[go: up one dir, main page]

JP4674416B2 - Self-comparing eddy current flaw detector - Google Patents

Self-comparing eddy current flaw detector Download PDF

Info

Publication number
JP4674416B2
JP4674416B2 JP2001190934A JP2001190934A JP4674416B2 JP 4674416 B2 JP4674416 B2 JP 4674416B2 JP 2001190934 A JP2001190934 A JP 2001190934A JP 2001190934 A JP2001190934 A JP 2001190934A JP 4674416 B2 JP4674416 B2 JP 4674416B2
Authority
JP
Japan
Prior art keywords
signal
eddy current
self
determination circuit
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001190934A
Other languages
Japanese (ja)
Other versions
JP2003004708A (en
Inventor
圭一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001190934A priority Critical patent/JP4674416B2/en
Publication of JP2003004708A publication Critical patent/JP2003004708A/en
Application granted granted Critical
Publication of JP4674416B2 publication Critical patent/JP4674416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自己比較方式の渦流探傷装置に係わり、特に、鋼管の表面欠陥を誤検出しないようにする技術である。
【0002】
【従来の技術】
金属等の導体に交流を流したコイルを近づけると、該金属等に存在する欠陥(例えば、表面傷等)は、該コイルに誘起される電流、電圧の変化として検出される。また、必要ならば、金属の材料判別、膜厚測定、形状・寸法等も測定できる。この原理を利用した欠陥検出装置は、渦流探傷装置と称され、高速検出が可能で、且つ検出結果を電気信号で取り出せるので、鉄鋼においては棒鋼、線材、鋼管等の表面欠陥の検査に広く利用されている。なお、上記コイルには、鋼管、線材等の被検査体を囲む貫通方式、被検査体に単に接近させるプローブ方式及び被検査体の内部に入れる内挿式のものがある。また、コイルを図2に示すように一定距離だけ離隔して連接し、同一の欠陥を2回にわたって検出させるようにした探傷装置は、自己比較式と称されている。
【0003】
この自己比較式渦流探傷装置の基本的構成をフローで図2に示したが、それは、発振器で作られた交流がコイルに流され、交流磁場を被検査体(例えば、鋼管)に与えられるようになっている。そして、被検査体に生じた渦電流をコイルが検出し、その出力を平衡回路に送る。また、この探傷装置では、非常に小さな電流の変化分を検出しなければならないので、前もって平衡回路は無欠陥の場合の出力が0になるように調整しておく。この平衡回路からの出力信号は、増幅器で増幅され、検波器に送られる(図2の装置では、信号波形のX軸、Y軸の位相を別々に処理できるよう、2つの検波器が設けられている)。これら検波器は、その入力信号を移相器から加えられる制御信号によって位相解析を行い、フィルタで欠陥信号以外の雑音を除去し、被検査体からの情報をCRT(ブラウン管)等に表示する。さらに、フィルタを経た信号は、最終的に欠陥判定回路に入力され、予め設定されている判定条件と比較されて欠陥の有無が判定され、比較器から出力される。なお、検出された信号は、ブラウン管上では、図3に示すような位相角θ及び振幅Aを有する波形で表される。そして、自己比較方式では、同一欠陥をコイルAとコイルBにより渦電流変化として検出した場合の信号は、コイル構造に起因して極性(+−)が図4に示すように反転する。また、通常の欠陥により生じる信号は、前記位相角θをある角度に設定すると、必ずブラウン管上でも同一波形(必ず+側に振れて、その後−側に振れる)が得られる。
【0004】
ところで、従来の欠陥判定回路では、入力信号が予め設定された値(以下、閾値という)より大きければ欠陥と判定していた。しかも、信号の大きさは+及び−側で同じになるので、片側だけに閾値を設けるようにしていた。
【0005】
しかしながら、かかる自己比較方式の渦流探傷装置を用いても、鋼管の欠陥検査において、いまだ欠陥を誤判定することがあり、改善が望まれている。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、従来より欠陥の誤判定が少ない自己比較式の渦流探傷装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するには、検査時にコイルが受けるノイズ(搬送中の被検査体及びその周囲で発生するノイズ等)を欠陥として判定しないようにする必要があると考えた。そして、その考えを具現化する手段について鋭意研究し、本発明を完成させた。
【0008】
すなわち、本発明は、交流の発振器と、一定距離だけ離して連接され、交流磁場を被検査体に与えて発生した渦電流を検出する極性の異なる2つのコイルと、被検査体の無欠陥時の出力が0になるように調整する平衡回路と、該平衡回路からの出力を増幅する増幅器と、増幅された信号を移相器からの制御信号で位相解析する検波器と、欠陥信号以外の雑音を抑制するフィルタと、フィルタを経た信号が入力され、予め設定されている閾値と比較して欠陥の有無を判定する欠陥判定回路とを備えた自己比較方式の渦流探傷装置において、前記欠陥判定回路として、検波器からの信号の極性に応じて、それぞれを閾値と比較する+側極性判定回路及び−側極性判定回路と、+側極性判定回路が閾値を超える+極信号を検出した時間と−側極性判定回路が閾値を超える−極信号を検出した時間との差を測定する待ち時間測定回路とを設けたことを特徴とする自己比較方式の渦流探傷装置である。この場合、前記検波器の数を2とし、信号波形をX軸成分及びY軸成分に分けて位相解析するのが良い。また、前記フィルタと欠陥判定回路との間に、フィルタの出力を外部表示するCRTを設けたり、あるいは前記被検査体が鋼管であるのが好ましい。
【0009】
本発明によれば、ノイズを欠陥とする誤判定が従来に比べ確実に少なくなる。その結果、被検査体の欠陥検査に要する時間や作業者の省力が達成され、該被検査体の生産性が向上したばかりでなく、製造コストの削減も達成できる。
【0010】
【発明の実施の形態】
以下、発明をなすに至った経緯に沿い、本発明の実施の形態を説明する。
【0011】
まず、発明者は、探傷検査の実態を調査した。その結果、誤判定の原因は、外来の電気又は搬送ガタ(被検査体が検査ラインを走行中にガタツクこと)に起因するノイズの過剰検出にあることがわかった。そして、これらのノイズは、波形特性に規則性がなく、例えば、−側に先に振れて、その後+側に振れる(位相が180°反転した様子)又は片側(+側又は−側)だけの信号である場合が多いことも知った。従来の欠陥判定回路では、これらノイズによる信号も欠陥と判定してしまっていたのである。
【0012】
そこで、発明者は、前記したように、自己比較方式の渦流探傷装置では、真の同一欠陥を有する被検査体をコイルA及びコイルBに順次通し、それぞれのコイルで渦電流変化を検出した場合には,得られる信号の極性(+−)がコイルAとコイルBでは反転すること、及び位相をある角度に設定すると必ず同一波形(必ず+側に振れてその後−側に振れる)が得られることに着眼し、本発明を完成させたのである。
【0013】
つまり、欠陥判定回路において、まず信号が+側の閾値を超えた場合、「+側の欠陥信号有り」を保持し、ある時間(例えば、20msec)後までに−側の閾値を超えた「−側の欠陥信号有り」の情報が来なければ、欠陥ありと判定せず、ある時間以内に−側の閾値を超えた「−側の欠陥信号有り」の情報が来たら、欠陥ありと判定するようにした。
【0014】
これを行う具体的な手段としては、図1に示すように、従来の渦流探傷装置の欠陥判定回路を改造し、検波器からの信号の極性に応じて、それぞれを閾値と比較する+側極性判定回路及び−側極性判定回路と、+側極性信号の判定を行ってから該信号に対応する−側極性信号を検出するまでの時間を測定する待ち時間測定回路とを組み込むようにすれば良い。
【0015】
なお、この欠陥判定回路への入力信号は、従来通り、信号波形のX軸側及びY軸側の位相解析に用いた検波器からのいずれか一方の信号である。いずれを検査に用いても同一の判定結果になるからである。また、+側極性信号に対応する−側極性信号を検出するまでの時間は、被検査体の進行速度やコイルA−B間の距離により異なるが、実際の検査では通常1〜30msec程度が多い。さらに、閾値は、人工欠陥を有する基準の被検査体を利用して定めれば良い。
【0016】
【実施例】
外径48.6mmφ、肉厚3.2mm,長さ5500mmの溶接鋼管の製造において、本発明に係る自己比較方式の渦流探傷装置を適用し、表面傷の検査を行った。その際、コイルとしては、A−B間の距離が2mmでA,Bのそれぞれの長さが5mmのものを用い、被検査体の溶接鋼管の進行速度を60m/minとした。従って、同一欠陥に基づく+極信号と−極信号の出現時間の差は、7msec程度となった。
【0017】
検査結果を、従来装置での検査結果と共に、表1に示す。表1より、従来約1.7%の誤検出があったのが、本発明に係る装置では約0.3%の誤検出率に低下することが明らかである。
【0018】
【表1】

Figure 0004674416
【0019】
上記実施例は、被検査体が溶接鋼管の場合であるが、本発明は、それに限るものではなく、コイルの形状やサイズを変更し、棒鋼、線材、平鋼板等の欠陥検査にも利用できることは、言うに及ばない。
【0020】
【発明の効果】
以上述べたように、本発明によれば、
ノイズを欠陥とする誤判定が従来に比べ確実に少なくなる。その結果、被検査体の欠陥検査に要する時間や作業者の省力が達成され、該被検査体の生産性が向上したばかりでなく、製造コストの削減も達成できる。
【図面の簡単な説明】
【図1】本発明に係る自己比較方式の渦流探傷装置の欠陥判定回路を示す図である。
【図2】従来の自己比較方式渦流探傷装置のフロー図である。
【図3】ブラウン管上に出現させた検波器を経た信号の波形を示す図である。
【図4】コイル形状による信号の極性変化の様子を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-comparing eddy current flaw detector, and in particular, is a technique for preventing erroneous detection of a surface defect of a steel pipe.
[0002]
[Prior art]
When a coil carrying an alternating current is brought close to a conductor such as metal, a defect (for example, a surface flaw) existing in the metal or the like is detected as a change in current and voltage induced in the coil. Moreover, if necessary, it is also possible to measure metal material discrimination, film thickness measurement, shape / dimension, and the like. Defect detection devices that use this principle are called eddy current flaw detectors, which can detect at high speed and the detection results can be extracted with electrical signals, so that they are widely used for inspection of surface defects such as steel bars, wire rods, and steel pipes in steel. Has been. The coil includes a penetration method that surrounds an object to be inspected, such as a steel pipe, a wire rod, a probe method that simply approaches the object to be inspected, and an insertion type that is inserted inside the object to be inspected. Further, a flaw detection apparatus in which coils are connected at a predetermined distance as shown in FIG. 2 so that the same defect is detected twice is called a self-comparison type.
[0003]
The basic configuration of this self-comparing eddy current flaw detector is shown in FIG. 2 as a flow chart, in which an alternating current generated by an oscillator is applied to a coil and an alternating magnetic field is applied to an object to be inspected (for example, a steel pipe). It has become. And a coil detects the eddy current which arose in the to-be-inspected object, and sends the output to a balanced circuit. Further, in this flaw detection apparatus, since a very small change in current must be detected, the balance circuit is adjusted in advance so that the output when there is no defect is zero. The output signal from this balanced circuit is amplified by an amplifier and sent to a detector (in the apparatus shown in FIG. 2, two detectors are provided so that the X and Y axis phases of the signal waveform can be processed separately). ing). These detectors analyze the phase of the input signal using a control signal applied from a phase shifter, remove noise other than a defective signal by a filter, and display information from the object to be inspected on a CRT (CRT) or the like. Further, the signal that has passed through the filter is finally input to the defect determination circuit, and is compared with a predetermined determination condition to determine the presence or absence of a defect, and is output from the comparator. The detected signal is represented by a waveform having a phase angle θ and an amplitude A as shown in FIG. In the self-comparison method, the polarity (+ −) of the signal when the same defect is detected as an eddy current change by the coil A and the coil B is inverted as shown in FIG. 4 due to the coil structure. In addition, a signal generated due to a normal defect always has the same waveform on the cathode ray tube (always swings to the + side and then swings to the-side) when the phase angle θ is set to a certain angle.
[0004]
By the way, in the conventional defect determination circuit, if the input signal is larger than a preset value (hereinafter referred to as a threshold), it is determined as a defect. In addition, since the signal size is the same on the + and − sides, a threshold is provided only on one side.
[0005]
However, even when such a self-comparison eddy current flaw detector is used, a defect may still be erroneously determined in a defect inspection of a steel pipe, and an improvement is desired.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a self-comparing eddy current flaw detector with fewer erroneous determinations of defects than in the past.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor considered that it is necessary not to determine noise (such as noise generated around the object to be inspected and its surroundings) received by the coil during inspection as a defect. And earnestly researched about the means to embody the idea, and completed the present invention.
[0008]
That is, the present invention is connected to an AC oscillator, separated by a certain distance, two coils having different polarities for detecting an eddy current generated by applying an AC magnetic field to the object to be inspected, and when the object to be inspected is not defective. A balanced circuit that adjusts the output of the balanced circuit to 0, an amplifier that amplifies the output from the balanced circuit, a detector that analyzes the phase of the amplified signal using the control signal from the phase shifter, In the self-comparison type eddy current flaw detection apparatus comprising a filter for suppressing noise and a defect determination circuit that receives a signal that has passed through the filter and determines the presence or absence of a defect in comparison with a preset threshold value, the defect determination As a circuit, according to the polarity of the signal from the detector, the + side polarity determination circuit and the − side polarity determination circuit that compare each with a threshold, and the time when the + side polarity determination circuit detects a + polar signal exceeding the threshold -Side polarity Circuit exceeds a threshold value - an eddy-current flaw detection device of the self-comparison method, characterized by comprising a latency measurement circuit for measuring the difference between the time of detecting the polarity signal. In this case, the number of the detectors is set to 2, and the signal waveform is preferably divided into an X-axis component and a Y-axis component for phase analysis. Further, it is preferable that a CRT for externally displaying the output of the filter is provided between the filter and the defect determination circuit, or the object to be inspected is a steel pipe.
[0009]
According to the present invention, erroneous determination with noise as a defect is surely reduced as compared with the prior art. As a result, the time required for defect inspection of the inspection object and labor saving of the operator are achieved, and not only the productivity of the inspection object is improved but also the manufacturing cost can be reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the following, embodiments of the present invention will be described in accordance with the circumstances leading to the invention.
[0011]
First, the inventor investigated the actual state of flaw detection inspection. As a result, it has been found that the cause of the erroneous determination is excessive detection of noise caused by extraneous electricity or transport play (the object to be inspected rattles while traveling on the inspection line). These noises are not regular in the waveform characteristics. For example, they are swung to the minus side first and then to the plus side (the phase is reversed 180 °) or only one side (the plus side or the minus side). I also learned that it was often a signal. In the conventional defect determination circuit, these noise signals are also determined as defects.
[0012]
Therefore, as described above, the inventor, in the self-comparison type eddy current flaw detection apparatus, sequentially passes the inspected object having the true same defect to the coil A and the coil B, and detects the eddy current change in each coil. If the polarity (+-) of the obtained signal is reversed in coil A and coil B, and the phase is set to a certain angle, the same waveform (always swings to the + side and then swings to the-side) is always obtained. In particular, the present invention was completed.
[0013]
That is, in the defect determination circuit, when the signal first exceeds the + side threshold value, “+ side defect signal exists” is held, and after a certain time (for example, 20 msec), the − side threshold value is exceeded. If there is no "defect signal on the side" information, it is not determined that there is a defect. If there is "-defect signal present" information that exceeds the -side threshold within a certain time, it is determined that there is a defect. I did it.
[0014]
As a concrete means for doing this, as shown in FIG. 1, a defect judgment circuit of a conventional eddy current flaw detector is remodeled, and each is compared with a threshold according to the polarity of the signal from the detector. A determination circuit, a negative side polarity determination circuit, and a waiting time measurement circuit that measures the time from the determination of the positive side polarity signal to the detection of the negative side polarity signal corresponding to the signal may be incorporated. .
[0015]
Note that the input signal to the defect determination circuit is one of the signals from the detector used for the phase analysis of the X-axis side and the Y-axis side of the signal waveform as in the past. This is because the same determination result is obtained regardless of which is used for the inspection. In addition, although the time required to detect the -side polarity signal corresponding to the + side polarity signal varies depending on the traveling speed of the object to be inspected and the distance between the coils A and B, it is usually about 1 to 30 msec in actual inspection. . Furthermore, the threshold value may be determined by using a reference inspection object having an artificial defect.
[0016]
【Example】
In the production of a welded steel pipe having an outer diameter of 48.6 mmφ, a wall thickness of 3.2 mm, and a length of 5500 mm, the self-comparing eddy current flaw detector according to the present invention was applied to inspect the surface flaw. At that time, a coil having a distance between A and B of 2 mm and a length of A and B of 5 mm was used, and the traveling speed of the welded steel pipe of the test object was set to 60 m / min. Therefore, the difference between the appearance times of the positive and negative signals based on the same defect is about 7 msec.
[0017]
The inspection results are shown in Table 1 together with the inspection results of the conventional apparatus. From Table 1, it is clear that the error detection rate of about 1.7% in the prior art is reduced to about 0.3% in the apparatus according to the present invention.
[0018]
[Table 1]
Figure 0004674416
[0019]
Although the said Example is a case where a to-be-inspected object is a welded steel pipe, this invention is not restricted to it, The shape and size of a coil can be changed and it can be utilized also for defect inspections, such as a bar steel, a wire, and a flat steel plate. Needless to say.
[0020]
【The invention's effect】
As described above, according to the present invention,
The erroneous determination that the noise is a defect is surely reduced as compared with the conventional case. As a result, the time required for defect inspection of the inspection object and labor saving of the operator are achieved, and not only the productivity of the inspection object is improved but also the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a defect determination circuit of a self-comparing eddy current flaw detector according to the present invention.
FIG. 2 is a flow diagram of a conventional self-comparing eddy current flaw detector.
FIG. 3 is a diagram showing a waveform of a signal that has passed through a detector that appears on a cathode ray tube.
FIG. 4 is a diagram illustrating a change in polarity of a signal depending on a coil shape.

Claims (4)

交流の発振器と、一定距離だけ離して連接され、交流磁場を被検査体に与えて発生した渦電流を検出する極性の異なる2つのコイルと、被検査体の無欠陥時の出力が0になるように調整する平衡回路と、該平衡回路からの出力を増幅する増幅器と、増幅された信号を移相器からの制御信号で位相解析する検波器と、欠陥信号以外の雑音を抑制するフィルタと、フィルタを経た信号が入力され、予め設定されている閾値と比較して欠陥の有無を判定する欠陥判定回路とを備えた自己比較方式の渦流探傷装置において、
前記欠陥判定回路として、検波器からの信号の極性に応じて、それぞれを閾値と比較する+側極性判定回路及び−側極性判定回路と、+側極性判定回路が閾値を超える+極信号を検出した時間と−側極性判定回路が閾値を超える−極信号を検出した時間との差を測定する待ち時間測定回路とを設けたことを特徴とする自己比較方式の渦流探傷装置。
Two coils having different polarities for detecting an eddy current generated by applying an AC magnetic field to the object to be inspected and connected to an AC oscillator at a certain distance, and the output of the object to be inspected without any defects are zero. A balanced circuit that adjusts the output, an amplifier that amplifies the output from the balanced circuit, a detector that analyzes the phase of the amplified signal using a control signal from the phase shifter, and a filter that suppresses noise other than the defective signal, In the self-comparison eddy current flaw detection apparatus provided with a defect determination circuit that receives a signal that has passed through a filter and determines the presence or absence of a defect in comparison with a preset threshold value,
As the defect determination circuit, a + side polarity determination circuit and a − side polarity determination circuit that compare each with a threshold according to the polarity of the signal from the detector, and a + pole signal in which the + side polarity determination circuit exceeds the threshold is detected. A self-comparison type eddy current flaw detector characterized in that a waiting time measuring circuit for measuring the difference between the measured time and the time when the -side polarity determination circuit exceeds a threshold value is detected .
前記検波器の数を2とし、信号波形をX軸成分及びY軸成分に分けて位相解析してなることを特徴とする請求項1記載の自己比較方式の渦流探傷装置。  2. The self-comparing eddy current flaw detector according to claim 1, wherein the number of the detectors is 2, and the signal waveform is divided into an X-axis component and a Y-axis component and phase analysis is performed. 前記フィルタと欠陥判定回路との間に、フィルタの出力を外部表示するCRTを設けたことを特徴とする請求項1又は2記載の自己比較方式の渦流探傷装置。  3. The self-comparing eddy current flaw detector according to claim 1, wherein a CRT for externally displaying the output of the filter is provided between the filter and the defect determination circuit. 前記被検査体が鋼管であることを特徴とする請求項1〜3のいずれか記載の自己比較方式の渦流探傷装置。  The self-comparison type eddy current flaw detector according to any one of claims 1 to 3, wherein the object to be inspected is a steel pipe.
JP2001190934A 2001-06-25 2001-06-25 Self-comparing eddy current flaw detector Expired - Fee Related JP4674416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190934A JP4674416B2 (en) 2001-06-25 2001-06-25 Self-comparing eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190934A JP4674416B2 (en) 2001-06-25 2001-06-25 Self-comparing eddy current flaw detector

Publications (2)

Publication Number Publication Date
JP2003004708A JP2003004708A (en) 2003-01-08
JP4674416B2 true JP4674416B2 (en) 2011-04-20

Family

ID=19029630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190934A Expired - Fee Related JP4674416B2 (en) 2001-06-25 2001-06-25 Self-comparing eddy current flaw detector

Country Status (1)

Country Link
JP (1) JP4674416B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6950664B2 (en) * 2018-10-31 2021-10-13 Jfeスチール株式会社 Defect judgment method, defect judgment device, steel sheet manufacturing method, defect judgment model learning method, and defect judgment model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073451A (en) * 1983-09-30 1985-04-25 Daido Steel Co Ltd Eddy current flaw detector
JPH02180520A (en) * 1988-09-13 1990-07-13 Nkk Corp Previewing device for edge chip of circular cutting tool
JPH07103928A (en) * 1993-10-01 1995-04-21 Giken Kogyo:Kk Detecting apparatus for longitudinal flaw of metal pipe
JPH11101781A (en) * 1997-09-25 1999-04-13 Sanko Denshi Kenkyusho:Kk Method and apparatus for detecting iron piece
JP2000227422A (en) * 1999-02-08 2000-08-15 Nkk Corp Eddy current examination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073451A (en) * 1983-09-30 1985-04-25 Daido Steel Co Ltd Eddy current flaw detector
JPH02180520A (en) * 1988-09-13 1990-07-13 Nkk Corp Previewing device for edge chip of circular cutting tool
JPH07103928A (en) * 1993-10-01 1995-04-21 Giken Kogyo:Kk Detecting apparatus for longitudinal flaw of metal pipe
JPH11101781A (en) * 1997-09-25 1999-04-13 Sanko Denshi Kenkyusho:Kk Method and apparatus for detecting iron piece
JP2000227422A (en) * 1999-02-08 2000-08-15 Nkk Corp Eddy current examination

Also Published As

Publication number Publication date
JP2003004708A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
CN102759567B (en) The EDDY CURRENT identification of steel pipe inside and outside wall defect and evaluation method under DC magnetization
JP6879389B2 (en) Wire rope inspection equipment, wire rope inspection system and wire rope inspection method
JP4829883B2 (en) Method and apparatus for non-destructive inspection of tubes
CN103645243B (en) Electromagnetic nondestructive detection system for power transmission line
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
JP5269564B2 (en) Tubular Defect Evaluation Method and Tubular Defect Evaluation Apparatus
JP4715034B2 (en) Eddy current flaw detector
CN114460168A (en) Pulsed eddy current detection system and method
JP4674416B2 (en) Self-comparing eddy current flaw detector
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JPWO2020246130A1 (en) Wire rope inspection system and wire rope inspection method
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
Ewald 3-dimensional magnetic leakage field sensor in nondestructive testing
CN107576720A (en) Ferromagnetic slender member shallow damage magnetic transmitting detection method and magnetic emission detection system
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPS612065A (en) Flaw detector using eddy current
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
JPH05203629A (en) Electromagnetic flaw detection and device
JP2002005897A (en) Method and apparatus for eddy current flaw detection
JPH06347448A (en) Eddy current flaw detection probe
JPH075408Y2 (en) Metal flaw detection probe
JP2899595B2 (en) Flaw detection probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101206

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees