JP4671216B2 - Mesoporous silica nanoparticles having micropores and method for producing the same - Google Patents
Mesoporous silica nanoparticles having micropores and method for producing the same Download PDFInfo
- Publication number
- JP4671216B2 JP4671216B2 JP2004253108A JP2004253108A JP4671216B2 JP 4671216 B2 JP4671216 B2 JP 4671216B2 JP 2004253108 A JP2004253108 A JP 2004253108A JP 2004253108 A JP2004253108 A JP 2004253108A JP 4671216 B2 JP4671216 B2 JP 4671216B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- diameter
- adsorbent
- silica nanoparticles
- filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
本発明は、シリカの化学的および構造的特性を利用した触媒担体、モレキュラーシーブス、吸着剤などとして使用される、ミクロ孔とメソ孔とを併せ持つ多孔質構造と直径数十nmのナノレベルのサイズを有し、球状形態を呈した、新規なシリカナノ粒子及びその製造方法に関する。 The present invention relates to a porous structure having both micropores and mesopores and a nano-level size of several tens of nanometers used as a catalyst support, molecular sieves, adsorbent, etc. utilizing the chemical and structural characteristics of silica. The present invention relates to a novel silica nanoparticle having a spherical shape and a method for producing the same.
シリカ(酸化ケイ素)は、化学的に安定な化合物であり、人体、環境への安全性が高く、これを主成分とする非晶質体は窓や食器用ガラス、近年では光ファイバーガラスなどの高機能素材として利用され、他方、水晶に代表される結晶質体は発振素子などとして実用されてきている。また、シリカゲルや多孔質ガラスは、シリカに二次粒子構造あるいは細孔構造を形成させ、高表面積と高細孔容積を賦与した固体であり、幅広い産業分野において吸着剤や担体、鋳型材などとして用いられ、特にシリカゲルは包装食品・ガス除湿用乾燥剤、ビール用清澄剤、クロマトグラフィー用充填剤、流動触媒担体、医薬品の粉末化用担体などの多様な用途に活用されている。 Silica (silicon oxide) is a chemically stable compound, and is highly safe for the human body and the environment. Amorphous materials containing this as a main component are high-grade products such as windows and tableware glass, and recently optical fiber glass. On the other hand, crystalline materials represented by quartz have been put into practical use as oscillation elements. Silica gel and porous glass are solids that have a secondary particle structure or pore structure formed on silica and have a high surface area and a high pore volume. They are used as adsorbents, carriers, and mold materials in a wide range of industrial fields. In particular, silica gel is used for various applications such as desiccant for packaged food and gas dehumidification, clarifier for beer, filler for chromatography, fluid catalyst carrier, carrier for pulverizing pharmaceutical products.
多孔質ガラスは分相させたガラス構造中の特定の相を溶解することにより作製されるのに対して、1992年、界面活性剤を鋳型として、直径2nm以上のメソ孔と1000m2/gを超える大きな比表面積を有するシリカ多孔体を創製する手法がMobil社によって開発された(非特許文献1)。すなわち、セチルトリメチルアンモニウムブロミド(CTAB)を鋳型としてケイ酸成分を反応させることにより直径2〜8nmの円筒状細孔が2次元−六方構造を形成したMCM−41型および細孔が3次元的に連結したMCM−48型の2種類のタイプのメソポーラスシリカが合成された。 Porous glass is prepared by dissolving a specific phase in a phase-divided glass structure, whereas in 1992, a surfactant was used as a template to create mesopores with a diameter of 2 nm or more and 1000 m 2 / g. A method for creating a porous silica material having a larger specific surface area was developed by Mobil (Non-Patent Document 1). That is, by reacting a silicic acid component using cetyltrimethylammonium bromide (CTAB) as a template, cylindrical pores having a diameter of 2 to 8 nm formed a two-dimensional-hexagonal structure, and MCM-41 type and three-dimensional pores. Two types of mesoporous silica of type MCM-48 linked were synthesized.
その後、アルキルジアミンを鋳型としてベシクル状MSU−V(非特許文献2)、非イオン性のデカエチレングリコールモノオクタデシルエーテルを鋳型として3次元−六方構造をもつSBA−12型(非特許文献3)などの種々のメソポーラスシリカが得られている。さらに、親水性のエチレンオキサイド(EO)と疎水性のプロピレンオキサイド(PO)からなるブロックコポリマーEOmPOnEOm (m=33〜70, n=5〜26)を鋳型とする反応により、10nm以上の細孔径をもつ2次元−六方構造メソポーラスシリカSBA−15も得られた(非特許文献4)。 Thereafter, vesicle-like MSU-V (non-patent document 2) using alkyldiamine as a template, SBA-12 type having a three-dimensional hexagonal structure using nonionic decaethylene glycol monooctadecyl ether (non-patent document 3), etc. Various mesoporous silicas have been obtained. Furthermore, by using a block copolymer EOmPOnEOm (m = 33 to 70, n = 5 to 26) composed of hydrophilic ethylene oxide (EO) and hydrophobic propylene oxide (PO) as a template, a pore diameter of 10 nm or more is obtained. A two-dimensional hexagonal mesoporous silica SBA-15 was also obtained (Non-patent Document 4).
以上のように、大きな比表面積と特有の細孔構造をもつメソポーラスシリカは、当初より触媒担体や吸着剤として有望視されたが、最初に創られた素材は、例えば、MCM−41型がミクロンスケール、SBA−15がサブミクロンスケールの一次粒子サイズをもち、いずれも粒径の大きさに難点があった。このため、粒径を小さくしてゲスト分子への拡散抵抗を低減し、細孔を有効に活用することをねらいとして、微粒子化が検討されてきた(例えば、非特許文献5)。水酸化ナトリウム水溶液に溶かしたオルトケイ酸テトラエチル(TEOS)を極低濃度のCTAB存在下で反応させることにより、MCM−41型構造をもつメソポーラスシリカが平均直径110nmの球状粒子として得られている(非特許文献6)。 As described above, mesoporous silica having a large specific surface area and a peculiar pore structure has been regarded as promising as a catalyst support or an adsorbent from the beginning, but the material created first is, for example, MCM-41 type is micron. The scale, SBA-15, had a primary particle size of submicron scale, and all had a difficulty in the particle size. For this reason, micronization has been studied with the aim of reducing the diffusion resistance to guest molecules by reducing the particle size and effectively utilizing the pores (for example, Non-Patent Document 5). By reacting tetraethyl orthosilicate (TEOS) dissolved in an aqueous solution of sodium hydroxide in the presence of an extremely low concentration of CTAB, mesoporous silica having an MCM-41 type structure is obtained as spherical particles having an average diameter of 110 nm (non- Patent Document 6).
また、アルカリ性水溶液に溶かしたケイ酸成分と界面活性剤の比を変えると、生成する球状のMCM−41型メソポーラスシリカ粒子の直径を65〜740nmの広い範囲で制御できる(非特許文献7)。このとき、界面活性剤としてCTABを用いると、規則的な細孔構造と乱れた球状の形態をもつ粒子が得られ、ドデシルアミンを用いると、逆に不規則な細孔構造と整った球状の形態をもつ粒子が生成することも明らかにされた。 Moreover, when the ratio of the silicic acid component dissolved in the alkaline aqueous solution and the surfactant is changed, the diameter of the generated spherical MCM-41 type mesoporous silica particles can be controlled in a wide range of 65 to 740 nm (Non-patent Document 7). At this time, when CTAB is used as a surfactant, particles having a regular pore structure and a disordered spherical shape are obtained, and when dodecylamine is used, an irregular pore structure and a regular spherical shape are obtained. It has also been clarified that morphological particles are produced.
50nm以下のメソポーラスシリカも報告されている。例えば、TEOS/CTAB/NaOH/H2O系の反応を短時間行った後に大過剰の水で希釈することにより、直径20nm程度の球状粒子が得られている(非特許文献8)。さらに、最近、上記のブロックコポリマーP123とアニオン界面活性剤の混合系を鋳型として、直径約20nmで、3次元−六方構造をもつメソポーラスシリカも合成された(非特許文献9)。 Mesoporous silica of 50 nm or less has also been reported. For example, spherical particles having a diameter of about 20 nm are obtained by performing a TEOS / CTAB / NaOH / H 2 O reaction for a short time and then diluting with a large excess of water (Non-patent Document 8). Furthermore, recently, mesoporous silica having a diameter of about 20 nm and having a three-dimensional hexagonal structure has been synthesized using the mixed system of the block copolymer P123 and the anionic surfactant as a template (Non-patent Document 9).
一方、メソポーラス材料は骨格がアモルファスで、細孔径が大きいために、ゼオライトに比べて触媒能や吸着特性に劣ることが分かってきた。このため、非晶質の細孔壁にミクロ孔をもたせ、機能化を図ることが検討され、上記MCM−41とSBA−15では、その細孔壁にミクロ孔が形成されていることが窒素吸着等温線の解析により明らかにされた(非特許文献10、11)。さらに、反応に用いるテトラエトキシシランとP123との仕込み比率を変えることによってミクロ孔の細孔容積を制御できることも見いだされている(非特許文献12)。
On the other hand, it has been found that mesoporous materials have inferior catalytic ability and adsorption characteristics compared to zeolite due to their amorphous skeleton and large pore size. For this reason, it has been studied to provide micropores in the amorphous pore walls to achieve functionalization. In the above MCM-41 and SBA-15, the micropores are formed in the pore walls. It was clarified by analysis of the adsorption isotherm (
以上に挙げた学術文献以外に、近年、メソポーラスシリカについて各種提案が特許文献になされている。すなわち、界面活性剤と珪酸ソーダとを混合して、界面活性剤とシリカとの複合体から、メソポーラスシリカを得ること(特許文献1、2)、あるいは、シリコンアルコキシドと酸との反応によりシリカを析出させる反応工程を、二段階で実施し、各段階での酸濃度を極めて厳格に調製することによって、耐酸性を有し、平滑性、配向性に優れた細孔を有するメソポーラスシリカを薄膜状で得ること(特許文献3)が提案されている。これらの提案で得られたシリカは、その細孔分布構造や耐酸性に富んだ膜状物に形成し、従前のシリカにはない特徴を備えたものを提供した点で評価される。しかしながら、そのいずれにもメソポーラスシリカ粒子サイズを、近年注目され、そして粒子サイズ自体で評価される、ナノメートルレベルの超微細粒子に調製することについては記載がないし、また示唆するところもない。
In addition to the academic literature listed above, various proposals for mesoporous silica have been made in the patent literature in recent years. That is, surfactant and sodium silicate are mixed to obtain mesoporous silica from a composite of surfactant and silica (
以上のように、メソポーラスシリカに関する従来技術では、大きな比表面積と特有の細孔構造というメソポーラスシリカの利点を活かすため、粒径を100nm以下に制御する技術と並んで、ミクロ孔とメソ孔を兼ね備えたシリカを創製する技術がそれぞれ個別に開発されているが、これらは各々個別の技術に留まっており、両方の技術を融合して2つの要件を満たした材料を提供するには至っていない。すなわち、ミクロ孔とメソ孔を合わせ持ち、かつ粒径が100nm以下の微細メソポーラスシリカを創出する新規技術の開発が望まれている。 As described above, in the conventional technology related to mesoporous silica, in order to take advantage of mesoporous silica such as a large specific surface area and a unique pore structure, it has both micropores and mesopores along with the technology for controlling the particle size to 100 nm or less. In addition, technologies for creating silica have been developed individually, but these have remained independent technologies, and it has not been possible to provide a material that satisfies both requirements by fusing both technologies. That is, it is desired to develop a new technique for creating fine mesoporous silica having both micropores and mesopores and having a particle size of 100 nm or less.
上記文献の中、特に非特許文献に記載された界面活性剤を用いる鋳型合成法は、その後、シリカ以外の物質系にも応用され、これまで金属酸化物や硫化物を骨格成分とする各種のメソ多孔体が多数合成されとともに無機および高分子ナノチューブの合成にも発展してきている(非特許文献13参照)。このような界面活性剤を鋳型とするナノポーラス・ナノチューブ材料の合成においては、ほとんど例外なく、単一の界面活性剤が鋳型成分として用いられて実施されている。これに対して本発明者らは、非イオン性界面活性剤と陽イオン界面活性剤を混合して得られるネマチック液晶相を反応場とすることにより、直径1μm程度のワイヤ状臭化銀と酸化スズが得られることを見出し、複合界面活性剤系がナノ構造体の合成に有効であるとの知見を得(非特許文献14参照)、この知見を基に、2種類の界面活性剤から成る液晶を鋳型として塩化白金酸を還元する手法を開発し、これにより外径6〜7nm、内径約3〜4nmの白金、パラジウムなどの貴金属ナノチューブを製造することに成功し、その成果を特許出願した(特許文献4参照)。さらに、このような貴金属ナノチューブの生成に有効な液晶は、2種類の界面活性剤が複合してできた円筒状ミセルをユニットとして構成されていることをX線回折実験と構造モデル計算により明らかにし、学術文献に発表した(非特許文献15)。 Among the above documents, the template synthesis method using a surfactant described in the non-patent document is applied to other material systems other than silica, and various types of metal oxides and sulfides as skeleton components have been used. A large number of mesoporous materials have been synthesized and developed to synthesize inorganic and polymer nanotubes (see Non-Patent Document 13). In the synthesis of nanoporous nanotube materials using such a surfactant as a template, a single surfactant is used as a template component with almost no exception. On the other hand, the present inventors use a nematic liquid crystal phase obtained by mixing a nonionic surfactant and a cationic surfactant as a reaction field, so that wire-like silver bromide having a diameter of about 1 μm and oxidation are obtained. Finding that tin can be obtained, gaining knowledge that the composite surfactant system is effective for the synthesis of nanostructures (see Non-Patent Document 14), and based on this knowledge, consists of two types of surfactants Developed a method for reducing chloroplatinic acid using liquid crystal as a template, and succeeded in producing noble metal nanotubes such as platinum and palladium with an outer diameter of 6 to 7 nm and an inner diameter of about 3 to 4 nm. (See Patent Document 4). Furthermore, X-ray diffraction experiments and structural model calculations revealed that liquid crystals effective for the generation of such precious metal nanotubes are composed of cylindrical micelles made by combining two types of surfactants. Published in academic literature (Non-Patent Literature 15).
そこで、本発明者らは、以上、従来技術について紹介、列挙したナノチューブに関する多岐にわたる研究報告、先行技術を念頭に置きつつ、これに対して、複合界面活性剤系を基礎とする鋳型合成法により、既往とは異なる新規な細孔形状、ミクロ孔とメソ孔を合わせ持ち、かつ粒径が100nm以下の新規なメソポーラスシリカを創出すべく、用いるシリカ源と還元剤の種類ならびに反応条件についてさらに鋭意研究を進めた結果、2種類の非イオン界面活性剤またはイオン性界面活性剤と親水部サイズの比較的大きい部類の非イオン界面活性剤との2成分を混和してできる分子組織に予め加えられたTEOSなどのケイ酸源を緩やかに反応させることにより、シリカを骨格とし、ミクロ孔とメソ孔を併せ持つ多孔質構造と直径数十nmのナノレベルのサイズを有し、球状形態を呈した新規なシリカナノ粒子が成長することを究明した。 Therefore, the present inventors have introduced the above-mentioned conventional techniques, and have conducted various research reports on the listed nanotubes and the prior art in mind, while the template synthesis method based on the composite surfactant system is used. In addition, in order to create a new mesoporous silica having a different pore shape, micropores and mesopores, and having a particle size of 100 nm or less, the types of silica source and reducing agent used, and reaction conditions are more intensive. As a result of further research, it was added in advance to the molecular structure formed by mixing two components of two types of nonionic surfactants or ionic surfactants and a relatively large class of nonionic surfactants with a hydrophilic part size. By slowly reacting a silicic acid source such as TEOS, a porous structure having silica as a skeleton and having both micropores and mesopores and a diameter of several tens of nm Has a size of Noreberu novel silica nanoparticles exhibited spherical form was investigated to grow.
すなわち、本発明者等は、鋭意研究をした結果、前示課題を以下に記載する技術的構成が講じられた発明によって解決、達成することに成功したものである。
すなわち、第1の発明は、(1)直径0.2〜0.5nmのミクロ孔をもつシリカ骨格から成り、かつ直径4〜5nmのメソ孔がヘキサゴナル状に配列した多孔質構造と直径40〜80nmの球状形態を有することを特徴とするシリカナノ粒子である。
That is, as a result of intensive studies, the present inventors have succeeded in solving and achieving the above-described problem by the invention in which the technical configuration described below is taken.
That is, the first invention is (1) a porous structure composed of a silica skeleton having micropores having a diameter of 0.2 to 0.5 nm, and mesopores having a diameter of 4 to 5 nm arranged in a hexagonal shape, and a diameter of 40 to Silica nanoparticles having a spherical shape of 80 nm.
以下、第2の発明は、前記第1の発明のシリカナノ粒子の製造方法を提示するものである。
すなわち、第2の発明は、(2)オルトケイ酸テトラエチル、オルトケイ酸テトラメチルなどの有機もしくは無機ケイ素化合物よりなる群から選択された一種類のケイ素化合物、ノナエチレングリコールモノヘキサデシルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレン脂肪酸エステル類、ポリオキシエチレンソルビタンモノステアレート等のポリオキシエチレンソルビタンエステル、ポリオキシエチレンアルキルフェニールエーテルよりなる群から選択された二種類の非イオン界面活性剤または非イオン界面活性剤一種とイオン性界面活性剤一種の合わせて二種類の界面活性剤、および水からなる反応混合物、またはこれに硝酸等の酸とドデシルアルコール等のアルコール類もしくはそのいずれか一方を加えた反応混合物を調製し、反応させることにより、直径0.2〜0.5nmのミクロ孔をもつシリカによってその骨格が構成され、かつ直径4〜5nmのメソ孔がヘキサゴナル状に配列した多孔質構造と直径40〜80nmの球状形態を有することを特徴とするシリカナノ粒子を生成し、回収することを特徴とする請求項1記載のシリカナノ粒子の製造方法である。
Hereinafter, the second invention presents the method for producing silica nanoparticles of the first invention.
That is, the second invention is (2) one kind of silicon compound selected from the group consisting of organic or inorganic silicon compounds such as tetraethyl orthosilicate and tetramethyl orthosilicate, and polyoxyls such as nonaethylene glycol monohexadecyl ether. Two types of nonionic surfactants selected from the group consisting of ethylene alkyl ethers, polyoxyethylene fatty acid esters, polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan monostearate, and polyoxyethylene alkyl phenyl ethers A reaction mixture composed of two surfactants, one ionic surfactant and one ionic surfactant, and water, or an acid such as nitric acid and an alcohol such as dodecyl alcohol, or either one of them. Counter By preparing and reacting the mixture, a porous structure having a skeleton composed of silica having micropores with a diameter of 0.2 to 0.5 nm, and mesopores with a diameter of 4 to 5 nm arranged in a hexagonal form and a diameter. 2. The method for producing silica nanoparticles according to
以下、第3ないし第6の発明は、第1の発明のシリカナノ粒子の用途に係る発明を提示するものである。
すなわち、第3の発明は、(3)前記(1)に記載のシリカナノ粒子を吸着剤として使用することを特徴とする、シリカナノ粒子から成る吸着剤。
第4の発明は、(4)前記吸着剤が、分子篩用吸着剤として使用されることを特徴とする、前記(3)項に記載のシリカナノ粒子から成る吸着剤。
第5の発明は、(5)前記(1)項に記載のシリカナノ粒子を充填材として使用することを特徴とする、シリカナノ粒子から成る充填材。
第6の発明は、(6)前記充填材が、クロマトグラフィー用充填材として使用されることを特徴とする、前記(5)項に記載のシリカナノ粒子から成る充填材。
Hereinafter, the third to sixth inventions present inventions related to the use of the silica nanoparticles of the first invention.
That is, the third invention, (3) characterized in that said the use of silica nanoparticles described as adsorbent (1), absorbent comprising shea Rikanano particles.
A fourth invention is (4) the adsorbent, characterized in Rukoto be used as molecular sieves adsorbent, wherein (3) absorbent comprising silica nanoparticles according to claim.
A fifth invention is (5) (1), characterized by using the silica particles described as a filler in sections, filler made of sheet Rikanano particles.
A sixth invention is (6) the filler is used as a filler for chromatography, characterized in Rukoto, the (5) filler consisting of silica nanoparticles according to claim.
本発明は、上記特有なプロセスによってミクロ孔とメソ孔とを備えた特有な構造の孔を有するシリカナノ粒子を提供するものであり、各種用途に供せられ、従来のものに比して次に述べる格別の作用効果が奏せられる、あるいは多様な機能を発現することが期待される。
1)これをクロマトグラフィー等の充填剤もしくはモレキュラーシーブとして用いた場合、ミクロ孔とメソ孔とが効率的・相乗的に作用して、数Åから数nmまでの大きさの異なる分子・物質をサイズの違いなどにより精密に分離するなどの顕著な効果が期待される。
2)これを吸着剤として用いた場合、ミクロ孔とメソ孔とが効率的・相乗的に作用して、数Åから数nmまでの大きさの異なる分子・物質を同時に除去するなどの顕著な効果が期待される。
3)これを物質分離材として用いた場合、その内径2〜4nmより小さい分子やイオンのみが粒子内部に浸入できるため、ノニールフェノール、フタル酸エステル等の内分泌撹乱物質やアミノ酸のような仕較的サイズの小さい物質とタンパク質等の高分子量の物質との分離が容易である。
The present invention provides silica nanoparticles having pores with a specific structure having micropores and mesopores by the above-mentioned specific process, and is provided for various uses, as compared with conventional ones. It is expected that the special effects described will be exhibited or that various functions will be exhibited.
1) When this is used as a packing material or molecular sieve for chromatography, etc., micropores and mesopores act efficiently and synergistically to create molecules and substances with different sizes from several to several nanometers. A remarkable effect such as precise separation due to the difference in size is expected.
2) When this is used as an adsorbent, micropores and mesopores work efficiently and synergistically to remove molecules and substances with different sizes from several to several nanometers simultaneously. Expected to be effective.
3) When this is used as a material separation material, only molecules and ions with an inner diameter of 2 to 4 nm can penetrate into the inside of the particle, so that endocrine disrupting substances such as nonylphenol and phthalate esters and amino acids are compared. It is easy to separate a substance having a small target size from a substance having a high molecular weight such as protein.
この出願の発明は、以上の特徴を持つものであるが、以下実施例を添付した図面に基づき、具体的に説明する。ただし、これらの実施例は、あくまでも本発明の一つの態様を開示するものであり、決して本発明を限定する趣旨ではない。すなわち、本発明のねらいとするところは、シリカを骨格とし、ミクロ孔とメソ孔を併せ持つ多孔質構造と直径数十nmのナノレベルのサイズを有し、球状形態を呈した新規なシリカナノ粒子を提供するところにあることは、前述したとおりである。 The invention of this application has the above-described features, and will be specifically described below with reference to the accompanying drawings. However, these examples merely disclose one aspect of the present invention, and are not intended to limit the present invention. That is, the aim of the present invention is to provide a novel silica nanoparticle having a spherical structure with a porous structure having both a micropore and a mesopore and a nano-level size of several tens of nanometers in diameter. What is provided is as described above.
また、製造方法の骨子は、少なくとも2種類の界面活性剤とケイ酸化合物の水溶液とを適切な条件で混合することによって得られる構造を鋳型として、ケイ酸成分を反応させることによって上記の構造的特徴を有するシリカナノ粒子を誘導するというものであり、鋳型を構築するための最適温度や混合条件も対象とするケイ酸種や用いる界面活性剤の特性によって多様に変化する。対して、実施例は、本発明を容易に実施しうるための一助として開示するものであって、あくまでもその一態様例を示すものにすぎず、本発明を構成するケイ酸種や製造方法もこの実施例によって限定されるべきではない。 In addition, the outline of the production method is the above structural structure obtained by reacting a silicate component with a structure obtained by mixing at least two kinds of surfactants and an aqueous solution of a silicate compound under appropriate conditions as a template. This is to induce silica nanoparticles having characteristics, and the optimum temperature and mixing conditions for constructing the template vary depending on the characteristics of the target silicic acid species and the surfactant used. On the other hand, the examples are disclosed as an aid for easily carrying out the present invention, and are merely an example of the embodiment, and the silicic acid species and the production method constituting the present invention are also included. It should not be limited by this example.
図1ならびに図4は、本発明のシリカナノ粒子の透過形電子顕微鏡による観察写真であり、これによると、本発明のシリカナノ粒子は、粒径40〜80nmの球状で、直径約5nmのメソ孔と0.3nmのミクロ孔を合わせ持つ多孔体であることが観察される。 FIG. 1 and FIG. 4 are transmission electron microscope observation photographs of the silica nanoparticles of the present invention. According to this, the silica nanoparticles of the present invention are spherical with a particle size of 40 to 80 nm and mesopores with a diameter of about 5 nm. It is observed that the porous body has both 0.3 nm micropores.
実施例1;
ガラス容器に2種類の界面活性剤のノナエチレングリコールモノドデシルエーテルCH3(CH2)11(CH2CH2O)9OH (C12EO9)0.29gとポリオキシエチレンソルビタンモノステアレート(Tween60)0.65g、および水0.54mlを入れて60℃で振とう機により20分間均一混合し、ついで、オルトケイ酸テトラエチル(TEOS、比重0.93、95wt%)0.47ml加え、同温度で2分間振とう混合した後、0℃に冷却してモル比TEOS/C12EO9/Tween60/H2O=4:1:1:60の ペースト状の液晶(LC)相を得た。このLC相を0℃で24時間熟成させた後、TEOSの加水分解によって生じたエタノールによるLC相の崩壊を防ぐための水10mlに続いて、酢酸アンモニウムを0.31g加え、40℃で3日間静置しゲル化させた。生成した軟質のゲルを水で洗浄後、遠心分離(回転数3000rpm)により上澄み液を取り除いた。さらに残った固相を水とエタノールで各2回ずつ洗浄した後、遠心分離し固体生成物を得た。最後に3℃/minの昇温速度で400℃まで加熱し、同温度で10分間焼成し、鋳型の界面活性剤を除去した。
以上のようにして合成したシリカ粒子の透過型電子顕微鏡写真を図1に示す。得られたシリカは、内径約4〜5nmのメソ孔をもち、その骨格部に直径約0.3nmのミクロ孔を有する外径約60nmのブロック状ナノ粒子であることがわかる。このシリカ粒子の細孔径分布曲線も約4.3nm付近で極大を与えた((図2)。また、前駆体となる液晶のX線回折パターンは、ヘキサゴナル構造が鋳型として作用していることを示唆している(図3)。
Example 1;
Two kinds of surfactant nonaethylene glycol monododecyl ether CH 3 (CH 2 ) 11 (CH 2 CH 2 O) 9 OH (C 12 EO 9 ) 0.29 g and polyoxyethylene sorbitan monostearate ( (Tween 60) 0.65 g and 0.54 ml of water were mixed at 60 ° C. with a shaker for 20 minutes, followed by addition of 0.47 ml of tetraethyl orthosilicate (TEOS, specific gravity 0.93, 95 wt%) at the same temperature. The mixture was shaken and mixed for 2 minutes and then cooled to 0 ° C. to obtain a paste-like liquid crystal (LC) phase having a molar ratio of TEOS / C 12 EO 9 / Tween 60 / H 2 O = 4: 1: 1: 60. After this LC phase was aged at 0 ° C. for 24 hours, 0.31 g of ammonium acetate was added, followed by 10 ml of water to prevent the LC phase from being destroyed by ethanol caused by hydrolysis of TEOS, and at 40 ° C. for 3 days. It was allowed to stand and gelled. The produced soft gel was washed with water, and then the supernatant was removed by centrifugation (rotation speed: 3000 rpm). Further, the remaining solid phase was washed twice with water and ethanol, and then centrifuged to obtain a solid product. Finally, it was heated to 400 ° C. at a rate of temperature increase of 3 ° C./min and baked at the same temperature for 10 minutes to remove the surfactant in the mold.
A transmission electron micrograph of the silica particles synthesized as described above is shown in FIG. The obtained silica has mesopores with an inner diameter of about 4 to 5 nm, and is a block-shaped nanoparticle with an outer diameter of about 60 nm having a micropore with a diameter of about 0.3 nm in the skeleton. The pore size distribution curve of this silica particle also gave a maximum at about 4.3 nm ((Fig. 2). The X-ray diffraction pattern of the liquid crystal used as the precursor shows that the hexagonal structure acts as a template. This suggests (Figure 3).
実施例2;
ガラス容器に2種類の界面活性剤のノナエチレングリコールモノドデシルエーテルCH3(CH2)11(CH2CH2O)9OH (C12EO9)0.29gとポリオキシエチレンソルビタンモノステアレート(Tween60)0.65g、および水0.54mlを入れて60℃で振とう機により20分間均一混合し、ついで、オルトケイ酸テトラエチル(TEOS、比重0.93、95wt%)0.12〜0.94ml加え、同温度で2分間振とう混合した後、20℃に冷却してモル比TEOS/C12EO9/Tween60/H2O=1〜8:1:1:60の ペースト状の液晶(LC)相を得た。このLC相を20℃で24時間熟成させた後、TEOSの加水分解によって生じたエタノールによるLC相の崩壊を防ぐための水10mlに続いて、酢酸アンモニウムを0.31g加え、20℃で7日間静置しゲル化させた。生成した軟質のゲルを 実施例1と同様な操作で処理し、固体生成物を得た。最後に3℃/minの昇温速度で400℃まで加熱し、同温度で10分間焼成し、鋳型の界面活性剤を除去した。
以上のようにして合成したシリカの透過型電子顕微鏡写真は、実施例1と同様に、内径約4nmのメソ孔と直径約0.3nmのミクロ孔を有する外径約60nmのブロック状ナノ粒子が生成していることを示した(図4)。また、100〜800℃の温度範囲で加熱処理した生成物の細孔径分布曲線は、図5のように変化した。この結果と、未処理試料の熱重量・示差熱分析曲線(図6)より、界面活性剤の主要部分が分解燃焼する180℃付近で直径約4nmのメソ孔が生じ、残留成分が燃焼する約280℃付近で直径2nm以下のミクロ孔が生成すると考えられる。さらに、400℃焼成物のX線回折パターンもd=6.1nmのややブロードな長周期ピークを与え、内径4nm、壁厚1nmのメソ孔の規則的配列が形成されていることが確認された。
Example 2;
Two kinds of surfactant nonaethylene glycol monododecyl ether CH 3 (CH 2 ) 11 (CH 2 CH 2 O) 9 OH (C 12 EO 9 ) 0.29 g and polyoxyethylene sorbitan monostearate ( 0.65 g of Tween 60) and 0.54 ml of water were mixed at 60 ° C. with a shaker for 20 minutes, and then tetraethyl orthosilicate (TEOS, specific gravity 0.93, 95 wt%) 0.12 to 0.94 ml In addition, the mixture was shaken and mixed for 2 minutes at the same temperature, then cooled to 20 ° C., and a paste-like liquid crystal having a molar ratio TEOS / C 12 EO 9 / Tween 60 / H 2 O = 1-8: 1: 1: 60 (LC ) Phase was obtained. After this LC phase was aged at 20 ° C. for 24 hours, 0.31 g of ammonium acetate was added, followed by 10 ml of water to prevent the LC phase from being destroyed by ethanol caused by hydrolysis of TEOS, and at 20 ° C. for 7 days. It was allowed to stand and gelled. The produced soft gel was processed in the same manner as in Example 1 to obtain a solid product. Finally, it was heated to 400 ° C. at a rate of temperature increase of 3 ° C./min and baked at the same temperature for 10 minutes to remove the surfactant in the mold.
As in Example 1, the transmission electron micrograph of the silica synthesized as described above shows block-like nanoparticles having an outer diameter of about 60 nm having mesopores having an inner diameter of about 4 nm and micropores having a diameter of about 0.3 nm. It was shown that it was generated (FIG. 4). Moreover, the pore diameter distribution curve of the product heat-processed in the temperature range of 100-800 degreeC changed like FIG. From this result and the thermogravimetric / differential thermal analysis curve of the untreated sample (FIG. 6), mesopores having a diameter of about 4 nm are formed around 180 ° C. where the main part of the surfactant decomposes and burns, and the remaining components burn. It is considered that micropores having a diameter of 2 nm or less are generated around 280 ° C. Furthermore, the X-ray diffraction pattern of the 400 ° C. fired product also gave a slightly broad long-period peak with d = 6.1 nm, and it was confirmed that a regular arrangement of mesopores with an inner diameter of 4 nm and a wall thickness of 1 nm was formed. .
実施例3;
ガラス容器に2種類の界面活性剤のノナエチレングリコールモノドデシルエーテルCH3(CH2)11(CH2CH2O)9OH (C12EO9)0.29gとポリオキシエチレンソルビタンモノステアレート(Tween60)0.65g、および水0.54mlを入れて60℃で振とう機により20分間均一混合し、ついで、オルトケイ酸テトラメチル(TMOS、比重0.93、95wt%)0.12〜0.94ml加え、同温度で2分間振とう混合した後、20℃に冷却してモル比TMOS/C12EO9/Tween60/H2O=1〜8:1:1:60の ペースト状の液晶(LC)相を得た。このLC相を20℃で3日間開放状態で放置し、ゲル化させた。生成した硬いゲルに酢酸アンモニウム0.31gを加え水で洗浄後、以下、実施例1と同様な操作で処理し、固体生成物を得た。最後に3℃/minの昇温速度で400℃まで加熱し、同温度で10分間焼成し、鋳型の界面活性剤を除去した。
生成物は、図7Bに示すX線回折パターンと窒素吸着等温線を与え、そのtプロット解析により、直径2〜4nmのメソ孔と直径1nm以下のミクロ孔を合わせ持つシリカ多孔体であることがわかった。上記ペースト状の液晶(LC)相に水を加え、以下実施1と同様な操作を行った場合も、図7Bに示すように、水を添加しない系と類似の結果が得られた。
Example 3;
Two kinds of surfactant nonaethylene glycol monododecyl ether CH 3 (CH 2 ) 11 (CH 2 CH 2 O) 9 OH (C 12 EO 9 ) 0.29 g and polyoxyethylene sorbitan monostearate ( Tween 60) 0.65 g and water 0.54 ml were mixed uniformly at 60 ° C. with a shaker for 20 minutes, and then tetramethyl orthosilicate (TMOS, specific gravity 0.93, 95 wt%) 0.12-0. After adding 94 ml and shaking and mixing at the same temperature for 2 minutes, the mixture was cooled to 20 ° C. and paste-like liquid crystal having a molar ratio TMOS / C 12 EO 9 / Tween 60 / H 2 O = 1-8: 1: 1: 60 ( LC) phase was obtained. This LC phase was left open at 20 ° C. for 3 days to gel. 0.31 g of ammonium acetate was added to the resulting hard gel, washed with water, and then treated in the same manner as in Example 1 to obtain a solid product. Finally, it was heated to 400 ° C. at a rate of temperature increase of 3 ° C./min and baked at the same temperature for 10 minutes to remove the surfactant in the mold.
The product gives an X-ray diffraction pattern and a nitrogen adsorption isotherm shown in FIG. 7B, and is a porous silica body having both mesopores having a diameter of 2 to 4 nm and micropores having a diameter of 1 nm or less by t-plot analysis. all right. Even when water was added to the paste-like liquid crystal (LC) phase and the same operation as in Example 1 was performed, similar results were obtained as in the system in which no water was added, as shown in FIG. 7B.
以上の実施例で開示したように、本発明の特有なメソポーラス細孔構造と特有な微細サイズを有してなるメソポーラスシリカは、シリカ生成反応を2種類の界面活性剤を組み合わせた特有な条件下で得られてなるものである。 As disclosed in the above embodiment, mesoporous silica comprising a specific fine size and specific mesoporous pore structure of the present invention, unique to a combination of two types of surfactants shea Li Ca formation reaction It is obtained under the conditions.
本発明によって提供されたシリカナノ粒子は、典型的には触媒担体ないしは触媒として使用され、化学反応に供されたとき、その特異な細孔構造によって反応場と反応チャネルとを備えたリアクターとしての機能を有し、このような細孔構造を備えていない従前のシリカに比し、優れた触媒効果を奏することが期待される。さらにまた、本発明の該特有な細孔構造は、分子篩効果を有し、これによって各種分子に対して、選択的分離剤として機能することが期待され、化学工学操作における単位操作として、重要な分離操作に大いに利用されることが期待される。また、分離剤以外にも、その特異な微細細孔によって吸着作用を有し、優れた吸着剤として大いに使用されることが期待される。以上は本発明のシリカの代表的用途について個別的に列記したものであるが、使用態様はこれだけに止まらず、今後、工業材料の基本的材料の一つとして定着し、各種分野に大いに利用されることが期待される。 The silica nanoparticles provided by the present invention are typically used as a catalyst carrier or catalyst, and when subjected to a chemical reaction, function as a reactor having a reaction field and a reaction channel due to its unique pore structure. Compared to conventional silica that does not have such a pore structure, it is expected to have an excellent catalytic effect. Furthermore, the unique pore structure of the present invention has a molecular sieving effect, which is expected to function as a selective separating agent for various molecules, and is important as a unit operation in chemical engineering operations. It is expected to be used greatly for separation operations. In addition to the separating agent, it has an adsorption action due to its unique fine pores, and is expected to be used greatly as an excellent adsorbent. The above is a list of typical uses of the silica of the present invention. However, the use mode is not limited to this, and it will be established as one of the basic materials of industrial materials and will be used greatly in various fields. It is expected that
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253108A JP4671216B2 (en) | 2004-08-31 | 2004-08-31 | Mesoporous silica nanoparticles having micropores and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253108A JP4671216B2 (en) | 2004-08-31 | 2004-08-31 | Mesoporous silica nanoparticles having micropores and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006069824A JP2006069824A (en) | 2006-03-16 |
JP4671216B2 true JP4671216B2 (en) | 2011-04-13 |
Family
ID=36150822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004253108A Expired - Fee Related JP4671216B2 (en) | 2004-08-31 | 2004-08-31 | Mesoporous silica nanoparticles having micropores and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4671216B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5093647B2 (en) * | 2007-03-19 | 2012-12-12 | 株式会社豊田中央研究所 | Method for producing metal oxide porous body having mesopores and micropores, metal oxide porous body having mesopores and micropores, and gas purification material using the same |
JP5141948B2 (en) * | 2007-07-09 | 2013-02-13 | 株式会社豊田中央研究所 | Spherical silica-based mesoporous material having a bimodal pore structure and method for producing the same |
JP5511194B2 (en) * | 2009-01-29 | 2014-06-04 | 国立大学法人広島大学 | Method for producing mesoporous silica nanoparticles |
WO2010088001A2 (en) * | 2009-02-02 | 2010-08-05 | Victor Shang-Yi Lin | Sequestration of compounds from microorganisms |
US9150422B2 (en) | 2009-03-12 | 2015-10-06 | Mitsui Chemicals, Inc. | Porous metal oxide, method for producing the same, and use of the same |
CN102574693B (en) | 2009-08-07 | 2016-01-20 | 松下电器产业株式会社 | The fine grain preparation method of mesoporous silica, mesoporous silica fine particle, the fine grain liquid dispersion of mesoporous silica, containing the fine grain composition of mesoporous silica with containing the fine grain moulded product of mesoporous silica |
US8828705B1 (en) | 2010-11-18 | 2014-09-09 | Iowa State University Research Foundation, Inc. | Magnetic mesoporous material for the sequestration of algae |
US9738534B2 (en) | 2012-08-27 | 2017-08-22 | Shinwa Chemical Industries Ltd. | Porous silica powder |
JP6084829B2 (en) * | 2012-11-29 | 2017-02-22 | 株式会社Ihi | Method for producing radioactive material sorbent |
US9556088B2 (en) | 2012-11-30 | 2017-01-31 | Iowa State University Research Foundation, Inc. | Adsorbent catalytic nanoparticles and methods of using the same |
US9567265B2 (en) | 2012-11-30 | 2017-02-14 | Iowa State University Research Foundation, Inc. | Catalysts and methods of using the same |
JP7085860B2 (en) * | 2018-03-05 | 2022-06-17 | 株式会社ファンケル | Antiviral agent |
CN116573648A (en) * | 2023-04-12 | 2023-08-11 | 山东邦凯新材料有限公司 | Preparation method of spherical silicon dioxide |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3587315B2 (en) * | 1994-05-20 | 2004-11-10 | 日本化学工業株式会社 | Mesoporous silica and method for producing the same |
JP4507499B2 (en) * | 2002-03-29 | 2010-07-21 | 株式会社豊田中央研究所 | Method for producing spherical porous body |
JP3842177B2 (en) * | 2002-07-03 | 2006-11-08 | 独立行政法人科学技術振興機構 | Noble metal nanotube and method for producing the same |
-
2004
- 2004-08-31 JP JP2004253108A patent/JP4671216B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006069824A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bhattacharyya et al. | Recent progress in the synthesis and selected applications of MCM-41: a short review | |
JP4671216B2 (en) | Mesoporous silica nanoparticles having micropores and method for producing the same | |
Wahab et al. | Periodic mesoporous organosilica materials incorporating various organic functional groups: synthesis, structural characterization, and morphology | |
Qi et al. | Micrometer-sized mesoporous silica spheres grown under static conditions | |
Zhang et al. | Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica | |
Guo et al. | Triblock copolymer synthesis of highly ordered large-pore periodic mesoporous organosilicas with the aid of inorganic salts | |
Li et al. | Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability | |
Maity et al. | Unraveling the formation mechanism of dendritic fibrous nanosilica | |
Yu et al. | Synthesis of mesoporous silica from commercial poly (ethylene oxide)/poly (butylene oxide) copolymers: toward the rational design of ordered mesoporous materials | |
Misran et al. | Nonsurfactant route of fatty alcohols decomposition for templating of mesoporous silica | |
Valtchev et al. | Hierarchical zeolites | |
CN1511785A (en) | A kind of silica mesoporous material and preparation method thereof | |
He et al. | Tuning pore size of mesoporous silica nanoparticles simply by varying reaction parameters | |
KR101171799B1 (en) | Method for recycling of silica etching waste and method for preparing mesoporous materials | |
JP2004143026A (en) | Spherical porous silica particles and method for producing the same | |
CN104030314A (en) | ZSM-5-based hierarchical porous molecular sieve material and preparation method thereof | |
JP2008535756A (en) | Mesoporous particles | |
Arslanov et al. | Hybrid materials based on graphene derivatives and porphyrin metal-organic frameworks | |
Colmenares et al. | Tailoring of ordered mesoporous silica COK-12: Room temperature synthesis of mesocellular foam and multilamellar vesicles | |
JPWO2010026975A1 (en) | Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same | |
WO2012110995A1 (en) | Silica core-shell microparticles | |
Chareonpanich et al. | Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique | |
Lv et al. | Hydrophobized hollow TS-1 zeolite as pickering interfacial catalyst for selective oxidation reactions | |
Shi et al. | Synthesis of highly porous SiO2–(WO3) x· TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization | |
Sun et al. | Ultrasound assisted morphological control of mesoporous silica with improved lysozyme adsorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20061222 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110112 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |