[go: up one dir, main page]

JP4671176B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP4671176B2
JP4671176B2 JP2006098666A JP2006098666A JP4671176B2 JP 4671176 B2 JP4671176 B2 JP 4671176B2 JP 2006098666 A JP2006098666 A JP 2006098666A JP 2006098666 A JP2006098666 A JP 2006098666A JP 4671176 B2 JP4671176 B2 JP 4671176B2
Authority
JP
Japan
Prior art keywords
receiving chamber
pressure receiving
movable plate
fluid
wall portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006098666A
Other languages
Japanese (ja)
Other versions
JP2007271001A (en
Inventor
隆亮 山田
真彰 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2006098666A priority Critical patent/JP4671176B2/en
Publication of JP2007271001A publication Critical patent/JP2007271001A/en
Application granted granted Critical
Publication of JP4671176B2 publication Critical patent/JP4671176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置に係り、例えば自動車用のエンジンマウント等として好適に採用され得る流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration damping device that obtains a vibration-proofing effect based on the flow action of an incompressible fluid sealed inside, and for example, a fluid that can be suitably used as an engine mount for automobiles, etc. The present invention relates to a sealed vibration isolator.

従来から、振動伝達系を構成する部材間に介装される防振装置として、内部に封入された非圧縮性流体の共振作用などの流動作用に基づく防振効果を利用した流体封入式の防振装置が知られている。かかる防振装置は、一般に、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結する一方、該本体ゴム弾性体で壁部の一部が構成された受圧室と、壁部の一部が可撓性膜で構成された平衡室を形成して、それら受圧室と平衡室にそれぞれ水等の非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設けた構造とされている。   Conventionally, as an anti-vibration device interposed between members constituting a vibration transmission system, a fluid-filled type anti-vibration using a vibration-proof effect based on a fluid action such as a resonance action of an incompressible fluid enclosed therein is used. Shaking devices are known. Such a vibration isolator generally connects a first mounting member and a second mounting member with a main rubber elastic body, while the main rubber elastic body forms a part of a wall portion, and a wall portion. Are formed with an equilibrium chamber composed of a flexible membrane, in which an incompressible fluid such as water is sealed in each of the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber and the equilibrium chamber communicate with each other. An orifice passage is provided.

また、特に自動車用エンジンマウント等では、低周波大振幅のエンジンシェイクと高周波小振幅のアイドリング振動等の複数の周波数域の振動に対して何れも有効な防振性能を得るために、例えば特許文献1(特開昭57−009340号公報)に記載されているように、液圧吸収機構が併せて採用される。かかる液圧吸収機構は、受圧室と平衡室を仕切る仕切部材において、可動板を板厚方向で所定量変位可能に収容すると共に該可動板の変位方向両側の壁部に対して受圧室と平衡室の各一方に開口する連通孔を形成せしめた構造とされている。   In particular, in an engine mount for an automobile, in order to obtain an effective anti-vibration performance against vibrations in a plurality of frequency ranges such as low-frequency large-amplitude engine shake and high-frequency small-amplitude idling vibration, for example, Patent Literature 1 (Japanese Patent Laid-Open No. 57-009340), a hydraulic pressure absorption mechanism is also employed. Such a fluid pressure absorbing mechanism accommodates the movable plate so as to be displaceable by a predetermined amount in the plate thickness direction in a partition member that partitions the pressure receiving chamber and the equilibrium chamber, and balances the pressure receiving chamber with respect to the wall portions on both sides in the displacement direction of the movable plate. The structure is such that a communication hole is formed in each one of the chambers.

このような液圧吸収機構を採用することにより、オリフィス通路のチューニング周波数域よりも高周波小振幅の振動入力時にオリフィス通路が実質的に目詰まりした際の受圧室の圧力変動を、可動板の微小変位に基づいて受圧室から平衡室に逃がすようにして吸収低減させることが可能となる。一方、低周波大振幅振動の入力時には、可動板が仕切部材における変位方向両側の壁部に重なって連通孔が閉塞されることにより、受圧室に有効な圧力変動が生ぜしめられて、オリフィス通路を通じての流体流動量が確保される。これにより、低周波大振幅の振動に対するオリフィス通路による防振効果を確保しつつ、高周波小振幅振動の入力時における高動ばね化を抑えて良好な防振性能の維持が図られ得ることとなる。   By adopting such a hydraulic pressure absorption mechanism, fluctuations in pressure in the pressure receiving chamber when the orifice passage is substantially clogged when a vibration having a high frequency and a small amplitude than the tuning frequency range of the orifice passage is input can be reduced. Absorption can be reduced by allowing the pressure receiving chamber to escape to the equilibrium chamber based on the displacement. On the other hand, when low frequency large amplitude vibration is input, the movable plate overlaps the walls on both sides of the partition member in the displacement direction and the communication hole is closed, so that effective pressure fluctuation is generated in the pressure receiving chamber, and the orifice passage The amount of fluid flow through is secured. As a result, while maintaining the vibration-proofing effect of the orifice passage against low-frequency large-amplitude vibration, it is possible to maintain high vibration-proof performance by suppressing high dynamic springs when inputting high-frequency small-amplitude vibration. .

ところで、かくの如きオリフィス通路や液圧吸収機構を備えた従来構造の流体封入式防振装置では、第一の取付部材と第二の取付部材の間に大きな振動荷重が入力されると、防振装置から異音や振動が発せられる場合がある。具体的には、流体封入式防振装置をエンジンマウントとして採用した自動車では、波状路やスピードブレーカ等を走行した場合に、車室内で乗員が体感できる程の異音や衝撃を発するおそれがある。   By the way, in a conventional fluid-filled vibration isolator having an orifice passage and a fluid pressure absorbing mechanism as described above, if a large vibration load is input between the first mounting member and the second mounting member, There is a case where abnormal vibration or vibration is emitted from the vibration device. Specifically, in an automobile that employs a fluid-filled vibration isolator as an engine mount, when traveling on a wavy road, a speed breaker, etc., there is a risk of generating abnormal noise or impact that can be felt by the passenger in the passenger compartment. .

このような異音や振動の発生は、衝撃的な振動の入力時において、オリフィス通路による受圧室と平衡室の間での流体流動や液圧吸収機構による受圧室の圧力吸収が追従しきれず、受圧室内に瞬間的に著しい負圧が生ぜしめられることにより、封入流体からの溶存気体の遊離や蒸発でキャビテーションと解せられる気泡が形成されることに起因すると考えられる。そして、かかる気泡は、受圧室内の負圧の増大に伴って成長して潰れる時に大きな衝撃を発生する。これが水撃圧となって、第一の取付部材や第二の取付部材に伝播し、自動車のボデーなどに伝達されることによって、前述の如き問題となる異音や衝撃が発生すると考えられる。   The occurrence of such abnormal noise and vibration, when shocking vibration is input, the fluid flow between the pressure receiving chamber and the equilibrium chamber by the orifice passage and the pressure absorption of the pressure receiving chamber by the hydraulic pressure absorbing mechanism cannot follow, This is considered to be due to the fact that a significant negative pressure is instantaneously generated in the pressure receiving chamber, and bubbles that can be understood as cavitation are formed by liberation and evaporation of dissolved gas from the sealed fluid. Such bubbles generate a large impact when they grow and collapse as the negative pressure in the pressure receiving chamber increases. This is considered to be the water hammer pressure, propagated to the first mounting member and the second mounting member, and transmitted to the body of the automobile, thereby generating abnormal noise and impact as described above.

このような問題に対処するために、例えば、特許文献2(特開昭61−171931号公報)には、受圧室と平衡室を仕切るように配設した液圧吸収用の仕切ゴム膜(可動膜)に対して切込みを形成した構造が提案されている。このような構造では、受圧室と平衡室の圧力差が大きくなった場合に、仕切ゴム膜が大きく弾性変形することに伴い、切込みが開口する。これにより、受圧室と平衡室の圧力差を解消することが可能とされている。   In order to deal with such a problem, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 61-171931), a hydraulic pressure absorbing partition rubber film (movable) is provided so as to partition the pressure receiving chamber and the equilibrium chamber. A structure in which a cut is formed in the film) has been proposed. In such a structure, when the pressure difference between the pressure receiving chamber and the equilibrium chamber becomes large, the partition rubber film is greatly elastically deformed so that the notch is opened. Thereby, it is possible to eliminate the pressure difference between the pressure receiving chamber and the equilibrium chamber.

しかしながら、このような特許文献1において提案されている構造では、受圧室に負圧が生じた場合だけでなく、正圧が生じた場合でも仕切ゴム膜の切込みが開口することから、振動入力時に受圧室と平衡室の相対的な圧力変動を十分に得ることが困難となる。その結果、オリフィス通路を通じての流体流動量を確保し難くなって、オリフィス通路による所期の防振効果が十分に発揮され難くなってしまうという問題があった。   However, in such a structure proposed in Patent Document 1, not only when a negative pressure is generated in the pressure receiving chamber, but also when a positive pressure is generated, the partition rubber film is opened, so that at the time of vibration input, It becomes difficult to sufficiently obtain the relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber. As a result, there is a problem that it becomes difficult to secure the amount of fluid flow through the orifice passage, and the desired vibration-proofing effect by the orifice passage is not sufficiently exhibited.

しかも、仕切ゴム膜に切込みを形成するだけでは、仕切ゴム膜の特性や厚さ寸法,形成した切込みの大きさや形状などを考慮しての切込みの開口条件の設定が難しいという問題がある。即ち、容易に切込みが開口してしまって不必要に受圧室の圧力変動が吸収されてしまい、オリフィス通路による防振効果が阻害されてしまったり、反対に、切込みが開口し難くなって受圧室における衝撃的な負圧が回避され難くなってしまったりするおそれがある。   Moreover, there is a problem that it is difficult to set the opening condition of the cut in consideration of the characteristics and thickness dimensions of the partition rubber film, the size and shape of the formed cut, and the like only by forming the cut in the partition rubber film. That is, the notch is easily opened and the pressure fluctuation in the pressure receiving chamber is unnecessarily absorbed, and the vibration isolation effect by the orifice passage is hindered. There is a risk that it will be difficult to avoid the shocking negative pressure.

加えて、仕切ゴム膜の変形の繰り返しによって、切込みが進行して大きくなったり、仕切ゴム膜の特性が経時的に変化することでも、切込みの開口条件が変化してしまうこととなる。それ故、目的とする特性を設定することが難しいだけでなく、設定した特性を安定して得ることも難しいという問題があったのである。   In addition, due to repeated deformation of the partition rubber film, the incision progresses and becomes larger, or the characteristics of the partition rubber film change over time, so that the opening condition of the cut changes. Therefore, there is a problem that it is difficult not only to set the desired characteristic but also to obtain the set characteristic stably.

特開昭57−009340号公報JP-A-57-009340 特開昭61−171931号公報Japanese Patent Laid-Open No. 61-171931

ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、大きな振動荷重の入力時に受圧室に発生する過大な負圧を速やかに解消してキャビテーションに起因すると考えられる異音や衝撃の発生を抑えることの出来る、構造が簡単で実用性の高い新規な構造の流体封入式防振装置を提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is to quickly eliminate the excessive negative pressure generated in the pressure receiving chamber when a large vibration load is input. It is an object of the present invention to provide a fluid-filled vibration isolator having a novel structure that has a simple structure and high practicality, and that can suppress the occurrence of abnormal noise and impact that may be caused by cavitation.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結して、壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室とを形成し、それら受圧室と平衡室に非圧縮性流体を封入せしめて該受圧室と該平衡室を相互に連通するオリフィス通路を設けると共に、該第二の取付部材で支持されて該受圧室と該平衡室を仕切る仕切部材において、可動板を板厚方向で所定量変位可能に収容すると共に該可動板の変位方向両側の壁部には該受圧室と該平衡室の各一方に開口する連通孔を形成した液圧吸収機構を構成してなる流体封入式防振装置において、前記可動板を弾性材で形成すると共に、前記液圧吸収機構における少なくとも前記受圧室側の壁部を弾性材で形成することにより、該液圧吸収機構における該受圧室側の壁部に対して該可動板が重ね合わされた状態でこれら壁部と可動板が該受圧室側に向かって凸となるように弾性変形せしめられ得るようにしたことにある。   That is, a feature of the present invention is that the first mounting member and the second mounting member are connected by the main rubber elastic body, and a pressure receiving chamber in which a part of the wall portion is configured by the main rubber elastic body, An orifice passage in which a part of the wall portion forms an equilibrium chamber composed of a flexible membrane, and the pressure receiving chamber and the equilibrium chamber are in communication with each other by enclosing an incompressible fluid in the pressure receiving chamber and the equilibrium chamber And a partition member that is supported by the second mounting member and divides the pressure receiving chamber and the equilibrium chamber, and accommodates the movable plate so as to be displaceable by a predetermined amount in the plate thickness direction and on both sides of the movable plate in the displacement direction. In the fluid-filled vibration isolator comprising a hydraulic pressure absorbing mechanism in which a communication hole that opens in each one of the pressure receiving chamber and the equilibrium chamber is formed in the wall portion, the movable plate is formed of an elastic material, At least the pressure receiving chamber side wall portion of the hydraulic pressure absorbing mechanism is formed of an elastic material. Accordingly, the wall and the movable plate are elastically deformed so as to protrude toward the pressure receiving chamber in a state where the movable plate is overlapped with the wall on the pressure receiving chamber side in the hydraulic pressure absorbing mechanism. It is to be able to be harassed.

本発明に従う構造とされた流体封入式防振装置において、例えばエンジンシェイク等の低周波大振幅振動の入力時には、受圧室と平衡室の間に惹起される相対的な圧力変動に基づいてオリフィス通路を流動せしめられる流体の共振作用等の流動作用に基づいて防振効果が発揮される。その際、液圧吸収機構では、可動板の変位が受圧室側および平衡室側の壁部への当接で制限されることにより充分に機能せず、受圧室の圧力変動が有効に生ぜしめられることとなる。一方、例えばアイドリング振動や走行こもり音等の高周波小振幅振動の入力時には、オリフィス通路の流通抵抗が著しく増大して実質的に閉塞状態となるが、液圧吸収機構において、可動板が受圧室側と平衡室側の壁部間で変位許容されることにより、受圧室の圧力変動が平衡室に逃がされるようにして吸収されて、著しい高動ばね化による防振性能の低下が回避されて、良好な防振性能が発揮されることとなる。特に、小振幅振動の入力時には、可動板が、受圧室側壁部と平衡室側壁部の間で非拘束状態で変位することから、極めて有効な液圧吸収作用による防振性能の向上効果が発揮されるのである。   In a fluid-filled vibration isolator having a structure according to the present invention, when an input of low-frequency large-amplitude vibration such as an engine shake, for example, an orifice passage is based on a relative pressure fluctuation caused between a pressure receiving chamber and an equilibrium chamber. The anti-vibration effect is exhibited based on the fluid action such as the resonance action of the fluid that causes the fluid to flow. At that time, in the hydraulic pressure absorption mechanism, the displacement of the movable plate is limited by contact with the wall portions on the pressure receiving chamber side and the equilibrium chamber side, so that it does not function sufficiently, and the pressure fluctuation in the pressure receiving chamber is effectively generated. Will be. On the other hand, for example, when high-frequency small-amplitude vibration such as idling vibration or running-over noise is input, the flow resistance of the orifice passage is remarkably increased and becomes substantially closed. However, in the hydraulic pressure absorption mechanism, the movable plate is on the pressure-receiving chamber side. By allowing displacement between the wall portion on the equilibrium chamber side, the pressure fluctuation of the pressure receiving chamber is absorbed so as to be released to the equilibrium chamber, and the deterioration of the vibration proof performance due to the remarkably high dynamic spring is avoided, Good vibration-proof performance will be exhibited. In particular, when a small amplitude vibration is input, the movable plate displaces between the pressure receiving chamber side wall and the equilibrium chamber side wall in an unconstrained state, so that an extremely effective anti-vibration performance improvement effect is exhibited. It is done.

ここにおいて、特に本発明に係る流体封入式防振装置では、過大で衝撃的な振動荷重が入力されることにより、急激な負圧が受圧室に発生した場合に、受圧室と平衡室の著しい圧力差によって、液圧吸収機構を構成する可動板が受圧室側の壁部に当接して重なり合う。これにより、液圧吸収機構において受圧室側の壁部に形成された連通孔は閉塞状態となるが、互いに重なり合った可動板と受圧室側壁部の両方が、本発明では、何れも弾性材で形成されていることから、これら可動板と受圧室側壁部が互いに重なり合ったままの状態で、受圧室と平衡室の相対的な圧力差に基づいて、受圧室側に向かって凸となるように膨らんで弾性変形することとなる。   Here, in particular, in the fluid filled type vibration damping device according to the present invention, when an excessive and shocking vibration load is input, when a sudden negative pressure is generated in the pressure receiving chamber, the pressure receiving chamber and the equilibrium chamber are notable. Due to the pressure difference, the movable plate constituting the hydraulic pressure absorbing mechanism comes into contact with and overlaps the wall portion on the pressure receiving chamber side. As a result, the communication hole formed in the wall portion on the pressure receiving chamber side in the hydraulic pressure absorbing mechanism is in a closed state, but both the movable plate and the pressure receiving chamber side wall portion that overlap each other are both made of an elastic material in the present invention. Therefore, the movable plate and the pressure receiving chamber side wall portion are overlapped with each other so that the movable plate and the pressure receiving chamber side wall are convex toward the pressure receiving chamber side based on the relative pressure difference between the pressure receiving chamber and the equilibrium chamber. It will swell and elastically deform.

このように可動板と受圧室側壁部が重なり合ったままで受圧室側に膨らむことにより、受圧室における著しい負圧が軽減乃至は解消されるのであり、その結果、受圧室におけるキャビテーションも効果的に回避され得る。   In this way, the negative pressure in the pressure receiving chamber is reduced or eliminated by bulging toward the pressure receiving chamber while the movable plate and the pressure receiving chamber side wall overlap with each other. As a result, cavitation in the pressure receiving chamber is effectively avoided. Can be done.

しかも、液圧吸収機構における受圧室側壁部が弾性材で形成されているが、通常の高周波小振幅振動の入力時には、受圧室側壁部に形成された連通孔を通じての流体流動が許容されており、受圧室側壁部自体に大きな圧力が及ぼされることが連通孔で回避されていることから、受圧室側壁部を弾性材で形成したことに起因する不具合は殆どないと考えられる。   In addition, the pressure receiving chamber side wall portion in the hydraulic pressure absorption mechanism is formed of an elastic material, but when normal high frequency small amplitude vibration is input, fluid flow through the communication hole formed in the pressure receiving chamber side wall portion is allowed. Since the communication hole avoids that a large pressure is exerted on the pressure receiving chamber side wall itself, it is considered that there are almost no problems caused by forming the pressure receiving chamber side wall portion with an elastic material.

従って、本発明に係る流体封入式防振装置では、オリフィス通路を通じての流体流動作用に基づく低周波大振幅振動に対する防振効果と、液圧吸収機構による高周波小振幅振幅に対する防振効果とを、何れも良好に確保しつつ、液圧吸収機構を構成する可動板と受圧室側壁部の弾性変形に基づいてキャビテーションの発生を軽減乃至は回避することが出来るのであり、それ故、過大な振動荷重入力時においてキャビテーションに起因して発生すると考えられる異音や衝撃が効果的に軽減乃至は解消され得ることとなるのである。   Therefore, in the fluid filled type vibration damping device according to the present invention, the vibration damping effect against the low frequency large amplitude vibration based on the fluid flow action through the orifice passage, and the vibration damping effect against the high frequency small amplitude amplitude by the hydraulic pressure absorption mechanism, Cavitation can be reduced or avoided based on the elastic deformation of the movable plate and the pressure receiving chamber side wall constituting the hydraulic pressure absorbing mechanism while ensuring good in both cases. This makes it possible to effectively reduce or eliminate abnormal noise and impact that are thought to be caused by cavitation during input.

また、本発明は、従来の液圧吸収機構を構成する部材や部品の材質を適当な弾性材に変更するだけでも容易に実現可能であり、それ故、特別な部品や特別や製造工程が必要とされたり、防振装置のサイズの大型化や重量化等が問題とされることもないのであり、従って、実用化が極めて有利に可能であるという利点もある。   In addition, the present invention can be easily realized only by changing the material of the members and parts constituting the conventional hydraulic pressure absorption mechanism to an appropriate elastic material, and therefore, special parts, special parts, and manufacturing processes are required. Therefore, there is no problem that the size and weight of the vibration isolator are increased, and therefore, there is an advantage that it can be practically used.

ところで、このような本発明においては、例えば、前記液圧吸収機構において弾性材で形成された前記受圧室側の壁部に対して、弾性材で形成された前記可動板を小さくして、該可動板の全体が、弾性材で形成された該受圧室側の壁部に対して重なり合うようにした構成が、好適に採用される。   By the way, in the present invention as described above, for example, the movable plate made of an elastic material is made smaller than the wall portion on the pressure receiving chamber side made of an elastic material in the hydraulic pressure absorbing mechanism, A configuration in which the entire movable plate overlaps with the pressure receiving chamber side wall portion formed of an elastic material is preferably employed.

このように、受圧室側壁部における弾性材で形成された部分よりも可動板を小さくすることにより、過大な振動荷重の入力時に、液圧吸収機構において可動板が受圧室側壁部に重なり合った状態下での全体としての受圧室側への弾性変形が容易に生ぜしめられることとなり、キャビテーションの回避効果が一層有利に発揮され得る。また、可動板の全体が、弾性材で形成された受圧室側壁部に重なり合った状態で弾性変形せしめられることから、可動板における局部的な屈曲や歪の集中が回避され得て、可動板の耐久性の向上も図られ得る。   Thus, by making the movable plate smaller than the portion formed of the elastic material in the pressure receiving chamber side wall, the movable plate overlaps the pressure receiving chamber side wall in the hydraulic pressure absorbing mechanism when an excessive vibration load is input. The elastic deformation toward the pressure receiving chamber as a whole is easily generated, and the effect of avoiding cavitation can be exhibited more advantageously. Further, since the entire movable plate is elastically deformed in a state where it overlaps the pressure receiving chamber side wall formed of an elastic material, local bending and strain concentration on the movable plate can be avoided, and Durability can also be improved.

すなわち、本発明においては、液圧吸収機構においては、受圧室側壁部における可動板が重なり合うところの全体が弾性材で形成されていることが望ましく、例えば受圧室側壁部の全体が弾性材で形成された構成も、好適に採用される。   That is, in the present invention, in the hydraulic pressure absorbing mechanism, it is desirable that the entire portion of the pressure receiving chamber side wall where the movable plates overlap is formed of an elastic material. For example, the entire pressure receiving chamber side wall is formed of an elastic material. Such a configuration is also preferably employed.

また、本発明においては、例えば、前記液圧吸収機構における前記平衡室側の壁部を硬質材で形成した構成が、好適に採用される。   In the present invention, for example, a configuration in which the wall portion on the equilibrium chamber side in the hydraulic pressure absorption mechanism is formed of a hard material is suitably employed.

このように、液圧吸収機構において硬質材からなる平衡室側壁部を採用することにより、受圧室においてキャビテーションの問題がない正圧の発生時において、平衡室側壁部と可動板の弾性変形に基づく受圧室の圧力吸収作用が抑えられる。その結果、低周波大振幅振動の入力時における受圧室の圧力変動が一層効果的に生ぜしめられて、オリフィス通路による防振効果がより有効に発揮されることとなる。   In this way, by adopting the equilibrium chamber side wall portion made of a hard material in the hydraulic pressure absorption mechanism, it is based on the elastic deformation of the equilibrium chamber side wall portion and the movable plate when the positive pressure is generated without the problem of cavitation in the pressure receiving chamber. The pressure absorbing action of the pressure receiving chamber is suppressed. As a result, the pressure fluctuation of the pressure receiving chamber at the time of inputting the low frequency large amplitude vibration is more effectively generated, and the vibration isolation effect by the orifice passage is more effectively exhibited.

一方、本発明においては、そのような平衡室側壁部を硬質材で形成する態様に代えて、液圧吸収機構における平衡室側の壁部を弾性材で形成した態様も、採用することが可能である。   On the other hand, in the present invention, instead of such a mode in which the equilibrium chamber side wall portion is formed of a hard material, a mode in which the equilibrium chamber side wall portion in the hydraulic pressure absorption mechanism is formed of an elastic material can also be adopted. It is.

このように、液圧吸収機構において弾性材からなる平衡室側壁部を採用することにより、大振幅振動の入力時に受圧室と平衡室の相対的な圧力差に基づいて可動板が平衡室側壁部に打ち当たる場合の打音や衝撃を軽減することが可能となる。なお、本発明では、同様な目的を達成するために、例えば、平衡室側壁部を弾性材で形成することに代えて、或いはそれに加えて、可動板と平衡室側壁部の当接面の少なくとも一方に、緩衝用の弾性突起を形成することも有効である。   In this way, by adopting the equilibrium chamber side wall portion made of an elastic material in the hydraulic pressure absorption mechanism, the movable plate is moved to the equilibrium chamber side wall portion based on the relative pressure difference between the pressure receiving chamber and the equilibrium chamber when large amplitude vibration is input. It is possible to reduce the hitting sound and impact when hitting. In the present invention, in order to achieve the same object, for example, instead of or in addition to forming the equilibrium chamber side wall portion with an elastic material, at least the contact surface between the movable plate and the equilibrium chamber side wall portion is used. On the other hand, it is also effective to form an elastic protrusion for buffering.

また、上述の如く、液圧吸収機構において弾性材からなる平衡室側壁部を採用する場合には、平衡室側壁部の剛性を受圧室側壁部の剛性よりも大きくした態様も好適に採用される。   Further, as described above, when the equilibrium chamber side wall portion made of an elastic material is employed in the hydraulic pressure absorbing mechanism, an aspect in which the rigidity of the equilibrium chamber side wall portion is larger than the rigidity of the pressure receiving chamber side wall portion is also preferably employed. .

これにより、受圧室側壁部では、可動板が重なり合った状態で、比較的容易に受圧室側に弾性変形が許容されることにより、受圧室におけるキャビテーションを効果的に防止せしめつつ、平衡室側壁部では、低周波大振幅振動の入力時における弾性変形に起因する受圧室の圧力吸収を抑えつつ、可動板の打ち当たりに際しての打音等の発生を軽減することが可能となる。なお、受圧室側壁部や平衡室側壁の弾性の設定は、例えば、形成する弾性材の材質を変更したり、壁部の厚さ寸法を調節したりする他、弾性材で形成された壁部の内部に帆布等の変形拘束材や合成樹脂膜や部分的な補強板などを埋設したり固着すること等によって、行うことが可能である。   As a result, in the pressure receiving chamber side wall portion, elastic deformation is allowed to the pressure receiving chamber side relatively easily in a state where the movable plates are overlapped, thereby effectively preventing cavitation in the pressure receiving chamber, and the equilibrium chamber side wall portion. Thus, it is possible to reduce the occurrence of a hitting sound or the like when the movable plate strikes while suppressing the pressure absorption of the pressure receiving chamber due to the elastic deformation at the time of inputting the low frequency large amplitude vibration. In addition, the elasticity of the pressure receiving chamber side wall and the equilibrium chamber side wall can be set by, for example, changing the material of the elastic material to be formed, adjusting the thickness of the wall, or the wall formed by the elastic material. This can be done by embedding or fixing a deformation restraining material such as a canvas, a synthetic resin film, a partial reinforcing plate, or the like.

また、本発明においては、例えば、弾性材で形成された前記液圧吸収機構における前記受圧室側の壁部のばね剛性を前記可動板のばね剛性よりも大きくした構成が、好適に採用される。これにより、通常の低周波大振幅振動や高周波小振幅振動の入力時における受圧室側壁部の過剰な変位を抑えて、オリフィス通路や液圧吸収機構おいて、目的とする防振効果が一層安定して発揮されるようにすることが出来る。 In the present invention, for example, configuration in which the spring rigidity of the walls of the pressure receiving chamber side in front Symbol hydraulic pressure absorbing mechanism formed of an elastic material is greater than the spring stiffness of the movable plate, it is preferably employed The This suppresses excessive displacement of the pressure-receiving chamber side wall during normal low-frequency large-amplitude vibration or high-frequency small-amplitude vibration input, making the desired vibration-proofing effect more stable in the orifice passage and hydraulic pressure absorption mechanism. Can be demonstrated.

上述したように、本発明に従う構造とされた流体封入式防振装置では、液圧吸収機構を巧く利用して受圧室における過大な負圧の発生を速やかに軽減乃至は解消してキャビテーションを防止する機能を付与することが出来るのであり、それ故、キャビテーションに起因する異音や衝撃の発生等の問題を、構造の簡単な構造で解決することが可能となるのである。   As described above, in the fluid-filled vibration isolator having a structure according to the present invention, the generation of excessive negative pressure in the pressure receiving chamber can be quickly reduced or eliminated by skillfully utilizing the hydraulic pressure absorption mechanism to prevent cavitation. Therefore, it is possible to solve problems such as abnormal noise and impact caused by cavitation with a simple structure.

先ず、図1〜2には、本発明の第一の実施形態としての自動車用エンジンマウント10が、示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が、防振すべき主たる振動の入力方向である図1中の上下方向に互いに離間配置されていると共に、それらの間の本体ゴム弾性体16が介装されることによって弾性的に連結されてなる構造を有している。   First, the engine mount 10 for motor vehicles as 1st embodiment of this invention is shown by FIGS. 1-2. In the engine mount 10, a first mounting member 12 as a first mounting member and a second mounting member 14 as a second mounting member are in the input direction of the main vibration to be shaken in FIG. They are spaced apart from each other in the vertical direction and have a structure that is elastically connected by interposing a main rubber elastic body 16 therebetween.

そして、図面には明示されていないが、第一の取付金具12がパワーユニット側に、第二の取付金具14がボデー側に、それぞれ取り付けられることにより、パワーユニットをボデーに対して防振支持せしめるようになっている。   Although not clearly shown in the drawings, the first mounting bracket 12 is mounted on the power unit side and the second mounting bracket 14 is mounted on the body side, so that the power unit is supported by vibration isolation against the body. It has become.

なお、そのような装着状態下では、第一の取付金具12と第二の取付金具14の間に、パワーユニット重量が初期荷重として及ぼされて、本体ゴム弾性体16が弾性変形せしめられることにより、第一の取付金具12と第二の取付金具14が互いに所定量だけ接近して位置せしめられる。また、かくの如き装着状態下、防振すべき主たる振動が、図1中の略上下方向に入力されて、第一の取付金具12と第二の取付金具14が接近/離隔方向に相対変位せしめられるようになっている。なお、以下の説明中、上下方向とは、原則として、図1中の上下方向をいうものとする。   In such a mounting state, the power unit weight is exerted as an initial load between the first mounting bracket 12 and the second mounting bracket 14, and the main rubber elastic body 16 is elastically deformed. The first mounting bracket 12 and the second mounting bracket 14 are positioned close to each other by a predetermined amount. Further, under such a mounting state, main vibrations to be vibrated are input in a substantially vertical direction in FIG. 1, and the first mounting bracket 12 and the second mounting bracket 14 are relatively displaced in the approach / separation direction. It is supposed to be squeezed. In the following description, the vertical direction means the vertical direction in FIG. 1 in principle.

より詳細には、第一の取付金具12は、円形の平板形状を有しており、中心部分には、上方に向かって突出する第一の取付ボルト18が固設されている。そして、この第一の取付ボルト18により、第一の取付金具12が、図示しないパワーユニットに取り付け固定されるようになっている。   More specifically, the first mounting bracket 12 has a circular flat plate shape, and a first mounting bolt 18 that protrudes upward is fixed to the center portion. Then, the first mounting bracket 12 is mounted and fixed to a power unit (not shown) by the first mounting bolt 18.

一方、第二の取付金具14は、筒金具20と底金具22によって、全体として深底の有底円筒形状をもって形成されている。   On the other hand, the second mounting bracket 14 is formed by a cylindrical bracket 20 and a bottom bracket 22 with a deep bottomed cylindrical shape as a whole.

筒金具20は、大径の円筒形状を有しており、軸方向中間部分に形成された段差部24を挟んで、軸方向上側が小径部26とされていると共に、軸方向下側が大径部28とされており、大径部28側の開口端縁部には、かしめ部30が一体形成されている。底金具22は、浅底の有底円筒形状を有しており、開口周縁部には、径方向外方に向かって広がるフランジ部32が一体形成されている。   The cylindrical metal fitting 20 has a large-diameter cylindrical shape, with the stepped portion 24 formed in the axially intermediate portion sandwiching the stepped portion 24, the axially upper side is a small-diameter portion 26, and the axially lower side is a large-diameter. A caulking portion 30 is integrally formed at the opening edge on the large diameter portion 28 side. The bottom metal fitting 22 has a shallow bottomed cylindrical shape, and a flange portion 32 that extends outward in the radial direction is integrally formed at the periphery of the opening.

そして、底金具22の開口部側に筒金具20が同軸的に重ね合わされ、底金具22のフランジ部32に対して、筒金具20のかしめ部30がかしめ固定されることにより、第二の取付金具14が構成されている。なお、底金具22の底壁部34には、下方に向かって突出する第二の取付ボルト36,36が固設されており、これらの第二の取付ボルト36,36によって、第二の取付金具14が、図示しないボデーに取り付け固定されるようになっている。   Then, the cylindrical fitting 20 is coaxially overlapped on the opening side of the bottom fitting 22, and the caulking portion 30 of the tubular fitting 20 is caulked and fixed to the flange portion 32 of the bottom fitting 22. A metal fitting 14 is configured. Note that second mounting bolts 36, 36 projecting downward are fixed to the bottom wall portion 34 of the bottom metal member 22, and the second mounting bolts 36, 36 provide a second mounting bolt. The metal fitting 14 is attached and fixed to a body (not shown).

また、本体ゴム弾性体16は、全体として略円錐台形状を有しており、軸方向下側の開口部には凹所19が形成されている。さらに、本体ゴム弾性体16には、その小径側端面に対して第一の取付金具12が加硫接着されていると共に、大径側端部外周面には、第二の取付金具14を構成する筒金具20の小径部26が加硫接着されている。要するに、本体ゴム弾性体16は、第一の取付金具12と筒金具20を有する一体加硫成形品38として形成されている。また、この本体ゴム弾性体16が筒金具20の小径部26に加硫接着されることにより、筒金具20の上側開口部(小径部26側の開口部)が、流体密に閉塞されている。   Moreover, the main rubber elastic body 16 has a substantially truncated cone shape as a whole, and a recess 19 is formed in the opening portion on the lower side in the axial direction. Further, the main rubber elastic body 16 has a first mounting bracket 12 vulcanized and bonded to the end surface on the small diameter side, and a second mounting bracket 14 is formed on the outer peripheral surface of the large diameter end portion. The small-diameter portion 26 of the tubular fitting 20 to be vulcanized is bonded. In short, the main rubber elastic body 16 is formed as an integrally vulcanized molded product 38 having the first mounting bracket 12 and the cylindrical bracket 20. Further, the main rubber elastic body 16 is vulcanized and bonded to the small-diameter portion 26 of the tubular metal fitting 20, whereby the upper opening (opening on the small-diameter portion 26 side) of the tubular metal fitting 20 is fluid-tightly closed. .

さらに、このように第一の取付金具12と筒金具20を含んで形成された本体ゴム弾性体16の一体加硫成形品38には、仕切部材40と可撓性膜としてのダイヤフラム42が組み付けられている。   Furthermore, a partition member 40 and a diaphragm 42 as a flexible film are assembled to the integrally vulcanized molded product 38 of the main rubber elastic body 16 formed so as to include the first mounting member 12 and the cylindrical member 20 as described above. It has been.

ダイヤフラム42は、薄肉のゴム膜によって形成されており、中央部分には充分な弛みを持たせて上方に膨らんだ形状で、変形が容易に許容されるようになっている。また、ダイヤフラム42の外周縁部には、円環形状を有する環状支持金具44が加硫接着されている。   The diaphragm 42 is formed of a thin rubber film, and has a shape that swells upward with a sufficient slack in the central portion, so that deformation is easily allowed. An annular support fitting 44 having an annular shape is vulcanized and bonded to the outer peripheral edge of the diaphragm 42.

そして、この環状支持金具44が、第二の取付金具14を構成する筒金具20の大径部28に嵌め入れられて、筒金具20の段差部24と底金具22のフランジ部32の間に重ね合わされており、筒金具20のかしめ部30によって、フランジ部32と共にかしめ固定されることによって、第二の取付金具14に対して組み付けられている。なお、このかしめ部30によるかしめ固定部位は、筒金具20の段差部24上に本体ゴム弾性体16と一体形成されたシールゴム層46と、環状支持金具44上にダイヤフラム42と一体形成されたシールゴム層48とによって、流体密にシールされている。   Then, the annular support fitting 44 is fitted into the large diameter portion 28 of the tubular fitting 20 constituting the second mounting fitting 14, and between the stepped portion 24 of the tubular fitting 20 and the flange portion 32 of the bottom fitting 22. The two mounting brackets 14 are assembled by being caulked and fixed together with the flange portion 32 by the caulking portion 30 of the cylindrical metal fitting 20. The caulking fixed portion by the caulking portion 30 includes a seal rubber layer 46 integrally formed with the main rubber elastic body 16 on the stepped portion 24 of the cylindrical metal fitting 20 and a seal rubber integrally formed with the diaphragm 42 on the annular support metal fitting 44. Layer 48 is fluid tightly sealed.

これにより、筒金具20の軸方向下側の開口部(大径部28側の開口部)が、ダイヤフラム42によって流体密に閉塞されている。その結果、筒金具20の内部で対向位置せしめられた本体ゴム弾性体16とダイヤフラム42の対向面間には、外部から流体密に仕切られた流体室50が形成されている。そして、この流体室50には、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等の非圧縮性流体が充填されて封入されている。   Thereby, the opening part (opening part by the side of the large diameter part 28) of the axial direction lower side of the cylinder metal fitting 20 is fluid-tightly obstruct | occluded by the diaphragm 42. FIG. As a result, a fluid chamber 50 that is fluid-tightly partitioned from the outside is formed between the opposing surfaces of the main rubber elastic body 16 and the diaphragm 42 that are opposed to each other inside the cylindrical metal fitting 20. The fluid chamber 50 is filled and filled with an incompressible fluid such as water, alkylene glycol, polyalkylene glycol, or silicone oil.

さらに、かかる流体室50には、仕切部材40が収容状態で配設されている。この仕切部材40は、全体として略円板形状を有しており、第二の取付金具14の軸直角方向に広がるようにして配設されており、外周部分が第二の取付金具14によって固定的に支持されている。   Further, the partition member 40 is disposed in the fluid chamber 50 in the accommodated state. The partition member 40 has a substantially disk shape as a whole, and is disposed so as to spread in the direction perpendicular to the axis of the second mounting bracket 14, and the outer peripheral portion is fixed by the second mounting bracket 14. Is supported.

而して、仕切部材40が流体室50に配設されることにより、流体室50が仕切部材40によって上下に二分されている。そして、仕切部材40の上方には、壁部の一部が本体ゴム弾性体16で構成された受圧室52が形成されている。一方、仕切部材40の下方には、壁部の一部がダイヤフラム42で構成された平衡室54が形成されている。   Thus, when the partition member 40 is disposed in the fluid chamber 50, the fluid chamber 50 is vertically divided into two by the partition member 40. And above the partition member 40, the pressure receiving chamber 52 in which a part of the wall portion is composed of the main rubber elastic body 16 is formed. On the other hand, below the partition member 40, an equilibrium chamber 54 in which a part of the wall portion is constituted by the diaphragm 42 is formed.

すなわち、受圧室52は、振動入力時に本体ゴム弾性体16の弾性変形に基づいて振動が及ぼされて、圧力変動が惹起されるようになっている。一方、平衡室54は、壁部を構成するダイヤフラム42の弾性変形に基づいて、容積変化が容易に許容されて圧力変動が速やかに吸収されるようになっている。   That is, the pressure receiving chamber 52 is vibrated based on the elastic deformation of the main rubber elastic body 16 when vibration is input, thereby causing pressure fluctuation. On the other hand, in the equilibrium chamber 54, the volume change is easily allowed based on the elastic deformation of the diaphragm 42 constituting the wall portion, and the pressure fluctuation is quickly absorbed.

ここにおいて、かかる仕切部材40は、互いに重ね合わせられたそれぞれ薄肉の略円板形状を有する上下板金具56,58を含んで構成されている。そして、これら上下板金具56,58が、互いに密接状態で重ね合わせられた外周縁部において、第二の取付金具14の段差部24とダイヤフラム42の環状支持金具44との間に挟まるれるようにして、かかる環状支持金具44と共に、かしめ部30によって第二の取付金具14に対してかしめ固定されている。これにより、仕切部材40は、第二の取付金具14を構成する筒金具20の段差部24の形成部位において、軸直角方向に広がる状態で配設されている。   Here, the partition member 40 is configured to include upper and lower plate fittings 56 and 58 each having a thin and substantially disk shape that are superposed on each other. The upper and lower plate fittings 56 and 58 are sandwiched between the stepped portion 24 of the second mounting fitting 14 and the annular support fitting 44 of the diaphragm 42 at the outer peripheral edge portion where the upper and lower plate fittings are superposed in close contact with each other. Thus, together with the annular support fitting 44, the second attachment fitting 14 is caulked and fixed by the caulking portion 30. Thereby, the partition member 40 is arrange | positioned in the formation part of the level | step-difference part 24 of the cylindrical metal fitting 20 which comprises the 2nd attachment metal fitting 14 in the state which spreads in the direction orthogonal to an axis.

また、上下板金具56,58は、中央部分が円形台地状に上方に向かって突出せしめられており、これら両板金具56,58の円形台地状の突出部分の外径寸法が互いに異ならされることによって、両板金具56,58の重ね合わせ面間には、外周部分を周方向に一周以下の所定長さで延びるオリフィス通路60が形成されている。   Further, the upper and lower plate fittings 56 and 58 have their central portions protruding upward in a circular plate shape, and the outer diameter dimensions of the circular plate-like protruding portions of the two plate fittings 56 and 58 are different from each other. Thus, an orifice passage 60 is formed between the overlapping surfaces of the two plate fittings 56 and 58 so that the outer peripheral portion extends in the circumferential direction by a predetermined length of one turn or less.

そして、このオリフィス通路60の一方の端部が、上板金具56に形成された連通孔62を通じて凹所19内に接続されていると共に、オリフィス通路60の他方の端部が、下板金具58に形成された連通孔63を通じて凹所19の外部に開口せしめられている。これにより、オリフィス通路60は、受圧室52と平衡室54を相互に連通せしめるようになっている。また、特に本実施形態では、オリフィス通路60の通路長さや通路断面積を適当に調節することにより、オリフィス通路60を流動せしめられる流体の共振作用に基づいて、エンジンシェイク等に相当する低周波大振幅振動に対して減衰効果が発揮されるようにチューニングされている。   One end of the orifice passage 60 is connected to the recess 19 through a communication hole 62 formed in the upper plate fitting 56, and the other end of the orifice passage 60 is connected to the lower plate fitting 58. It is opened to the outside of the recess 19 through the communication hole 63 formed in the bottom. Accordingly, the orifice passage 60 allows the pressure receiving chamber 52 and the equilibrium chamber 54 to communicate with each other. Further, particularly in the present embodiment, a low frequency large wave equivalent to an engine shake or the like is based on the resonance action of the fluid that can flow through the orifice passage 60 by appropriately adjusting the passage length and the passage sectional area of the orifice passage 60. It is tuned so as to exhibit a damping effect against amplitude vibration.

また、下板金具58の中央部分には、浅底の円形凹所64が形成されている。更に、この円形凹所64の底壁部66には、板厚方向に貫通する適数個の平衡室側連通孔68が形成されている。   A shallow circular recess 64 is formed in the central portion of the lower plate metal fitting 58. Further, an appropriate number of equilibrium chamber side communication holes 68 penetrating in the thickness direction are formed in the bottom wall portion 66 of the circular recess 64.

更にまた、上板金具56の中央部分には、上述の下板金具58の円形凹所64に略対応する径寸法で透孔70が形成されている。また、上板金具56における透孔70の開口周縁部には、上方に向かって立ち上がる環状竪片72が一体形成されている。そして、この透孔70には、円板形状のゴム壁板74が配設されており、その外周縁部が上板金具56の環状竪片72に対して加硫接着されている。要するに、ゴム壁板74は、上板金具56の透孔70内で軸直角方向に広がって、該透孔70を蓋するようにして配設されているのである。更に、このゴム壁板74には、板厚方向に貫通する適数個の受圧室側連通孔76が形成されている。   Furthermore, a through hole 70 is formed in the central portion of the upper plate metal member 56 with a diameter that substantially corresponds to the circular recess 64 of the lower plate metal member 58 described above. Further, an annular flange 72 rising upward is integrally formed at the opening peripheral edge of the through hole 70 in the upper plate metal fitting 56. A disc-shaped rubber wall plate 74 is disposed in the through hole 70, and the outer peripheral edge portion thereof is vulcanized and bonded to the annular flange 72 of the upper plate metal piece 56. In short, the rubber wall plate 74 extends in the direction perpendicular to the axis within the through hole 70 of the upper plate metal piece 56 and is disposed so as to cover the through hole 70. Further, an appropriate number of pressure receiving chamber side communication holes 76 penetrating in the thickness direction are formed in the rubber wall plate 74.

これにより、上下板金具56,58において、前記オリフィス通路60で囲まれたの中央部分では、下板金具58の円形凹所64の開口部が上板金具56に固着されたゴム壁板74で覆蓋されることにより、それら円形凹所64の底壁部66とゴム壁板74との軸方向対向面間において軸直角方向に略一定の間隙寸法で広がる円形の収容スペース78が形成されている。このことから明らかなように、本実施形態では、収容スペース78の受圧室側壁部がゴム弾性体からなるゴム壁板74で構成されている一方、平衡室側壁部が、剛性の下板金具58の底壁部66で構成されている。   As a result, in the central portion of the upper and lower plate fittings 56, 58 surrounded by the orifice passage 60, the opening of the circular recess 64 of the lower plate fitting 58 is a rubber wall plate 74 fixed to the upper plate fitting 56. By being covered, a circular accommodation space 78 is formed which extends with a substantially constant gap dimension in the direction perpendicular to the axis between the axially opposed surfaces of the bottom wall portion 66 of the circular recess 64 and the rubber wall plate 74. . As is clear from this, in the present embodiment, the pressure receiving chamber side wall portion of the accommodation space 78 is constituted by the rubber wall plate 74 made of a rubber elastic body, while the equilibrium chamber side wall portion is made of a rigid lower plate metal 58. The bottom wall portion 66 is formed.

そして、この収容スペース78に対して、可動板80が収容配置されている。かかる可動板80は、円板形状を有しており、ゴム弾性体によって形成されている。また、図2にも示されているように、この可動板80は、その厚さ寸法が、収容スペース78の上下壁部間寸法、即ち円形凹所64の底壁部66とゴム壁板74との対向面間距離よりも小さくされている。更に、可動板80の外径寸法は、収容スペース78の内径寸法、即ち円形凹所64の内径寸法よりも小さくされている。   A movable plate 80 is accommodated in the accommodation space 78. The movable plate 80 has a disc shape and is formed of a rubber elastic body. As shown in FIG. 2, the movable plate 80 has a thickness dimension between the upper and lower walls of the accommodation space 78, that is, the bottom wall 66 of the circular recess 64 and the rubber wall plate 74. It is made smaller than the distance between opposing surfaces. Furthermore, the outer diameter of the movable plate 80 is smaller than the inner diameter of the accommodation space 78, that is, the inner diameter of the circular recess 64.

これにより、可動板80は、収容スペース78内で、上下の壁部を構成するゴム壁板74と円形凹所64の底壁部66とへの当接によって制限される変位許容量の範囲内で、板厚方向での変位が許容されるようになっている。また、可動板80は、かかる変位許容量の間では、上下板金具56,58やゴム壁板74等から離隔して、それらによって変位抵抗を及ぼされることなく、全体が板厚方向に変位せしめられるようになっている。   Thereby, the movable plate 80 is within the allowable displacement range limited by the contact between the rubber wall plate 74 constituting the upper and lower wall portions and the bottom wall portion 66 of the circular recess 64 in the accommodation space 78. Therefore, displacement in the plate thickness direction is allowed. In addition, the movable plate 80 is separated from the upper and lower plate fittings 56, 58, the rubber wall plate 74, and the like between the allowable displacements, and is displaced in the plate thickness direction without being subjected to displacement resistance by them. It is supposed to be.

そして、かかる可動板80には、受圧室52の圧力が受圧室側連通孔76を通じて上面に及ぼされるようになっていると共に、平衡室54の圧力が平衡室側連通孔68を通じて下面に及ぼされるようになっている。それ故、第一の取付金具12と第二の取付金具14の間への振動入力時には、受圧室52と平衡室54の間に惹起される相対的な圧力変動に基づいて、可動板80が、収容スペース78内で板圧方向に変位せしめられることとなる。   The movable plate 80 is configured such that the pressure in the pressure receiving chamber 52 is exerted on the upper surface through the pressure receiving chamber side communication hole 76, and the pressure in the equilibrium chamber 54 is exerted on the lower surface through the equilibrium chamber side communication hole 68. It is like that. Therefore, at the time of vibration input between the first mounting bracket 12 and the second mounting bracket 14, the movable plate 80 is moved based on the relative pressure fluctuation caused between the pressure receiving chamber 52 and the equilibrium chamber 54. In the housing space 78, it is displaced in the plate pressure direction.

而して、オリフィス通路60のチューニング周波数よりも高周波数域となるアイドリング振動や走行こもり音等の高周波小振幅振動の入力時には、オリフィス通路60が実質的に閉塞状態となるが、受圧室52に発生する圧力変動が、収容スペース78内での可動板80の変位に基づいて平衡室54に逃がされるようにして吸収されることとなる。その結果、オリフィス通路60の実質的な閉塞化に伴う著しい動ばね特性の悪化が回避されて、良好な防振性能が発揮され得るのである。なお、このことから明らかなように、本実施形態では、上下板金具56,58とゴム壁板74によって形成された収容スペース78に可動板80を変位可能に収容配置せしめた構成により液圧吸収機構が構成されている。   Thus, when high frequency small amplitude vibrations such as idling vibrations and running noises that are higher than the tuning frequency of the orifice passage 60 are input, the orifice passage 60 is substantially closed, but the pressure receiving chamber 52 The generated pressure fluctuation is absorbed so as to escape to the equilibrium chamber 54 based on the displacement of the movable plate 80 in the accommodation space 78. As a result, it is possible to avoid a significant deterioration of the dynamic spring characteristics associated with the substantial closing of the orifice passage 60 and to exhibit a good vibration isolation performance. As is apparent from this, in this embodiment, the movable plate 80 is housed in the housing space 78 formed by the upper and lower metal plates 56 and 58 and the rubber wall plate 74 so as to be displaceably accommodated. The mechanism is configured.

なお、かかる状態下、収容スペース78の上側壁部を構成するゴム壁板74がゴム弾性体で形成されているが、受圧室側連通孔76を通じての流体流動が許容されることで、ゴム壁板74自体に対して大きな圧力が及ぼされることもない。それ故、ゴム壁板74の弾性変形に起因する不具合が問題となるようなこともない。   In this state, the rubber wall plate 74 constituting the upper side wall portion of the accommodation space 78 is formed of a rubber elastic body. However, the fluid flow through the pressure receiving chamber side communication hole 76 is allowed, so that the rubber wall No great pressure is exerted on the plate 74 itself. Therefore, a problem caused by elastic deformation of the rubber wall plate 74 does not become a problem.

また、オリフィス通路60による防振効果が要求されるエンジンシェイク等の低周波大振幅振動の入力時には、可動板80の変位量が収容スペース78の上下の壁部を構成する円形凹所64の底壁部66とゴム壁板74とに当接することで制限されることから、かかる可動板80の変位によって圧力変動が吸収されてしまうことがない。それ故、受圧室52と平衡室54の間での相対的な圧力変動が有効に生じせしめられて、オリフィス通路60を通じての流体流動に基づく防振効果が有効に発揮されることとなる。   Further, when low-frequency large-amplitude vibration such as an engine shake that requires an anti-vibration effect by the orifice passage 60 is input, the amount of displacement of the movable plate 80 is the bottom of the circular recess 64 constituting the upper and lower walls of the accommodation space 78. Since it is limited by contacting the wall portion 66 and the rubber wall plate 74, the pressure fluctuation is not absorbed by the displacement of the movable plate 80. Therefore, the relative pressure fluctuation between the pressure receiving chamber 52 and the equilibrium chamber 54 is effectively generated, and the vibration isolation effect based on the fluid flow through the orifice passage 60 is effectively exhibited.

さらに、上述の如き構造のエンジンマウント10の装着状態下、自動車の段差乗り越え等に際して過大な振動荷重が衝撃的に及ぼされた場合には、受圧室52に対して過大な負圧が発生することがある。   Further, when the engine mount 10 having the above-described structure is mounted and an excessive vibration load is impacted when the vehicle steps over, etc., an excessive negative pressure is generated in the pressure receiving chamber 52. There is.

その場合には、受圧室52と平衡室54の間に極めて大きな圧力差が惹起されて、この圧力差が仕切部材40にも及ぼされることとなる。ここにおいて、特に受圧室52に過大な負圧が発生すると、その負圧によって可動板80の全体がゴム壁板74に対して当接して重なり合った状態となる。更に、この可動板80の収容スペース78内での変位だけでは、受圧室52の負圧が吸収し切れないことから、互いに重なり合ったゴム壁板74と可動板80に対して、更に受圧室52側から負圧が及ぼされることとなる。この際、ゴム壁板74の連通孔62は、下面から可動板80が重ねられていることにより実質的に遮断状態であることから、ゴム壁板74に対しても大きな負圧が受圧室52側に作用せしめられる。   In that case, an extremely large pressure difference is induced between the pressure receiving chamber 52 and the equilibrium chamber 54, and this pressure difference is also exerted on the partition member 40. Here, in particular, when an excessive negative pressure is generated in the pressure receiving chamber 52, the entire movable plate 80 comes into contact with and overlaps the rubber wall plate 74 by the negative pressure. Further, since the negative pressure in the pressure receiving chamber 52 cannot be absorbed by only the displacement of the movable plate 80 in the accommodation space 78, the pressure receiving chamber 52 is further separated from the rubber wall plate 74 and the movable plate 80 that overlap each other. Negative pressure is applied from the side. At this time, the communication hole 62 of the rubber wall plate 74 is substantially cut off due to the movable plate 80 being overlapped from the lower surface, so that a large negative pressure is exerted on the rubber wall plate 74 as well. Acts on the side.

その結果、ゴム弾性体で形成されたゴム壁板74は、ゴム弾性体で形成された可動板80と重なり合ったままで、全体として受圧室52側に膨らんで凸となるようにして弾性変形することが許容されており、そのように弾性変形せしめられる。このゴム壁板74と可動板80の重なり合った状態下での全体としての受圧室52側への弾性変形に伴う変位により、受圧室52の負圧は速やかに軽減乃至は解消され得るのである。   As a result, the rubber wall plate 74 formed of a rubber elastic body is elastically deformed so as to bulge and protrude toward the pressure receiving chamber 52 as a whole while overlapping with the movable plate 80 formed of a rubber elastic body. Is allowed and is elastically deformed as such. The negative pressure in the pressure receiving chamber 52 can be quickly reduced or eliminated by the displacement accompanying the elastic deformation toward the pressure receiving chamber 52 as a whole when the rubber wall plate 74 and the movable plate 80 overlap each other.

従って、過大な振動荷重の入力時にも、受圧室52における過大な負圧の発生が回避され得て、キャビテーションが防止されることにより、キャビテーションに伴う気泡の発生が原因と考えられる異音や振動の発生が、効果的に防止され得るのである。   Therefore, even when an excessive vibration load is input, generation of excessive negative pressure in the pressure receiving chamber 52 can be avoided, and cavitation is prevented, so that abnormal noise and vibration that may be caused by generation of bubbles accompanying cavitation are prevented. The occurrence of this can be effectively prevented.

また、特に本実施形態では、可動板80の収容スペース78の受圧室側壁部がゴム弾性体からなるゴム壁板74で構成されているのに対して、平衡室側壁部が、剛性の下板金具58で構成されていることから、受圧室52に発生した大きな正圧が可動板80に及ぼされて可動板80が下板金具58に重なり合った場合でも、可動板80のそれ以上の変位が阻止される。それ故、例えばエンジンシェイク等の振動入力時に受圧室52に惹起される正圧が液圧吸収機構によって不必要に吸収されてしまうことが回避されることとなり、エンジンシェイク等の低周波大振幅振動の入力時には、受圧室52と平衡室54の間に相対的な圧力変動が効率的に生ぜしめられて、オリフィス通路60を通じての流体流動量が有利に確保されることにより、オリフィス通路60を流動せしめられる流体による防振効果が有効に発揮されるのである。   Further, particularly in this embodiment, the pressure receiving chamber side wall portion of the accommodation space 78 of the movable plate 80 is constituted by the rubber wall plate 74 made of a rubber elastic body, whereas the equilibrium chamber side wall portion is a rigid lower plate. Since the metal plate 58 is configured, even when a large positive pressure generated in the pressure receiving chamber 52 is exerted on the movable plate 80 and the movable plate 80 overlaps the lower plate metal plate 58, the displacement of the movable plate 80 is further increased. Be blocked. Therefore, for example, the positive pressure induced in the pressure receiving chamber 52 at the time of vibration input such as engine shake is avoided from being unnecessarily absorbed by the hydraulic pressure absorbing mechanism, and low frequency large amplitude vibration such as engine shake is avoided. , The relative pressure fluctuation is efficiently generated between the pressure receiving chamber 52 and the equilibrium chamber 54, and the amount of fluid flow through the orifice passage 60 is advantageously ensured. The anti-vibration effect by the squeezed fluid is effectively exhibited.

なお、可動板80は、ゴム壁板74に比して、弾性変形し易く設定されていることが望ましい。これにより、ゴム壁板74が不必要に弾性変形することに伴う、オリフィス通路60による防振効果の低下などの問題が回避される。また、可動板80がゴム壁板74に重なり合った状態で受圧室52側に膨らみ出すような弾性変形が、可動板80によって不必要に制限されてしまうようなことが防止される。また、可動板80の変位に際して、収容スペース78の内面に可動板80が当接する際の打音や衝撃の緩和も図られ得る。特に、かかる可動板80の打音等を軽減するために、例えば本実施形態に図示されているように、可動板80の収容スペース78内面への当接面には、緩衝用の弾性突起を形成しておくことも有効である。   It is desirable that the movable plate 80 is set to be easily elastically deformed as compared with the rubber wall plate 74. As a result, problems such as a decrease in the vibration isolation effect due to the orifice passage 60 due to unnecessary elastic deformation of the rubber wall plate 74 are avoided. Further, the elastic deformation that bulges toward the pressure receiving chamber 52 in a state where the movable plate 80 overlaps the rubber wall plate 74 is prevented from being unnecessarily limited by the movable plate 80. In addition, when the movable plate 80 is displaced, it is possible to reduce the impact sound and impact when the movable plate 80 comes into contact with the inner surface of the accommodation space 78. In particular, in order to reduce the hitting sound or the like of the movable plate 80, for example, as shown in the present embodiment, an elastic protrusion for buffering is provided on the contact surface of the movable plate 80 with respect to the inner surface of the accommodation space 78. It is also effective to form it.

以上、本発明の実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものでない。   As mentioned above, although embodiment of this invention was explained in full detail, this is an illustration to the last, Comprising: This invention is not interpreted limitedly by the specific description in this embodiment.

例えば、図3に示されているように、液圧吸収機構において、可動板80が配設される収容スペース78の下側壁部を、前記実施形態において上側壁部を構成するゴム壁板(上側ゴム壁板)74と同様にゴム弾性体からなる下側ゴム壁板82で構成しても良い。これにより、可動板80の下側ゴム壁板82に対する当接時における打音や衝撃を緩和することが可能となる。   For example, as shown in FIG. 3, in the hydraulic pressure absorbing mechanism, the lower wall portion of the accommodation space 78 in which the movable plate 80 is disposed is replaced with a rubber wall plate (upper side) constituting the upper wall portion in the embodiment. Similarly to the rubber wall plate 74, the lower rubber wall plate 82 made of a rubber elastic body may be used. As a result, it is possible to mitigate the impact sound and impact at the time of contact with the lower rubber wall plate 82 of the movable plate 80.

なお、図3に示された実施形態では、上側ゴム壁板74と下側ゴム壁板82では、要求される作用や目的が異なることから、ゴム材料や厚さ寸法等を互いに異ならせて、ばね剛性などのばね特性を相違させても良い。具体的には、例えば下側ゴム壁板82の剛性を上側ゴム壁板74の剛性よりも大きくすることにより、上側ゴム壁板74を下側ゴム壁板82よりも弾性変形し易くしてもよい。これにより、上側ゴム壁板74と可動板80が重なり合った状態下で受圧室52側に膨らみ出すような弾性変形に基づくキャビテーションの防止効果を有利に確保しつつ、下側ゴム壁板82と可動板80が重なり合った状態下で平衡室54側に膨らみ出すような弾性変形に起因する受圧室52の正圧吸収作用によるオリフィス効果の低下を抑えることが可能となる。   In the embodiment shown in FIG. 3, the upper rubber wall plate 74 and the lower rubber wall plate 82 have different actions and purposes, so that the rubber material, thickness dimension, and the like are different from each other. The spring characteristics such as spring stiffness may be different. Specifically, for example, by making the rigidity of the lower rubber wall plate 82 greater than the rigidity of the upper rubber wall plate 74, the upper rubber wall plate 74 may be more easily elastically deformed than the lower rubber wall plate 82. Good. Thereby, the upper rubber wall plate 74 and the movable plate 80 are overlapped with the lower rubber wall plate 82 while advantageously ensuring the effect of preventing cavitation based on elastic deformation such that the upper rubber wall plate 74 and the movable plate 80 swell toward the pressure receiving chamber 52 side. It is possible to suppress a decrease in the orifice effect due to the positive pressure absorbing action of the pressure receiving chamber 52 due to elastic deformation that bulges toward the equilibrium chamber 54 side in a state where the plates 80 overlap.

また、図4に示されているように、液圧吸収機構において、可動板80が配設される収容スペース78の上側ゴム壁板84を、可動板80よりも小さな大きさで形成しても良い。これにより、可動板80の可動有効面積を充分に確保しつつ、上側ゴム壁板84の有効面積を小さく設定することにより、上側ゴム壁板74のばね特性を硬めに調節することなどが可能となって、設計自由度やチューニング自由度の向上が図られ得る。   Further, as shown in FIG. 4, in the hydraulic pressure absorbing mechanism, the upper rubber wall plate 84 of the accommodation space 78 in which the movable plate 80 is disposed may be formed with a size smaller than that of the movable plate 80. good. As a result, it is possible to adjust the spring characteristics of the upper rubber wall plate 74 harder by setting the effective area of the upper rubber wall plate 84 small while ensuring the movable effective area of the movable plate 80 sufficiently. Thus, the degree of freedom in design and the degree of freedom in tuning can be improved.

本発明の一実施形態としてのエンジンマウントを示す縦断面説明図。The longitudinal section explanatory view showing the engine mount as one embodiment of the present invention. 図1に示されたエンジンマウントの要部拡大説明図。The principal part expansion explanatory drawing of the engine mount shown by FIG. 本発明の別の実施形態としてのエンジンマウントにおける、図2に対応する要部拡大説明図。The principal part expansion explanatory view corresponding to Drawing 2 in the engine mount as another embodiment of the present invention. 本発明の更に別の実施形態としてのエンジンマウントにおける、図2に対応する要部拡大説明図。The principal part expansion explanatory view corresponding to Drawing 2 in the engine mount as still another embodiment of the present invention.

符号の説明Explanation of symbols

10 エンジンマウント,12 第一の取付金具,14 第二の取付金具,40
仕切部材,42 ダイヤフラム,52 受圧室,54 平衡室,56 上板金具,58 下板金具,60 オリフィス通路,64 円形凹所,66 底壁部,68
平衡室側連通孔,74 ゴム壁板,76 受圧室側連通孔,78 収容スペース,80 可動板,82 下側ゴム壁板,84 上側ゴム壁板
10 engine mount, 12 first mounting bracket, 14 second mounting bracket, 40
Partition member, 42 Diaphragm, 52 Pressure receiving chamber, 54 Equilibrium chamber, 56 Upper plate fitting, 58 Lower plate fitting, 60 Orifice passage, 64 Circular recess, 66 Bottom wall portion, 68
Equilibrium chamber side communication hole, 74 Rubber wall plate, 76 Pressure receiving chamber side communication hole, 78 Storage space, 80 Movable plate, 82 Lower rubber wall plate, 84 Upper rubber wall plate

Claims (6)

第一の取付部材と第二の取付部材を本体ゴム弾性体で連結して、壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室とを形成し、それら受圧室と平衡室に非圧縮性流体を封入せしめて該受圧室と該平衡室を相互に連通するオリフィス通路を設けると共に、該第二の取付部材で支持されて該受圧室と該平衡室を仕切る仕切部材において、可動板を板厚方向で所定量変位可能に収容すると共に該可動板の変位方向両側の壁部には該受圧室と該平衡室の各一方に開口する連通孔を形成した液圧吸収機構を構成してなる流体封入式防振装置において、
前記可動板を弾性材で形成すると共に、前記液圧吸収機構における少なくとも前記受圧室側の壁部を弾性材で形成することにより、該液圧吸収機構における該受圧室側の壁部に対して該可動板が重ね合わされた状態でこれら壁部と可動板が該受圧室側に向かって凸となるように弾性変形せしめられ得るようにしたことを特徴とする流体封入式防振装置。
The first mounting member and the second mounting member are connected by a main rubber elastic body, and a pressure receiving chamber in which a part of the wall part is configured by the main rubber elastic body and a part of the wall part is a flexible film. Forming an equilibrated chamber, enclosing an incompressible fluid in the pressure receiving chamber and the equilibrium chamber to provide an orifice passage for communicating the pressure receiving chamber and the equilibrium chamber with each other, and the second mounting member In the partition member that is supported and partitions the pressure receiving chamber and the equilibrium chamber, the movable plate is accommodated so as to be displaceable by a predetermined amount in the plate thickness direction, and the pressure receiving chamber and the equilibrium chamber are disposed on the wall portions on both sides in the displacement direction of the movable plate. In a fluid-filled vibration isolator that constitutes a hydraulic pressure absorbing mechanism in which a communication hole that opens in one of the above is formed,
The movable plate is formed of an elastic material, and at least the pressure receiving chamber side wall portion of the hydraulic pressure absorption mechanism is formed of an elastic material, whereby the pressure plate chamber side wall portion of the hydraulic pressure absorption mechanism is formed. A fluid-filled type vibration damping device, wherein the wall portion and the movable plate can be elastically deformed so as to protrude toward the pressure receiving chamber side in a state where the movable plate is overlaid.
前記液圧吸収機構において弾性材で形成された前記受圧室側の壁部に対して、弾性材で形成された前記可動板を小さくして、該可動板の全体が、弾性材で形成された該受圧室側の壁部に対して重なり合うようにした請求項1に記載の流体封入式防振装置。   The movable plate made of an elastic material is made smaller than the wall on the pressure receiving chamber side made of an elastic material in the hydraulic pressure absorbing mechanism, and the entire movable plate is made of an elastic material. The fluid filled type vibration damping device according to claim 1, wherein the fluid filled type vibration damping device overlaps with a wall portion on the pressure receiving chamber side. 前記液圧吸収機構における前記平衡室側の壁部を硬質材で形成した請求項1又は2に記載の流体封入式防振装置。   The fluid-filled vibration isolator according to claim 1 or 2, wherein a wall portion on the equilibrium chamber side in the hydraulic pressure absorbing mechanism is formed of a hard material. 前記液圧吸収機構における前記平衡室側の壁部を弾性材で形成した請求項1又は2に記載の流体封入式防振装置。   The fluid-filled vibration isolator according to claim 1 or 2, wherein a wall portion on the equilibrium chamber side in the hydraulic pressure absorbing mechanism is formed of an elastic material. 前記液圧吸収機構における前記平衡室側の壁部の剛性を前記受圧室側の壁部の剛性よりも大きくした請求項4に記載の流体封入式防振装置。   5. The fluid filled type vibration damping device according to claim 4, wherein the rigidity of the wall portion on the equilibrium chamber side in the hydraulic pressure absorption mechanism is larger than the rigidity of the wall portion on the pressure receiving chamber side. 弾性材で形成された前記液圧吸収機構における前記受圧室側の壁部のばね剛性を前記可動板のばね剛性よりも大きくした請求項1乃至5の何れか1項に記載の流体封入式防振装置。
Fluid-filled according to the spring stiffness of the wall of the pressure receiving chamber side in any one of claims 1 to 5 and greater than the spring stiffness of the movable plate prior SL hydraulic pressure absorbing mechanism formed of an elastic material Anti-vibration device.
JP2006098666A 2006-03-31 2006-03-31 Fluid filled vibration isolator Active JP4671176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098666A JP4671176B2 (en) 2006-03-31 2006-03-31 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098666A JP4671176B2 (en) 2006-03-31 2006-03-31 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2007271001A JP2007271001A (en) 2007-10-18
JP4671176B2 true JP4671176B2 (en) 2011-04-13

Family

ID=38674011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098666A Active JP4671176B2 (en) 2006-03-31 2006-03-31 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4671176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014018768A1 (en) 2014-04-18 2015-10-22 Sumitomo Riko Company Limited Vibration Damping Device
KR20170138602A (en) * 2016-06-07 2017-12-18 현대자동차주식회사 Improved housing structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101261940B1 (en) 2007-12-12 2013-05-09 현대자동차주식회사 Engine mounting unit
JP5114799B2 (en) * 2008-06-30 2013-01-09 株式会社ブリヂストン Vibration isolator
CN103890443B (en) 2011-12-27 2015-11-25 住友理工株式会社 fluid-sealed vibration-damping device
JP5926141B2 (en) * 2011-12-27 2016-05-25 住友理工株式会社 Fluid filled vibration isolator
WO2013099051A1 (en) * 2011-12-27 2013-07-04 東海ゴム工業株式会社 Fluid-filled vibration isolation device
JP5829135B2 (en) * 2012-01-23 2015-12-09 住友理工株式会社 Fluid filled vibration isolator
JP5846939B2 (en) * 2012-01-31 2016-01-20 住友理工株式会社 Fluid filled vibration isolator
JP5893482B2 (en) * 2012-04-05 2016-03-23 東洋ゴム工業株式会社 Liquid-filled vibration isolator
CN104364554B (en) 2012-06-12 2016-05-11 住友理工株式会社 Fluid-sealed vibration-damping device
JP5926149B2 (en) * 2012-08-06 2016-05-25 住友理工株式会社 Fluid filled vibration isolator
JP7146654B2 (en) * 2019-01-14 2022-10-04 住友理工株式会社 Fluid-filled anti-vibration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113933A (en) * 1985-11-12 1987-05-25 Bridgestone Corp Vibration control equipment
JP2005273684A (en) * 2004-03-22 2005-10-06 Tokai Rubber Ind Ltd Fluid filled type vibration isolation device
JP2006144982A (en) * 2004-11-24 2006-06-08 Honda Motor Co Ltd Vibration-proofing support device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113933A (en) * 1985-11-12 1987-05-25 Bridgestone Corp Vibration control equipment
JP2005273684A (en) * 2004-03-22 2005-10-06 Tokai Rubber Ind Ltd Fluid filled type vibration isolation device
JP2006144982A (en) * 2004-11-24 2006-06-08 Honda Motor Co Ltd Vibration-proofing support device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014018768A1 (en) 2014-04-18 2015-10-22 Sumitomo Riko Company Limited Vibration Damping Device
JP2015206402A (en) * 2014-04-18 2015-11-19 住友理工株式会社 Vibration isolator
DE102014018768B4 (en) 2014-04-18 2018-10-18 Sumitomo Riko Company Limited Vibration damping device
KR20170138602A (en) * 2016-06-07 2017-12-18 현대자동차주식회사 Improved housing structure
KR102441397B1 (en) 2016-06-07 2022-09-08 현대자동차주식회사 Improved housing structure

Also Published As

Publication number Publication date
JP2007271001A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4671176B2 (en) Fluid filled vibration isolator
JP4330437B2 (en) Fluid filled vibration isolator
JP4359889B2 (en) Fluid filled vibration isolator
JP5154579B2 (en) Fluid filled vibration isolator
JP4688067B2 (en) Fluid filled engine mount
JP5535958B2 (en) Liquid-filled vibration isolator
JP5363093B2 (en) Fluid filled vibration isolator
JP6393192B2 (en) Fluid filled vibration isolator
JP5846939B2 (en) Fluid filled vibration isolator
JP5542565B2 (en) Fluid filled vibration isolator
JP2008002618A (en) Fluid filled vibration isolating device
JP4741540B2 (en) Fluid filled vibration isolator
JP5060846B2 (en) Fluid filled vibration isolator
JP2007271004A (en) Fluid-sealed vibration isolating device
JP4392667B2 (en) Fluid filled vibration isolator
JP2008163970A (en) Fluid-sealed vibration control device
JP4075066B2 (en) Fluid filled engine mount
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP5108658B2 (en) Fluid filled vibration isolator
JP5243863B2 (en) Fluid filled vibration isolator
JP4871902B2 (en) Fluid filled vibration isolator
JP2007139024A (en) Fluid-sealed vibration control device
JP2007051768A (en) Fluid-filled engine mount
JP5702250B2 (en) Liquid-filled vibration isolator
JP2008196508A (en) Fluid-sealed vibration isolating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4671176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350