の実施形態)
本発明の第4の実施の形態を図2、図8、図9を用いて説明する。図9のようにコア材として貫通法による両面基板602を使用し、その表面に液状のエポキシ系接着剤17を塗布し、さらにその外側に図2のようにして作製した配線パターンが形成された単層配線基板16を図9の1601,1602,1603,1604のように積層配置し、予め1602と1603の銅箔上に液状のエポキシ系接着剤17(BTレジン)を塗布しておく方法によっても図8(b)で示されるような各層間が導体バンプ2,2,…で電気的に接続した貫通法による6層のプリント配線基板21を得ることができる。
【0035】
(第5の実施形態)
本発明の第5の実施形態に係るプリント配線基板の製造方法を図10を用いて説明する。本実施形態では、上記第3の実施の形態で両面基板6の製造に使用した、貫通法によるコア材の代わりに、図10(a)に示すような通常の銅めっきスルーホール法によるコア材22を使用し、第1の実施の形態で作成した基板ユニット18を外側に突き当てることにより、図10(b)に示したような多層プリント配線基板23を形成する。この場合、コア材22に厚さが大きい基板を選択すると仕上がる多層プリント配線基板23の厚さを大きくとれ、基板の厚さを自由に制御できるという特有の効果が得られる。
【0036】
(第6の実施形態)本実施形態では、上記第1の実施形態で製造した6層のプリント配線基板19を用いて半導体装置30を形成した。図11は本実施形態に係る半導体装置30の断面図である。本実施形態に係る半導体装置30では、まず上記第1の実施形態で製造した6層のプリント配線基板19を用意し、このプリント配線基板19の両面の銅箔を例えばそれぞれエッチング処理して配線パターン1a,1fを形成する。このとき、プリント配線基板19の方向は最も外側の導体バンプ201が先端側を上側に向け、断面が正台形になるようにする。一方、反対側の外側の導体バンプ205も先端側を上側に向け、断面が正台形になるようにする。
【0037】
即ち、配線パターン1aはプリント配線基板19の最上部に形成され、導体バンプ201の先端側と電気的に接続されている。一方、配線パターン1fは最下部に形成され、導体バンプ205の底面側と電気的に接続されている。配線パターン1a上には異方性導電樹脂25と金ボールバンプ27とが配設され、更にその上に半導体素子としてベアチップ型ICチップ24が配設されている。このICチップ24のIC電極28は金ボールバンプ27を介して配線パターン1aと電気的に接続されている。ここで、配線パターン1aは導体バンプ201の先端側と接続されるので配線パターン1aの各ライン幅を小さくすることができる。例えばこの半導体装置30では幅約0.3mmのライン幅で配線パターン1aが形成されている。このように本実施形態では、実装面直下の導体バンプ201が実装面側に先端を向ける方向に配設されているので、配線パターン1aの最小ライン幅を小さくすることができ、実装面での配線パターンの集積度を高密度化することができる。
【0038】
一方、配線パターン1fはライン幅約0.4mmで形成されている。この配線パターン1fは導体バンプ205の底面側と電気的に接続されており、配線パターン1fと導体バンプ205との接触面積は大きく、かつ、確実に接続されている。そのため、図11(b)のようにハンダボール26を配線パターン1f上に配設する場合、熱的衝撃に対する耐性の高い配線パターン1fと導体バンプ205の底面側とがハンダボール26に近接しているので、この半導体装置30をマザーボード(図示省略)上に実装する場合でも配線パターン1fと導体バンプ205との間の剥離が起きにくく、信頼性の高い半導体装置を得ることができるという特有の効果が得られる。
【0039】
【発明の効果】
本発明のプリント配線の製造方法では、単層配線板ごとに絶縁材料基板と導体バンプを完全に硬化してから接着剤層を介してコア材の上に積層して多層板前駆体を形成し、多層板前駆体全体として一括して加熱と加圧とにより接着剤層を硬化させるので、6層基板を製造する場合、積層プレスの回数が従来方法での3回から2回に減少する。これにより、全層の絶縁材料基板のプレスによる熱履歴が減る。また、接着材を単層配線板に塗布するため各絶縁材料基板どうしの密着力が向上し、ハンダリフロー時に受ける温度負荷に対してボイドや膨れが生じにくくなるため、内層材料間での剥離や金属のマイグレーションが起きにくくなる。また、積層プレス時の熱収縮率の違いから生じる位置ズレが減少する。更に6層基板の場合に積層プレス回数が2/3回に減少することにより大幅なコストダウンが図られる。この方法をさらに積層段数の多い高多層基板に適用すると従来の多層板より信頼性が向上し、付加価値が増大する。
【0040】
前記導体バンプを前記絶縁材料基板に貫通させる工程が、前記導体バンプの先端を平面化させ、その上面径が平均で底面径の50%以上になるように変形させる工程である場合、導体バンプ先端を平坦にすることにより当接させる配線パターンとの接触面積が増大して接触面での抵抗値が低下する。また、導体バンプ先端を平らにすることにより、積層プレス時の圧力が小さくても導体バンプを十分圧縮できるようになり、基板ユニットを多段に重ねて一度に積層プレスすることが可能になる。
【0041】
前記導体バンプを前記絶縁材料基板に貫通させる工程が、前記導体バンプの上面が絶縁材料基板面から5〜20μm突き出た構造になるように変形させる工程である場合、導体バンプの上面が絶縁材料基板から5〜20μm突き出させることにより、積層プレス時に導体バンプが接着材層を貫通しやすくなり当接させる配線パターンとの接触面積が増大して接続抵抗が低下し、確実な層間接続が形成される。
【0042】
前記基板ユニットを少なくとも1枚ずつ前記コア材の両面に積層配置して多層配線基板前駆体を形成し、この前記多層配線基板前駆体を加熱下に加圧して各配線パターンどうしを層間接続すると同時に前記接着剤層を硬化させる場合には、コア材に導体バンプを突き当てる方式であるため導体バンプの略円錐形状がコア基板(コア材)を中心に上下に対称な構造となり、積層プレス時の熱負荷などに対して信頼性が向上する。
【0043】
多層板のコア材として貫通法により製造したコア材を使用し、このコア材に対して基板ユニットを積層して多層配線基板前駆体を形成し、この多層配線基板前駆体を加熱下に加圧して接着剤層を硬化してプリント配線基板を製造する場合、貫通法によるコア材は単層配線基板と同様に板厚が約0.1mm程度と薄いため、多層板全体の板厚を小さく仕上げることが可能であり、現在の市場の要求並びに将来の高集積化の要求に対応できる。
【0044】
前記コア材として銅めっきによるスルーホール基板をコア材として使用する場合、コア材が銅めっきによるスルーホール基板であるため、この部分が4層板であれば、基板ユニット1セット突き当てることで6層基板がつくれ、作り方に自由度ができる。また、スルーホール基板では板厚の大きなコア材を作れるため多層板全体の板厚を大きくすることができる。
【0045】
前記接着剤として、前記絶縁材料基板の補強材に含浸させたレジンと同一のレジン、又は前記レジンの粘度を低下させたものを用いる場合には、接着剤とプリプレグとの馴染みが良いので、一体化しやすく、積層プレスにより各層の絶縁材料基板を一体化させた後に、それらが異種材料の接合面から腐食劣化し剥離することを防止することができる。
【0046】
本発明のプリント配線基板では、多層板の最外部の絶縁層の厚さ方向に配設され、この最外部の絶縁層の表面に配設された表面配線層と、この最外部の絶縁層の内側に配設された配線層とを層間接続する導体バンプが、前記表面配線層に先端側を当接する向きに配設されているので、表面配線層の配線パターン幅を小さくとることができる。そのため、多層板表面の配線パターンを微細パターン化することができ、集積度を向上させることができる。またこのような微細パターンを形成した多層板の表面配線層に半導体素子などを実装することにより、微細な配線パターンを備えた半導体装置を得ることができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係るプリント配線基板の製造方法のフローチャートである。
【図2】第1の実施形態に係るプリント配線基板の製造途中の断面図であり、液状のエポキシ接着剤(BTレジン)を塗布した基板ユニットの作製までの工程を示した図である。
【図3】第1の実施の形態に係るプリント配線基板の製造途中の断面図であり、基板ユニットを積層配置した状態を示した図である。
【図4】第1の実施の形態に係るプリント配線基板の製造途中の断面図であり、貫通法による積層プレスを2回行なって形成した6層基板の断面を示した図である。
【図5】第2の実施の形態に係るプリント配線基板の製造方法のフローチャートである。
【図6】第2の実施の形態に係るプリント配線基板の製造途中の断面図であり、導体板と緩衝材を使用した基板ユニットの作製方法を示した断面図である。
【図7】第3の実施の形態に係るプリント配線基板の製造方法のフローチャートである。
【図8】第3の実施の形態に係るプリント配線基板の製造途中の断面図であり、貫通法による両面基板をコア材にして基板ユニットを積層配置した状態(a)とた貫通法による積層プレスを2回行なって形成した6層基板の断面図(b)である。
【図9】第4の実施の形態に係るプリント配線基板の製造途中の断面図であり、導体バンプ突き当て相手側に接着剤を塗布し、積層配置した断面図である。
【図10】第5の実施の形態に係るプリント配線基板の製造途中の断面図であり、コア材にスルーホール基板を使用した多層基板の製造工程を示した断面図である。
【図11】第6の実施の形態に係る半導体装置の断面図である。
【図12】従来の貫通法による両面基板作製までの工程を示す断面図である。
【図13】従来の貫通法による4層基板作製までの工程を示す断面図である。
【図14】従来の貫通法による6層基板作製までの工程を示す断面図である。
【図15】従来の貫通法の改良例を示す断面図である。
【図16】従来の貫通法の改良例を示す断面図であり、パターンが形成された絶縁材料基板付き銅箔の積層配置の状態を示したものである。
【図17】従来の貫通法の改良例を示す図であり、貫通法による積層プレスを1回行なって形成した6層基板の断面図である。
【符号の説明】
1…銅箔、2…導体バンプ、3…絶縁材料基板、4…樹脂付銅箔、502…両面銅張板、602…(貫通法による)両面基板、702…(貫通法による)4層基板、8…(貫通法による)6層基板、9…ビア、11…レジストフィルム、12…絶縁材料基板付き銅箔、13…6層基板、14…緩衝材、1402…変形した緩衝材、16…単層配線板、17…液状エポキシ接着剤(BTレジン)、18…基板ユニット、19…6層基板、20…銅箔、2002…変形した銅箔、21…6層基板、22…コア基板(コア材)、23…多層プリント配線基板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board, and more particularly, to a fine pattern-compatible multilayer printed wiring board corresponding to high-density mounting and a multilayer wiring board for MCM-L (multi-chip module) package.
[0002]
[Prior art]
As one of the conventional methods for producing a multilayer board, a “penetration method” in which a conical interlayer connection member is penetrated in the thickness direction of an insulating material substrate provided with a wiring pattern on both sides to form an interlayer connection of the wiring pattern. The method called is known. In this penetration method, a conductive bump group is formed by forming a conductive paste in which a conductive material such as metal fine particles is dispersed in a resin on a conductive plate such as a thin metal plate to form a substantially conical shape. A sheet-like insulating material substrate impregnated with a matrix material such as an epoxy resin is superimposed on a prepreg, that is, a reinforcing material such as a glass fiber sheet, on the side, and the conductor bumps are passed through the prepreg by pressing the conductor plate and the prepreg. This is a method of forming electrical conduction in the thickness direction of the insulating material substrate. FIG. 12 is a cross-sectional view schematically showing a manufacturing process of a printed wiring board manufactured by a penetration method. In this penetration method, as shown in FIG. 12 (a), a conductive bump 2 is formed on a copper foil 1 with a conductive paste, and then a prepreg 3 is stacked and pressed as shown in FIG. 12 (b). Conductor bumps 2 are penetrated in the thickness direction to form a resin-coated copper foil 4 as shown in FIG. 12 (c), and another copper foil 102 is overlaid thereon and pressed under heating to be double-sided copper-clad. A plate 502 is created (FIG. 12E), circuit formation is performed, and a double-sided substrate 602 is created by the penetration method. FIG. 13A is a view in which copper foils 401 and 402 made in the same manner as the resin-coated copper foil 4 in FIG. When a lamination press for pressurizing this under heating is performed, a four-layer substrate 702 as shown in FIG. 13B can be formed. Similarly, as shown in FIG. 14 (a), when a laminating press is performed in which the resin-coated copper foils 4 (403, 404) are pressed under heating, a six-layer substrate 8 by a penetration method as shown in FIG. 14 (b). Can be formed. Since the multilayer substrate 8 does not require plating, the copper layer on the surface can be finished in a thin state, so that a fine pattern can be formed. Further, since the vias 9 can be arranged randomly, there is an advantage that the wiring density of the inner layer can be increased and the substrate area can be reduced.
[0003]
[Problems to be solved by the invention]
However, in this substrate manufacturing method by the penetration method, the number of lamination presses increases as the number of lamination steps increases, so that the thermal history acts excessively on the material located inside, and in particular, microcracks occur in the insulating material substrate. Further, there is a problem in quality that peeling occurs at the interface between the stacked layers, which in turn causes deterioration of insulating characteristics and migration of patterned copper. In addition, a manufacturing process in which the number of times of laminating presses increases the number of man-hours and raises the manufacturing cost, and the manufacturing process in which the positional deviation between each layer must be controlled for each laminating press and the yield is poor. There is a problem above.
[0004]
In order to solve the above problem, a method of reducing the number of times of laminating press to one has been proposed. The method will be described with reference to FIGS. First, the insulating material substrate-attached copper foil 4 is prepared as shown in FIGS. Up to this point, the process is the same as FIGS. 12A to 12C, and the insulating material substrate is not cured at this point. When the copper foil 4 with the insulating material substrate having the flat tip of the conductor bump is laminated with the resist film 11, the state shown in FIG. When this is selectively exposed and developed (not shown) and the copper foil is etched, a resin-coated copper foil 12 having a pattern 1a as shown in FIG. 15E can be formed. As shown in FIG. 16, the resin-coated copper foils 1201, 1202, 1203, 1204, 1205 and the copper foil 103 on which a pattern which is a component of the multilayer substrate is formed are arranged in layers, and are heated under the resin curing temperature. When the laminate press is performed, the resin in the prepreg is cured, and a six-layer substrate 13 having a cross-sectional shape (by the penetration method) as shown in FIG. 17 is obtained, and the Tg of the substrate is about 200 ° C. As a result, a multilayer board having the original characteristics of the material can be obtained.
[0005]
However, the resin-coated copper foil 12 made by peeling the resist film 11 after circuit formation is corroded by the solvent before the reaction by a solvent such as alkali used at the time of peeling, and does not react sufficiently after curing. There is a problem that the adhesive strength deteriorates. In particular, there is a drop test on a substrate for a mobile product such as a mobile phone, and the adhesive strength of this resin is important. However, in the lapping-type single press method using the resist film, the insulating materials of each layer are in close contact with each other. There is a problem that the adhesive corrodes. The present invention has been made to solve the above conventional problems. That is, the present invention provides a method for producing a printed wiring board having high interlayer connection reliability and high mechanical strength without complicating the production process. Law Lint wiring base Board The purpose is to provide.
[0006]
[Means for Solving the Problems]
The printed wiring board manufacturing method of the present invention includes a step of forming a plurality of substantially conical conductor bumps on a conductor plate, a step of setting an uncured insulating material substrate on the conductor bumps, and the insulating material substrate. Pressurizing the conductive plate and the insulating material substrate through a buffer material while heating at a temperature at which the conductive bump does not cure, and passing the conductive bump through the insulating material substrate; and the conductive bump and the insulating material substrate Heating hard A step of forming a single-layer wiring board having a predetermined wiring pattern by patterning the conductive plate, and the single layer Insulating material substrate surface after heat curing on wiring board Alternatively, a step of forming a substrate unit by applying an adhesive to the wiring pattern surface, a step of stacking a plurality of substrate units to form a multilayer plate precursor, and pressurizing the multilayer plate precursor under heating to A step of connecting the conductor bump and the wiring pattern and curing the adhesive layer.
[0007]
Another printed wiring board manufacturing method of the present invention includes a step of forming a plurality of substantially conical conductor bumps on a first conductor plate, and a step of setting an uncured insulating material substrate on the conductor bumps. A step of pressing the first conductive plate and the insulating material substrate through a buffer while heating the insulating material substrate at a temperature at which the insulating material substrate is not cured, and passing the conductive bump through the insulating material substrate; The conductor bump and the insulating material substrate are formed by laminating a second conductor plate and a second buffer material on the penetrating insulating substrate and pressurizing under heating. Heating hard A step of patterning the conductive plate to form a single-layer wiring board having a predetermined wiring pattern, a step of removing the second conductive plate by etching, and the single layer Insulating material substrate surface after heat curing on wiring board Alternatively, a step of forming a substrate unit by applying an adhesive to the wiring pattern surface, a step of stacking a plurality of substrate units to form a multilayer plate precursor, and pressurizing the multilayer plate precursor under heating to A step of connecting the conductor bump and the wiring pattern and curing the adhesive layer.
[0008]
In the method for manufacturing a printed wiring board, as a step of penetrating the conductor bumps through the insulating material substrate, the tip of the conductor bumps is planarized and deformed so that the average top surface diameter is 50% or more of the bottom surface diameter. The process to make can be mentioned. In the method for manufacturing a printed wiring board, the step of causing the conductor bumps to penetrate the insulating material substrate includes a step of deforming so that the upper surface of the conductor bump protrudes from the insulating material substrate surface by 5 to 20 μm. Can do.
[0009]
Still another printed wiring board manufacturing method of the present invention includes a step of forming a plurality of substantially conical conductor bumps on a conductor plate, a step of setting an uncured insulating material substrate on the conductor bumps, A step of pressing the conductor plate and the insulating material substrate through a buffering material while heating at a temperature at which the insulating material substrate is not cured, and passing the conductor bumps through the insulating material substrate; and the conductor bump and the insulating material substrate Heating hard A step of forming a single-layer wiring board having a predetermined wiring pattern by patterning the conductive plate, and the single layer Insulating material substrate surface after heat curing on wiring board Alternatively, a step of applying an adhesive to the wiring pattern surface to form a substrate unit, and a wiring pattern on the first surface and the second surface of the cured insulating material substrate, respectively, the first surface and the second surface A multilayer wiring board in which a core material containing an electrical interlayer connection member for electrically connecting wiring patterns formed on the surface is formed; and at least one board unit is laminated on both surfaces of the core material. A step of forming a precursor, and a step of pressurizing the multilayer wiring board precursor under heating to interconnect the wiring patterns and simultaneously cure the adhesive layer.
[0010]
In the printed wiring board manufacturing method, as the step of forming the core material, a step of forming a substantially conical conductor bump on the first conductor plate, and an uncured insulating material on the tip side of the conductor bump A step of disposing a substrate, a step of pressurizing the first conductive plate and the insulating material substrate to cause the conductive bumps to penetrate the insulating material substrate, and the insulating material substrate through which the tips of the conductive bumps penetrated A step of setting a second conductor plate on the surface, a step of curing the insulating material substrate by pressurizing the first conductor plate and the second conductor plate under heating, and the first conductor plate And a step of forming a pattern on the second conductor plate.
[0011]
In the printed wiring board manufacturing method, the core material may be a copper plated through-hole board.
[0012]
In the printed wiring board manufacturing method, as the step of forming the substrate unit, a step of applying the adhesive onto the mating wiring pattern that abuts the tip of the conductor bump can be exemplified.
[0013]
In the method for manufacturing a printed wiring board, examples of the adhesive include the same resin as the resin impregnated in the reinforcing material of the insulating material board, or a resin whose viscosity is reduced.
[0014]
The printed wiring board of the present invention includes a plurality of insulating layers, an interlayer wiring layer disposed between the insulating layers and the insulating layer, and a plurality of surface wiring layers disposed on the surface of the outermost insulating layer. And an interlayer connection member that is disposed in the insulating layer and connects the interlayer wiring layers facing each other through the insulating layer, and is disposed in the outermost insulating layer, and a front end side is disposed on the surface wiring layer. Conductive bumps that abut An adhesive layer obtained by applying an adhesive to the surface of the insulating layer or the interlayer wiring layer after heat-curing the conductive bump group and the insulating layer, and then curing the adhesive; It comprises.
[0015]
In the printed wiring board, the insulating layer Is a supplement Hardened adhesive without strong material Including the adhesive layer, and the adhesive layer, Reinforcement layer reinforced with a reinforcement sheet inside the fat And It may be a laminate.
[0017]
In the printed wiring manufacturing method of the present invention, the insulating material substrate and the conductor bump are completely cured for each single-layer wiring board, and then laminated on the core material through the adhesive layer to form a multilayer board precursor. Since the adhesive layer is cured by heating and pressurizing as a whole of the multilayer plate precursor, the number of lamination presses is reduced from 3 to 2 in the conventional method when a 6-layer substrate is manufactured. Thereby, the heat history by the press of the insulating material board | substrate of all the layers reduces. In addition, since the adhesive is applied to the single-layer wiring board, the adhesion between the insulating material substrates is improved, and voids and swelling are less likely to occur due to the temperature load applied during solder reflow. Metal migration is less likely to occur. Moreover, the positional deviation resulting from the difference in the heat shrinkage rate at the time of the lamination press is reduced. Furthermore, in the case of a 6-layer substrate, the number of lamination presses is reduced to 2/3, so that the cost can be greatly reduced. When this method is applied to a high multi-layer board having a larger number of stacked layers, the reliability is improved and the added value is increased as compared with the conventional multi-layer board.
[0018]
When the step of penetrating the conductor bump into the insulating material substrate is a step of flattening the tip of the conductor bump and deforming it so that the average top surface diameter is 50% or more of the bottom surface diameter, By flattening, the contact area with the wiring pattern to be brought into contact increases, and the resistance value at the contact surface decreases. Further, by flattening the tips of the conductor bumps, the conductor bumps can be sufficiently compressed even if the pressure during the lamination press is small, and the substrate units can be stacked and pressed at once in multiple stages.
[0019]
When the step of penetrating the conductive bump into the insulating material substrate is a step of deforming the conductive bump so that the upper surface of the conductive bump protrudes 5 to 20 μm from the insulating material substrate surface, the upper surface of the conductive bump is the insulating material substrate. By projecting 5 to 20 μm, the conductive bumps easily penetrate the adhesive layer at the time of laminating press, the contact area with the wiring pattern to be brought into contact is increased, the connection resistance is lowered, and a reliable interlayer connection is formed. .
[0020]
At least one board unit is laminated on both sides of the core material to form a multilayer wiring board precursor, and the multilayer wiring board precursor is pressed under heating to connect the wiring patterns to each other at the same time. When the adhesive layer is cured, the conductor bumps are abutted against the core material, so that the substantially conical shape of the conductor bumps has a vertically symmetric structure around the core substrate (core material). Reliability is improved against heat load.
[0021]
A core material manufactured by the penetration method is used as the core material of the multilayer board, and a substrate unit is laminated on the core material to form a multilayer wiring board precursor, and the multilayer wiring board precursor is pressurized under heating. When the printed wiring board is manufactured by curing the adhesive layer, the core material by the penetration method is as thin as about 0.1 mm as in the case of the single-layer wiring board, so the overall thickness of the multilayer board is made small. And can meet current market demands as well as future high integration demands.
[0022]
When a through-hole substrate made of copper plating is used as the core material as the core material, the core material is a through-hole substrate made of copper plating. A layer substrate can be made, and the way to make it is flexible. Moreover, since a core material with a large plate thickness can be made with a through-hole substrate, the plate thickness of the entire multilayer board can be increased.
[0023]
When the same resin as the resin impregnated in the reinforcing material of the insulating material substrate is used as the adhesive, or when the viscosity of the resin is decreased, the adhesive and the prepreg are familiar, so It is easy to form, and after the insulating material substrates of the respective layers are integrated by the lamination press, they can be prevented from being deteriorated due to corrosion and peeling from the joint surfaces of different materials.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A method for manufacturing a printed wiring board according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a flowchart of a method for manufacturing a printed wiring board according to the present embodiment, and FIGS. 2 to 4 are cross-sectional views schematically showing a manufacturing process of the printed wiring board according to the present embodiment. In order to manufacture the printed wiring board according to the present embodiment, first, for example, a silver paste is printed on a copper foil 1 having a thickness of 18 μm, for example, as shown in FIG. Conical conductor bumps 2, 2,... Are formed (step 1). Next, as shown in FIG. 2B, a BT resin material (Mitsubishi Gas Chemical Co., Ltd., model name: GHPL830, thickness 0.06 mm) in which a glass cloth is impregnated with an epoxy resin is used as an insulating material substrate prepreg 3, and copper This insulating material substrate prepreg 3 is set in a predetermined position on the side of the foil 1 where the conductor bumps 2, 2,... Are formed (step 2), and these are placed at 115 to 135 ° C. via an elastic material (not shown). Then, pressure is applied under heating (step 3), and the conductor bumps 2, 2,... Are penetrated in the thickness direction of the insulating material substrate prepreg 3 to form the resin-coated copper foil 4. (The process up to this point is the same as that shown in FIGS. 12 (a) to 12 (c) and FIGS. 15 (a) to 15 (c)). As shown in c), the tips of the substantially conical conductor bumps 2, 2,. At this time, the insulating material prepreg 3 is in an uncured so-called B stage state.
[0026]
Next, as shown in FIG. 2D, a buffer material 14 made of an organic material having a thickness of 0.1 mm is stacked on the side of the conductor bump of the resin-coated copper foil 4 whose tip is flattened (step 4). When pressure is applied under heating at 190 ° C. for 2 hours (step 5), as shown in FIG. 2 (e), the cushioning material 1402 is deformed and integrated by the conductor bumps 2, 2,. The insulating material substrate prepreg 3 and the conductor bumps 2, 2,... At this time are completely cured. When this is selectively exposed and developed (not shown) and the copper foil 1 is etched and patterned (step 6), the one shown in FIG. 2 (f) is obtained. Next, when the buffer material 1402 made of an organic material having a thickness of 0.1 mm is peeled off (step 7), the single-layer wiring board 16 having the wiring pattern as shown in FIG. 2G is formed.
[0027]
Next, a liquid epoxy adhesive 17 such as bismaleidotriazine resin is applied to the entire surface of the insulating material substrate on the protruding side of the conductor bumps 2, 2,... Of the single-layer wiring board 16 on which the wiring pattern is formed (step 8). The substrate unit 18 is formed.
[0028]
Next, a plurality of board units 1801 to 1805 similar to the board unit 18, a copper foil 104 having a thickness of 18 μm, and board units 1801, 1802, 1803, 1804, and 1805 are stacked as shown in FIG. ), When a lamination press is performed under heating at 190 ° C. for 2 hours (step 10), the applied adhesive is cured and the substrate units 1801, 1802, 1803, 1804, 1805 are joined, and the conductor bump 2, 2 are six layers in which the number of times of laminating press is two times by the penetration method in which the respective layers as shown in FIG. 4 that penetrate through the adhesive and are connected to the copper foil 104 are electrically connected by the conductor bumps 2, 2,. The printed wiring board 19 is obtained.
[0029]
As the applied liquid adhesive is cured, the adhesion between the insulating material substrates in the multilayer substrate is improved compared to the single press method of the prior art. In addition, the migration resistance of the test applying voltage at high temperature and high humidity was improved. This method is very effective as a next-generation printed wiring board manufacturing method in which the number of lamination steps is increased because the total number of laminations is two regardless of the number of layers of the multilayer substrate.
[0030]
(Second Embodiment)
A method for manufacturing a printed wiring board according to the second embodiment of the present invention will be described with reference to FIGS. 2, 4, 5, and 6. FIG. 5 is a flowchart showing a flow of a method for manufacturing a printed wiring board according to the present embodiment. To manufacture the printed wiring board according to the present embodiment, first, as in the first embodiment, as shown in FIG. 2C through FIG. 2A and FIG. 2B. The resin-coated copper foil 4 having a flat front end of the conductor bump is formed (steps 1 to 3). At this time, the insulating material is in an uncured B stage state. Next, a copper foil 20 having a thickness of 9 μm and a kraft paper (not shown) having a thickness of 0.5 mm are placed thereon as a cushioning material as shown in FIG. (Step 4). Next, when pressure is applied under heating at about 190 ° C. for 2 hours in this state (step 5), the copper foil is pressure-deformed by the conductor bump 2 as in 2002 as shown in FIG. At this time, the insulating material substrate and the conductor bumps 2, 2,... Are completely cured. A single-layer wiring board on which a wiring pattern as shown in FIG. 2G is formed by selectively performing exposure and development (not shown), etching the copper foil, and patterning (step 6). 16 is formed.
[0031]
Thereafter, in the same manner as in the first embodiment, the buffer material 1402 is peeled off (step 7), a liquid adhesive is applied (step 8), the substrate units are stacked and arranged (step 9), and a lamination press is performed. (Step 10), a six-layer printed wiring board 19 is obtained in which the respective layers are electrically connected by conductor bumps 2, 2,...
[0032]
(Third embodiment)
A method for manufacturing a printed wiring board according to the third embodiment of the present invention will be described with reference to FIGS. 12, 2, 4, 7, and 8. FIG. 7 is a flowchart showing a flow of a method for manufacturing a printed wiring board according to the present embodiment. In order to manufacture the printed wiring board according to the present embodiment, first, as shown in FIG. 12A, a conductive paste is printed on a copper foil 1 having a thickness of 18 μm to form a substantially conical conductor bump having a diameter of 0.2 mm. 2, 2,... (Step 1 a), and then an insulating material substrate prepreg 3 made of a BT resin material impregnated with an epoxy resin, for example, is laminated on a glass cloth as shown in FIG. The conductor bumps 2, 2,... Are penetrated in the thickness direction to create a resin-attached copper foil 4 as shown in FIG. 12C (step 3a), and the resin-attached copper foil 4 shown in FIG. Then, another copper foil 102 having a thickness of 18 μm is overlaid (step 4a), and a lamination press is performed by heating and heating at 190 ° C. for 2 hours (step 5a), and double-sided copper-clad as shown in FIG. A plate 502 is prepared and then patterned (step By performing step 6a), a double-sided substrate 602 by a penetration method as shown in FIG.
[0033]
Next, the double-sided substrate 602 formed by the penetration method is used as a core material, and the substrate unit 18 manufactured as shown in FIG. 2 in the first embodiment is laminated as shown in 1806, 1807, 1808, and 1809 in FIG. When placed and laminated (step 7a) and subjected to a laminating press that pressurizes with heating at 190 ° C. for 2 hours (step 8a), the applied adhesive is cured to bond the insulating material substrates of the respective layers, and the conductor bumps 2, 2, .. Penetrates through the adhesive to obtain a six-layer printed wiring board 21 by a penetration method in which the respective layers are electrically connected by conductor bumps 2, 2,... In this substrate, as compared with the six-layer substrate 19 of the first embodiment shown in FIG. 4, the structure of the conductor bumps 2, 2,. Therefore, it has a very stable structure that is strong against the heat load during the laminating press.
[0034]
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 9, a double-sided substrate 602 by a penetration method is used as a core material, a liquid epoxy adhesive 17 is applied to the surface, and a wiring pattern prepared as shown in FIG. The single-layer wiring board 16 is laminated and disposed as shown by 1601, 1602, 1603, and 1604 in FIG. 9, and a liquid epoxy adhesive 17 (BT resin) is applied on the copper foils 1602 and 1603 in advance. As shown in FIG. 8B, a six-layer printed wiring board 21 can be obtained by a penetration method in which the respective layers are electrically connected by conductor bumps 2, 2,.
[0035]
(Fifth embodiment)
A printed wiring board manufacturing method according to the fifth embodiment of the present invention will be described with reference to FIG. In this embodiment, instead of the core material by the penetration method used for manufacturing the double-sided substrate 6 in the third embodiment, the core material by the normal copper plating through-hole method as shown in FIG. The multilayer printed wiring board 23 as shown in FIG. 10B is formed by using the board 22 and butting the board unit 18 created in the first embodiment to the outside. In this case, when a substrate having a large thickness is selected as the core material 22, the thickness of the finished multilayer printed wiring board 23 can be increased, and a specific effect can be obtained that the thickness of the substrate can be freely controlled.
[0036]
(Sixth Embodiment) In this embodiment, the semiconductor device 30 is formed by using the six-layer printed wiring board 19 manufactured in the first embodiment. FIG. 11 is a cross-sectional view of the semiconductor device 30 according to the present embodiment. In the semiconductor device 30 according to the present embodiment, first, the six-layer printed wiring board 19 manufactured in the first embodiment is prepared, and the copper foils on both sides of the printed wiring board 19 are subjected to, for example, etching treatment to form a wiring pattern. 1a and 1f are formed. At this time, the direction of the printed wiring board 19 is such that the outermost conductor bump 201 faces the tip side upward and the cross section becomes a regular trapezoid. On the other hand, the outer side conductor bump 205 on the opposite side is also made to have a trapezoidal cross section with the tip side facing upward.
[0037]
That is, the wiring pattern 1 a is formed on the uppermost part of the printed wiring board 19 and is electrically connected to the front end side of the conductor bump 201. On the other hand, the wiring pattern 1 f is formed at the lowermost portion and is electrically connected to the bottom surface side of the conductor bump 205. An anisotropic conductive resin 25 and gold ball bumps 27 are disposed on the wiring pattern 1a, and a bare chip type IC chip 24 is disposed thereon as a semiconductor element. The IC electrode 28 of the IC chip 24 is electrically connected to the wiring pattern 1 a via the gold ball bump 27. Here, since the wiring pattern 1a is connected to the tip side of the conductor bump 201, each line width of the wiring pattern 1a can be reduced. For example, in the semiconductor device 30, the wiring pattern 1a is formed with a line width of about 0.3 mm. As described above, in the present embodiment, since the conductor bump 201 immediately below the mounting surface is arranged in the direction in which the tip is directed to the mounting surface side, the minimum line width of the wiring pattern 1a can be reduced, The degree of integration of wiring patterns can be increased.
[0038]
On the other hand, the wiring pattern 1f is formed with a line width of about 0.4 mm. The wiring pattern 1f is electrically connected to the bottom surface side of the conductor bump 205, and the contact area between the wiring pattern 1f and the conductor bump 205 is large and is securely connected. Therefore, when the solder ball 26 is disposed on the wiring pattern 1 f as shown in FIG. 11B, the wiring pattern 1 f highly resistant to thermal shock and the bottom surface side of the conductor bump 205 are close to the solder ball 26. Therefore, even when the semiconductor device 30 is mounted on a mother board (not shown), the separation between the wiring pattern 1f and the conductor bump 205 hardly occurs, and a specific effect that a highly reliable semiconductor device can be obtained. Is obtained.
[0039]
【The invention's effect】
In the printed wiring manufacturing method of the present invention, the insulating material substrate and the conductor bump are completely cured for each single-layer wiring board, and then laminated on the core material through the adhesive layer to form a multilayer board precursor. Since the adhesive layer is cured by heating and pressurizing as a whole of the multilayer plate precursor, the number of lamination presses is reduced from 3 to 2 in the conventional method when a 6-layer substrate is manufactured. Thereby, the heat history by the press of the insulating material board | substrate of all the layers reduces. In addition, since the adhesive is applied to the single-layer wiring board, the adhesion between the insulating material substrates is improved, and voids and swelling are less likely to occur due to the temperature load applied during solder reflow. Metal migration is less likely to occur. Moreover, the positional deviation resulting from the difference in the heat shrinkage rate at the time of the lamination press is reduced. Furthermore, in the case of a 6-layer substrate, the number of lamination presses is reduced to 2/3, so that the cost can be greatly reduced. When this method is applied to a high multi-layer board having a larger number of stacked layers, the reliability is improved and the added value is increased as compared with the conventional multi-layer board.
[0040]
When the step of penetrating the conductor bump into the insulating material substrate is a step of flattening the tip of the conductor bump and deforming it so that the average top surface diameter is 50% or more of the bottom surface diameter, By flattening, the contact area with the wiring pattern to be brought into contact increases, and the resistance value at the contact surface decreases. Further, by flattening the tips of the conductor bumps, the conductor bumps can be sufficiently compressed even if the pressure during the lamination press is small, and the substrate units can be stacked and pressed at once in multiple stages.
[0041]
When the step of penetrating the conductive bump into the insulating material substrate is a step of deforming the conductive bump so that the upper surface of the conductive bump protrudes 5 to 20 μm from the insulating material substrate surface, the upper surface of the conductive bump is the insulating material substrate. By projecting 5 to 20 μm, the conductive bumps easily penetrate the adhesive layer at the time of laminating press, the contact area with the wiring pattern to be brought into contact is increased, the connection resistance is lowered, and a reliable interlayer connection is formed. .
[0042]
At least one board unit is laminated on both sides of the core material to form a multilayer wiring board precursor, and the multilayer wiring board precursor is pressed under heating to connect the wiring patterns to each other at the same time. When the adhesive layer is cured, the conductor bumps are abutted against the core material, so that the substantially conical shape of the conductor bumps has a vertically symmetric structure around the core substrate (core material). Reliability is improved against heat load.
[0043]
A core material manufactured by the penetration method is used as the core material of the multilayer board, and a substrate unit is laminated on the core material to form a multilayer wiring board precursor, and the multilayer wiring board precursor is pressurized under heating. When the printed wiring board is manufactured by curing the adhesive layer, the core material by the penetration method is as thin as about 0.1 mm as in the case of the single-layer wiring board, so the overall thickness of the multilayer board is made small. And can meet current market demands as well as future high integration demands.
[0044]
When a through-hole substrate made of copper plating is used as the core material as the core material, the core material is a through-hole substrate made of copper plating. A layer substrate can be made, and the way to make it is flexible. Moreover, since a core material with a large plate thickness can be made with a through-hole substrate, the plate thickness of the entire multilayer board can be increased.
[0045]
When the same resin as the resin impregnated in the reinforcing material of the insulating material substrate is used as the adhesive, or when the viscosity of the resin is decreased, the adhesive and the prepreg are familiar, so It is easy to form, and after the insulating material substrates of the respective layers are integrated by the lamination press, they can be prevented from being deteriorated due to corrosion and peeling from the joint surfaces of different materials.
[0046]
In the printed wiring board of the present invention, the outermost insulating layer of the multilayer board is disposed in the thickness direction, the surface wiring layer disposed on the outermost insulating layer, and the outermost insulating layer. Since the conductor bumps connecting the wiring layers disposed on the inner side to each other are arranged in such a direction that the front end side comes into contact with the surface wiring layer, the wiring pattern width of the surface wiring layer can be reduced. Therefore, the wiring pattern on the surface of the multilayer board can be finely patterned, and the degree of integration can be improved. In addition, a semiconductor device having a fine wiring pattern can be obtained by mounting a semiconductor element or the like on the surface wiring layer of the multilayer board on which such a fine pattern is formed.
[Brief description of the drawings]
FIG. 1 is a flowchart of a method for manufacturing a printed wiring board according to a first embodiment.
FIG. 2 is a cross-sectional view of the printed wiring board according to the first embodiment in the course of manufacturing, showing the process up to the production of a substrate unit coated with a liquid epoxy adhesive (BT resin).
FIG. 3 is a cross-sectional view of the printed wiring board according to the first embodiment in the middle of manufacture, showing a state in which board units are stacked and arranged.
FIG. 4 is a cross-sectional view of the printed wiring board according to the first embodiment in the middle of manufacture, showing a cross-section of a six-layer board formed by performing a lamination press twice by a penetration method.
FIG. 5 is a flowchart of a method for manufacturing a printed wiring board according to a second embodiment.
FIG. 6 is a cross-sectional view of the printed wiring board according to the second embodiment in the course of manufacturing, and is a cross-sectional view illustrating a method of manufacturing a board unit using a conductor plate and a buffer material.
FIG. 7 is a flowchart of a method for manufacturing a printed wiring board according to a third embodiment.
FIG. 8 is a cross-sectional view of the printed wiring board according to the third embodiment in the middle of manufacture, and is a lamination method by a penetration method in a state (a) in which a substrate unit is laminated by using a double-sided substrate by a penetration method as a core material; It is sectional drawing (b) of the 6-layer board | substrate formed by pressing twice.
FIG. 9 is a cross-sectional view of a printed wiring board according to a fourth embodiment in the course of manufacturing, and is a cross-sectional view in which an adhesive is applied to a conductor bump abutting counterpart and stacked.
FIG. 10 is a cross-sectional view in the middle of manufacturing a printed wiring board according to a fifth embodiment, and is a cross-sectional view illustrating a manufacturing process of a multilayer substrate using a through-hole substrate as a core material.
FIG. 11 is a cross-sectional view of a semiconductor device according to a sixth embodiment.
FIG. 12 is a cross-sectional view showing a process until a double-sided substrate is manufactured by a conventional penetration method.
FIG. 13 is a cross-sectional view showing a process until a four-layer substrate is manufactured by a conventional penetration method.
FIG. 14 is a cross-sectional view showing steps up to the fabrication of a six-layer substrate by a conventional penetration method.
FIG. 15 is a cross-sectional view showing an improved example of a conventional penetration method.
FIG. 16 is a cross-sectional view showing an improved example of a conventional penetration method, and shows a state in which a copper foil with an insulating material substrate on which a pattern is formed is laminated.
FIG. 17 is a view showing an improved example of the conventional penetration method, and is a cross-sectional view of a six-layer substrate formed by performing a laminating press by the penetration method once.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Copper foil, 2 ... Conductor bump, 3 ... Insulation material board | substrate, 4 ... Resin-coated copper foil, 502 ... Double-sided copper-clad board, 602 ... Double-sided board | substrate (by the penetration method), 702 ... (By the penetration method) 4 layer board | substrate 8 ... (by penetration method) 6-layer substrate, 9 ... via, 11 ... resist film, 12 ... copper foil with insulating material substrate, 13 ... 6-layer substrate, 14 ... buffer material, 1402 ... deformed buffer material, 16 ... Single layer wiring board, 17 ... Liquid epoxy adhesive (BT resin), 18 ... Substrate unit, 19 ... 6 layer substrate, 20 ... Copper foil, 2002 ... Deformed copper foil, 21 ... 6 layer substrate, 22 ... Core substrate ( Core material), 23 ... multilayer printed wiring board.

Claims (11)

導体板上に複数の略円錐型の導体バンプを形成する工程と、
前記導体バンプ上に未硬化の絶縁材料基板をセットする工程と、
前記絶縁材料基板が硬化しない温度で加熱しながら前記導体板および絶縁材料基板を緩衝材を介して加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、
前記導体バンプおよび絶縁材料基板を加熱硬化させる工程と、
前記導体板をパターニングして所定の配線パターンを備えた単層配線板を形成する工程と、
前記単層配線板における加熱硬化後の絶縁材料基板の表面又は配線パターン面に接着剤を塗布して基板ユニットを形成する工程と、
複数の基板ユニットを積層して多層板前駆体を形成する工程と、
前記多層板前駆体を加熱下に加圧して前記導体バンプと前記配線パターンとを接続すると共に前記接着剤層を硬化させる工程と
を具備するプリント配線基板の製造方法。
Forming a plurality of substantially conical conductor bumps on the conductor plate;
Setting an uncured insulating material substrate on the conductor bumps;
Pressing the conductor plate and the insulating material substrate through a buffer material while heating at a temperature at which the insulating material substrate is not cured, and penetrating the conductor bumps through the insulating material substrate;
A step of heating the hardness of the conductive bump and the insulating material substrate,
Patterning the conductor plate to form a single-layer wiring board having a predetermined wiring pattern;
Forming a substrate unit by applying an adhesive to the surface of the insulating material substrate or the wiring pattern surface after heat curing in the single-layer wiring board ;
Laminating a plurality of substrate units to form a multilayer plate precursor;
A method of manufacturing a printed wiring board comprising: pressurizing the multilayer board precursor under heating to connect the conductor bumps and the wiring pattern and curing the adhesive layer.
第1の導体板上に複数の略円錐型の導体バンプを形成する工程と、
前記導体バンプ上に未硬化の絶縁材料基板をセットする工程と、
前記絶縁材料基板が硬化しない温度で加熱しながら前記第1の導体板および絶縁材料基板を緩衝材を介して加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、
前記導体バンプが貫通した前記絶縁性基板上に第2の導体板と第2の緩衝材を積層して加熱下に加圧して前記導体バンプおよび絶縁材料基板を加熱硬化させる工程と、
前記導体板をパターニングして所定の配線パターンを備えた単層配線板を形成する工程と、
前記第2の導体板をエッチングにより除去する工程と、
前記単層配線板における加熱硬化後の絶縁材料基板の表面又は配線パターン面に接着剤を塗布して基板ユニットを形成する工程と、
複数の基板ユニットを積層して多層板前駆体を形成する工程と、
前記多層板前駆体を加熱下に加圧して前記導体バンプと前記配線パターンとを接続すると共に前記接着剤層を硬化させる工程と
を具備するプリント配線基板の製造方法。
Forming a plurality of substantially conical conductor bumps on the first conductor plate;
Setting an uncured insulating material substrate on the conductor bumps;
Pressing the first conductor plate and the insulating material substrate through a buffer material while heating at a temperature at which the insulating material substrate does not cure, and penetrating the conductor bumps through the insulating material substrate;
A step of heating the hardness of the second conductive plate and a second of said cushioning material is pressurized under heating by laminating conductor bumps and the insulating material substrate to the conductor bump penetrates the insulating substrate,
Patterning the conductor plate to form a single-layer wiring board having a predetermined wiring pattern;
Removing the second conductor plate by etching;
Forming a substrate unit by applying an adhesive to the surface of the insulating material substrate or the wiring pattern surface after heat curing in the single-layer wiring board ;
Laminating a plurality of substrate units to form a multilayer plate precursor;
A method of manufacturing a printed wiring board comprising: pressurizing the multilayer board precursor under heating to connect the conductor bumps and the wiring pattern and curing the adhesive layer.
請求項1又は2に記載のプリント配線基板の製造方法であって、前記導体バンプを前記絶縁材料基板に貫通させる工程が、前記導体バンプの先端を平面化させ、その上面径が平均で底面径の50%以上になるように変形させる工程であることを特徴とするプリント配線基板の製造方法。  3. The method for manufacturing a printed wiring board according to claim 1, wherein the step of penetrating the conductor bumps through the insulating material substrate planarizes the tips of the conductor bumps, and the top surface diameter is the bottom surface diameter on average. A process for producing a printed wiring board, which is a step of deforming to 50% or more of 請求項1〜3のいずれか1項に記載のプリント配線基板の製造方法であって、前記導体バンプを前記絶縁材料基板に貫通させる工程が、前記導体バンプの上面が絶縁材料基板面から5〜20μm突き出た構造になるように変形させる工程であることを特徴とするプリント配線基板の製造方法。  It is a manufacturing method of the printed wiring board of any one of Claims 1-3, Comprising: The process which penetrates the said conductor bump to the said insulating material board | substrate WHEREIN: The upper surface of the said conductor bump is 5 from an insulating material board | substrate surface. A method of manufacturing a printed wiring board, which is a step of deforming to have a structure protruding 20 μm. 導体板上に複数の略円錐型の導体バンプを形成する工程と、
前記導体バンプ上に未硬化の絶縁材料基板をセットする工程と、
前記絶縁材料基板が硬化しない温度で加熱しながら前記導体板および絶縁材料基板を緩衝材を介して加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、
前記導体バンプおよび絶縁材料基板を加熱硬化させる工程と、
前記導体板をパターニングして所定の配線パターンを備えた単層配線板を形成する工程と、
前記単層配線板における加熱硬化後の絶縁材料基板の表面又は配線パターン面に接着剤を塗布して基板ユニットを形成する工程と、
硬化した絶縁材料基板の第1の面と第2の面にそれぞれ配線パターンを備え、前記第1の面と第2の面に形成された配線パターンどうしを電気的に接続する電層間接続部材を内蔵するコア材を形成する工程と、
前記基板ユニットを少なくとも1枚ずつ前記コア材の両面に積層配置して多層配線基板前駆体を形成する工程と、
前記多層配線基板前駆体を加熱下に加圧して各配線パターンどうしを層間接続すると同時に前記接着剤層を硬化させる工程と
を具備するプリント配線基板の製造方法。
Forming a plurality of substantially conical conductor bumps on the conductor plate;
Setting an uncured insulating material substrate on the conductor bumps;
Pressing the conductor plate and the insulating material substrate through a buffer material while heating at a temperature at which the insulating material substrate is not cured, and penetrating the conductor bumps through the insulating material substrate;
A step of heating the hardness of the conductive bump and the insulating material substrate,
Patterning the conductor plate to form a single-layer wiring board having a predetermined wiring pattern;
Forming a substrate unit by applying an adhesive to the surface of the insulating material substrate or the wiring pattern surface after heat curing in the single-layer wiring board ;
An electrical interlayer connecting member provided with a wiring pattern on each of the first surface and the second surface of the cured insulating material substrate and electrically connecting the wiring patterns formed on the first surface and the second surface; Forming a core material to be embedded;
Forming a multilayer wiring board precursor by laminating and arranging at least one board unit on both sides of the core material;
A step of pressurizing the multilayer wiring board precursor under heating to interconnect each wiring pattern and simultaneously curing the adhesive layer.
請求項5に記載のプリント配線基板の製造方法であって、前記コア材を形成する工程が、
第1の導体板の上に略円錐型の導体バンプを形成する工程と、
前記導体バンプの先端側に未硬化の絶縁材料基板を配設する工程と、
前記第1の導体板と前記絶縁材料基板とを加圧して前記導体バンプを前記絶縁材料基板に貫通させる工程と、
前記導体バンプの先端が貫通した前記絶縁材料基板表面に第2の導体板をセットする工程と、
前記第1の導体板と前記第2の導体板とを加熱下に加圧して前記絶縁材料基板を硬化させる工程と
前記第1の導体板及び前記第2の導体板にパターン形成する工程と、
を具備する工程であることを特徴とするプリント配線基板の製造方法。
It is a manufacturing method of the printed wiring board according to claim 5, A process of forming the core material,
Forming a substantially conical conductor bump on the first conductor plate;
Disposing an uncured insulating material substrate on the leading end side of the conductor bump;
Pressurizing the first conductive plate and the insulating material substrate to penetrate the conductive bumps through the insulating material substrate;
Setting a second conductor plate on the surface of the insulating material substrate through which the tip of the conductor bump penetrated;
Pressurizing the first conductor plate and the second conductor plate under heating to cure the insulating material substrate; forming a pattern on the first conductor plate and the second conductor plate;
A process for producing a printed wiring board, comprising:
請求項5に記載のプリント配線基板の製造方法であって、前記コア材が銅めっきスルーホール基板であることを特徴とするプリント配線基板の製造方法。  6. The method for manufacturing a printed wiring board according to claim 5, wherein the core material is a copper-plated through-hole board. 請求項1〜7のいずれか1項に記載のプリント配線基板の製造方法であって、前記基板ユニットを形成する工程が、前記導体バンプ先端を突き当てる相手側の配線パターン上に前記接着剤を塗布する工程であることを特徴とするプリント配線基板の製造方法。  It is a manufacturing method of the printed wiring board of any one of Claims 1-7, Comprising: The process of forming the said board | substrate unit places the said adhesive agent on the wiring pattern of the other party which abuts the said conductor bump front-end | tip. A method for producing a printed wiring board, which is a coating step. 請求項1〜8のいずれか1項に記載のプリント配線基板の製造方法であって、前記接着剤が、前記絶縁材料基板の補強材に含浸させたレジンと同一のレジン、又は前記レジンの粘度を低下させたものであることを特徴とするプリント配線基板の製造方法。  It is a manufacturing method of the printed wiring board of any one of Claims 1-8, Comprising: The said resin is the same resin as the resin which the reinforcing material of the said insulating material board was impregnated, or the viscosity of the said resin A method of manufacturing a printed wiring board, wherein the printed circuit board is reduced. 複数の絶縁層と、
前記絶縁層と絶縁層との間に配設された層間配線層と、
最外部の絶縁層の表面に配設された複数の表面配線層と、
前記絶縁層内に配設され、前記絶縁層を介して対向する前記層間配線層を接続する層間接続部材と、
前記最外部の絶縁層内に配設され、前記表面配線層に先端側が当接する導体バンプ群と、
前記導体バンプ群および前記絶縁層を加熱硬化した後の前記絶縁層又は前記層間配線層の表面に接着剤を塗布し、その後、前記接着剤を硬化させて得られた接着剤層と、
を具備することを特徴とするプリント配線基板。
A plurality of insulating layers;
An interlayer wiring layer disposed between the insulating layer and the insulating layer;
A plurality of surface wiring layers disposed on the surface of the outermost insulating layer;
An interlayer connecting member disposed in the insulating layer and connecting the interlayer wiring layers facing each other through the insulating layer;
A conductor bump group disposed in the outermost insulating layer and having a front end abutting against the surface wiring layer;
Applying an adhesive to the surface of the insulating layer or the interlayer wiring layer after heat-curing the conductor bump group and the insulating layer, and then an adhesive layer obtained by curing the adhesive;
A printed wiring board comprising:
請求項10に記載のプリント配線基板であって、前記絶縁層は、補強材を含まない接着剤を硬化させた前記接着剤層を含み、この接着剤層と、樹脂内部を補強材シートで補強した補強材層と、の積層物であることを特徴とするプリント配線基板。A printed wiring board according to claim 10, wherein the insulating layer includes the adhesive layer formed by curing the adhesive containing no reinforcement material, and the adhesive layer, a reinforcing sheet internal tree fat in the printed circuit board, characterized in that the reinforcement layer reinforced, which is a laminate.
JP2001107631A 2001-04-05 2001-04-05 Printed wiring board manufacturing method and printed wiring board Expired - Fee Related JP4684454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107631A JP4684454B2 (en) 2001-04-05 2001-04-05 Printed wiring board manufacturing method and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107631A JP4684454B2 (en) 2001-04-05 2001-04-05 Printed wiring board manufacturing method and printed wiring board

Publications (2)

Publication Number Publication Date
JP2002305376A JP2002305376A (en) 2002-10-18
JP4684454B2 true JP4684454B2 (en) 2011-05-18

Family

ID=18959922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107631A Expired - Fee Related JP4684454B2 (en) 2001-04-05 2001-04-05 Printed wiring board manufacturing method and printed wiring board

Country Status (1)

Country Link
JP (1) JP4684454B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722604B1 (en) 2005-09-02 2007-05-28 삼성전기주식회사 Manufacturing method of printed circuit board
JP2008182071A (en) * 2007-01-25 2008-08-07 Toppan Printing Co Ltd Electronic component built-in wiring board, method for manufacturing the same, and electronic device
JP5332476B2 (en) * 2008-10-03 2013-11-06 大日本印刷株式会社 Substrate sheet manufacturing method with conductive bump and multilayer printed wiring board manufacturing method
JP5257782B2 (en) * 2009-03-30 2013-08-07 大日本印刷株式会社 Method for manufacturing substrate sheet with conductive bump and method for manufacturing multilayer printed wiring board
JP5402784B2 (en) * 2009-07-08 2014-01-29 大日本印刷株式会社 Method for manufacturing substrate sheet with conductive bump and method for manufacturing multilayer printed wiring board
US8866286B2 (en) * 2012-12-13 2014-10-21 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Single layer coreless substrate
KR20240153648A (en) * 2023-04-17 2024-10-24 주식회사 아모그린텍 Semiconductor chip mounting method using conductive paste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633136B2 (en) * 1996-09-18 2005-03-30 株式会社東芝 Printed wiring board
JP3883744B2 (en) * 1999-06-30 2007-02-21 大日本印刷株式会社 Method for manufacturing printed wiring board
JP2001015920A (en) * 1999-06-30 2001-01-19 Toshiba Corp Multilayer printed wiring board and its manufacture

Also Published As

Publication number Publication date
JP2002305376A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
JP4291279B2 (en) Flexible multilayer circuit board
KR100522385B1 (en) Multilayer wiring board assembly, multilayer wiring board assembly component and method of manufacture thereof
JP5022392B2 (en) Method for manufacturing printed circuit board using paste bump
JP4427874B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
JP4073945B1 (en) Manufacturing method of multilayer wiring board
JPH09116273A (en) Multilayered circuit board and its manufacture
JP4183708B2 (en) Manufacturing method of component-embedded substrate
JP4691763B2 (en) Method for manufacturing printed wiring board
JP4939519B2 (en) Multilayer circuit board manufacturing method
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
KR101205464B1 (en) Method for manufacturing a printed circuit board
JPH1154926A (en) One-sided circuit board and its manufacture
JPH08316598A (en) Printed wiring board and manufacturing method thereof
JP3926064B2 (en) Printed wiring board and method for manufacturing printed wiring board
JP2007208229A (en) Manufacturing method of multilayer wiring board
JPH1070363A (en) Method for manufacturing printed wiring board
KR100734244B1 (en) Multilayer printed circuit board and its manufacturing method
KR100716809B1 (en) Printed Circuit Board Using Anisotropic Conductive Film and Manufacturing Method Thereof
JP2000277913A (en) Multilayer wiring board and method of manufacturing the same
JP3694708B2 (en) Printed wiring board manufacturing method and printed wiring board
JP3474896B2 (en) Printed wiring board and manufacturing method thereof
KR100733814B1 (en) Printed Circuit Board Manufacturing Method
JP3628313B2 (en) Printed wiring board and manufacturing method thereof
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP7576201B1 (en) Multilayer board manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060215

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees