[go: up one dir, main page]

JP4669665B2 - Polycation-modified liposome having no cytotoxicity and method for producing the same - Google Patents

Polycation-modified liposome having no cytotoxicity and method for producing the same Download PDF

Info

Publication number
JP4669665B2
JP4669665B2 JP2004117262A JP2004117262A JP4669665B2 JP 4669665 B2 JP4669665 B2 JP 4669665B2 JP 2004117262 A JP2004117262 A JP 2004117262A JP 2004117262 A JP2004117262 A JP 2004117262A JP 4669665 B2 JP4669665 B2 JP 4669665B2
Authority
JP
Japan
Prior art keywords
liposome
polycation
phospholipid
chitosan
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004117262A
Other languages
Japanese (ja)
Other versions
JP2005298407A (en
Inventor
正彦 阿部
秀樹 酒井
勝人 大竹
貴広 大久保
俊弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004117262A priority Critical patent/JP4669665B2/en
Publication of JP2005298407A publication Critical patent/JP2005298407A/en
Application granted granted Critical
Publication of JP4669665B2 publication Critical patent/JP4669665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Description

本発明は、細胞毒性のないポリカチオン修飾リポソームおよびその製造法に関し、更に詳細には、高い生体適合性と生分解性を併せ持ち、医用生体材料や医薬品分野の他、遺伝子運搬体として利用することのできる細胞毒性のないポリカチオン修飾リポソーム(以下、単に「ポリカチオン修飾リポソーム」という)およびその製造法に関する。 The present invention relates to a polycation-modified liposome having no cytotoxicity and a method for producing the same, and more particularly, having high biocompatibility and biodegradability, and used as a gene carrier in addition to medical biomaterials and pharmaceutical fields. The present invention relates to a non-cytotoxic polycation-modified liposome (hereinafter simply referred to as “polycation-modified liposome”) and a method for producing the same.

リポソームは、天然由来の界面活性剤であるリン脂質が水中で自己組織化することにより形成する二分膜の閉鎖小胞体である。リポソームは医薬品・香粧品の基材として応用が盛んに試みられているが、近年では特に遺伝子運搬体として応用する研究に注目が集まっている。すなわち、リポソームの内水相は、外界と隔離された小胞であるため、内包した物質を特定の部位に運搬することができ、かつ血清中に含まれる核酸分解酵素に代表される遺伝子分解成分からも保護できるため、遺伝子運搬体として注目されているのである。   Liposomes are bilayer closed vesicles formed by the self-assembly of phospholipids, which are naturally derived surfactants, in water. Liposomes have been actively applied as base materials for pharmaceuticals and cosmetics, but in recent years, attention has been focused on researches on application as gene carriers. That is, since the internal aqueous phase of liposomes is a vesicle isolated from the outside world, the encapsulated substance can be transported to a specific site, and a genetic degradation component typified by a nucleolytic enzyme contained in serum Therefore, it is attracting attention as a gene carrier.

生体内に遺伝子を導入する際に、リポソームは安全な運搬体であると言えるが、具体的に遺伝子運搬体として使用するには、まず、リポソ−ム内に遺伝子を封入するかまたはリポソームと遺伝子間における静電的引力を利用して、リポソームは遺伝子との複合体を形成する。次いで、リポソーム二分子膜と細胞膜とが融合を起こすことで遺伝子が細胞に取り込まれ、核内に到達することにより遺伝子の発現が起こる。   When introducing a gene into a living body, the liposome can be said to be a safe carrier, but in order to use it specifically as a gene carrier, the gene is first encapsulated in the liposome or the liposome and the gene. Using electrostatic attraction between them, liposomes form a complex with the gene. Next, the fusion of the liposome bilayer membrane and the cell membrane causes the gene to be taken into the cell, and the expression of the gene occurs by reaching the nucleus.

ところで、一般に、細胞表面および遺伝子は負に帯電していることが知られているが、このリポソームの表面を正に帯電させたカチオン性リポソームを用いると、負に帯電した遺伝子の捕捉力が強くなるため、より強固なリポソーム−遺伝子複合体を形成し、遺伝子運搬体としてより好ましいものが得られる。また、このようなカチオン性リポソームを使用すると、負に帯電した細胞表面との静電引力が働くため、リポソームと細胞との膜融合が起こりやすくなる。   By the way, it is generally known that the cell surface and the gene are negatively charged. However, when a cationic liposome having a positively charged surface of the liposome is used, the ability to capture the negatively charged gene is strong. Therefore, a stronger liposome-gene complex is formed, and a more preferable gene carrier is obtained. In addition, when such a cationic liposome is used, electrostatic attraction with a negatively charged cell surface works, and membrane fusion between the liposome and the cell is likely to occur.

このように、リポソームに対するカチオン種の導入は、リポソームを遺伝子運搬体と用いる上で、極めて有用であると言える。しかしながら、カチオン性界面活性剤やカチオン性リン脂質は、細胞毒性が強いものが多く、これを導入したカチオン性リポソームをイン・ビボ(in vivo)で応用することは困難であった。   Thus, it can be said that introduction of a cationic species into a liposome is extremely useful in using the liposome as a gene carrier. However, many cationic surfactants and cationic phospholipids have strong cytotoxicity, and it has been difficult to apply cationic liposomes into which they have been introduced in vivo.

従って、細胞毒性の問題がなく、遺伝子運搬体として使用可能なカチオン性リポソームの提供が求められており、このようなカチオン性リポソームの提供が本発明の課題である。   Therefore, there is a need to provide cationic liposomes that are free from cytotoxicity problems and can be used as gene carriers, and the provision of such cationic liposomes is an object of the present invention.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、リポソームにカチオン性多糖類、特にキチンを脱アセチル化することで得られるキトサンを作用させることにより、細胞毒性の問題のないポリカチオン修飾リポソームが得られることを見出し、本発明を完成した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have no problem of cytotoxicity by allowing chitosan obtained by deacetylating a cationic polysaccharide, particularly chitin, to act on liposomes. The inventors have found that polycation-modified liposomes can be obtained and completed the present invention.

すなわち本発明は、両性リン脂質とアニオン性リン脂質をそれらのモル比で、9.5:0.5ないし4:6で混合したものからなるリン脂質であるリポソームの表面を、カチオン性多糖類で修飾してなるポリカチオン修飾リポソームを提供するものである。 That is, the present invention provides a cationic polysaccharide on the surface of a liposome, which is a phospholipid comprising amphoteric phospholipid and anionic phospholipid mixed at a molar ratio of 9.5: 0.5 to 4: 6. The present invention provides a polycation-modified liposome obtained by modification with

また本発明は、両性リン脂質とアニオン性リン脂質をそれらのモル比で、9.5:0.5ないし4:6で混合したものからなるリン脂質であるリポソームの溶液を、カチオン性多糖類の酸性液中に滴下することを特徴とするポリカチオン修飾リポソームの製造法を提供するものである。 The present invention also provides a solution of liposomes, which are phospholipids comprising amphoteric phospholipids and anionic phospholipids mixed at a molar ratio of 9.5: 0.5 to 4: 6 , to cationic polysaccharides. The present invention provides a method for producing a polycation-modified liposome, which is dripped in an acidic solution.

更に本発明は、二酸化炭素の臨界点より高い温度および/または圧力下で、両性リン脂質とアニオン性リン脂質をそれらのモル比で、9.5:0.5ないし4:6で混合したものからなるリン脂質、カチオン性多糖類および二酸化炭素を含む混合流体中に、リポソーム中に封入すべき物質を含む水相を加えることを特徴とするポリカチオン修飾リポソームの製造法を提供するものである。 Furthermore, the present invention relates to a mixture of amphoteric phospholipids and anionic phospholipids in a molar ratio of 9.5: 0.5 to 4: 6 at a temperature and / or pressure higher than the critical point of carbon dioxide. A method for producing a polycation-modified liposome, characterized in that an aqueous phase containing a substance to be encapsulated in a liposome is added to a mixed fluid containing phospholipid, cationic polysaccharide and carbon dioxide. .

本発明によれば、ジパルミトイルフォスファチジルコリン(DPPC)等のリン脂質リポソーム水溶液とカチオン性多糖類水溶液とを混合することで、リポソーム二分子膜表面をカチオン性多糖類で修飾したポリカチオン修飾リポソームが調製される。   According to the present invention, a polycation modification in which a liposome bilayer surface is modified with a cationic polysaccharide by mixing a phospholipid liposome aqueous solution such as dipalmitoylphosphatidylcholine (DPPC) and a cationic polysaccharide aqueous solution. Liposomes are prepared.

また、DPPCのような両性リン脂質とジパルミトイルフォスファチジルグリセリル(DPPG)のようなアニオン性リン脂質とを混合することで、高い保持効率を有する両性リン脂質/アニオン性リン脂質リポソームが得られ、しかもこのものは負電荷を有するため、静電的相互作用により、効率良くポリカチオン修飾リポソームが得られる。   In addition, amphoteric phospholipid / anionic phospholipid liposomes with high retention efficiency can be obtained by mixing amphoteric phospholipids such as DPPC with anionic phospholipids such as dipalmitoylphosphatidylglyceryl (DPPG). Moreover, since it has a negative charge, polycation-modified liposomes can be efficiently obtained by electrostatic interaction.

さらに、超臨界逆相蒸発法を適用することで、一段階でポリカチオン修飾リポソームの調製が可能となった。   Furthermore, by applying the supercritical reverse phase evaporation method, polycation-modified liposomes can be prepared in one step.

本発明のポリカチオン修飾リポソームは、主な構成成分がリン脂質であるリポソームの表面を、カチオン性多糖類で修飾したものである。   The polycation-modified liposome of the present invention is obtained by modifying the surface of a liposome whose main component is a phospholipid with a cationic polysaccharide.

リポソームを修飾するために用いるカチオン性多糖類としては、キトサン、ポリガラクトサミン等の天然カチオン性多糖類の他、デキストラン、セルロース、β−(1,3)−グルカン等の多糖類に合成的にカチオン基を導入したものが挙げられる。このうち、キトサンは、次の式、
で表される化合物である。
Cationic polysaccharides used to modify liposomes include synthetic cationic cations on polysaccharides such as dextran, cellulose, and β- (1,3) -glucan in addition to natural cationic polysaccharides such as chitosan and polygalactosamine. And those having a group introduced therein. Of these, chitosan has the following formula:
It is a compound represented by these.

このものは、N−アセチル−2−アミノ−2−デオキシ−D−グルコピラノースがβ(1‐4)結合した直鎖型の天然高分子化合物であるキチンを脱アセチル化することで得られるものであり、例えば、キトサン1000(生化学工業(株)製)などとして市販されているものである。このものは、制癌作用、血圧上昇抑制作用、コレステロール減少作用など、様々な化学的・生物学的機能を有するが、水、アルカリ、アルコール、有機溶媒に不溶で、弱酸性溶液にのみ溶解する。そして、弱酸性溶液中において、キトサンのアミノ基がアンモニウム化し、陽イオン性高分子(ポリカチオン)を形成する。   This is obtained by deacetylating chitin, which is a linear natural polymer compound in which N-acetyl-2-amino-2-deoxy-D-glucopyranose is β (1-4) linked For example, it is commercially available as Chitosan 1000 (manufactured by Seikagaku Corporation). This product has various chemical and biological functions such as anticancer effect, blood pressure increase suppression effect, cholesterol reduction effect, etc., but is insoluble in water, alkali, alcohol and organic solvents, and only soluble in weakly acidic solution. . Then, in the weakly acidic solution, the amino group of chitosan is ammoniumated to form a cationic polymer (polycation).

本発明において、カチオン性多糖類によりリポソームを修飾し、ポリカチオン修飾リポソームを得るための方法としては、例えば次の方法が挙げられる。   In the present invention, examples of the method for obtaining a polycation-modified liposome by modifying a liposome with a cationic polysaccharide include the following methods.

(1)公知の方法により、主な構成成分がリン脂質であるリポソームの溶液(以下、「リ ポソーム液」という)を調製し、これをカチオン性多糖類の酸性液中に滴下し、ポリ カチオン修飾リポソームを得る
(2)二酸化炭素の臨界点より高い温度および/または圧力下で、リン脂質、カチオン性 多糖類および二酸化炭素を含む混合流体中に、リポソーム中に封入すべき物質を含む 水相を加え、その後減圧し、二酸化炭素を除去してポリカチオン修飾リポソームを得 る。
(1) A liposome solution (hereinafter referred to as “liposome solution”) whose main component is a phospholipid is prepared by a known method, and this solution is dropped into an acidic solution of a cationic polysaccharide to prepare a polycation. (2) An aqueous phase containing a substance to be encapsulated in a liposome in a mixed fluid containing phospholipid, cationic polysaccharide and carbon dioxide under a temperature and / or pressure higher than the critical point of carbon dioxide After that, the pressure is reduced and carbon dioxide is removed to obtain a polycation-modified liposome.

第一の方法により、ポリカチオン修飾リポソームを得るには、まず、公知方法で封入すべき物質を含む水相を封入したリポソームを製造することが必要である。この方法としては、超音波処理法、界面活性剤除去法、有機溶媒注入法、凍結融解法、逆相蒸発法等が挙げられるが、例えば、バンガム(Bangham)法等によることが好ましい。   In order to obtain a polycation-modified liposome by the first method, it is first necessary to produce a liposome encapsulating an aqueous phase containing a substance to be encapsulated by a known method. Examples of this method include an ultrasonic treatment method, a surfactant removal method, an organic solvent injection method, a freeze-thaw method, a reverse phase evaporation method, and the like. For example, the Bangham method is preferred.

また、上記リポソームを形成するために用いる脂質としては、ジパルミトイルフォスファチジルコリン(DPPC)、ジラウロイルホスファチジルコリン(DLPC)、ジミリストイルホスファチジルコリン(DMPC)、ジステアロイルホスファチジルコリン(DSPC)、ジオレオイルホスファチジルコリン(DOPC)等のホスファチジルコリンや、大豆レシチン(SBL)、卵黄レシチン(EYL)等のリン脂質あるいは非イオン性の両親媒性分子等が用いられる。   Examples of the lipid used to form the liposome include dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine ( Phosphatidylcholine such as DOPC), phospholipids such as soybean lecithin (SBL), egg yolk lecithin (EYL), or nonionic amphiphilic molecules are used.

上記脂質には、更に必要により、適当な物質、例えばコレステロール、α−コレスタノール、β−コレスタノール、コレスタン、コレステロールエステル等の膜安定化物質として働くコレステロール類や、ジセチルホスフェイト等の荷電物質を加えることができる。   For the above lipids, if necessary, suitable substances such as cholesterols acting as membrane stabilizing substances such as cholesterol, α-cholestanol, β-cholestanol, cholestane and cholesterol esters, and charged substances such as dicetyl phosphate Can be added.

更に、上記脂質として、両性リン脂質とアニオン性リン脂質を混合して用いることにより、アニオン性リポソームとすることができ、カチオン性多糖類による修飾がより容易となる。すなわち、例えば、フスファチジルコリンのような脂質(両性リン脂質)と、例えば、ジパルミトイルフォスファチジルグリセリル(DPPG)等のフォスファチジルグリセリル、ジパルミトイルフォスファチジルエタノールアミン等のフォスファチジルエタノールアミン、ジパルミトイルフォスファチジン酸等のフォスファチジン酸のようなアニオン性リン脂質を適切な比率、例えば、それらのモル比で、4:6以上、好ましくは、9.5:0.5、特に好ましくは、9:1〜7.5:2.5で用いることにより、アニオン性リポソームを得ることができき、このアニオン性リン脂質自体の静置分散安定性および内包物の保持性も高いものである。そして、このもの自体アニオン性であるから、カチオン性多糖類の酸性水溶液を作用させた場合の反応性が高く、より好ましい性質のポリカチオン修飾リポソームが得られる。   Furthermore, by using a mixture of amphoteric phospholipid and anionic phospholipid as the lipid, an anionic liposome can be obtained, and modification with a cationic polysaccharide becomes easier. That is, for example, lipids (amphoteric phospholipids) such as phosphatidylcholine, and phosphatidylethanol such as phosphatidylglyceryl such as dipalmitoylphosphatidylglyceryl (DPPG) and dipalmitoylphosphatidylethanolamine An anionic phospholipid such as phosphatidic acid such as amine or dipalmitoyl phosphatidic acid is used in an appropriate ratio, for example, in a molar ratio of 4: 6 or more, preferably 9.5: 0.5, Particularly preferably, an anionic liposome can be obtained by using at 9: 1 to 7.5: 2.5, and the anionic phospholipid itself has a high dispersion stability and a high retention of inclusions. Is. Since this is itself anionic, it has high reactivity when an acidic aqueous solution of a cationic polysaccharide is allowed to act, and a polycation-modified liposome having more preferable properties can be obtained.

一方、第一の方法において、リポソームの修飾に用いるカチオン性多糖類酸性溶液の例としては、キトサンを2ないし2000ppmの濃度、好ましくは5ないし200ppmの濃度で含み、そのpHが3以下、好ましくは、pH2ないし3の水溶液が挙げらる。このようなキトサン濃度およびpHであれば、キトサンは溶解し、しかも当該溶液中において、キトサンのアミノ基がアンモニウム化し、リポソームの被覆に適する陽イオン性高分子(ポリカチオン)が形成される。   On the other hand, in the first method, as an example of the cationic polysaccharide acidic solution used for the modification of liposome, chitosan is contained at a concentration of 2 to 2000 ppm, preferably 5 to 200 ppm, and its pH is 3 or less, preferably And aqueous solutions having a pH of 2 to 3. At such a chitosan concentration and pH, chitosan dissolves, and in the solution, the amino group of chitosan is ammoniumated to form a cationic polymer (polycation) suitable for liposome coating.

上記したカチオン性多糖類酸性溶液によるリポソームの修飾は、カチオン性多糖類酸性溶液中に、撹拌下、前記のようにして調製したリポソームを滴下し、十分に混合した後、冷暗所に12時間程度静置し、更に固液分離したのち、精製水ないし緩衝液に再分散することにより行われる。このうち、冷暗所での静置ないし再分散の工程は、繰り返して行っても良い。このカチオン性多糖類の酸性溶液によるリポソームの修飾にあたっては、リポソームを形成する脂質と、キトサン等のカチオン性多糖類が、それらの重量比で、1:0.00005〜1:0.005、更には、1:0.0001〜1:0008、特に、1:0.0003〜1:0.0006とすることが好ましい(なお、両性リン脂質とアニオン性リン脂質とを混合したアニオン性リポソームの場合は、リポソームを形成する脂質とキトサン等のカチオン性多糖類との重量比が、1:0.00013〜1:0.0025、更には、1:0.00022〜1:00167、特に、1:0.00028〜1:0.00135とすることが好ましい)。   The modification of the liposome with the cationic polysaccharide acidic solution described above is carried out by dropping the liposome prepared as described above into the cationic polysaccharide acidic solution under stirring and mixing well, and then, in a cool dark place for about 12 hours. And solid-liquid separation, followed by redispersion in purified water or buffer. Among these, the step of standing or redispersing in a cool and dark place may be repeated. In the modification of the liposome with the acidic solution of the cationic polysaccharide, the lipid forming the liposome and the cationic polysaccharide such as chitosan are in a weight ratio of 1: 0.000005 to 1: 0.005, Is preferably 1: 0.0001 to 1: 0008, and more preferably 1: 0.0003 to 1: 0.0006 (in the case of anionic liposomes in which amphoteric phospholipids and anionic phospholipids are mixed) Has a weight ratio of a lipid forming a liposome to a cationic polysaccharide such as chitosan of 1: 0.000001-3: 0.0025, 1: 0.000002-2: 00167, particularly 1: 0.0020 to 1: 0.0035).

また、第二の方法は、二酸化炭素の超臨界条件を達成できる装置を用い、この装置のセル部分にリン脂質、カチオン性多糖類および二酸化炭素を含む混合物を入れ、これに、二酸化炭素の臨界点以上の圧力および温度をかけて超臨界流体とし、この中にリポソーム中に封入すべき物質を含む水相を加え、その後減圧し、二酸化炭素を除去することにより製造される。   The second method uses a device capable of achieving the supercritical condition of carbon dioxide, and puts a mixture containing phospholipid, cationic polysaccharide and carbon dioxide into the cell portion of this device, and the carbon dioxide has a criticality of carbon dioxide. It is produced by applying a pressure and temperature above a point to form a supercritical fluid, adding an aqueous phase containing a substance to be encapsulated in liposomes, and then depressurizing to remove carbon dioxide.

この超臨界逆相蒸発法のために使用される装置の一例としては、その構成を図1に示すものが挙げられる。図中、1は体積可変型耐圧セル、2はピストン、3は撹拌子、4は二酸化炭素ボンベ、5はスクリューポンプ、6は真空ポンプ、7は圧力計、8は液体クロマトグラフィー用ポンプ、9は液だめ、10は電子秤である。   As an example of an apparatus used for this supercritical reverse phase evaporation method, there is an apparatus whose structure is shown in FIG. In the figure, 1 is a variable pressure cell, 2 is a piston, 3 is a stirring bar, 4 is a carbon dioxide cylinder, 5 is a screw pump, 6 is a vacuum pump, 7 is a pressure gauge, 8 is a pump for liquid chromatography, 9 Is a liquid reservoir and 10 is an electronic scale.

図1の装置では、まず、真空ポンプ6により空気を吸引した体積可変型耐圧セル1の空間内部に、リン脂質、カチオン性多糖類等のリポソーム構成成分を入れ、次いで二酸化炭素ボンベ4から、スクリューポンプ5を介して二酸化炭素を注入する。この際、体積可変型耐圧セル1の空間中には、撹拌子3が入れてあり、これにより、リポソーム構成成分と二酸化炭素は撹拌される。   In the apparatus of FIG. 1, first, liposome constituents such as phospholipids and cationic polysaccharides are put into the space of the variable volume pressure cell 1 in which air is sucked by the vacuum pump 6, and then from the carbon dioxide cylinder 4, Carbon dioxide is injected through the pump 5. At this time, the stirrer 3 is placed in the space of the variable volume pressure cell 1, whereby the liposome constituent components and carbon dioxide are stirred.

更に、体積可変型耐圧セル1中のピストン2により、セル1の空間を圧縮することにより、内部の圧力が高まり、二酸化炭素の超臨界に到達する。具体的には、60℃程度の温度、300barの圧力で、超臨界状態となる。この状態では、二酸化炭素は気体から超臨界流体に変わり、リポソーム構成成分を溶解する。   Furthermore, by compressing the space of the cell 1 by the piston 2 in the variable volume pressure cell 1, the internal pressure increases and reaches the supercriticality of carbon dioxide. Specifically, it becomes a supercritical state at a temperature of about 60 ° C. and a pressure of 300 bar. In this state, carbon dioxide changes from a gas to a supercritical fluid and dissolves the liposome constituents.

このような状態の体積可変型耐圧セル1の空間内に、液だめ9から、液体クロマトグラフィー用ポンプ8を介して、リポソーム中に封入すべき物質を含む水相(以下、「封入液」という)を添加する。   In the space of the volume variable pressure cell 1 in such a state, an aqueous phase containing a substance to be encapsulated in the liposome from the liquid reservoir 9 via the liquid chromatography pump 8 (hereinafter referred to as “encapsulated liquid”). ) Is added.

そして、電子秤10により、所定量の封入液を封入したことを確認した後、圧力を下げ、体積可変型耐圧セル1の空間中から二酸化炭素を放出することにより、ポリカチオン修飾リポソーム液を得ることができる。   Then, after confirming that a predetermined amount of the encapsulating liquid has been encapsulated by the electronic balance 10, the pressure is lowered, and carbon dioxide is released from the space of the volume variable pressure cell 1, thereby obtaining a polycation-modified liposome liquid. be able to.

第二の方法によりポリカチオン修飾リポソームを得るに当たって使用される脂質としては、第一の方法において使用したものが挙げられ、両性リン脂質とアニオン性リン脂質を混合して用いることがより好ましいことも同様である。なお、第二の方法における両性リン脂質とアニオン性リン脂質の混合割合は、それらのモル比で、4:6以上、更には、9.5:0.5、特に、9:1〜7.5:2.5とすることが好ましい。   Examples of the lipid used in obtaining the polycation-modified liposome by the second method include those used in the first method, and it is more preferable to use a mixture of amphoteric phospholipid and anionic phospholipid. It is the same. The mixing ratio of the amphoteric phospholipid and the anionic phospholipid in the second method is 4: 6 or more, more preferably 9.5: 0.5, and particularly 9: 1 to 7. 5: 2.5 is preferable.

また、第二の方法において用いられるカチオン性多糖類は、酸性溶液でなく、固形の状態のものを使用することができる。この理由は、超臨界逆相蒸発法では、超臨界条件下で添加する封入液中に二酸化炭素が飽和溶解するため、そのpHは3.0付近の弱酸性となる。したがって、超臨界二酸化炭素と水が共存する状態では、キトサン等のカチオン性多糖類は水中に溶解すると考えられる。そして更に、二酸化炭素を排出することにより封入液(水)のpHは中性にとなるため、二酸化炭素の排出操作により、水中に溶解しているキトサン等のカチオン性多糖類がリポソーム表面上に析出するためであると考えられる。   Further, the cationic polysaccharide used in the second method can be used in a solid state, not an acidic solution. This is because, in the supercritical reverse phase evaporation method, carbon dioxide is saturated and dissolved in the encapsulated liquid added under supercritical conditions, so that the pH becomes slightly acidic around 3.0. Therefore, in the state where supercritical carbon dioxide and water coexist, cationic polysaccharides such as chitosan are considered to dissolve in water. Furthermore, since the pH of the encapsulated liquid (water) becomes neutral by discharging carbon dioxide, cationic polysaccharides such as chitosan dissolved in water are placed on the liposome surface by the discharge operation of carbon dioxide. This is thought to be due to precipitation.

第二の方法において、混合流体中に加えるキトサン等のカチオン性多糖類の量は、2から55ppm、さらには10から40ppmであることが好ましく、リポソームを形成する脂質とキトサン等のカチオン性多糖類の重量比としては、1:0.00005〜1:0.005、更には、1:0.0001〜1:0008、特に、1:0.0003〜1:0.0006とすることが好ましい(なお、両性リン脂質とアニオン性リン脂質とを混合したアニオン性リポソームの場合は、リポソームを形成する脂質とカチオン性多糖類との重量比が、1:0.001〜1:0.007、更には、1:0.00125〜1:0065、特に、1:0.0015〜1:0.006とすることが好ましい)。   In the second method, the amount of the cationic polysaccharide such as chitosan added to the mixed fluid is preferably 2 to 55 ppm, more preferably 10 to 40 ppm, and the lipid forming the liposome and the cationic polysaccharide such as chitosan The weight ratio is preferably 1: 0.000005 to 1: 0.005, more preferably 1: 0.0001 to 1: 0008, and particularly preferably 1: 0.0003 to 1: 0.0006 ( In the case of an anionic liposome in which an amphoteric phospholipid and an anionic phospholipid are mixed, the weight ratio of the lipid forming the liposome to the cationic polysaccharide is from 1: 0.001 to 1: 0.007, Is preferably 1: 0.0023 to 1: 0065, and more preferably 1: 0.0015 to 1: 0.006).

かくして得られるポリカチオン修飾リポソームは、カチオン化のために使用されるカチオン性多糖類が様々な化学的・生物学的機能を有しながら安全性が高いものであるため、内部に遺伝子を封入し、これを目的の細胞まで運ぶ遺伝子運搬体として利用されるものである。特に、両性リン脂質とアニオン性リン脂質を混合したアニオン性リポソームを使用した場合には、リポソームの二分子膜表面は正に帯電し、負電荷を有するDNAの内包率の向上、および負電荷を有する細胞膜との融合が起こりやすくなることが期待される。   In the polycation-modified liposome thus obtained, the cationic polysaccharide used for cationization is highly safe while having various chemical and biological functions. It is used as a gene carrier that carries this to the target cell. In particular, when an anionic liposome mixed with amphoteric phospholipid and anionic phospholipid is used, the bilayer surface of the liposome is positively charged, the inclusion rate of DNA having negative charge is improved, and the negative charge is reduced. It is expected that the fusion with the cell membrane will be likely to occur.

また、それのみに限らず、医薬品等の生理活性物質を目的の細胞まで運ぶためにも利用することができ、新しい医薬として利用可能なものである。   In addition, the present invention is not limited to this, and can also be used to transport physiologically active substances such as pharmaceuticals to target cells, and can be used as new pharmaceuticals.

以下、実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらの実施例に何ら制約されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

実 施 例 1
ポリカチオン修飾リポソームの製造(1):
(1)バンガム(Bangham)法に従い、下記方法でリポソームを調製した。リポソームの主要構成成分であるリン脂質としては、2本のアルキル鎖とも飽和結合のみからなり、それぞれの鎖長が16の飽和リン脂質である、L−α−ジパルミトイルフォスファチジルコリン(L-α-dipalmitoyl phosphatidylcholine;DPPC、純度99.6%、日本油脂(株)製)を用いた。
Example 1
Production of polycation-modified liposome (1):
(1) Liposomes were prepared by the following method according to the Bangham method. The phospholipid that is the main component of the liposome is L-α-dipalmitoylphosphatidylcholine (L-α-dipalmitoylphosphatidylcholine), which is a saturated phospholipid having both 16 alkyl chains consisting of only saturated bonds. α-dipalmitoyl phosphatidylcholine; DPPC, purity 99.6%, manufactured by NOF Corporation was used.

具体的には、溶媒であるクロロホルム 1ml中に、脂質として0.05mmolとなる量のDPPCを取り、クロロホルムを窒素気流により除去して形成する脂質薄膜に、5mlの注射用蒸留水(大塚製薬(株)製)を添加し、撹拌により外力を加え、リポソームを得た。   Specifically, in 1 ml of chloroform as a solvent, DPPC in an amount of 0.05 mmol as a lipid is taken, and 5 ml of distilled water for injection (Otsuka Pharmaceutical ( Co., Ltd.) was added, and external force was applied by stirring to obtain liposomes.

(2)キトサン修飾リポソームの調製は、以下の手順で行なった。まず、塩酸(和光純薬(株)製)を用いてpH3.0に調整したキトサン水溶液(濃度:20ppm)中に、上記(1)により調製したリポソームを、種々の組成で滴下し、約500rpmで撹拌することにより混合した。これを冷暗所で12時間静置することで安定化した。上澄みを3000rpmの遠心分離により除去後、除去上澄み液と同量のリン酸緩衝化生理食塩水(ダルベッコリン酸緩衝化生理食塩末(和光純薬(株)製、組成;塩化ナトリウム、塩化カリウム、無水リン酸水素二ナトリウム、無水リン酸水素二カリウム)を注射用蒸留水に溶解することにより調製した等張溶液(pH7.4)/PBS)を添加し、ボルテックス・ミキサー(voltex mixer)により再分散させた。これを再度、冷暗所で12時間静置し、同様に上澄みを除去、PBSを添加、再分散させた。この過程を3回繰り返し、最後に注射用蒸留水で分散させることで、キトサン修飾リポソームを調製した。 (2) The chitosan-modified liposome was prepared according to the following procedure. First, liposomes prepared by the above (1) were dropped into various aqueous compositions in a chitosan aqueous solution (concentration: 20 ppm) adjusted to pH 3.0 using hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.), and about 500 rpm The mixture was stirred by stirring. This was stabilized by standing for 12 hours in a cool and dark place. After removing the supernatant by centrifugation at 3000 rpm, the same amount of phosphate buffered physiological saline (dulbeccolic acid buffered physiological saline powder (manufactured by Wako Pure Chemical Industries, Ltd., composition; sodium chloride, potassium chloride) An isotonic solution (pH 7.4) / PBS prepared by dissolving disodium hydrogen phosphate (anhydrous diphosphate, anhydrous potassium phosphate) in distilled water for injection is added, and the solution is reconstituted with a vortex mixer. Dispersed. This was again allowed to stand in a cool dark place for 12 hours. Similarly, the supernatant was removed, and PBS was added and redispersed. This process was repeated three times, and finally dispersed with distilled water for injection to prepare chitosan-modified liposomes.

(3)図2に、リポソーム溶液とキトサン溶液の合計容量中のキトサン溶液の比(以下、「キトサン比」という)と、得られたキトサン修飾DPPCリポソームのζ電位の測定結果の関係を示す。この結果から、DPPCリポソーム単独でのζ電位が約−4mVであるのに対し、これをキトサンを修飾することにより大きく正に帯電することが分かった。調製したキトサン修飾DPPCリポソーム水溶液の目視観察からも、ζ電位が最大値であるキトサン比が0.2(リポソーム溶液とキトサン溶液の比としては8:2)において、静置分散安定性は最も良好であった。しかし、キトサン水溶液がよりリッチな領域では、リポソーム表面のζ電位は再び減少した。このことは、キトサンが過剰な条件下では、リポソーム表面へのキトサン修飾が起こらないことを示すと考えられる。
これより、キトサン修飾DPPCリポソームを得る場合のDPPCリポソーム水溶液とキトサン水溶液の混合比は、ζ電位が最大である比とすればよいことがわかる。
(3) FIG. 2 shows the relationship between the ratio of the chitosan solution in the total volume of the liposome solution and the chitosan solution (hereinafter referred to as “chitosan ratio”) and the measurement result of the ζ potential of the obtained chitosan-modified DPPC liposome. From this result, it was found that the ζ potential of DPPC liposome alone was about −4 mV, but this was largely positively charged by modifying chitosan. From the visual observation of the prepared chitosan-modified DPPC liposome aqueous solution, the static dispersion stability is the best when the chitosan ratio at which the ζ potential is maximum is 0.2 (the ratio of the liposome solution to the chitosan solution is 8: 2). Met. However, in the region where the chitosan aqueous solution was richer, the ζ potential on the liposome surface decreased again. This is considered to indicate that chitosan modification to the liposome surface does not occur under conditions where chitosan is excessive.
This shows that the mixing ratio of the DPPC liposome aqueous solution and the chitosan aqueous solution in obtaining chitosan-modified DPPC liposomes should be a ratio that maximizes the ζ potential.

参 考 例 1
アニオン性リポソームの製造:
DPPCに、2本のアルキル鎖とも鎖長16の飽和鎖であり、親水頭部に負電荷を有するアニオン性リン脂質、L−α−ジパルミトイルフォスファチジルグリセロール( L-α- dipalmitoyl phosphatidylglycerol(DPPG、純度99.8%、日本油脂(株)製)を種々のモル割合で混合して脂質とし、以下、実施例1(1)と同様にしてアニオン性リポソームを調製した。このアニオン性リポソームについて、脂質全体に占めるDPPGの比(以下、「アニオン脂質比」という)と、調製してから24時間放置後の外観の関係を調べた。この結果を図3に示す。
Reference example 1
Production of anionic liposomes:
In DPPC, an anionic phospholipid, L-α-dipalmitoyl phosphatidylglycerol (DPPG), which is a saturated chain having a chain length of 16 for both two alkyl chains and has a negative charge on the hydrophilic head. , 99.8% purity, manufactured by Nippon Oil & Fats Co., Ltd.) were mixed at various molar ratios to obtain lipids, and then anionic liposomes were prepared in the same manner as in Example 1 (1). The relationship between the ratio of DPPG to the total lipid (hereinafter referred to as “anionic lipid ratio”) and the appearance after standing for 24 hours after preparation was examined, and the results are shown in FIG.

この結果から明らかなように、DPPC単独では静置分散安定性が低く、凝集・沈降による2相分離が視察された。これに対し、DPPCにDPPGを混合することにより、リポソーム水溶液の静置分散安定性が飛躍的に向上することが分かった。両性リン脂質であるDPPCとアニオン性であるDPPGが混合された結果、リポソームの二分子膜表面が負に帯電したためと考えられる。そして、負に帯電したリポソーム表面間で静電反発が起こり、リポソームの凝集が抑制されていることが示唆された。   As is apparent from the results, DPPC alone has a low static dispersion stability, and two-phase separation due to aggregation and sedimentation was observed. On the other hand, it was found that by mixing DPPG with DPPC, the stationary dispersion stability of the liposome aqueous solution was dramatically improved. This is probably because the amphoteric phospholipid DPPC and the anionic DPPG were mixed, and as a result, the bilayer surface of the liposome was negatively charged. Then, electrostatic repulsion occurred between the negatively charged liposome surfaces, suggesting that aggregation of the liposomes was suppressed.

このDPPGのモル分率が0.1〜0.6で調整した水溶液の静置分散安定性は極めて良好であり、調整後6ヶ月が経過しても、この分散状態を保持していた。これに対し、DPPGのモル分率が0.7以上になると、DPPC/DPPGリポソームの外観はほぼ無色透明となった。また、DPPGのモル分率が0.7〜1.0で調整した水溶液は、粘性を示した。これより、DPPGがリッチな領域ではリポソームを形成しないことが示唆された。   The standing dispersion stability of the aqueous solution prepared with a DPPG molar fraction of 0.1 to 0.6 was very good, and this dispersed state was maintained even after 6 months from the adjustment. On the other hand, when the DPPG molar fraction was 0.7 or more, the appearance of the DPPC / DPPG liposome became almost colorless and transparent. Moreover, the aqueous solution prepared by adjusting the molar fraction of DPPG to 0.7 to 1.0 showed viscosity. This suggested that liposomes do not form in regions rich in DPPG.

参 考 例 2
アニオン性リポソームの保持効率試験:
参考例1の結果に基づき、リポソームの形成を確認するため、DPPC/DPPG2成分系水溶液について保持効率測定を行なった。このDPPC/DPPG2成分系水溶液は、水溶液中にD(+)−グルコースを加え、DPPC/DPPG2成分系リポソーム中の含量から、アニオン脂質比と保持効率の関係を調べた。保持効率(%)は、リポソーム内水相のグルコースを系全体のグルコース量で割り、これに100を掛けた値で示した。この結果を図4に示す。
Reference example 2
Retention efficiency test for anionic liposomes:
Based on the result of Reference Example 1, in order to confirm the formation of liposomes, the retention efficiency was measured for the DPPC / DPPG two-component aqueous solution. In this DPPC / DPPG two-component aqueous solution, D (+)-glucose was added to the aqueous solution, and the relationship between the anion lipid ratio and the retention efficiency was examined from the content in the DPPC / DPPG two-component liposome. The retention efficiency (%) was expressed as a value obtained by dividing glucose in the aqueous phase of the liposome by the amount of glucose in the entire system and multiplying this by 100. The result is shown in FIG.

この図から明らかなように、DPPCにDPPGを添加することにより、保持効率は大きく変化した。特に、アニオン脂質比(DPPGのモル分率)が0.2でDPPGを添加したときに保持効率は最大となり、DPPC単独リポソームと比較して約8倍も高い保持効率を有していた。これまでと同様に、DPPC単独系では多重膜リポソームを形成するが、DPPGを添加することにより、一枚膜リポソームの形成が示唆された。電荷を有するリン脂質が混合されることで、リポソームの形成過程において二分子膜の層間で静電反発が生じるためであると考えられる。   As is clear from this figure, the retention efficiency greatly changed by adding DPPG to DPPC. In particular, the retention efficiency was maximized when DPPG was added at an anionic lipid ratio (DPPG molar fraction) of 0.2, and the retention efficiency was about 8 times higher than that of a DPPC-only liposome. As in the past, multilamellar liposomes were formed in the DPPC single system, but the addition of DPPG suggested the formation of single membrane liposomes. It is considered that electrostatic repulsion occurs between the layers of the bilayer membrane in the formation process of the liposome by mixing the charged phospholipid.

また、アニオン脂質比が0.7以上では、保持効率はほぼ0であり、内部に水相を有する分子集合体を形成していないことが確認できた。外観がほぼ無色透明であり、溶液が粘性を有していることからも、紐状ミセルを形成していることが考えられる。DPPGのモル分率が増大するに伴い、DPPC多重膜リポソーム、DPPC/DPPG一枚膜リポソーム、DPPC/DPPG混合ミセル、DPPCを可溶化したDPPGミセル、DPPGミセルへと形態を変えていくことが示唆された。   In addition, when the anionic lipid ratio was 0.7 or more, the retention efficiency was almost 0, and it was confirmed that no molecular assembly having an aqueous phase was formed. The appearance is almost colorless and transparent, and since the solution has viscosity, it is considered that string-like micelles are formed. As the molar fraction of DPPG increases, it is suggested that the morphology changes to DPPC multilamellar liposomes, DPPC / DPPG monolayer liposomes, DPPC / DPPG mixed micelles, DPPG micelles with DPPC solubilized, and DPPG micelles It was done.

実 施 例 2
ポリカチオン修飾リポソームの製造(2):
DPPCとDPPGを8:2に混合したものを脂質として使用し、実施例1(1)と同様にしてアニオン性リポソーム液を調製した。次いで、このリポソーム液を実施例1(2)と同様、種々の比となるようにキトサン液中に滴下し、ポリカチオン修飾リポソームを得た。各ポリカチオン修飾リポソームキトサン比とζ電位の関係を図5に示す。
Example 2
Production of polycation-modified liposome (2):
A mixture of DPPC and DPPG at 8: 2 was used as a lipid, and an anionic liposome solution was prepared in the same manner as in Example 1 (1). Subsequently, this liposome solution was dropped into the chitosan solution so as to have various ratios as in Example 1 (2) to obtain polycation-modified liposomes. The relationship between each polycation modified liposome chitosan ratio and ζ potential is shown in FIG.

DPPC/DPPGリポソーム単独でのζ電位は約−25mVであったのに対し、キトサンを修飾することにより正に帯電することが分かった。DPPCリポソームへキトサン修飾を行ったものと比較して、DPPC/DPPGリポソームではより大きく正に帯電しており、DPPCにアニオン性リン脂質であるDPPGを混合することにより、ポリカチオンであるキトサン修飾がより効率良く行われることが分かった。これは、リポソーム二分子膜表面に負電荷を付与することで、キトサン修飾が起こりやすくなったためと考えられる。しかし、過剰量のキトサン水溶液が共存する領域では、キトサンをリポソーム表面へ効率良く修飾できず、リポソーム表面へのキトサン修飾は起こらないことが示唆された。   The ζ potential of DPPC / DPPG liposome alone was about −25 mV, but it was found that it was positively charged by modifying chitosan. Compared with chitosan modification to DPPC liposomes, DPPC / DPPG liposomes are more positively charged. By mixing DPPC, an anionic phospholipid, with DPPC, chitosan modification, a polycation, is modified. It turns out that it is performed more efficiently. This is thought to be because chitosan modification is likely to occur by applying a negative charge to the liposome bilayer surface. However, in the region where an excessive amount of chitosan aqueous solution coexists, it was suggested that chitosan could not be efficiently modified on the liposome surface and chitosan modification on the liposome surface did not occur.

実 施 例 3
ポリカチオン修飾リポソームの製造(3):
(1)超臨界逆相蒸発法を使用し、ポリカチオン修飾リポソームを製造した。この超臨界逆相蒸発法(以下、「scCORPE法」という)では、図1に示すような装置を用い、この装置のセル1に所定量のDPPC(二酸化炭素に対し、0.3wt%)およびエタノール 1ml、所定量の固形キトサン(キトサン1000(生化学工業(株)製))を封入し、CO2 11.87gを導入した。これを加温・加圧して60℃、91.7barとした。次に、セルの後部にCO2を導入し、リポソームの調製条件である60℃、200barとした。この状態で保持対象液(リポソーム中に保持せしめる液)4.8mlを液体クロマトグラフィー用ポンプによりゆっくりと圧入(0.10ml/min)して十分に撹拌を行った後、セル内のCO2を排出することにより、セルの内部に均一なポリカチオン修飾リポソーム水溶液を得ることができた。なお、セル内部の撹拌はマグネティックスターラ−により行なった。
Example 3
Production of polycation-modified liposome (3):
(1) Polycation-modified liposomes were produced using the supercritical reverse phase evaporation method. In this supercritical reverse phase evaporation method (hereinafter referred to as “scCO 2 RPE method”), an apparatus as shown in FIG. 1 is used, and a predetermined amount of DPPC (0.3 wt% with respect to carbon dioxide) is placed in a cell 1 of this apparatus. ) And 1 ml of ethanol and a predetermined amount of solid chitosan (chitosan 1000 (manufactured by Seikagaku Corporation)) were sealed, and 11.87 g of CO 2 was introduced. This was heated and pressurized to 60 ° C. and 91.7 bar. Next, CO 2 was introduced into the rear part of the cell, and the liposome preparation conditions were set to 60 ° C. and 200 bar. In this state, 4.8 ml of the liquid to be retained (liquid to be retained in the liposome) was slowly injected (0.10 ml / min) with a liquid chromatography pump and sufficiently stirred, and then CO 2 in the cell was removed. By discharging, a uniform polycation-modified liposome aqueous solution could be obtained inside the cell. In addition, stirring inside the cell was performed with a magnetic stirrer.

(2)得られたポリカチオン修飾リポソームについて、そのζ電位とキトサン添加量の関係について検討を行なった。この結果を図6に示す。 (2) About the obtained polycation modification liposome, the relationship between the zeta potential and the addition amount of chitosan was examined. The result is shown in FIG.

この結果に示すように、キトサンを添加しないDPPCリポソーム単独でのζ電位はバンガム(Bangham)法により調製したものと同程度で約−4mVであったが、キトサンを修飾することにより大きく正に帯電した。このことから、scCORPE法をポリカチオン修飾リポソームの調製に適用できることが分かった。しかし、リポソーム二分子膜表面のζ電位は添加したキトサンの量に依存せず、キトサン添加量が20ppmにおいて極大値を取ることが分かった。調製した溶液の目視観察からも、キトサン添加量が50ppm以上では、リポソーム溶液中に溶解していないキトサンを確認でき、二酸化炭素が飽和溶解したpH3.0の水に対するキトサンの溶解度は、約40ppmであることが分かった。 As shown in this result, the ζ potential of DPPC liposome alone without addition of chitosan was about −4 mV, which was about the same as that prepared by the Bangham method, but it was greatly positively charged by modifying chitosan. did. This indicates that the scCO 2 RPE method can be applied to the preparation of polycation-modified liposomes. However, it was found that the ζ potential on the surface of the liposome bilayer did not depend on the amount of chitosan added, and that the maximum value was obtained when the amount of chitosan added was 20 ppm. Also from the visual observation of the prepared solution, when the chitosan addition amount is 50 ppm or more, chitosan not dissolved in the liposome solution can be confirmed, and the solubility of chitosan in pH 3.0 water in which carbon dioxide is saturated and dissolved is about 40 ppm. I found out.

参 考 例 3
アニオン性リポソームの保持効率試験:
scCORPE法により、DPPCとDPPGを種々の組成で混合したものを脂質とし、固形キトサンを使用せず、かつ保持対象液中にD(+)−グルコースを加える以外は、実施例3と同様にして、アニオン性リポソームを調製した。得られたアニオン性リポソームについて、アニオン脂質比と保持効率の関係を検討した結果を図7に示す。
Reference example 3
Retention efficiency test for anionic liposomes:
The same as in Example 3 except that, by scCO 2 RPE method, DPPC and DPPG mixed in various compositions are used as lipids, solid chitosan is not used, and D (+)-glucose is added to the liquid to be retained. Thus, an anionic liposome was prepared. About the obtained anionic liposome, the result of having examined the relationship between anion lipid ratio and retention efficiency is shown in FIG.

この結果から、バンガム法の場合と同様に、DPPCにDPPGを添加することにより保持効率は大きく変化し、モル分率0.2のDPPGを添加したときに保持効率は最大となることが示された。このように、保持効率が最大となる組成は、調製法に依存せず、アニオン脂質比が0.2(DPPCとDPPGの比が、8:2)であり、DPPCとDPPGはこの組成において、理想的な混合二分子膜を形成するものと考えられる。また、保持効率の最大値は、いずれの調製法でも同程度の値であった。   From this result, as in the case of the bangham method, it is shown that the retention efficiency is greatly changed by adding DPPG to DPPC, and the retention efficiency is maximized when DPPG having a molar fraction of 0.2 is added. It was. Thus, the composition with the maximum retention efficiency does not depend on the preparation method, the anionic lipid ratio is 0.2 (DPPC to DPPG ratio is 8: 2), and DPPC and DPPG are It is considered that an ideal mixed bilayer film is formed. Moreover, the maximum value of the retention efficiency was the same value in any of the preparation methods.

実 施 例 4
ポリカチオン修飾リポソームの製造(4):
scCORPE法により、DPPCとDPPGを8:2で混合したものを脂質とする以外は、実施例3と同様にしてポリカチオン修飾リポソームを製造した。得られたポリカチオン修飾リポソームについて得られた、固形キトサンの添加量とζ電位の測定結果の関係を図8に示す。
Example 4
Production of polycation-modified liposome (4):
Polycation-modified liposomes were produced by the scCO 2 RPE method in the same manner as in Example 3 except that a mixture of DPPC and DPPG at 8: 2 was used as a lipid. FIG. 8 shows the relationship between the amount of solid chitosan added and the measurement result of the ζ potential obtained for the obtained polycation-modified liposome.

この結果から明らかなように、キトサンを添加しないDPPC/DPPGリポソームでのζ電位は、バンガム法と同じ約−25mVであった。DPPC/DPPGリポソームもDPPCリポソームと同様に、キトサンを添加して調製を行うことで、リポソーム二分子膜を修飾できることが分かった。バンガム法で検討した場合と同様に、DPPC/DPPG混合系はDPPCよりも大きく正に帯電していた。ζ電位が最大値を示したのは、キトサン濃度が30ppmであったことから、リポソーム二分子膜表面が負に帯電していることで、よりキトサンの修飾が起こりやすくなるものと考えられる。   As is clear from this result, the ζ potential in DPPC / DPPG liposomes to which chitosan was not added was about −25 mV, the same as in the Bangham method. It was found that DPPC / DPPG liposomes can also be modified by adding chitosan and modifying the liposome bilayer membrane in the same manner as DPPC liposomes. The DPPC / DPPG mixed system was more positively charged than DPPC, as was the case with the Bangham method. The reason why the ζ potential showed the maximum value was that the chitosan concentration was 30 ppm. Therefore, it is considered that the modification of chitosan is more likely to occur because the liposome bilayer surface is negatively charged.

本発明のポリカチオン修飾リポソームは、カチオン化のために使用されるキトサン等のカチオン性多糖類が様々な化学的・生物学的機能を有しながら安全性が高いものであるため、内部に遺伝子を封入し、これを目的の細胞まで運ぶ遺伝子運搬体として利用されるものである。   In the polycation-modified liposome of the present invention, since cationic polysaccharides such as chitosan used for cationization have various chemical and biological functions and are highly safe, It is used as a gene carrier that encapsulates and transports it to the target cells.

また、それのみに限らず、医薬品等の生理活性物質を目的の細胞まで運ぶためにも利用することができ、新しい医薬として利用可能なものである。   In addition, the present invention is not limited to this, and can also be used to transport physiologically active substances such as pharmaceuticals to target cells, and can be used as new pharmaceuticals.

超臨界逆相蒸発法で使用する装置の一例の構成を示す図面。The drawing which shows a structure of an example of the apparatus used by the supercritical reverse phase evaporation method. リポソーム溶液−キトサン酸性溶液の混合比率と、得られたキトサン修飾DPPCリポソームのζ電位の測定結果の関係を示す図面。Drawing which shows the relationship between the mixing ratio of a liposome solution-chitosan acidic solution, and the measurement result of the zeta potential of the obtained chitosan modified DPPC liposome. 両性およびアニオン性脂質から得たアニオン性リポソームについて、製造後の外観を示す図面(写真)。Drawing (photograph) showing the appearance after production of anionic liposomes obtained from amphoteric and anionic lipids. 両性およびアニオン性脂質から得たアニオン性リポソームについて、保持効率を調べた結果を示す図面。Drawing which shows the result of having investigated retention efficiency about the anionic liposome obtained from amphoteric and anionic lipid. 両性およびアニオン性脂質から得たポリカチオン修飾リポソームについて、ζ電位測定結果を示す図面。Drawing which shows a zeta potential measurement result about the polycation modification liposome obtained from amphoteric and anionic lipid. 超臨界逆相蒸発法を使用し、ポリカチオン修飾リポソームについて、そのζ電位とキトサン添加量の関係を示した図面。Drawing showing the relationship between the zeta potential and the amount of chitosan added for polycation-modified liposomes using the supercritical reverse phase evaporation method. 超臨界逆相蒸発法を使用し、両性およびアニオン性脂質から得たアニオン性リポソームについて、保持効率を調べた結果を示す図面。Drawing which shows the result of having investigated the retention efficiency about the anionic liposome obtained from the amphoteric and anionic lipid using the supercritical reverse phase evaporation method. 超臨界逆相蒸発法を使用し、両性およびアニオン性脂質から得たポリカチオン修飾リポソームについて、固形キトサンの添加量とζ電位の測定結果の関係を示した図面。The figure which showed the relationship between the addition amount of a solid chitosan, and the measurement result of (zeta) potential about the polycation modification liposome obtained from the amphoteric and anionic lipid using the supercritical reverse phase evaporation method.

符号の説明Explanation of symbols

1 … … 体積可変型耐圧セル
2 … … ピストン
3 … … 撹拌子
4 … … 二酸化炭素ボンベ
5 … … スクリューポンプ
6 … … 真空ポンプ
7 … … 圧力計
8 … … 液体クロマトグラフィー用ポンプ
9 … … 液だめ
10 … … 電子秤






DESCRIPTION OF SYMBOLS 1 ...... Volume variable pressure | voltage resistant cell 2 ...... Piston 3 ...... Stirrer 4 ...... Carbon dioxide cylinder 5 ...... Screw pump 6 ...... Vacuum pump 7 ...... Pressure gauge 8 ...... Liquid chromatography pump 9 ...... Liquid No. 10… Electronic scale






Claims (12)

両性リン脂質とアニオン性リン脂質をそれらのモル比で、9.5:0.5ないし4:6で混合したものからなるリン脂質であるリポソームの表面を、カチオン性多糖類で修飾してなる細胞毒性のないポリカチオン修飾リポソーム。 The surface of the liposome, which is a phospholipid consisting of amphoteric phospholipid and anionic phospholipid mixed in a molar ratio of 9.5: 0.5 to 4: 6, is modified with a cationic polysaccharide. Polycation-modified liposome without cytotoxicity . 両性リン脂質が、フォスファチジルコリンであり、アニオン性リン脂質が、フォスファチジルグリセロール、フォスファチジルエタノールアミンまたはフォスファチジン酸である請求項1記載の細胞毒性のないポリカチオン修飾リポソーム。 2. The non-cytotoxic polycation-modified liposome according to claim 1, wherein the amphoteric phospholipid is phosphatidylcholine and the anionic phospholipid is phosphatidylglycerol, phosphatidylethanolamine or phosphatidic acid. カチオン性多糖類がキトサンである請求項1または請求項2に記載の細胞毒性のないポリカチオン修飾リポソーム。 The non- cytotoxic polycation-modified liposome according to claim 1 or 2, wherein the cationic polysaccharide is chitosan. 両性リン脂質とアニオン性リン脂質をそれらのモル比で、9.5:0.5ないし4:6で混合したものからなるリン脂質であるリポソームの溶液を、カチオン性多糖類の酸性液中に滴下することを特徴とする細胞毒性のないポリカチオン修飾リポソームの製造法。 A solution of liposomes, which are phospholipids comprising amphoteric phospholipids and anionic phospholipids mixed in a molar ratio of 9.5: 0.5 to 4: 6, in an acidic solution of a cationic polysaccharide. A method for producing a polycation-modified liposome having no cytotoxicity , characterized by being dripped. カチオン性多糖類の酸性溶液が、pH3より酸性側のものである請求項4に記載の細胞毒性のないポリカチオン修飾リポソームの製造法。 The method for producing a non-cytotoxic polycation-modified liposome according to claim 4, wherein the acidic solution of the cationic polysaccharide is on the acidic side of pH 3. リポソームの溶液と、カチオン性多糖類の酸性溶液を、それらに含まれるリン脂質とカチオン性多糖類の重量比として、1:0.00005ないし1:0.005で使用する請求項4または請求項5に記載の細胞毒性のないポリカチオン修飾リポソームの製造法。 The liposome solution and the acidic solution of the cationic polysaccharide are used in a weight ratio of phospholipid and cationic polysaccharide contained in the solution of 1: 0.000005 to 1: 0.005. 5. A method for producing a polycation-modified liposome having no cytotoxicity according to 5. 両性リン脂質が、フォスファチジルコリンであり、アニオン性リン脂質が、フォスファチジルグリセロール、フォスファチジルエタノールアミンまたはフォスファチジン酸である請求項4ないし請求項6の何れかの項記載の細胞毒性のないポリカチオン修飾リポソームの製造法。 The cell according to any one of claims 4 to 6, wherein the amphoteric phospholipid is phosphatidylcholine and the anionic phospholipid is phosphatidylglycerol, phosphatidylethanolamine or phosphatidic acid. A method for producing non-toxic polycation-modified liposomes. カチオン性多糖類がキトサンである請求項4ないし請求項7の何れかの項記載の細胞毒性のないポリカチオン修飾リポソームの製造法。 The method for producing a non-cytotoxic polycation-modified liposome according to any one of claims 4 to 7, wherein the cationic polysaccharide is chitosan. 二酸化炭素の臨界点より高い温度および/または圧力下で、両性リン脂質とアニオン性リン脂質をそれらのモル比で、9.5:0.5ないし4:6で混合したものからなるリン脂質、カチオン性多糖類および二酸化炭素を含む混合流体中に、リポソーム中に封入すべき物質を含む水相を加えることを特徴とする細胞毒性のないポリカチオン修飾リポソームの製造法。 A phospholipid comprising a mixture of amphoteric phospholipids and anionic phospholipids in a molar ratio of 9.5: 0.5 to 4: 6 at a temperature and / or pressure higher than the critical point of carbon dioxide; A method for producing a non-cytotoxic polycation-modified liposome, which comprises adding an aqueous phase containing a substance to be encapsulated in a liposome to a mixed fluid containing a cationic polysaccharide and carbon dioxide. 両性リン脂質が、フォスファチジルコリンであり、アニオン性リン脂質が、フォスファチジルグリセロール、フォスファチジルエタノールアミンまたはフォスファチジン酸である請求項9記載の細胞毒性のないポリカチオン修飾リポソームの製造法。 10. Production of non-cytotoxic polycation-modified liposome according to claim 9, wherein the amphoteric phospholipid is phosphatidylcholine and the anionic phospholipid is phosphatidylglycerol, phosphatidylethanolamine or phosphatidic acid. Law. 混合流体中のカチオン性多糖類濃度が、2〜55ppmである請求項9または請求項10に記載の細胞毒性のないポリカチオン修飾リポソームの製造法。 The method for producing a non-cytotoxic polycation-modified liposome according to claim 9 or 10, wherein the concentration of the cationic polysaccharide in the mixed fluid is 2 to 55 ppm. カチオン性多糖類がキトサンである請求項19ないし請求項11の何れかの項記載の細胞毒性のないポリカチオン修飾リポソームの製造法。 The method for producing a non-cytotoxic polycation-modified liposome according to any one of claims 19 to 11, wherein the cationic polysaccharide is chitosan.
JP2004117262A 2004-04-12 2004-04-12 Polycation-modified liposome having no cytotoxicity and method for producing the same Expired - Fee Related JP4669665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117262A JP4669665B2 (en) 2004-04-12 2004-04-12 Polycation-modified liposome having no cytotoxicity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117262A JP4669665B2 (en) 2004-04-12 2004-04-12 Polycation-modified liposome having no cytotoxicity and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005298407A JP2005298407A (en) 2005-10-27
JP4669665B2 true JP4669665B2 (en) 2011-04-13

Family

ID=35330388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117262A Expired - Fee Related JP4669665B2 (en) 2004-04-12 2004-04-12 Polycation-modified liposome having no cytotoxicity and method for producing the same

Country Status (1)

Country Link
JP (1) JP4669665B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669002A1 (en) * 2005-01-28 2013-12-04 Japan Science and Technology Agency Molecular aggregate capable of undergoing phase transition by dehydrating condensation and method of phase transition thereof
CA2682376C (en) 2007-03-30 2015-10-06 Hirofumi Takeuchi Transpulmonary liposome for controlling drug arrival
KR101707227B1 (en) 2010-12-27 2017-02-15 사토 홀딩스 가부시키가이샤 Label, top layer formation material for printing medium, information-bearing medium, wristband clip and carbon dioxide reduction method using same
JP2013136038A (en) * 2011-12-28 2013-07-11 Miyoshi Oil & Fat Co Ltd Liposome and method of manufacturing the same
JP6537314B2 (en) * 2015-03-23 2019-07-03 凸版印刷株式会社 Decorative sheet and method of manufacturing decorative sheet
JP7006191B2 (en) 2016-11-29 2022-01-24 凸版印刷株式会社 Decorative sheet and manufacturing method of decorative sheet
CN112006288A (en) * 2019-05-31 2020-12-01 山东理工大学 Method for preparing double-layer modified reduced glutathione nano-liposome
CN115105447B (en) * 2022-06-30 2023-07-28 山东福瑞达生物股份有限公司 Cationic alpha glucan oligosaccharide modified liposome with repairing effect and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500360A (en) * 1986-07-28 1990-02-08 リポソーム テクノロジー,インコーポレイテッド Liposomes with high retention on mucosal tissue
JPH04505319A (en) * 1989-04-04 1992-09-17 アルコン ラボラトリーズ インコーポレイテッド Use of liposomes as delivery of therapeutic agents for wounds, cuts and abrasions
JPH10509459A (en) * 1994-11-18 1998-09-14 アフィオス・コーポレーション Method and apparatus for producing liposomes containing hydrophobic drugs
JPH11508871A (en) * 1995-04-05 1999-08-03 イマアーレクス・フアーマシユーチカル・コーポレーシヨン Novel composition of lipids and stabilizing substances
WO2002013782A1 (en) * 2000-08-11 2002-02-21 Hyundai Pharmaceutical Ind. Co., Ltd Oral delivery of peptide
JP2002508020A (en) * 1997-07-03 2002-03-12 ウエスト・ファーマシューティカルズ・サービシーズ・ドラッグ・デリバリー・アンド・クリニカル・リサーチ・センター・リミテッド Complex of polyethylene glycol and chitosan
WO2002032564A1 (en) * 2000-10-13 2002-04-25 National Institute Of Advanced Industrial Science And Technology Process for producing liposome and apparatus therefor
JP2002540077A (en) * 1999-03-24 2002-11-26 イギリス国 Use of polycationic carbohydrates as immunostimulants in vaccines
JP2003119120A (en) * 2001-10-12 2003-04-23 Masahiko Abe Method for producing liposome, cosmetic containing the liposome, and skin care preparation
JP2003528131A (en) * 2000-03-29 2003-09-24 アラダイム コーポレーション Cationic liposome
JP2003321398A (en) * 2002-04-25 2003-11-11 Toppan Printing Co Ltd Polysaccharide complex and its production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849311A (en) * 1981-09-18 1983-03-23 Eisai Co Ltd Preparation of stable liposome
JPS59210013A (en) * 1983-05-04 1984-11-28 Ajinomoto Co Inc Active substance-containing liposome
JP3570561B2 (en) * 1993-07-27 2004-09-29 テルモ株式会社 Carrier that recognizes vascular endothelial injury site
JP3867160B2 (en) * 1995-07-03 2007-01-10 大日本住友製薬株式会社 Gene preparation
DE19852928C1 (en) * 1998-11-17 2000-08-03 Steffen Panzner Structures in the form of hollow spheres

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500360A (en) * 1986-07-28 1990-02-08 リポソーム テクノロジー,インコーポレイテッド Liposomes with high retention on mucosal tissue
JPH04505319A (en) * 1989-04-04 1992-09-17 アルコン ラボラトリーズ インコーポレイテッド Use of liposomes as delivery of therapeutic agents for wounds, cuts and abrasions
JPH10509459A (en) * 1994-11-18 1998-09-14 アフィオス・コーポレーション Method and apparatus for producing liposomes containing hydrophobic drugs
JPH11508871A (en) * 1995-04-05 1999-08-03 イマアーレクス・フアーマシユーチカル・コーポレーシヨン Novel composition of lipids and stabilizing substances
JP2002508020A (en) * 1997-07-03 2002-03-12 ウエスト・ファーマシューティカルズ・サービシーズ・ドラッグ・デリバリー・アンド・クリニカル・リサーチ・センター・リミテッド Complex of polyethylene glycol and chitosan
JP2002540077A (en) * 1999-03-24 2002-11-26 イギリス国 Use of polycationic carbohydrates as immunostimulants in vaccines
JP2003528131A (en) * 2000-03-29 2003-09-24 アラダイム コーポレーション Cationic liposome
WO2002013782A1 (en) * 2000-08-11 2002-02-21 Hyundai Pharmaceutical Ind. Co., Ltd Oral delivery of peptide
WO2002032564A1 (en) * 2000-10-13 2002-04-25 National Institute Of Advanced Industrial Science And Technology Process for producing liposome and apparatus therefor
JP2003119120A (en) * 2001-10-12 2003-04-23 Masahiko Abe Method for producing liposome, cosmetic containing the liposome, and skin care preparation
JP2003321398A (en) * 2002-04-25 2003-11-11 Toppan Printing Co Ltd Polysaccharide complex and its production method

Also Published As

Publication number Publication date
JP2005298407A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
EP0004223B1 (en) Process for the preparation of lipidic capsules containing a biologically active compound, products obtained by this process as well as their utilisation
CA1215646A (en) Method for producing liposomes
EP2450031B1 (en) Method for producing liposomes by two-stage emulsification method using outer aqueous phase containing specific dispersing agent, method for producing liposome dispersion or dry powder thereof using the method for producing liposomes, and liposome dispersion or dry powder thereof produced thereby
JP2012207042A (en) Method and composition to solubilize biologically active compound with low water solubility
EP3138558A1 (en) Liposome composition and production method therefor
JP5487666B2 (en) Liposome production method comprising immobilizing an inner aqueous phase
JP4669665B2 (en) Polycation-modified liposome having no cytotoxicity and method for producing the same
EP1689364A1 (en) Stable liposome compositions comprising lipophilic amine containing pharmaceutical agents
WO2010110118A1 (en) Method for producing liposomes
Sirisha et al. Liposomes-the potential drug carriers
Reddy et al. Niosomes as nanocarrier systems: a review
CA2048471C (en) Water-containing liposome system
JPH0899907A (en) Solubilization of hydrophobic substance using lysophospholipid
JPH06239734A (en) Method for preparing liposome and liposome preparation
Gunda et al. A Review on Formulation and Evaluation of Liposomal Drugs
WO2021070778A1 (en) Nanodisc
JP4444385B2 (en) Liposome preparation kit
JPH06211645A (en) Liposome freeze-dried preparation
JP5838970B2 (en) Method for producing single-cell liposome by two-stage emulsification method in which water-soluble lipid is added to the inner aqueous phase, and single-cell liposome obtained by the production method
JP2002509866A (en) Method for producing liposome-like active substance preparation
JP4694776B2 (en) Fine particle composition or liposome preparation
JPH0374323A (en) Preservation of liposome
Khan et al. Preparation of drug loaded liposome
CN112773776B (en) Drug-loaded nanoparticle system
JPH0574573B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101028

TRDD Decision of grant or rejection written
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4669665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees