[go: up one dir, main page]

JP4672165B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4672165B2
JP4672165B2 JP2001097802A JP2001097802A JP4672165B2 JP 4672165 B2 JP4672165 B2 JP 4672165B2 JP 2001097802 A JP2001097802 A JP 2001097802A JP 2001097802 A JP2001097802 A JP 2001097802A JP 4672165 B2 JP4672165 B2 JP 4672165B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
aromatic
fuel cell
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001097802A
Other languages
Japanese (ja)
Other versions
JP2002298869A (en
Inventor
洋一 浅野
長之 金岡
信広 齋藤
浩 相馬
昌昭 七海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001097802A priority Critical patent/JP4672165B2/en
Priority to DE10201691A priority patent/DE10201691A1/en
Priority to US10/050,134 priority patent/US6926984B2/en
Priority to CA2368787A priority patent/CA2368787C/en
Publication of JP2002298869A publication Critical patent/JP2002298869A/en
Priority to US11/110,695 priority patent/US7749630B2/en
Priority to US11/110,696 priority patent/US20050260475A1/en
Application granted granted Critical
Publication of JP4672165B2 publication Critical patent/JP4672165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子電解質膜を備える固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化しており、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目され、広範に開発されていると共に、一部では実用化され始めている。前記燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。
【0003】
前記固体高分子型燃料電池は、燃料極と酸素極との一対の電極の間にイオン導伝可能な高分子電解質膜を挟持させた構成となっており、燃料極と酸素極とはそれぞれ拡散層と触媒層を備え、前記触媒層で前記高分子電解質膜に接している。また、前記触媒層は、Pt等の触媒が触媒担体に担持されている触媒粒子を備え、該触媒粒子がイオン導伝性高分子バインダーにより一体化されることにより形成されている。
【0004】
前記固体高分子型燃料電池では、前記燃料極に水素、メタノール等の還元性ガスを導入すると、前記還元性ガスが前記拡散層を介して前記触媒層に達し、前記触媒の作用によりプロトンを生成する。前記プロトンは、前記触媒層から前記高分子電解質膜を介して、前記酸素極側の触媒層に移動する。
【0005】
一方、前記燃料極に前記還元性ガスを導入すると共に、前記酸素極に空気、酸素等の酸化性ガスを導入すると、前記プロトンが前記酸素極側の触媒層で、前記触媒の作用により前記酸化性ガスと反応して水を生成する。そこで、前記燃料極と酸素極とを導線により接続することにより電流を取り出すことができる。
【0006】
従来、前記固体高分子型燃料電池では、前記高分子電解質膜、前記触媒層のイオン導伝性高分子バインダーとしてパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))が広く利用されている。前記パーフルオロアルキレンスルホン酸高分子化合物は、スルホン化されていることにより優れたプロトン導伝性を備えると共に、フッ素樹脂としての耐薬品性とを併せ備えているが、非常に高価であるとの問題がある。
【0007】
そこで、廉価な高分子電解質膜として、近年、分子構造にフッ素を含まないか、あるいはフッ素含有量を低減した芳香族系イオン導伝性材料が提案されている。前記芳香族系イオン導伝性材料として、例えば、米国特許第5403675号明細書には、フェニレン連鎖を備える芳香族化合物を重合して得られるポリマーをスルホン化剤と反応させることにより、該ポリマーにスルホン酸基を導入したスルホン化された剛直ポリフェニレンが提案されている。また、前記芳香族系イオン導伝性材料として、ポリエーテルエーテルケトン系ポリマーをスルホン化剤と反応させることにより、該ポリマーにスルホン酸基を導入したスルホン化ポリエーテルエーテルケトン重合体も知られている。
【0008】
しかしながら、前記芳香族系イオン導伝性材料は、ある程度水分を含んだ状態でなければイオン導伝性が得られず、しかもイオン導伝率に関して、相対湿度50%のときのイオン導伝率が相対湿度90%のときのイオン導伝率に比較して非常に小さいというように、湿度依存性が高い。このため、前記スルホン化ポリアリーレン重合体からなる高分子電解質膜を備える固体高分子型燃料電池では、相対湿度が低いときには所望の発電性能が得られないことがあるとの不都合がある。
【0009】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、イオン導伝率の湿度依存性が低い高分子電解質膜を備える廉価な固体高分子型燃料電池を提供することを目的とする。
【0010】
かかる目的を達成するために、本発明の固体高分子型燃料電池は、一対の電極と、両電極に挟持された高分子電解質膜とを備える固体高分子型燃料電池において、前記高分子電解質膜は、未処理の状態で保持できる最大の水分量が材料全体に対して80〜300重量%の範囲にある芳香族系イオン導伝性材料に熱水処理を施したものであり、前記芳香族系イオン導伝性材料は、式(1)で示される芳香族化合物単位30〜95モル%と、式(2)で示される芳香族化合物単位70〜5モル%とからなる共重合体の側鎖にスルホン酸基を有するスルホン化ポリアリーレン重合体からなることを特徴とする。
【0011】
尚、本明細書では、前記「未処理の状態で保持できる最大の水分量」を「初期含水量」と略記することがある。
【0012】
前記芳香族系イオン導伝性材料は、前記初期含水量が材料全体に対して80重量%未満ではイオン導伝性が得られず、300重量%を超えると熱による膨張・収縮率が大きくなり所望の耐久性が得られない。尚、前記初期含水量は、前記のように前記芳香族系イオン導伝性材料が未処理の状態で保持できる最大の水分量であり、該芳香族系イオン導伝性材料が実際に含有する水分を意味するものではない。
【0013】
前記芳香族系イオン導伝性材料は、所定の水分を含有することによりイオン導伝性を示すが、該イオン導伝性は湿度依存性が大きく、湿度が低いときにはイオン導伝率が小さく、湿度が高くなると湿度が低いときに比較して、イオン導伝率が非常に大きくなる。
【0014】
そこで、次に、前記芳香族系イオン導伝性材料に熱水処理を施す。前記熱水処理は、例えば、前記芳香族系イオン導伝性材料自体を80〜95℃の範囲の温度の熱湯に0.5〜5時間浸漬することにより行ってもよく、または該芳香族系イオン導伝性材料からなる高分子電解質膜を備える電極構造体を80〜95℃の範囲の温度の熱湯に0.5〜5時間浸漬することにより行ってもよい。
【0015】
前記芳香族系イオン導伝性材料は、前記熱水処理を施すことにより、イオン導伝率に関する湿度依存性を小さくすることができる。これは、前記熱水処理により、前記芳香族系イオン導伝性材料の低湿度条件下における水分を保持する能力が増大し、これにより前記低湿度条件下におけるイオン導伝率が高くなるためと考えられる。
【0016】
前記熱水処理は、前記熱湯の温度が80℃未満で、浸漬時間が0.5時間未満では、前記芳香族系イオン導伝性材料のイオン導伝率に関する湿度依存性を小さくする効果が得られない。また、前記熱湯の温度が95℃を超え、浸漬時間が5時間を超えると、前記芳香族系イオン導伝性材料からなる前記高分子電解質膜の機械的強度が低下する。
【0017】
また、前記熱水処理は、前記芳香族系イオン導伝性材料からなる高分子電解質膜を備える固体高分子型燃料電池を、80〜95℃、相対湿度90%の高温高湿環境下で0.5〜5時間作動させてエージングすることにより行うようにしてもよい。
【0021】
前記スルホン化ポリアリーレン重合体は、分子構造にフッ素を全く含まないか、あるいは前記電子吸引性基としてフッ素を含むだけであるので安価であり、固体高分子型燃料電池のコストを低減することができる。
【0022】
ここで、前記スルホン酸基は、電子吸引性基に隣接する芳香環には導入されず、電子吸引性基に隣接していない芳香環にのみ導入される。従って、前記スルホン化ポリアリーレン重合体では、式(1)で示される芳香族化合物単位のArで示される芳香環にのみ、前記スルホン酸基が導入されることとなるり、式(1)で示される芳香族化合物単位と式(2)で示される芳香族化合物単位とのモル比を変えることにより、導入されるスルホン酸基の量、換言すればイオン交換容量を調整することができる。
【0023】
そこで、前記スルホン化ポリアリーレン重合体は、式(1)で示される芳香族化合物単位が30モル%未満で、式(2)で示される芳香族化合物単位が70モル%を超えると、前記高分子電解質膜として必要とされるイオン交換容量が得られない。また、式(1)で示される芳香族化合物単位が95モル%を超え、式(2)で示される芳香族化合物単位が5モル%未満になると、導入されるスルホン酸基の量が増加して分子構造が弱くなる。
【0025】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の固体高分子型燃料電池の構成を示す説明的断面図である。
【0026】
本実施形態の固体高分子型燃料電池は、図1示のように、高分子電解質膜1が酸素極2と燃料極3との間に挟持されており、酸素極2と燃料極3とは、いずれも拡散層4と、拡散層4上に形成された触媒層5とを備えている。
【0027】
各拡散層4は外面側に密着するセパレータ6を備えている。また、セパレータ6は、酸素極2では空気等の酸素含有気体が流通される酸素通路2aを、燃料極3では水素等の燃料ガスが流通される燃料通路3aを、拡散層4側に備えている。
【0028】
本実施形態では、前記固体高分子型燃料電池の高分子電解質膜1として、スルホン化ポリアリーレン重合体またはスルホン化ポリエーテルエーテルケトン等の芳香族系イオン導伝性材料を用いる。前記芳香族系イオン導伝性材料は、材料全体に対して80〜300重量%の初期含水量を備えている。
【0029】
前記スルホン化ポリアリーレン重合体としては、式(1)で示される芳香族化合物単位30〜95モル%と、式(2)で示される芳香族化合物単位70〜5モル%とからなるポリアリーレン重合体を濃硫酸と反応させることによりスルホン化し、側鎖にスルホン酸基を導入したものを用いることができる。
【0030】
【化5】
【0031】
【化6】
【0032】
前記式(1)に対応するモノマーとして、例えば、2,5−ジクロロ−4’−フェノキシベンゾフェノン等を挙げることができる。また、前記式(2)に対応するモノマーとして、例えば、4,4’−ジクロロベンゾフェノン、4,4’−ビス(4−クロロベンゾイル)ジフェニルエーテル等を挙げることができる。
【0033】
前記芳香族系イオン導伝性材料は、N−メチルピロリドン等の溶媒に溶解し、キャスト法により所望の乾燥膜厚に製膜することにより、高分子電解質膜1とされる。
【0034】
前記固体高分子型燃料電池において、酸素極2、燃料極3の拡散層4はカーボンペーパーと下地層とからなり、例えばカーボンブラックとポリテトラフルオロエチレン(PTFE)とを所定の重量比で混合し、エチレングリコール等の有機溶媒に均一に分散したスラリーを、該カーボンペーパーの片面に塗布、乾燥させて該下地層とすることにより形成される。
【0035】
また、触媒層5は、カーボンブラック(ファーネスブラック)に白金を所定の重量比で担持させた触媒粒子を、パーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))からなるイオン導伝性バインダーをイソプロパノール、n−プロパノール等の溶媒に溶解してなる溶液と所定の重量比で均一に混合した触媒ペーストを、所定の白金量となるように下地層7上にスクリーン印刷し、乾燥することにより形成される。前記乾燥は、例えば、60℃で10分間行ったのち、120℃で減圧乾燥することにより行う。
【0036】
そして、高分子電解質膜1を、酸素極2、燃料極3の触媒層5に挟持された状態でホットプレスすることにより、前記固体高分子型燃料電池が形成される。前記ホットプレスは、例えば、80℃、5MPaで2分間の1次プレスの後、160℃、4MPaで1分間の2次プレスを施すことにより行うことができる。
【0037】
本実施形態の固体高分子型燃料電池では、前記高分子電解質膜1は、80〜95℃の範囲の温度の熱湯に0.5〜5時間浸漬することにより熱水処理されている。前記熱水処理は、前記高分子電解質膜1を単独で前記熱湯に浸漬するようにしてもよく、前記電極構造体(MEA)を形成した段階で前記熱湯に浸漬するようにしてもよい。また、前記熱水処理は、前記固体高分子型燃料電池を、80〜95℃、相対湿度90%の高温高湿条件下で0.5〜5時間作動させてエージングすることにより行ってもよい。
【0038】
次に、実施例を示す。
【0039】
【実施例1】
本実施例では、まず、式(3)で示されるスルホン化ポリアリーレン重合体からなりイオン交換容量2.3meq/gの芳香族系イオン導伝性材料をN−メチルピロリドンに溶解し、キャスト法により乾燥膜厚50μmの高分子電解質膜1を調製した。
【0040】
【化7】
【0041】
次に、カーボンブラックとポリテトラフルオロエチレン(PTFE)とをカーボンブラック:PTFE=4:6の重量比で混合し、エチレングリコールに均一に分散したスラリーを調製し、該スラリーをカーボンペーパー6の片面に塗布、乾燥することにより下地層7とし、カーボンペーパー6と下地層7とからなる拡散層4を形成した。
【0042】
次に、ファーネスブラックに白金をファーネス:白金=1:1の重量比で担持させた触媒粒子を、パーフルオロアルキレンスルホン酸高分子化合物(デュポン社製ナフィオン(商品名))からなるイオン導伝性バインダーのイソプロパノール・n−プロパノール溶液に、触媒粒子:バインダー=8:5の重量比で均一に混合して触媒ペーストを調製した。次に、前記触媒ペーストを0.5mg/cm2の白金量となるように下地層7上にスクリーン印刷し、乾燥することにより、触媒層4を形成した。前記乾燥は、60℃で10分間行ったのち、120℃で減圧乾燥することにより行った。
【0043】
次に、高分子電解質膜1を、酸素極2、燃料極3の触媒層5に挟持された状態で、80℃、5MPaで2分間の1次プレスを施した後、さらに160℃、4MPaで1分間の2次プレスを施すことにより、図1示の固体高分子型燃料電池を形成した。
【0044】
前記スルホン化ポリアリーレン重合体からなる芳香族系イオン導伝性材料は、材料全体に対して114重量%の初期含水量を備えている。そこで、本実施例では、前記芳香族系イオン導伝性材料からなる高分子電解質膜1を95℃の熱湯に1時間浸漬して熱水処理を行った後、前記固体高分子型燃料電池に使用した。
【0045】
次に、高分子電解質膜1の前記熱水処理前のイオン導伝率と、熱水処理後のイオン導伝率とを測定した。
【0046】
前記イオン導伝率は、85℃における高分子電解質膜1の抵抗値を、印加電圧1V、周波数10kHzの条件下、交流2端子法で測定し、該抵抗値をイオン導伝率に換算した。前記測定は、前記熱水処理前の高分子電解質膜1と、前記熱水処理前の高分子電解質膜1とについて、それぞれ相対湿度50%の場合と相対湿度90%の場合とを測定した。
【0047】
結果は、相対湿度50%の場合のイオン導伝度をA、相対湿度90%の場合のイオン導伝度をBとしたときの、B/Aの値で表した。また、前記熱水処理前の高分子電解質膜1のB/Aの値をC、前記熱水処理後の高分子電解質膜1のB/Aの値をDとしたときのD/Cの値を求め、湿度依存性低減の指標とした。
【0048】
本実施例の高分子電解質膜1の初期含水率、前記熱水処理前及び処理後のB/Aの値、D/Cの値を表1に示す。
【0049】
【実施例2】
本実施例では、式(4)で示されるスルホン化ポリアリーレン重合体からなりイオン交換容量1.7meq/gの芳香族系イオン導伝性材料を用いて高分子電解質膜1を調製した以外は、実施例1と全く同一にして固体高分子型燃料電池を形成した。
【0050】
【化8】
【0051】
前記スルホン化ポリアリーレン重合体からなる芳香族系イオン導伝性材料は、材料全体に対して94重量%の初期含水量を備えている。次に、前記芳香族系イオン導伝性材料からなる高分子電解質膜1の前記熱水処理前のイオン導伝率と、熱水処理後のイオン導伝率とを測定した。
【0052】
本実施例の高分子電解質膜1の初期含水率、前記熱水処理前及び処理後のB/Aの値、D/Cの値を表1に示す。
【0053】
【実施例3】
本実施例では、前記式(3)で示されるスルホン化ポリアリーレン重合体からなりイオン交換容量2.5meq/gの芳香族系イオン導伝性材料を用いて高分子電解質膜1を調製した以外は、実施例1と全く同一にして固体高分子型燃料電池を形成した。
【0054】
前記スルホン化ポリアリーレン重合体からなる芳香族系イオン導伝性材料は、材料全体に対して276重量%の初期含水量を備えている。次に、前記芳香族系イオン導伝性材料からなる高分子電解質膜1の前記熱水処理前のイオン導伝率と、熱水処理後のイオン導伝率とを測定した。
【0055】
本実施例の高分子電解質膜1の初期含水率、前記熱水処理前及び処理後のB/Aの値、D/Cの値を表1に示す。
【0056】
【参考例】
本参考例では、式(5)で示されるスルホン化ポリエーテルエーテルケトン重合体からなりイオン交換容量1.5meq/gの芳香族系イオン導伝性材料を用いて高分子電解質膜1を調製した以外は、実施例1と全く同一にして固体高分子型燃料電池を形成した。
【0057】
【化9】
【0058】
前記スルホン化ポリエーテルエーテルケトン重合体からなる芳香族系イオン導伝性材料は、材料全体に対して300重量%の初期含水量を備えている。次に、前記芳香族系イオン導伝性材料からなる高分子電解質膜1の前記熱水処理前のイオン導伝率と、熱水処理後のイオン導伝率とを測定した。
【0059】
本実施例の高分子電解質膜1の初期含水率、前記熱水処理前及び処理後のB/Aの値、D/Cの値を表1に示す。
【0060】
【表1】
【0061】
表1から、初期含水量94〜300重量%の前記芳香族系イオン導伝性材料からなる各高分子電解質膜1は、いずれも前記熱水処理前には、相対湿度50%のイオン導伝率Aに対する相対湿度90%のイオン導伝率Bの比(B/A)の値が大きく、イオン導伝率について湿度依存性が高いことが明らかである。しかし、前記各高分子電解質膜1は、前記熱水処理後にはいずれもB/Aの値が小さくなっており、前記熱水処理によりイオン導伝率について湿度依存性が低減されていることが明らかである。
【0062】
前記湿度依存性の低減は、表1のD/C値から明らかなように、各高分子電解質膜1について0.26〜0.45倍の範囲にあり、この範囲で有効と考えられる。
【0063】
本実施形態の固体高分子型燃料電池によれば、前述のように各高分子電解質膜1のイオン導伝率に関する湿度依存性が低くなった結果として、湿度条件に関わらず所望の発電性能を得ることができるとの効果を奏することが期待される。
【図面の簡単な説明】
【図1】本発明に係る固体高分子型燃料電池の構成を示す説明的断面図。
【符号の説明】
1…高分子電解質膜、 2,3…電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell including a polymer electrolyte membrane.
[0002]
[Prior art]
While petroleum resources are depleted, environmental problems such as global warming due to the consumption of fossil fuels are becoming serious, and fuel cells are attracting attention as a clean power source for motors that does not generate carbon dioxide, and have been widely developed. And some have begun to be put into practical use. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current can be easily obtained.
[0003]
The polymer electrolyte fuel cell has a structure in which a polymer electrolyte membrane capable of conducting ions is sandwiched between a pair of electrodes of a fuel electrode and an oxygen electrode, and the fuel electrode and the oxygen electrode are each diffused. A catalyst layer, and the catalyst layer is in contact with the polymer electrolyte membrane. The catalyst layer includes catalyst particles in which a catalyst such as Pt is supported on a catalyst carrier, and is formed by integrating the catalyst particles with an ion conductive polymer binder.
[0004]
In the polymer electrolyte fuel cell, when a reducing gas such as hydrogen or methanol is introduced into the fuel electrode, the reducing gas reaches the catalyst layer through the diffusion layer and generates protons by the action of the catalyst. To do. The protons move from the catalyst layer to the catalyst layer on the oxygen electrode side through the polymer electrolyte membrane.
[0005]
On the other hand, when the reducing gas is introduced into the fuel electrode and an oxidizing gas such as air or oxygen is introduced into the oxygen electrode, the protons are oxidized in the catalyst layer on the oxygen electrode side by the action of the catalyst. Reacts with sex gases to produce water. Therefore, a current can be taken out by connecting the fuel electrode and the oxygen electrode with a conducting wire.
[0006]
Conventionally, in the polymer electrolyte fuel cell, a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) is used as an ion conductive polymer binder for the polymer electrolyte membrane and the catalyst layer. Widely used. The perfluoroalkylenesulfonic acid polymer compound has excellent proton conductivity due to being sulfonated and also has chemical resistance as a fluororesin, but is very expensive. There's a problem.
[0007]
Therefore, as an inexpensive polymer electrolyte membrane, an aromatic ion conductive material having a molecular structure that does not contain fluorine or has a reduced fluorine content has been proposed in recent years. As the aromatic ion-conducting material, for example, in US Pat. No. 5,403,675, a polymer obtained by polymerizing an aromatic compound having a phenylene chain is reacted with a sulfonating agent. Sulfonated rigid polyphenylenes with sulfonic acid groups introduced have been proposed. Also known as the aromatic ion conductive material is a sulfonated polyether ether ketone polymer in which a polyether ether ketone polymer is reacted with a sulfonating agent to introduce a sulfonic acid group into the polymer. Yes.
[0008]
However, the ion conductivity of the aromatic ion conductive material cannot be obtained unless it contains a certain amount of moisture, and the ion conductivity is 50% relative humidity with respect to the ion conductivity. Humidity dependency is high, as compared with the ionic conductivity at a relative humidity of 90%. For this reason, the polymer electrolyte fuel cell including the polymer electrolyte membrane made of the sulfonated polyarylene polymer has a disadvantage that a desired power generation performance may not be obtained when the relative humidity is low.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive solid polymer fuel cell having a polymer electrolyte membrane that eliminates such inconvenience and has low humidity dependency of ion conductivity.
[0010]
In order to achieve this object, the polymer electrolyte fuel cell of the present invention is a polymer electrolyte membrane comprising a pair of electrodes and a polymer electrolyte membrane sandwiched between both electrodes. the state, and are not the maximum amount of water that can be held in a state of untreated subjected to hot water treatment aromatic ion conducting material in the range of 80 to 300 wt% relative to the total material, the aromatic The group-based ion conductive material is a copolymer composed of 30 to 95 mol% of the aromatic compound unit represented by the formula (1) and 70 to 5 mol% of the aromatic compound unit represented by the formula (2). It consists of a sulfonated polyarylene polymer having a sulfonic acid group in the side chain .
[0011]
In the present specification, the “maximum water content that can be held in an untreated state” may be abbreviated as “initial water content”.
[0012]
In the aromatic ion conductive material, if the initial water content is less than 80% by weight based on the whole material, ion conductivity cannot be obtained, and if it exceeds 300% by weight, the expansion / contraction rate due to heat increases. The desired durability cannot be obtained. The initial water content is the maximum amount of water that the aromatic ion conductive material can hold in an untreated state as described above, and the aromatic ion conductive material actually contains. It does not mean moisture.
[0013]
The aromatic ion conductive material exhibits ion conductivity by containing predetermined moisture, but the ion conductivity is highly dependent on humidity, and when the humidity is low, the ion conductivity is small. When the humidity is high, the ionic conductivity is very large as compared to when the humidity is low.
[0014]
Therefore, the aromatic ion conductive material is then subjected to hot water treatment. The hot water treatment may be performed, for example, by immersing the aromatic ion conductive material itself in hot water having a temperature in the range of 80 to 95 ° C. for 0.5 to 5 hours, or the aromatic system. You may carry out by immersing an electrode structure provided with the polymer electrolyte membrane which consists of an ion conductive material in the hot water of the temperature of the range of 80-95 degreeC for 0.5 to 5 hours.
[0015]
The aromatic ion conductive material can reduce the humidity dependency on the ion conductivity by performing the hot water treatment. This is because the hydrothermal treatment increases the ability of the aromatic ion conductive material to retain moisture under low humidity conditions, thereby increasing the ion conductivity under the low humidity conditions. Conceivable.
[0016]
When the temperature of the hot water is less than 80 ° C. and the immersion time is less than 0.5 hours, the hot water treatment has an effect of reducing the humidity dependency on the ion conductivity of the aromatic ion conductive material. I can't. Moreover, when the temperature of the hot water exceeds 95 ° C. and the immersion time exceeds 5 hours, the mechanical strength of the polymer electrolyte membrane made of the aromatic ion conductive material is lowered.
[0017]
In addition, the hydrothermal treatment is performed in a solid polymer fuel cell including a polymer electrolyte membrane made of the aromatic ion conductive material in a high temperature and high humidity environment of 80 to 95 ° C. and a relative humidity of 90%. You may make it carry out by operating for 5 to 5 hours and aging.
[0021]
The sulfonated polyarylene polymer is inexpensive because it contains no fluorine in the molecular structure or only contains fluorine as the electron-withdrawing group, and can reduce the cost of the polymer electrolyte fuel cell. it can.
[0022]
Here, the sulfonic acid group is not introduced into the aromatic ring adjacent to the electron withdrawing group, but is introduced only into the aromatic ring not adjacent to the electron withdrawing group. Therefore, in the sulfonated polyarylene polymer, the sulfonic acid group is introduced only into the aromatic ring represented by Ar of the aromatic compound unit represented by the formula (1). By changing the molar ratio between the aromatic compound unit shown and the aromatic compound unit shown by the formula (2), the amount of the sulfonic acid group introduced, in other words, the ion exchange capacity can be adjusted.
[0023]
Therefore, when the aromatic compound unit represented by the formula (1) is less than 30 mol% and the aromatic compound unit represented by the formula (2) is more than 70 mol%, the sulfonated polyarylene polymer has The ion exchange capacity required for the molecular electrolyte membrane cannot be obtained. Further, when the aromatic compound unit represented by the formula (1) exceeds 95 mol% and the aromatic compound unit represented by the formula (2) is less than 5 mol%, the amount of the sulfonic acid group to be introduced increases. The molecular structure becomes weak.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing the configuration of the polymer electrolyte fuel cell of the present embodiment.
[0026]
In the polymer electrolyte fuel cell of this embodiment, as shown in FIG. 1, a polymer electrolyte membrane 1 is sandwiched between an oxygen electrode 2 and a fuel electrode 3, and the oxygen electrode 2 and the fuel electrode 3 are Each includes a diffusion layer 4 and a catalyst layer 5 formed on the diffusion layer 4.
[0027]
Each diffusion layer 4 includes a separator 6 that is in close contact with the outer surface. The separator 6 includes an oxygen passage 2a through which an oxygen-containing gas such as air flows in the oxygen electrode 2, and a fuel passage 3a through which a fuel gas such as hydrogen flows in the fuel electrode 3 on the diffusion layer 4 side. Yes.
[0028]
In the present embodiment, an aromatic ion conductive material such as a sulfonated polyarylene polymer or a sulfonated polyetheretherketone is used as the polymer electrolyte membrane 1 of the solid polymer fuel cell. The aromatic ion conductive material has an initial water content of 80 to 300% by weight based on the whole material.
[0029]
Examples of the sulfonated polyarylene polymer include polyarylene polymer comprising 30 to 95 mol% of the aromatic compound unit represented by the formula (1) and 70 to 5 mol% of the aromatic compound unit represented by the formula (2). It is possible to use a product obtained by sulfonating a coalescence with concentrated sulfuric acid and introducing a sulfonic acid group into a side chain.
[0030]
[Chemical formula 5]
[0031]
[Chemical 6]
[0032]
Examples of the monomer corresponding to the formula (1) include 2,5-dichloro-4′-phenoxybenzophenone. Examples of the monomer corresponding to the formula (2) include 4,4′-dichlorobenzophenone and 4,4′-bis (4-chlorobenzoyl) diphenyl ether.
[0033]
The aromatic ion conductive material is dissolved in a solvent such as N-methylpyrrolidone, and formed into a desired dry film thickness by a casting method, whereby the polymer electrolyte membrane 1 is obtained.
[0034]
In the polymer electrolyte fuel cell, the diffusion layer 4 of the oxygen electrode 2 and the fuel electrode 3 is composed of carbon paper and an underlayer. For example, carbon black and polytetrafluoroethylene (PTFE) are mixed at a predetermined weight ratio. A slurry uniformly dispersed in an organic solvent such as ethylene glycol is applied to one side of the carbon paper and dried to form the underlayer.
[0035]
The catalyst layer 5 is made of a perfluoroalkylene sulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) in which catalyst particles in which platinum is supported on carbon black (furnace black) at a predetermined weight ratio. A catalyst paste obtained by uniformly mixing a solution obtained by dissolving an ion conductive binder in a solvent such as isopropanol or n-propanol at a predetermined weight ratio is screen-printed on the underlayer 7 so as to have a predetermined platinum amount. It is formed by drying. The drying is performed, for example, by drying at 60 ° C. for 10 minutes and then drying at 120 ° C. under reduced pressure.
[0036]
The polymer electrolyte membrane 1 is hot-pressed while being sandwiched between the oxygen electrode 2 and the catalyst layer 5 of the fuel electrode 3 to form the solid polymer fuel cell. The hot pressing can be performed, for example, by applying a secondary press at 160 ° C. and 4 MPa for 1 minute after the primary press at 80 ° C. and 5 MPa for 2 minutes.
[0037]
In the solid polymer fuel cell of this embodiment, the polymer electrolyte membrane 1 is hydrothermally treated by immersing it in hot water having a temperature in the range of 80 to 95 ° C. for 0.5 to 5 hours. In the hot water treatment, the polymer electrolyte membrane 1 may be immersed in the hot water alone, or may be immersed in the hot water when the electrode structure (MEA) is formed. The hydrothermal treatment may be performed by aging the polymer electrolyte fuel cell by operating it at a high temperature and high humidity of 80 to 95 ° C. and a relative humidity of 90% for 0.5 to 5 hours. .
[0038]
Next, an example is shown.
[0039]
[Example 1]
In this example, first, an aromatic ion conductive material composed of a sulfonated polyarylene polymer represented by the formula (3) and having an ion exchange capacity of 2.3 meq / g was dissolved in N-methylpyrrolidone, and cast. Thus, a polymer electrolyte membrane 1 having a dry film thickness of 50 μm was prepared.
[0040]
[Chemical 7]
[0041]
Next, carbon black and polytetrafluoroethylene (PTFE) are mixed at a weight ratio of carbon black: PTFE = 4: 6 to prepare a slurry uniformly dispersed in ethylene glycol. The base layer 7 was formed by coating and drying, and the diffusion layer 4 composed of the carbon paper 6 and the base layer 7 was formed.
[0042]
Next, the ion conductivity of catalyst particles in which platinum is supported on furnace black in a weight ratio of furnace: platinum = 1: 1 is made of a perfluoroalkylenesulfonic acid polymer compound (Nafion (trade name) manufactured by DuPont). A catalyst paste was prepared by uniformly mixing the binder in an isopropanol / n-propanol solution at a weight ratio of catalyst particles: binder = 8: 5. Next, the catalyst paste 4 was screen-printed on the underlayer 7 so as to have a platinum amount of 0.5 mg / cm 2 and dried to form the catalyst layer 4. The drying was performed at 60 ° C. for 10 minutes and then dried at 120 ° C. under reduced pressure.
[0043]
Next, the polymer electrolyte membrane 1 is subjected to primary pressing at 80 ° C. and 5 MPa for 2 minutes while being sandwiched between the catalyst layer 5 of the oxygen electrode 2 and the fuel electrode 3, and further at 160 ° C. and 4 MPa. By applying a second press for 1 minute, the polymer electrolyte fuel cell shown in FIG. 1 was formed.
[0044]
The aromatic ion conductive material made of the sulfonated polyarylene polymer has an initial water content of 114% by weight based on the whole material. Therefore, in this example, after the polymer electrolyte membrane 1 made of the aromatic ion conductive material was immersed in hot water at 95 ° C. for 1 hour for hot water treatment, used.
[0045]
Next, the ionic conductivity of the polymer electrolyte membrane 1 before the hydrothermal treatment and the ionic conductivity after the hydrothermal treatment were measured.
[0046]
For the ion conductivity, the resistance value of the polymer electrolyte membrane 1 at 85 ° C. was measured by the AC two-terminal method under the conditions of an applied voltage of 1 V and a frequency of 10 kHz, and the resistance value was converted to ion conductivity. In the measurement, the polymer electrolyte membrane 1 before the hydrothermal treatment and the polymer electrolyte membrane 1 before the hydrothermal treatment were measured at a relative humidity of 50% and a relative humidity of 90%, respectively.
[0047]
The result was expressed as a value of B / A, where A is the ion conductivity when the relative humidity is 50% and B is the ion conductivity when the relative humidity is 90%. Further, the value of D / C when the value of B / A of the polymer electrolyte membrane 1 before the hydrothermal treatment is C and the value of B / A of the polymer electrolyte membrane 1 after the hydrothermal treatment is D Was used as an index for reducing humidity dependency.
[0048]
Table 1 shows the initial moisture content of the polymer electrolyte membrane 1 of this example, the B / A values before and after the hydrothermal treatment, and the D / C values.
[0049]
[Example 2]
In this example, the polymer electrolyte membrane 1 was prepared using an aromatic ion conductive material made of a sulfonated polyarylene polymer represented by the formula (4) and having an ion exchange capacity of 1.7 meq / g. A polymer electrolyte fuel cell was formed in exactly the same manner as in Example 1.
[0050]
[Chemical 8]
[0051]
The aromatic ion conductive material made of the sulfonated polyarylene polymer has an initial water content of 94% by weight based on the whole material. Next, the ion conductivity before the hydrothermal treatment and the ion conductivity after the hydrothermal treatment of the polymer electrolyte membrane 1 made of the aromatic ion conductive material were measured.
[0052]
Table 1 shows the initial moisture content of the polymer electrolyte membrane 1 of this example, the B / A values before and after the hydrothermal treatment, and the D / C values.
[0053]
[Example 3]
In this example, the polymer electrolyte membrane 1 was prepared using an aromatic ion conductive material made of a sulfonated polyarylene polymer represented by the formula (3) and having an ion exchange capacity of 2.5 meq / g. Were exactly the same as in Example 1 to form a polymer electrolyte fuel cell.
[0054]
The aromatic ion conductive material made of the sulfonated polyarylene polymer has an initial water content of 276% by weight based on the whole material. Next, the ion conductivity before the hydrothermal treatment and the ion conductivity after the hydrothermal treatment of the polymer electrolyte membrane 1 made of the aromatic ion conductive material were measured.
[0055]
Table 1 shows the initial moisture content of the polymer electrolyte membrane 1 of this example, the B / A values before and after the hydrothermal treatment, and the D / C values.
[0056]
[Reference example]
In this reference example , a polymer electrolyte membrane 1 was prepared using an aromatic ion conductive material made of a sulfonated polyetheretherketone polymer represented by the formula (5) and having an ion exchange capacity of 1.5 meq / g. Except for the above, a polymer electrolyte fuel cell was formed in exactly the same manner as in Example 1.
[0057]
[Chemical 9]
[0058]
The aromatic ion conductive material made of the sulfonated polyetheretherketone polymer has an initial water content of 300% by weight based on the whole material. Next, the ion conductivity before the hydrothermal treatment and the ion conductivity after the hydrothermal treatment of the polymer electrolyte membrane 1 made of the aromatic ion conductive material were measured.
[0059]
Table 1 shows the initial moisture content of the polymer electrolyte membrane 1 of the present example, the B / A values before and after the hydrothermal treatment, and the D / C values.
[0060]
[Table 1]
[0061]
From Table 1, each of the polymer electrolyte membranes 1 made of the aromatic ion conductive material having an initial water content of 94 to 300% by weight is ion-conductive at a relative humidity of 50% before the hydrothermal treatment. The ratio (B / A) of the ionic conductivity B at 90% relative humidity with respect to the rate A is large, and it is clear that the ionic conductivity is highly dependent on humidity. However, each of the polymer electrolyte membranes 1 has a small B / A value after the hydrothermal treatment, and the hydrothermal treatment reduces the humidity dependence of the ion conductivity. it is obvious.
[0062]
As apparent from the D / C values in Table 1, the reduction in humidity dependence is in the range of 0.26 to 0.45 times for each polymer electrolyte membrane 1, and is considered to be effective in this range.
[0063]
According to the polymer electrolyte fuel cell of the present embodiment, as described above, the humidity dependency on the ionic conductivity of each polymer electrolyte membrane 1 is reduced, and as a result, the desired power generation performance is obtained regardless of humidity conditions. It is expected to produce an effect that it can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view showing a configuration of a polymer electrolyte fuel cell according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Polymer electrolyte membrane, 2, 3 ... Electrode.

Claims (2)

一対の電極と、両電極に挟持された高分子電解質膜とを備える固体高分子型燃料電池において、
前記高分子電解質膜は、未処理の状態で保持できる最大の水分量が材料全体に対して80〜300重量%の範囲にある芳香族系イオン導伝性材料に熱水処理を施したものであり、
前記芳香族系イオン導伝性材料は、式(1)で示される芳香族化合物単位30〜95モル%と、式(2)で示される芳香族化合物単位70〜5モル%とからなる共重合体の側鎖にスルホン酸基を有するスルホン化ポリアリーレン重合体からなることを特徴とする固体高分子型燃料電池。
In a polymer electrolyte fuel cell comprising a pair of electrodes and a polymer electrolyte membrane sandwiched between both electrodes,
The polymer electrolyte membrane is obtained by hydrothermally treating an aromatic ion conductive material in which the maximum water content that can be retained in an untreated state is in the range of 80 to 300% by weight with respect to the entire material. Oh it is,
The aromatic ion conductive material is composed of 30 to 95 mol% of an aromatic compound unit represented by the formula (1) and 70 to 5 mol% of an aromatic compound unit represented by the formula (2). A polymer electrolyte fuel cell comprising a sulfonated polyarylene polymer having a sulfonic acid group in the side chain of the coalescence .
前記熱水処理は、前記高分子電解質膜または該高分子電解質膜を備える電極構造体を80〜95℃の温度の範囲の熱湯に0.5〜5時間浸漬することにより行うことを特徴とする請求項1記載の固体高分子型燃料電池。  The hot water treatment is performed by immersing the polymer electrolyte membrane or an electrode structure provided with the polymer electrolyte membrane in hot water in a temperature range of 80 to 95 ° C. for 0.5 to 5 hours. The polymer electrolyte fuel cell according to claim 1.
JP2001097802A 2001-01-19 2001-03-30 Polymer electrolyte fuel cell Expired - Fee Related JP4672165B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001097802A JP4672165B2 (en) 2001-03-30 2001-03-30 Polymer electrolyte fuel cell
DE10201691A DE10201691A1 (en) 2001-01-19 2002-01-17 Polymer electrolyte membrane for electrolyte fuel cell, is obtained by subjecting ion-conductive, aromatic polymer membrane having preset water absorption to hot-water treatment
US10/050,134 US6926984B2 (en) 2001-01-19 2002-01-18 Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same
CA2368787A CA2368787C (en) 2001-01-19 2002-01-21 Polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell
US11/110,695 US7749630B2 (en) 2001-01-19 2005-04-21 Polymer electrolyte membrane and polymer electrolyte fuel cell comprising same
US11/110,696 US20050260475A1 (en) 2001-01-19 2005-04-21 Polymer electrolyte membrane, method for producing same, and membrane electrode assembly and polymer electrolyte fuel cell comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097802A JP4672165B2 (en) 2001-03-30 2001-03-30 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002298869A JP2002298869A (en) 2002-10-11
JP4672165B2 true JP4672165B2 (en) 2011-04-20

Family

ID=18951538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097802A Expired - Fee Related JP4672165B2 (en) 2001-01-19 2001-03-30 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4672165B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040096731A1 (en) 2002-11-18 2004-05-20 Honda Motor Co., Ltd Electrode structure for polymer electrolyte fuel cell and method for manufacturing the same
JP4490078B2 (en) * 2002-11-18 2010-06-23 本田技研工業株式会社 Electrode structure for polymer electrolyte fuel cell
US7544433B2 (en) 2002-11-18 2009-06-09 Honda Motor Co., Ltd. Electrode structure for polymer electrolyte fuel cells, and polymer electrolyte fuel cell using the same
JP4068988B2 (en) 2003-02-20 2008-03-26 Jsr株式会社 Method for producing electrolytic membrane-electrode substrate composite
JP4852828B2 (en) * 2003-07-31 2012-01-11 東洋紡績株式会社 Electrolyte membrane / electrode structure
KR100884959B1 (en) * 2006-03-20 2009-02-23 주식회사 엘지화학 Hydrocarbon-based polymer electrolyte membrane fuel cell membrane electrode manufacturing method
JP2008153175A (en) * 2006-12-20 2008-07-03 Kuraray Co Ltd Method for producing membrane-electrode assembly for polymer electrolyte fuel cell
JP5194869B2 (en) * 2008-02-18 2013-05-08 トヨタ自動車株式会社 Manufacturing method of membrane / electrode assembly for fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021943A (en) * 1996-06-28 1998-01-23 Sumitomo Chem Co Ltd Polymer electrolyte for fuel cell and fuel cell
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021943A (en) * 1996-06-28 1998-01-23 Sumitomo Chem Co Ltd Polymer electrolyte for fuel cell and fuel cell
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition

Also Published As

Publication number Publication date
JP2002298869A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
US7494733B2 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
US20070166592A1 (en) Polymer electrolyte membrane, method of preparing the same and fuel cell employing the same
JP5379786B2 (en) Organic / inorganic hybrid proton exchange membrane
JPH11503262A (en) Proton conductive polymer
JP5557430B2 (en) PROTON CONDUCTIVE POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL
KR100717745B1 (en) A fuel cell binder, a composition for forming a catalyst layer using the same, and a membrane-electrode assembly for a fuel cell using the same and a method of manufacturing the same
JP4221164B2 (en) Polymer electrolyte fuel cell
Oh et al. A hydrophobic blend binder for anti-water flooding of cathode catalyst layers in polymer electrolyte membrane fuel cells
JP4672165B2 (en) Polymer electrolyte fuel cell
JP3607221B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4290615B2 (en) Membrane electrode assembly, fuel cell stack, fuel cell system, and method of manufacturing membrane electrode assembly
JP2004152615A (en) Solid polymer electrolyte film, its manufacturing method, and film electrode assembly
KR100684734B1 (en) Polymer electrolyte membrane for fuel cell, manufacturing method thereof and fuel cell device comprising same
JP3779171B2 (en) Polymer electrolyte fuel cell
KR101070015B1 (en) Method for fabricating polymer electrolyte composite membrane and polymer electrolyte fuel cell including polymer electrolyte composite membrane fabricated using the same
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2002298855A (en) Solid macromolecule type fuel cell
KR20090055737A (en) Method for producing partially crosslinked hydrogen ion conductive polymer electrolyte membrane, membrane-electrode assembly using partially crosslinked polymer electrolyte membrane prepared therefrom, and fuel cell employing the same
US7879476B2 (en) Proton conducting electrolyte
JP2007287343A (en) Cathode electrode for fuel cell and fuel cell
JP4754083B2 (en) Polymer electrolyte fuel cell
JP2002305007A (en) Solid polymer type fuel cell
KR20190036809A (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly and fuel cell
JP2002298858A (en) Solid macromolecule type fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees