JP4676741B2 - Hard coating and hard coating method - Google Patents
Hard coating and hard coating method Download PDFInfo
- Publication number
- JP4676741B2 JP4676741B2 JP2004312731A JP2004312731A JP4676741B2 JP 4676741 B2 JP4676741 B2 JP 4676741B2 JP 2004312731 A JP2004312731 A JP 2004312731A JP 2004312731 A JP2004312731 A JP 2004312731A JP 4676741 B2 JP4676741 B2 JP 4676741B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- hard film
- cutting
- hard
- elements selected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、超硬合金、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性などの硬質皮膜の機械的特性に優れた潤滑特性を付与した硬質皮膜及び硬質皮膜の被覆方法に関する。 The present invention relates to a hard film and a hard film provided with lubrication characteristics excellent in mechanical characteristics of a hard film such as wear resistance, adhesion and high temperature oxidation resistance coated on cemented carbide, high speed steel, die steel, etc. It is related with the coating method.
金属加工の高能率化を目的とした切削速度の高速化、並びに切削条件における1刃当たりの送り量が0.3mmを越えるような高送り切削加工に対し、従来の硬質皮膜を被覆した工具では、密着性、硬質皮膜の機械的特性である耐酸化性、耐摩耗性に満足のいく性能が得られていない。この様な背景から、硬質皮膜の耐酸化性、耐摩耗性をより向上させる事を目的とした技術の開示が行われている。更に、難削材と呼ばれるダイカスト金型用の鋼加工においては、ClやS、Pといった成分が含まれた切削油材を使用するのが一般的であったが、環境への配慮から乾式の環境下で使用できる工具に対する要望が高まっている。このような背景から、特許文献3、4に開示される潤滑特性を向上させる研究が行われている。
特許文献1、2は、硬質皮膜に濃度分布を形成させる技術や、連続的に組成の変化する組成変化の繰り返し層を持った膜を形成することによって、耐摩耗性を向上させる技術が開示されている。しかし、何れも物理蒸着法におけるアーク放電式イオンプレーティング法のみを利用した試みである。しかも、刃先などに溶着が発生しやすい鋼種の加工においては、摩耗発生の大小の議論よりも、まず安定した加工が優先され、溶着特性の改善が急務である。切削加工分野において、安定的に、無人で、安価で加工が行えることが要求され、このような背景から、硬質皮膜の密着性、硬度、耐熱特性を損なうことなく、潤滑特性を向上させることが必須である。
特許文献3は、機械加工用工具に潤滑性を得る目的で二硫化モリブデンを被覆する技術が、特許文献4は、二硫化モリブデンとTiNとを組み合わせた被膜の例が開示されている。しかし、被膜の密着性、硬度が十分ではなく、切削工具の耐摩耗性に課題を残している。
With a tool coated with a conventional hard coating, the cutting speed is increased for the purpose of improving the efficiency of metal processing, and the high feed cutting process in which the feed amount per blade exceeds 0.3 mm under cutting conditions. However, satisfactory performance has not been obtained in terms of adhesion and mechanical properties of the hard film, such as oxidation resistance and wear resistance. From such a background, a technique for the purpose of further improving the oxidation resistance and wear resistance of a hard coating has been disclosed. Furthermore, in steel processing for die-casting dies called difficult-to-cut materials, it is common to use cutting fluids that contain components such as Cl, S, and P. There is a growing demand for tools that can be used in the environment. From such a background, research for improving the lubrication characteristics disclosed in Patent Documents 3 and 4 has been conducted.
Patent Documents 1 and 2 disclose a technique for forming a concentration distribution in a hard film and a technique for improving wear resistance by forming a film having a repeated layer of composition change in which the composition continuously changes. ing. However, both are attempts using only the arc discharge ion plating method in the physical vapor deposition method. Moreover, in the processing of steel types where welding is likely to occur at the cutting edge or the like, stable processing is given priority over the discussion of the magnitude of wear generation, and improvement of the welding characteristics is urgent. In the field of cutting, stable, unattended, and inexpensive machining is required. From such a background, it is possible to improve the lubrication characteristics without impairing the adhesion, hardness, and heat resistance characteristics of the hard coating. It is essential.
Patent Document 3 discloses a technique for coating a machining tool with molybdenum disulfide for the purpose of obtaining lubricity, and Patent Document 4 discloses an example of a film in which molybdenum disulfide and TiN are combined. However, the adhesion and hardness of the coating are not sufficient, and there remains a problem in the wear resistance of the cutting tool.
本発明の目的は、密着性が優れ、耐酸化性、耐摩耗性に加え、潤滑特性に優れた硬質皮膜を提供し、更に高温状態での耐溶着性並びに硬質皮膜中への被削材元素の拡散を抑制し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜で被覆された工具を提供することである。 The object of the present invention is to provide a hard film with excellent adhesion, excellent oxidation resistance, wear resistance, and lubrication characteristics, and further, welding resistance at high temperatures and work material elements in the hard film. It is intended to provide a tool coated with a hard coating that suppresses the diffusion of steel and is compatible with dry machining, high speed, and high feed of cutting.
本発明の硬質皮膜は、周期律表4a、5a、6a族、Al及びSiから選択される1種以上の元素と、C、Nから選択される1種以上の元素と、SとOとを含有する硬質皮膜であり、該硬質皮膜は、第1の相を、前記周期律表4a、5a、6a族、Al及びSiから選択される1種以上の元素のターゲットの窒化物、炭化物、炭窒化物の何れかとし、第2の相を、WS2、NbS、CrSの1種の硫化物とし、且つ、該第1の相と該第2の相とを混在させ、更に、電子分光分析法による結合状態分析で、SとOとの結合状態を示す167〜170eVの範囲内にピーク有することを特徴する硬質皮膜である。
次に、製造方法として、周期律表4a、5a、6a族、Al及びSiから選択される1種以上の元素と、C、Nから選択される1種以上の元素と、SとOとを含有する硬質皮膜であり、該硬質皮膜は、第1の相として、前記周期律表4a、5a、6a族、Al及びSiから選択される1種以上の元素のターゲットを用い、第2の相として、WS2、NbS、CrSの1種の硫化物のターゲットを用いて、該第1の相をアーク放電式イオンプレーティング法、該第2の相をマグネトロンスパッタリング法で、同時に成膜して、該第1の相を、前記周期律表4a、5a、6a族、Al及びSiから選択される1種以上の元素のターゲットの窒化物、炭化物、炭窒化物の何れかとし、該第2の相を、WS2、NbS、CrSの1種の硫化物とし、且つ、該第1の相と該第2の相とを混在させ、更に、電子分光分析法による結合状態分析で、SとOとの結合状態を示す167〜170eVの範囲内にピーク有することを特徴する硬質皮膜の被覆方法である。本構成及びその製法を採用することにより、密着性が優れ、また耐酸化性、耐摩耗性に加え、潤滑特性に優れた硬質皮膜を提供することができる。
The hard coating of the present invention comprises one or more elements selected from the periodic tables 4a, 5a, 6a, Al and Si, one or more elements selected from C and N, and S and O. The hard coating contains a nitride , carbide, charcoal of a target of one or more elements selected from the periodic table 4a, 5a, 6a group, Al and Si as the first phase. Any one of nitrides, the second phase is one kind of sulfide of WS 2 , NbS, and CrS, the first phase and the second phase are mixed, and electron spectroscopy analysis It is a hard film characterized by having a peak in the range of 167 to 170 eV indicating the bonding state of S and O in the bonding state analysis by the method.
Next, as a manufacturing method, periodic table 4a, 5a, 6a group, one or more elements selected from Al and Si, one or more elements selected from C and N, and S and O The hard film contains a target of one or more elements selected from the periodic table 4a, 5a, 6a group, Al and Si as the first phase. Using a sulfide target of WS 2 , NbS, and CrS, the first phase is formed by arc discharge ion plating method, and the second phase is formed by magnetron sputtering method at the same time. the first phase is the periodic table 4a, 5a, 6a, group nitride target of one or more elements selected from Al and Si, carbides, and any of carbonitrides, the second The phase is a sulfide of WS 2 , NbS, CrS, In addition, the first phase and the second phase are mixed, and, furthermore, in the binding state analysis by electron spectroscopy, it has a peak in the range of 167 to 170 eV indicating the binding state of S and O. It is the coating method of the hard film characterized. By adopting this structure and its production method, it is possible to provide a hard film having excellent adhesion and excellent lubricating properties in addition to oxidation resistance and wear resistance.
本発明の硬質皮膜に含有するSは原子%で、0.1以上、10以下であることがこのましい。更に、硬質皮膜は少なくとも2種以上のプラズマ密度の異なる物理蒸着による蒸発源を用いて被覆することである。ここで、プラズマ密度の異なる蒸発源として例えば、プラズマ密度が比較的高いアーク放電式イオンプレーティング法(以下、AIP法と記す。)と、プラズマ密度が比較的低いマグネトロンスパッタリング法(以下、MS法と記す。)との組み合わせなどが好ましい。 It is preferable that S contained in the hard coating of the present invention is atomic% and is 0.1 or more and 10 or less. Further, the hard coating is to be coated using at least two kinds of evaporation sources by physical vapor deposition having different plasma densities. Here, as evaporation sources having different plasma densities, for example, an arc discharge ion plating method (hereinafter referred to as AIP method) having a relatively high plasma density and a magnetron sputtering method (hereinafter referred to as MS method) having a relatively low plasma density. And the like.
本発明の硬質皮膜は、硬質皮膜と基体との密着性が優れ、また耐酸化性、耐摩耗性に加え、潤滑特性に優れた硬質皮膜である。例えば、本発明の硬質皮膜を切削工具等に適用した場合、溶着の激しいダイカスト金型用鋼の乾式高能率切削加工をはじめ、金型加工時の断続切削状況下においても安定性と、長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。 The hard film of the present invention is a hard film having excellent adhesion between the hard film and the substrate, and excellent lubricating properties in addition to oxidation resistance and wear resistance. For example, when the hard coating of the present invention is applied to a cutting tool or the like, it is stable and stable even under intermittent cutting conditions at the time of die processing, including dry high-efficiency cutting of die casting steel for severe welding. It has a long life and is extremely effective in improving productivity in cutting.
本発明の硬質皮膜は、SとOとの結合結合状態を示すピークを有することは、電子分光法(以下、ESCAと記す。)による分析によって確認することができる。本発明では、ESCA分析の中でも、特にX線照射によるX線光電子分光分析(以下、XPS分析と記す。)により確認した。XPS分析時の条件は、X線源:Al、Kα線、分析領域:100μmφ、電子中和銃を使用した。この条件において、167〜170eVの範囲にSとOとの結合(以下、S−O結合と記す。)状態を示すピークを確認することができる。
本発明の硬質皮膜に硫化物とS−O結合によりSを含有させることで、著しく潤滑特性を改善できることを確認した。評価方法は、ボールオンディスク方式の摩擦摩耗試験機を用い、大気中600℃の高温下における摩擦係数を測定した。本発明の硬質皮膜に含有されるSは、硬質膜表面において200℃程度の比較的低温で酸化する。この酸化現象が、硬質皮膜表面において保護膜として機能し、被加工物の溶着を抑制させることにより、優れた潤滑特性を発揮するのである。その結果、切削熱など酸化雰囲気の高温下における被加工物の硬質皮膜中への内向拡散を防ぎ、安定した加工が行えるようになる。被覆時にS−O結合を形成させるためには、硬質皮膜を得るための主体となる反応ガス中に酸素を含有させることによって得られる。ここで重要な点は、硬質皮膜中にSを含有させS−O結合を形成することによって、潤滑特性の優れた硬質皮膜を得ることである。
It can be confirmed by analysis by electron spectroscopy (hereinafter referred to as ESCA) that the hard coating of the present invention has a peak indicating a bonded state of S and O. In the present invention, the ESCA analysis was confirmed by X-ray photoelectron spectroscopy analysis (hereinafter referred to as XPS analysis) by X-ray irradiation. The XPS analysis was performed under the conditions of X-ray source: Al, Kα ray, analysis region: 100 μmφ, and electron neutralizing gun. Under these conditions, a peak indicating a state of bonding between S and O (hereinafter referred to as S—O bonding) in a range of 167 to 170 eV can be confirmed.
It was confirmed that lubrication characteristics can be remarkably improved by incorporating S into the hard coating of the present invention by sulfide and S—O bond . The evaluation method used a ball-on-disk friction and wear tester, and measured the coefficient of friction at a high temperature of 600 ° C. in the atmosphere. S contained in the hard film of the present invention is oxidized at a relatively low temperature of about 200 ° C. on the surface of the hard film. This oxidation phenomenon functions as a protective film on the surface of the hard film, and exhibits excellent lubrication characteristics by suppressing welding of the workpiece. As a result, inward diffusion of the workpiece into the hard film under high temperature in an oxidizing atmosphere such as cutting heat can be prevented and stable machining can be performed. In order to form an S—O bond at the time of coating, it can be obtained by incorporating oxygen into a reaction gas which is a main component for obtaining a hard film. The important point here is to obtain a hard film having excellent lubrication characteristics by containing S in the hard film and forming an S—O bond.
本発明の硬質皮膜に含有するSは、原子%で、0.1以上、10以下であることが好ましい。0.1%よりも低い含有量では、汎用の分析機器を用いた検出が困難であり、量産時の管理項目としての規定が困難であるため、簡易的に検出可能な0.1%以上とした。一方、S含有量が10%を超えると、硬質皮膜の結晶組織が柱状晶形態からアモルファス状の微細組織に変化する。その結果、硬質皮膜の硬度低下や、密着性の確保に大きく影響を及ぼす残留圧縮応力が増大するため、外部からの強い衝撃により硬質皮膜が剥離してしまう不都合が生じる。以上の理由から、S含有量を0.1以上、10以下に規定したのである。更に好ましくは、S含有量は0.1%以上、7%以下である。 S contained in the hard film of the present invention is preferably at least 0.1 and no more than 10 in atomic%. If the content is lower than 0.1%, it is difficult to detect using a general-purpose analytical instrument, and it is difficult to specify it as a management item at the time of mass production. did. On the other hand, when the S content exceeds 10%, the crystal structure of the hard coating changes from a columnar crystal form to an amorphous microstructure. As a result, since the residual compressive stress that greatly affects the hardness reduction of the hard coating and the securing of adhesion increases, the hard coating peels off due to a strong external impact. For these reasons, the S content is specified to be 0.1 or more and 10 or less. More preferably, the S content is not less than 0.1% and not more than 7%.
本発明の製造方法は、第1に、靭性に富む硬質皮膜を得られるからであり、第2に、硬質皮膜に効果的にSを添加できるからである。
第1は、2種以上のプラズマ密度の異なる成膜方式を同時に使用することによって、夫々発生したプラズマ放電から、価数の異なるイオンが同時に基体表面に到達する。この時プラズマ密度の比較的高い蒸発源近傍では、硬質結晶が主体に相をなす。これを第1の相とする。一方、プラズマ密度の比較的低い蒸発源近傍では、軟質結晶が主体の相をなす。これを第2の相とする。同一真空装置内にプラズマ密度の異なる蒸発源が並存することによって、皮膜は第1の相と第2の相とが混在して基体に堆積する。第2の相が第1の相の結晶間に存在すると、軟質結晶がクッション効果を示し、その結果、硬質皮膜全体として靭性に富む硬質皮膜が得られ、被覆部材の耐衝撃特性が向上するのである。即ち、強靭性、且つ、高潤滑特性を有する硬質皮膜を得ることが可能となる。具体的に、プラズマ密度の比較的高い蒸発源をAIP法、プラズマ密度の比較的低い蒸発源をMS法とし、両者を同時に放電させることで、硬質皮膜の結晶成長方向に対して界面を形成させることなく結晶が連続的に成長した硬質皮膜を得ることが可能となる。しかし、硬質皮膜の形成において両者を逐次的、或いは間欠的に操作すると、硬質皮膜内に界面が生じ、その界面における接合が脆弱化するといった不都合が生じる。本発明の硬質皮膜を、例えば、切削工具等、高硬度が要求される耐摩耗部材や耐熱部材の表面に被覆すると、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性が著しく向上する。特に、潤滑特性が著しく向上するため、切削加工の高温状態での耐溶着性並びに硬質皮膜内への被削材元素の拡散を抑制することができる。更に、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することができる。ここでの高送り加工とは、切削条件における1刃当たりの送り量が0.3mm/刃を超えるような切削条件と定義する。
第2は、物理蒸着法によって、硬質皮膜に効果的にSを含有させるには、プラズマ密度の比較的高い蒸発源であり、更に、強固な密着性を得ることが可能なAIP法の蒸着源によって、周期律表4a、5a、6a族、Al及びSiから選択される1種以上の元素を主体とする硬質皮膜を被覆する際に、プラズマ密度の比較的低いMS法の蒸発源も同時に放電させ、WS、CrS、NbSなど硫化物を含有したターゲット材からSを添加させることが好ましい。WS、CrS、NbSなど耐熱特性に優れる硫化物をターゲット材として使用し、プラズマ密度が比較的低いMS法を用いて被覆することが好ましいのである。ここで、物理蒸着法とするのは、蒸発源に設置される金属ターゲット中にあらかじめSを含有したものを使用することが好ましいからである。一方、化学蒸着法等を採用し、H2S等を反応ガスとして用いた場合、環境上の問題、また安全性など取り扱いの面から好ましくない。プラズマ密度の比較的高い蒸発源に、WS、CrS、NbSなどをターゲット材として使用した場合、放電現象を安定化させるのが困難である。また、周期律表4a、5a、6a族、Al及びSiから選択される1種以上の元素からなるマトリックス中にWS、CrS、NbSなど硫化物を添加したターゲット材を使用する選択も可能であるが、放電時のプラズマ密度が比較的高い状態の場合、硬質皮膜にSを含有させることが難しくなる。従って、MS法を用いプラズマ密度を比較的低い状態でSを添加させるのが好ましいのである。
Production method of the present invention, the first, is because to obtain the hard film rich in toughness and, secondly, because it is possible to effectively adding S into the hard film.
First, by simultaneously using two or more types of film formation methods having different plasma densities, ions having different valences simultaneously reach the substrate surface from the generated plasma discharges. At this time, in the vicinity of the evaporation source having a relatively high plasma density, a hard crystal mainly forms a phase. This is the first phase. On the other hand, in the vicinity of an evaporation source having a relatively low plasma density, a soft crystal is the main phase. This is the second phase. Since the evaporation sources having different plasma densities coexist in the same vacuum apparatus, the coating is deposited on the substrate in a mixture of the first phase and the second phase. When the second phase is present between the crystals of the first phase, the soft crystal exhibits a cushioning effect, and as a result, a hard film rich in toughness is obtained as the entire hard film, and the impact resistance characteristics of the covering member are improved. is there. That is, a hard film having toughness and high lubricating properties can be obtained. Specifically, the evaporation source with a relatively high plasma density is the AIP method, the evaporation source with a relatively low plasma density is the MS method, and both are discharged simultaneously to form an interface with respect to the crystal growth direction of the hard coating. It is possible to obtain a hard film in which crystals are continuously grown without any problems. However, if both of them are operated sequentially or intermittently in the formation of the hard film, there arises an inconvenience that an interface is formed in the hard film and bonding at the interface becomes weak. When the hard film of the present invention is coated on the surface of a wear-resistant member or heat-resistant member that requires high hardness, such as a cutting tool, the adhesion of the hard film is improved, and the oxidation resistance and wear resistance are remarkably improved. To do. In particular, since the lubrication characteristics are remarkably improved, it is possible to suppress welding resistance at a high temperature in cutting and diffusion of the work material element into the hard coating. Furthermore, it is possible to provide a hard film coated tool that can cope with dry cutting, high speed, and high feed of cutting. Here, the high feed processing is defined as a cutting condition in which the feed amount per blade under the cutting condition exceeds 0.3 mm / tooth.
Second, in order to effectively contain S in the hard film by physical vapor deposition, it is an evaporation source having a relatively high plasma density, and further, an AIP vapor deposition source capable of obtaining strong adhesion. By this, when coating a hard film mainly composed of one or more elements selected from the groups 4a, 5a, 6a, Al and Si, the MS evaporation source having a relatively low plasma density is discharged at the same time. It is preferable to add S from a target material containing sulfide such as WS, CrS, or NbS. It is preferable to use a sulfide having excellent heat resistance such as WS, CrS, or NbS as a target material, and coat using the MS method having a relatively low plasma density. Here, the reason why the physical vapor deposition method is used is that it is preferable to use a metal target installed in the evaporation source and containing S in advance. On the other hand, when chemical vapor deposition or the like is employed and H 2 S or the like is used as a reaction gas, it is not preferable from the viewpoint of handling such as environmental problems and safety. When WS, CrS, NbS or the like is used as a target material for an evaporation source having a relatively high plasma density, it is difficult to stabilize the discharge phenomenon. It is also possible to select using a target material in which sulfides such as WS, CrS, NbS are added to a matrix composed of one or more elements selected from the periodic table 4a, 5a, 6a group, Al and Si. However, when the plasma density during discharge is relatively high, it becomes difficult to contain S in the hard coating. Therefore, it is preferable to add S using the MS method with a relatively low plasma density.
成膜は、小型真空装置内にAIP法の蒸発源と、MS法の蒸発源とを併設した装置を用いて被覆を行った。基体は超硬合金製インサートを用いた。反応ガスはN2ガス、CH4ガス、Ar/O2混合ガスから目的の皮膜が得られるものを選択した。反応圧力は両成膜法が真空装置内で同時にプラズマを発生させることが可能な値を選定した。基体温度は400℃、バイアス電圧は−40Vから−150Vの範囲の電圧を印加した。蒸発源は各種合金製ターゲットが選択可能であるが、実施例ではAIP法の蒸発源に所定組成の合金ターゲット、MS法の蒸発源にWS2、NbS、CrSなどを用い、硬質皮膜にSを添加させるために、AIP蒸発源とMS蒸発源とを同時に放電させた。また、この時に2種の蒸発源を同時に放電させるために反応圧力を3Paに設定した。得られた硬質皮膜の評価は、以下に示す切削条件にて切削試験を行った。この切削条件で用いた被削材は、ダイカスト金型用鋼種として用いられるSKD61、硬さがHRC45である。本鋼種は、切削加工初期に刃先部における溶着現象が発生し、被覆インサート刃先部の硬質皮膜尊損傷が激しくなる。この被削材表面を高能率加工条件にて切削を行う事により、切削初期にインサートに発生する溶着がもたらす摩耗やヒートクラックによる欠損を評価した。評価方法は、刃先の欠損又は摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。表1に本発明例、比較例及び従来例に関する硬質皮膜の詳細及び切削試験の結果を示す。
(切削条件)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:SKD61、硬さ、HRC45
切り込み量:1.5mm
切削速度:100m/min
1刃送り量:0.6mm/刃
切削油:なし
Film formation was performed using a device in which an AIP evaporation source and an MS evaporation source were provided in a small vacuum apparatus. The substrate was a cemented carbide insert. The reaction gas was selected from N 2 gas, CH 4 gas, and Ar / O 2 mixed gas, from which the desired film was obtained. The reaction pressure was selected so that both film forming methods can generate plasma simultaneously in a vacuum apparatus. The substrate temperature was 400 ° C., and the bias voltage was a voltage in the range of −40V to −150V. Various alloy targets can be selected as the evaporation source. In the embodiment, an alloy target having a predetermined composition is used as the evaporation source for the AIP method, WS 2 , NbS, CrS, etc. are used as the evaporation source for the MS method, and S is used for the hard film. For the addition, the AIP evaporation source and the MS evaporation source were simultaneously discharged. At this time, the reaction pressure was set to 3 Pa in order to discharge the two evaporation sources simultaneously. Evaluation of the obtained hard film performed the cutting test on the cutting conditions shown below. The work material used under these cutting conditions is SKD61 used as a steel type for die casting molds, and the hardness is HRC45. In this steel type, a welding phenomenon occurs at the cutting edge portion in the early stage of cutting, and the hard coating is severely damaged at the coated insert cutting edge portion. By cutting the surface of the work material under high-efficiency machining conditions, wear and heat cracks caused by welding generated in the insert at the initial stage of cutting were evaluated. In the evaluation method, processing was performed until the tool became uncut due to chipping or wear of the blade edge, and the cutting length at that time was defined as the tool life. Table 1 shows the details of the hard coating and the results of the cutting test for the inventive examples, comparative examples, and conventional examples.
(Cutting conditions)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: SKD61, hardness, HRC45
Cutting depth: 1.5mm
Cutting speed: 100 m / min
1-blade feed amount: 0.6 mm / blade Cutting oil: None
表1より、硬質皮膜表面付近のS−O結合有無により、切削性能が大きく異なった。また、2種以上の物理蒸発源を用いてSを硬質皮膜中に添加させたときのS含有量の多少により、切削性能差が明瞭に現われる結果となった。
本発明例1から14に示した様に、本発明の硬質皮膜を適用することで、従来まで実現が困難であった高能率加工が、実現可能となった。例えば、本発明例5に示す様に、WS2によってSを添加した硬質皮膜は、実施例の評価中で最も良い結果を示した。本発明例5の硬質皮膜を詳細に調査した結果、S含有量が6.8%であり、更に、図1に示す様に、XPS分析において167〜170eVの範囲にS−O結合が確認された。切削試験においても、切削加工初期の激しい溶着が抑制されていることが確認できた。この抑制効果は、S−O結合の存在によるものと考えられる。図1ではS−O結合の他に、161〜164eVにおいて金属元素との硫化物が存在することや、図2に示す様に、33〜36eVにおいてW−O結合の存在することなどが確認された。この様に、本発明例5の硬質皮膜表面付近には、潤滑特性の優れる硫化物並びに酸化物が形成されるために、溶着が激しく発生する金属の加工において、著しい効果を発揮したと考えられる。図3に示す様に、硬質皮膜の断面組織を観察した結果、柱状組織形態であった。この結果、高送り加工などの衝撃の激しい切削加工において、せん断方向に対する機械的強度も得られていることが確認された。
更に、本発明例5、本発明例11、従来例32、従来例33については、ボールオンディスク方式の摩擦摩耗試験機を用い、大気中600℃の高温下における摩擦係数の測定を行った。その結果を図4に示す。図4より、本発明例5、本発明例11は摩擦係数が0.4以下を示し、潤滑特性が大幅に向上することを確認した。本発明例11の様に、Crなどの硫化物の形も潤滑特性に優れることが確認された。
本発明例5を用いて、金型で見られる固定穴等、切削加工においては断続となる部位の加工も行ってみたが、欠損することなく、安定した切削が行うことができた。これは、2種以上のプラズマ密度の異なる成膜方式を同時に使用したことによって硬質皮膜表面付近にS−O結合を有し、皮膜全体として靭性に富むようになったことが、耐衝撃特性の向上に繋がったものであると考えられる。これより、本発明の課題である密着性が優れ、耐酸化性、耐摩耗性に加え、優れた潤滑特性を有し、耐欠損特性に優れた硬質皮膜を得られたのである。安定的な優れた切削性能を発揮させるために、S元素の添加源として用いるターゲット材は、WS2が適している傾向にあった。CrSやNbSを使用した場合でも、従来にない潤滑特性を示し切削特性が著しく向上することを確認している。
比較例15から20、24から26、28は、S含有量が10%を超えて多いことが確認された。例えば、比較例17は、S−O結合が確認されず、硬質皮膜中に含有されたS量が14.1%となり、10%を超えてしまった。その結果、硬質皮膜の結晶組織が図5に示すようなアモルファス状の微細組織になっていることが確認され、早期摩耗に至った。硬質皮膜の硬度もHVで26程度と軟質化傾向にあった。
比較例23は、硬質皮膜中のS含有量が7%であるが、成膜時に使用する反応ガス中に酸素を添加せずに被覆したため、硬質皮膜表面にS−O結合が形成されていなかった。S添加の効果効果によって、ある程度の切削距離は加工できたが、切削初期に発生する溶着の抑制には不十分であった。
比較例21、22は、夫々被覆にWS2、NbSのターゲット材を使用したが、放電出力を低く設定して使用した。その結果、得られた硬質皮膜のS含有量は、XPS分析装置を使用したSの検出が不可能な程少量であった。切削試験では、切削初期の溶着が激しく発生し、特に比較例22では火花が発生し、評価を途中で中止した。硬質皮膜中へのSの添加は、硬質皮膜のS−O結合と言った化学状態並びに、S含有量を制御しなければならない。
従来例29から31は切削工具表面にMoS2を被覆した場合を示す。MoS2は潤滑特性が優れるものの、被加工物と接触した時に、MoS2は硬度が低いこと、また耐熱性が低いことから異常摩耗が発生し、MoS2がもつ潤滑特性を十分に発揮させることができない。従って、近年の切削加工環境下の過酷化に対応できるほどの耐熱特性、硬度、密着性を確保することが困難であった。
From Table 1, the cutting performance was greatly different depending on the presence or absence of S—O bond in the vicinity of the hard coating surface. In addition, the difference in the cutting performance was clearly shown by the amount of S content when S was added to the hard film using two or more kinds of physical evaporation sources.
As shown in Examples 1 to 14 of the present invention, by applying the hard coating of the present invention, high-efficiency machining that has been difficult to realize until now can be realized. For example, as shown in Example 5 of the present invention, the hard film to which S was added by WS2 showed the best results during the evaluation of the examples. As a result of investigating the hard film of Invention Example 5 in detail, the S content was 6.8%, and further, as shown in FIG. 1, S—O bonds were confirmed in the range of 167 to 170 eV in the XPS analysis. It was. Also in the cutting test, it was confirmed that intense welding at the initial stage of cutting was suppressed. This suppression effect is considered to be due to the presence of the S—O bond. In FIG. 1, in addition to the S—O bond, it is confirmed that a sulfide with a metal element exists at 161 to 164 eV, and that a W—O bond exists at 33 to 36 eV as shown in FIG. It was. As described above, sulfides and oxides having excellent lubrication characteristics are formed in the vicinity of the hard coating surface of Example 5 of the present invention, so that it is considered that a remarkable effect was exerted in the processing of a metal in which welding is severely generated. . As shown in FIG. 3, as a result of observing the cross-sectional structure of the hard coating, it was a columnar structure. As a result, it was confirmed that the mechanical strength in the shearing direction was also obtained in cutting with a high impact such as high feed machining.
Further, with respect to Invention Example 5, Invention Example 11, Conventional Example 32, and Conventional Example 33, the friction coefficient at high temperature of 600 ° C. in the atmosphere was measured using a ball-on-disk type frictional wear tester. The result is shown in FIG. From FIG. 4, Invention Example 5 and Invention Example 11 showed a coefficient of friction of 0.4 or less, and it was confirmed that the lubrication characteristics were greatly improved. As in Example 11 of the present invention, it was confirmed that the form of sulfide such as Cr was also excellent in lubrication characteristics.
Using Example 5 of the present invention, an attempt was made to process intermittent parts such as a fixing hole seen in a mold in the cutting process. However, stable cutting could be performed without loss. This is because the simultaneous use of two or more types of film formation methods with different plasma densities has an S—O bond near the surface of the hard film, and the film as a whole is rich in toughness. It is thought that it was connected to. As a result, a hard coating having excellent adhesion, which is the subject of the present invention, having excellent lubrication characteristics in addition to oxidation resistance and wear resistance, and excellent chipping resistance was obtained. In order to exhibit stable and excellent cutting performance, WS2 tends to be suitable as a target material used as an addition source of S element. Even when CrS or NbS is used, it has been confirmed that cutting characteristics are remarkably improved by showing unprecedented lubrication characteristics.
In Comparative Examples 15 to 20, 24 to 26, and 28, it was confirmed that the S content exceeded 10%. For example, in Comparative Example 17, no S—O bond was confirmed, and the amount of S contained in the hard coating was 14.1%, exceeding 10%. As a result, it was confirmed that the crystal structure of the hard coating was an amorphous microstructure as shown in FIG. The hardness of the hard coating also had a tendency to soften with about 26 in HV.
In Comparative Example 23, the S content in the hard film was 7%, but the S—O bond was not formed on the surface of the hard film because it was coated without adding oxygen to the reaction gas used during film formation. It was. Although a certain amount of cutting distance could be processed by the effect of addition of S, it was insufficient for suppressing welding that occurred in the early stage of cutting.
In Comparative Examples 21 and 22, WS2 and NbS target materials were used for coating, respectively, but the discharge output was set low. As a result, the S content of the obtained hard coating was so small that S could not be detected using an XPS analyzer. In the cutting test, welding at the initial stage of cutting occurred vigorously. In particular, in Comparative Example 22, sparks were generated, and the evaluation was stopped midway. The addition of S to the hard coating must control the chemical state of the hard coating, such as S—O bonds, as well as the S content.
Conventional examples 29 to 31 show a case where the cutting tool surface is coated with MoS2. Although MoS2 has excellent lubrication characteristics, when it comes into contact with the workpiece, MoS2 has low hardness and low heat resistance, so abnormal wear occurs, and the lubrication characteristics of MoS2 cannot be fully exhibited. Therefore, it has been difficult to ensure heat resistance, hardness, and adhesion enough to cope with the severe conditions under the cutting environment in recent years.
Claims (3)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004312731A JP4676741B2 (en) | 2004-10-27 | 2004-10-27 | Hard coating and hard coating method |
US11/055,718 US7368182B2 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its formation method, and hard-coated tool |
KR1020050011669A KR101170943B1 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its forming method, and hard-coated tool |
EP05002960.2A EP1564312B1 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its formation method, and hard-coated tool |
CNB2005100697223A CN100510160C (en) | 2004-02-12 | 2005-02-16 | Hard coating and formation method, and hard-coated tool thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004312731A JP4676741B2 (en) | 2004-10-27 | 2004-10-27 | Hard coating and hard coating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006124756A JP2006124756A (en) | 2006-05-18 |
JP4676741B2 true JP4676741B2 (en) | 2011-04-27 |
Family
ID=36719776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004312731A Expired - Fee Related JP4676741B2 (en) | 2004-02-12 | 2004-10-27 | Hard coating and hard coating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4676741B2 (en) |
-
2004
- 2004-10-27 JP JP2004312731A patent/JP4676741B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006124756A (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101170943B1 (en) | Hard coating and its forming method, and hard-coated tool | |
KR20130137604A (en) | Cutting tool comprising multilayer coating | |
JP4704335B2 (en) | Surface coated cutting tool | |
JP2009203489A (en) | Coating member | |
JP4445815B2 (en) | Surface coated cutting tool | |
JP2005199420A (en) | Hard film coated tool | |
JP2005271106A (en) | Coated cutting tool | |
JP4676741B2 (en) | Hard coating and hard coating method | |
KR20170137162A (en) | The hard film and hard film coating member | |
JP2006037152A (en) | Method for manufacturing member coated with hard film, and film formed by the method | |
JP4453902B2 (en) | Hard coating and hard coating tool | |
JP4456905B2 (en) | Surface coated cutting tool | |
JP4936703B2 (en) | Surface coated cutting tool | |
JP2007217771A (en) | Hard film coated member and its manufacturing method | |
JP2013244548A (en) | Surface-coated cutting tool | |
JP3679076B2 (en) | Hard coating tool | |
JP4817799B2 (en) | Surface covering | |
JP4663336B2 (en) | Hard coating and method for manufacturing hard coating | |
JP4304175B2 (en) | Hard coating and method for producing the same | |
JP4566158B2 (en) | Hard coating coated member | |
JP3779951B2 (en) | Hard coating tool | |
JP3679077B2 (en) | Hard coating tool | |
JP3614417B2 (en) | Hard coating tool | |
JP2006118051A (en) | Method for producing hard film | |
JP2002331407A (en) | Abrasion resistant coating film-covered tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090206 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090317 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4676741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |