[go: up one dir, main page]

JP4666931B2 - Optical isolator - Google Patents

Optical isolator Download PDF

Info

Publication number
JP4666931B2
JP4666931B2 JP2004052548A JP2004052548A JP4666931B2 JP 4666931 B2 JP4666931 B2 JP 4666931B2 JP 2004052548 A JP2004052548 A JP 2004052548A JP 2004052548 A JP2004052548 A JP 2004052548A JP 4666931 B2 JP4666931 B2 JP 4666931B2
Authority
JP
Japan
Prior art keywords
magnet
mounting substrate
optical
bonding agent
faraday rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004052548A
Other languages
Japanese (ja)
Other versions
JP2005122090A (en
Inventor
由紀子 古堅
哲也 菅
実 大森
健一 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004052548A priority Critical patent/JP4666931B2/en
Publication of JP2005122090A publication Critical patent/JP2005122090A/en
Application granted granted Critical
Publication of JP4666931B2 publication Critical patent/JP4666931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、光源から出射された光を各種光学素子や光ファイバに導入した際に生じる戻り光を除去するために用いられる光アイソレータに関するものである。   The present invention relates to an optical isolator used for removing return light generated when light emitted from a light source is introduced into various optical elements and optical fibers.

光通信用モジュール等において、レーザ光源等の光源から出射した光は、各種光学素子や光ファイバに入射されるが、入射光の一部は各種光学素子や光ファイバの端面や内部で反射されたり散乱されたりする。この反射や散乱した光の一部は、戻り光として光源に戻ろうとするが、この戻り光を防止するために光アイソレータが用いられる。   In an optical communication module or the like, light emitted from a light source such as a laser light source is incident on various optical elements or optical fibers, but a part of the incident light is reflected on the end surfaces or inside of the various optical elements or optical fibers. It is scattered. A part of the reflected or scattered light tries to return to the light source as return light, and an optical isolator is used to prevent the return light.

従来、この種の光アイソレータは、2枚の偏光子の間に平板状のファラデー回転子を設置し、これら3つの部品を筒状の磁石内に各部品ホルダを介して収納することにより構成されていた。通常、ファラデー回転子は飽和磁界内において所定の波長をもつ光の偏光面を45°回転する厚みに調整され、また2つの偏光子はそれぞれの透過偏光方向が45°回転方向にずれるように回転調整されて構成されている。   Conventionally, this type of optical isolator is configured by installing a flat Faraday rotator between two polarizers, and storing these three components in a cylindrical magnet via respective component holders. It was. Normally, the Faraday rotator is adjusted to a thickness that rotates the polarization plane of light having a predetermined wavelength in the saturation magnetic field by 45 °, and the two polarizers rotate so that their transmission polarization directions are shifted by 45 ° rotation direction. Coordinated and configured.

このような構成の光アイソレータは、ファラデー回転子と2つの偏光子が別部品で各素子にホルダが必要であり、そのため部品点数が多くなり組立工数が多くなるばかりか、各部品間の光学上の調整作業が煩雑で、コスト高を招いていた。また、小型化が難しく、さらに、光源モジュールに組み込む際に、光アイソレータの偏波面の調整が必要となり実装が煩雑であった。   The optical isolator having such a configuration requires a Faraday rotator and two polarizers as separate parts and a holder for each element, which increases the number of parts and the number of assembling steps. The adjustment work is complicated and incurs high costs. In addition, it is difficult to reduce the size, and further, it is necessary to adjust the polarization plane of the optical isolator when it is incorporated in the light source module, and the mounting is complicated.

このため、ファラデー回転子と偏光子の各光学素子と、直方体の磁石を、平板状の実装基板に設置した光アイソレータも提案されている。   For this reason, an optical isolator in which optical elements of a Faraday rotator and a polarizer and a cuboid magnet are installed on a flat mounting board has been proposed.

特許文献1には図5に示す従来の小型化された光アイソレータ15が示されており、以下にその構成について説明する。   Patent Document 1 shows a conventional miniaturized optical isolator 15 shown in FIG. 5, and its configuration will be described below.

光アイソレータ15はファラデー回転子16、偏光子17、18の各光学素子と、直方体の磁石19が、平板状の実装基板20上に配置した構造を有している。ここで偏光子17、18は透過する光の一方向の偏波成分を吸収し、その偏波成分に直交する偏波成分を透過する機能を有し、また、ファラデー回転子16は飽和磁界強度において所定波長の光の偏波面を約45度回転する機能を有する。また2つの偏光子17、18は、それぞれの基板20に接する面を基準面とし、この基準面に対し透過偏波方向が0度および45度となるように切り出されている。
特開平10−227996号
The optical isolator 15 has a structure in which optical elements of a Faraday rotator 16 and polarizers 17 and 18 and a cuboid magnet 19 are arranged on a flat mounting board 20. Here, the polarizers 17 and 18 have a function of absorbing a polarization component in one direction of transmitted light and transmitting a polarization component orthogonal to the polarization component, and the Faraday rotator 16 has a saturation magnetic field strength. 1 has a function of rotating the polarization plane of light of a predetermined wavelength by about 45 degrees. The two polarizers 17 and 18 are cut out so that the plane contacting the respective substrates 20 is a reference plane, and the transmitted polarization directions are 0 degrees and 45 degrees with respect to the reference plane.
JP-A-10-227996

しかしながら図5の特許文献1に示すように、ファラデー回転子16、偏光子17、18の各光学素子と、直方体の磁石19が、平板状の実装基板20上に配置した光アイソレータ15においては、これら各光学素子21と平板状の実装基板20、あるいは磁石19と平板状の実装基板20との接合方法の記載がなく、その接合方法によっては光学素子の脱落、クラック接合強度の低下、光学特性の劣化が発生するという問題がある。   However, as shown in Patent Document 1 of FIG. 5, in the optical isolator 15 in which the optical elements of the Faraday rotator 16 and the polarizers 17 and 18 and the rectangular magnet 19 are arranged on a flat mounting board 20, There is no description of the bonding method between each of the optical elements 21 and the flat mounting substrate 20 or between the magnet 19 and the flat mounting substrate 20, and depending on the bonding method, the optical element may drop off, the crack bonding strength may decrease, and the optical characteristics. There is a problem that the deterioration occurs.

具体的には、単一の実装基板20の表面という狭小領域に光学素子21と磁石19を固定する構造のため、高温で溶融固着する接合剤を使用する場合は、磁石19の熱膨張係数が光学素子21に対して大きいため、隣接する光学素子21に影響し、引っ張りの応力を発生させることが一つの原因である。   Specifically, since the optical element 21 and the magnet 19 are fixed to a narrow area of the surface of the single mounting substrate 20, when a bonding agent that melts and fixes at a high temperature is used, the thermal expansion coefficient of the magnet 19 is One of the causes is that it is larger than the optical element 21 and affects the adjacent optical element 21 to generate a tensile stress.

本発明は、上記問題点に鑑みてなされたものであり、ファラデー回転子及び偏光子を含む光学素子と磁石とが、平板状の実装基板上面に接合剤を介して一体化されている光アイソレータにおいて、前記接合剤が実装基板上面で光学素子と接合する領域と磁石と接合する領域とに分離されており、前記光学素子と前記実装基板との間には、前記ファラデー回転子,前記偏光子および前記実装基板のいずれか小さい方の熱膨張係数以下の熱膨張係数を有する接合剤を介在させ、前記磁石と前記実装基板との間には、前記磁石および前記実装基板のいずれか小さい方の熱膨張係数以下の熱膨張係数を有する接合剤を介在させていることを特徴とする。
The present invention has been made in view of the above problems, and an optical isolator in which an optical element including a Faraday rotator and a polarizer and a magnet are integrated on the upper surface of a flat mounting substrate via a bonding agent. The bonding agent is separated into a region bonded to the optical element and a region bonded to the magnet on the upper surface of the mounting substrate, and the Faraday rotator and the polarizer are interposed between the optical element and the mounting substrate. And a bonding agent having a thermal expansion coefficient equal to or smaller than the smaller one of the mounting substrate, and between the magnet and the mounting substrate, whichever is smaller of the magnet and the mounting substrate A bonding agent having a thermal expansion coefficient equal to or lower than the thermal expansion coefficient is interposed .

また、前記接合剤が低融点ガラスからなることを特徴とする。   Further, the bonding agent is made of a low melting point glass.

さらに、前記実装基板の光学素子の接合領域と、前記実装基板の磁石の接合領域との間に溝が形成されていることを特徴とすることを特徴とする。   Furthermore, a groove is formed between the bonding region of the optical element of the mounting substrate and the bonding region of the magnet of the mounting substrate.

本発明の構成によれば、磁石と光学素子を共通の実装基板に高温にて溶融、接合する接合剤を用いて接合する構成の光アイソレータにおいて、磁石を接合する接合剤と、光学素子をする接合剤は互いに接触しない構成とするとともに、光学素子と実装基板との間には、ファラデー回転子,偏光子および実装基板のいずれか小さい方の熱膨張係数以下の熱膨張係数を有する接合剤を介在させ、磁石と実装基板との間には、磁石および実装基板のいずれか小さい方の熱膨張係数以下の熱膨張係数を有する接合剤を介在させていることで、光学素子への応力を緩和することができ、光学素子の特性劣化、クラック、脱落の課題を解決することができる。

According to the configuration of the present invention, an optical isolator having a configuration in which a magnet and an optical element are bonded to a common mounting substrate using a bonding agent that melts and bonds at a high temperature. The bonding agent is configured not to contact each other, and a bonding agent having a thermal expansion coefficient equal to or smaller than the smaller one of the Faraday rotator, the polarizer, and the mounting substrate is provided between the optical element and the mounting substrate. By interposing a bonding agent having a thermal expansion coefficient equal to or lower than the smaller one of the magnet and the mounting board between the magnet and the mounting board , the stress on the optical element is relieved. It is possible to solve the problems of characteristic deterioration, cracks, and dropout of the optical element.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の光アイソレータの実施形態を示す斜視図である。   FIG. 1 is a perspective view showing an embodiment of an optical isolator according to the present invention.

図に示すように、本発明の光アイソレータ10は、上面に接合剤5a、5bを形成した実装基板6と、偏光子3、ファラデー回転子2、偏光子4からなる光学素子1と、磁石7とから成り、磁石7は接合剤5aを介して実装基板6と接合され、光学素子1は接合剤5bを介して実装基板6と接合されている。   As shown in the figure, an optical isolator 10 according to the present invention includes a mounting substrate 6 having bonding agents 5a and 5b formed on the upper surface, an optical element 1 including a polarizer 3, a Faraday rotator 2, and a polarizer 4, and a magnet 7. The magnet 7 is bonded to the mounting substrate 6 via the bonding agent 5a, and the optical element 1 is bonded to the mounting substrate 6 via the bonding agent 5b.

実装基板6の材質として光アイソレータ10を半導体レーザモジュールに実装する実装方法によって選択され、例えば、YAG溶接で半導体レーザモジュールのサブマウントに固定される場合は、ステンレス、コバール、パーマロイ等の金属が選択され、また、ハンダによる実装の場合は、前記金属、あるいはセラミック、ガラス等の材料が用いられ実装面にたとえばCr下地でAuメッキを施こしているものが選択される。   The material of the mounting substrate 6 is selected by a mounting method in which the optical isolator 10 is mounted on the semiconductor laser module. For example, when it is fixed to the submount of the semiconductor laser module by YAG welding, a metal such as stainless steel, Kovar, or permalloy is selected. In the case of mounting by solder, a material such as the metal, ceramic, glass or the like is used, and the mounting surface is plated with, for example, Cr as a base.

光学素子1は、平板状の偏光子3、ファラデー回転子2、偏光子4からなり、これら光学素子1の底面は実装基板6上に精度良く低融点ガラス5bを介して接合されている。   The optical element 1 includes a plate-shaped polarizer 3, a Faraday rotator 2, and a polarizer 4, and the bottom surface of these optical elements 1 is bonded to the mounting substrate 6 with a low melting point glass 5b with high accuracy.

接合剤5a、5bには低融点ガラスが用いられ、それらは同一の材料かあるいは異なる組成材料でもよく、ガラス材であるSiOに他の金属酸化物、例えば酸化鉛や酸化リンや酸化亜鉛を混ぜ合わせ、その融点を低くなるように調整したもので、溶剤とともにクリーム状にしたものを、実装基板6上にあらかじめ塗布し、仮焼成により溶剤をとばしておくか、あるいは実装基板6の上面の5a、5bの領域とほぼ同じ大きさの平板状に形成したプリフォームがもちいられる。このように実装基板6上に形成された低融点ガラス5bと光学素子1、低融点ガラス5aと磁石7をそれぞれ密着させたまま300〜420度の高温炉で数秒から数分間焼成することで接合することができる。 Bonding agent 5a, the low-melting glass is used in 5b, they may be the same material or different composition material, other metal oxides to SiO 2 is a glass material, for example, lead oxide and phosphorus oxide and zinc oxide The mixture is adjusted so that its melting point is lowered, and a cream-like one with a solvent is applied on the mounting substrate 6 in advance and the solvent is removed by temporary baking, or the upper surface of the mounting substrate 6 is removed. A preform formed in the shape of a flat plate having substantially the same size as the regions 5a and 5b is used. By bonding the low melting point glass 5b and the optical element 1 formed on the mounting substrate 6 in this way and the low melting point glass 5a and the magnet 7 in close contact with each other by firing in a high temperature furnace of 300 to 420 degrees for several seconds to several minutes. can do.

次に光アイソレータ10の光学素子1とこれらの構成について説明する。   Next, the optical element 1 of the optical isolator 10 and the configuration thereof will be described.

偏光子3の透過偏波方向は、実装基板6の上面と平行な1辺(これを基準辺と呼ぶ)に対し平行な方向に設定されており、他方の偏光子4の透過偏波方向は、その基準辺に対して45度の方向に設定されている。ここで、実装基板6の上面と偏光子3と偏光子4の基準辺と略一致させ、固定することにより、偏光子3と偏光子4の透過偏波方向は回転調整することなく、互いに45度ずれた状態となり、ファラデー回転子2のファラデー回転角が略45度の場合、最良の挿入損失特性とアイソレーション特性を得ることができる。   The transmission polarization direction of the polarizer 3 is set in a direction parallel to one side (referred to as a reference side) parallel to the upper surface of the mounting substrate 6, and the transmission polarization direction of the other polarizer 4 is The angle is set to 45 degrees with respect to the reference side. Here, by making the upper surface of the mounting substrate 6 and the reference sides of the polarizer 3 and the polarizer 4 substantially coincide with each other and fixing, the transmission polarization directions of the polarizer 3 and the polarizer 4 are not adjusted to each other. When the Faraday rotation angle of the Faraday rotator 2 is approximately 45 degrees, the best insertion loss characteristic and isolation characteristic can be obtained.

偏光子3、4は、入射する光の1方向の偏光成分を吸収する機能を有する吸収型偏光子、あるいは入射する光の1方向の偏光成分を分離または合成する複屈折性偏光子で構成される。吸収型偏光子は例えば楕円体形の金属粒子がガラス内に分散された構造の偏光ガラスからなる。この偏光ガラスは長く延伸された金属粒子をガラス自身の中に一方向に配列させることにより偏光特性を持たせたガラスであり、金属粒子の延伸方向に垂直な偏波面を持つ光が透過し、平行な偏波面を持つ光は吸収される。例えば楕円体形の金属粒子がガラス内に分散された構造の偏光ガラスからなる。この偏光ガラスは長く延伸された金属粒子をガラス自身の中に一方向に配列させることにより偏光特性を持たせたガラスであり、金属粒子の延伸方向に垂直な偏波面を持つ光が透過し、平行な偏波面を持つ光は吸収される。   The polarizers 3 and 4 are configured by an absorption polarizer having a function of absorbing a unidirectional polarization component of incident light, or a birefringent polarizer that separates or synthesizes a unidirectional polarization component of incident light. The The absorptive polarizer is made of, for example, polarizing glass having a structure in which ellipsoidal metal particles are dispersed in glass. This polarizing glass is a glass having polarization characteristics by arranging long stretched metal particles in one direction in the glass itself, light having a polarization plane perpendicular to the stretch direction of the metal particles is transmitted, Light with a parallel polarization plane is absorbed. For example, it is made of polarizing glass having a structure in which ellipsoidal metal particles are dispersed in glass. This polarizing glass is a glass having polarization characteristics by arranging long stretched metal particles in one direction in the glass itself, light having a polarization plane perpendicular to the stretch direction of the metal particles is transmitted, Light with a parallel polarization plane is absorbed.

ファラデー回転子2は常温において入射した光の偏波方向が45度回転する厚みに調整されている。また、光アイソレータ10に高いアイソレーションが要求される場合は、ファラデー回転子2の偏波回転角度45+α度に対し、偏光子3と偏光子4の回転ズレを45−α度に精密に調整する必要があり、光を逆方向から(偏光子4側から)入射し、透過してくる光が最も小さくなるように偏光子2を回転調整する方法がある。そこであらかじめ偏光子3と偏光子4の透過偏波方向を45−α度ずらして切り出し、例えば偏光子4の透過偏波方向を基準辺に対して45−α度とすることも可能である。また、ファラデー回転子の偏波回転角の精度±αは光アイソレータの特性上、1度程度とすることが望ましく、また実装基板6の上面に精度良く設置する。   The Faraday rotator 2 is adjusted to have a thickness at which the polarization direction of light incident at room temperature rotates 45 degrees. When high isolation is required for the optical isolator 10, the rotational deviation between the polarizer 3 and the polarizer 4 is precisely adjusted to 45−α degrees with respect to the polarization rotation angle 45 + α degrees of the Faraday rotator 2. There is a method in which light is incident from the opposite direction (from the side of the polarizer 4), and the polarizer 2 is rotationally adjusted so that the transmitted light is minimized. Therefore, the transmission polarization directions of the polarizer 3 and the polarizer 4 can be cut out by shifting by 45-α degrees in advance, and for example, the transmission polarization direction of the polarizer 4 can be set to 45-α degrees with respect to the reference side. In addition, the accuracy ± α of the polarization rotation angle of the Faraday rotator is desirably about 1 degree due to the characteristics of the optical isolator, and is installed on the upper surface of the mounting substrate 6 with high accuracy.

ファラデー回転子2は、例えば、ビスマス置換ガーネット結晶等で、その厚みは所定の波長をもつ入射光線の偏光面が45度回転する様に設定する。一般に、偏波面を回転させるためには、入射光線の光軸L方向に十分な磁界を印可することが必要であり、磁石7がファラデー回転子2の両脇に配置されている。   The Faraday rotator 2 is, for example, a bismuth-substituted garnet crystal, and the thickness thereof is set so that the polarization plane of incident light having a predetermined wavelength rotates 45 degrees. In general, in order to rotate the polarization plane, it is necessary to apply a sufficient magnetic field in the direction of the optical axis L of the incident light, and the magnets 7 are arranged on both sides of the Faraday rotator 2.

磁石7の材料としては、例えばサマリウムコバルトからなる材料が適している。磁石7は光学素子1の両側に配置されており、磁石7には、ファラデー回転子2を通過する光軸方向の磁力線が最大になるような向きに磁極が配置されており、ファラデー回転子2が所定の波長をもつ入射光線の偏光面を45度回転させるだけの磁界強度を有する。また、磁石の形状はこれに限ることもなく、ファラデー回転子に所定の磁界強度を満足すれば、1個でも良く、その形状も限定されない。   As a material of the magnet 7, for example, a material made of samarium cobalt is suitable. The magnets 7 are arranged on both sides of the optical element 1, and the magnetic poles are arranged in the magnet 7 in such a direction that the magnetic field lines passing through the Faraday rotator 2 are maximized. Has a magnetic field intensity sufficient to rotate the polarization plane of incident light having a predetermined wavelength by 45 degrees. Further, the shape of the magnet is not limited to this, and may be one as long as the Faraday rotator satisfies a predetermined magnetic field strength, and the shape is not limited.

ここで、ファラデー回転子2の熱膨張係数は約10×10−6/℃であり、偏光ガラスの熱膨張係数は約6.5×10−6/℃であり、また磁石7の熱膨張係数は約13×10−6/℃であり、これらの熱膨張係数の異なる部材を共通の実装基板6に堅固に実装し、かつ所望の光学特性を得るために本発明は考え出されたものである。すなわち、本発明の構成は実装基板6に形成する接合剤5aと5bが互いに接触していないため、磁石7による引っ張り応力が光学素子1、特にファラデー回転子2にかかることなく、良好な特性を示すこと発明した。 Here, the thermal expansion coefficient of the Faraday rotator 2 is about 10 × 10 −6 / ° C., the thermal expansion coefficient of the polarizing glass is about 6.5 × 10 −6 / ° C., and the thermal expansion coefficient of the magnet 7. Is about 13 × 10 −6 / ° C., and the present invention has been conceived in order to firmly mount these members having different thermal expansion coefficients on the common mounting board 6 and obtain desired optical characteristics. is there. That is, in the configuration of the present invention, since the bonding agents 5a and 5b formed on the mounting substrate 6 are not in contact with each other, the tensile stress due to the magnet 7 is not applied to the optical element 1, particularly the Faraday rotator 2, and the good characteristics are obtained. Invented to show.

ここで、より強固な接合状態を得るためには、最適な熱膨張係数を有する低融点ガラスを用いる方がよい。ファラデー回転子2及び接合剤5に生じる応力は、接合剤5を介した磁石7による引っ張りだけではなく、接合剤5自身の熱収縮も原因となり得る。低融点ガラスを用いる場合は、この材料特性として引っ張り応力に弱く、引っ張り応力がかかった状態ではガラスの破断が発生し接合強度の劣化につながるため、接合する部材同士の内、一番熱膨張係数が小さい部材にあわせるか、それ以下の熱膨張係数を有する低融点ガラスを介在することが接合強度の点から望ましい。そのため、ファラデー回転子2と実装基板6の接合には、ファラデー回転子2と実装基板6のいずれか熱膨張係数が小さい方と同じかそれ以下の熱膨張係数を有する接合剤低融点ガラスを介在することが望ましい。これは後述の通り、光アイソレータの特性を左右するファラデー回転子への残留応力の点からも好ましい。また、磁石7と実装基板6の接合には、磁石7と実装基板6のいずれか熱膨張係数が小さい方と同じかそれ以下の熱膨張係数を有する低融点ガラスを介在することが望ましい。このように選択した結果、接合剤5aと接合剤5bで異なる材料配合の低融点ガラスを用いてもよい。   Here, in order to obtain a stronger bonding state, it is better to use a low-melting glass having an optimum thermal expansion coefficient. The stress generated in the Faraday rotator 2 and the bonding agent 5 can be caused not only by pulling by the magnet 7 via the bonding agent 5 but also by thermal contraction of the bonding agent 5 itself. When using low-melting-point glass, the material properties are weak against tensile stress, and when tensile stress is applied, the glass breaks and leads to deterioration of joint strength. It is desirable from the viewpoint of bonding strength that a low melting point glass having a thermal expansion coefficient equal to or smaller than that of a member having a low thermal expansion coefficient is interposed. Therefore, the Faraday rotator 2 and the mounting substrate 6 are joined with a low melting point glass having a thermal expansion coefficient equal to or lower than that of the Faraday rotator 2 or the mounting substrate 6 that has a smaller thermal expansion coefficient. It is desirable to do. As will be described later, this is also preferable from the viewpoint of residual stress on the Faraday rotator that affects the characteristics of the optical isolator. In addition, it is desirable to interpose a low-melting glass having a thermal expansion coefficient equal to or lower than the smaller one of the magnet 7 and the mounting board 6 in the bonding of the magnet 7 and the mounting board 6. As a result of such selection, low melting point glass having different material composition may be used for the bonding agent 5a and the bonding agent 5b.

図2は本発明の効果について説明した断面図である。   FIG. 2 is a sectional view for explaining the effect of the present invention.

図2は図1に示す磁石とファラデー回転子を通る断面A−A断面を示した図で、図2(a)は接合剤5が実装基板6の全面に形成され、磁石7とファラデー回転子2が共に接合剤5により固着されている様子を示す。図2(b)は接合剤5a、5bが実装基板6上で互いに接触せずに別領域に形成され、磁石7が接合剤5aによって、光学素子1が接合剤5bにより固着されている様子を示す。ガラスは引っ張り応力に対して弱いので、接合相手との応力が許容範囲を超えないように熱膨張係数や固着温度を最適に設定しておく。   FIG. 2 is a cross-sectional view taken along the line AA through the magnet and the Faraday rotator shown in FIG. 1. FIG. 2A shows the bonding agent 5 formed on the entire surface of the mounting substrate 6, and the magnet 7 and the Faraday rotator. 2 shows a state where both are fixed by the bonding agent 5. FIG. 2B shows a state in which the bonding agents 5a and 5b are formed in different regions on the mounting substrate 6 without contacting each other, the magnet 7 is fixed by the bonding agent 5a, and the optical element 1 is fixed by the bonding agent 5b. Show. Since glass is weak against tensile stress, the thermal expansion coefficient and the fixing temperature are optimally set so that the stress with the bonding partner does not exceed the allowable range.

物体は温度の上昇により膨張し、温度の降下により収縮する。温度1℃の変化によって生じる単位長さあたりの収縮量を熱膨張係数といい、これをαで表す。各接合部における応力は、接合剤5、5a、5bの固着温度(ほぼガラス転移温度Tgと等しい)付近で発生し始め、ここから温度が下がるほど各残留応力は大きくなる。図中の磁石7、ファラデー回転子2内の矢印は各部材が温度降下時に収縮する方向を示している。   The object expands with increasing temperature and contracts with decreasing temperature. The amount of shrinkage per unit length caused by a change in temperature of 1 ° C. is called a thermal expansion coefficient, and this is represented by α. The stress at each joint begins to occur near the fixing temperature (approximately equal to the glass transition temperature Tg) of the bonding agents 5, 5a, 5b, and the residual stress increases as the temperature decreases from here. The arrows in the magnet 7 and the Faraday rotator 2 in the figure indicate the direction in which each member contracts when the temperature drops.

また、光学素子1の内、ファラデー回転子2はその残留応力、特に引っ張り応力により、その消光比が大幅に低下することがわかっている。ファラデー回転子2の消光比とは、入射した直線偏波の光のうち、どれだけの光が直線偏波を保持したまま回転するかをパワーの比で表したものである。   Further, it has been found that the extinction ratio of the Faraday rotator 2 among the optical elements 1 is greatly reduced by the residual stress, particularly the tensile stress. The extinction ratio of the Faraday rotator 2 is a ratio of power indicating how much of the incident linearly polarized light rotates while maintaining the linearly polarized light.

以上の考察から、図2(a)の構成では、熱膨張係数が大きい磁石7が接合剤5の固着温度から常温への温度降下に伴い大きく収縮し、図中の矢印Fの方向に接合剤5を介してファラデー回転子2を引っ張るため、ファラデー回転子の消光比の低下や、低融点ガラス5にクラック発生という問題が生じる。これに対し本発明の図2(b)では接合剤5aと5bが分離しているため、磁石7の収縮に伴う影響をファラデー回転子2が受けにくい構成となっているために、ファラデー回転子2の特性低下や接合剤5のクラックが発生しにくくなる。   From the above consideration, in the configuration of FIG. 2A, the magnet 7 having a large thermal expansion coefficient contracts greatly with the temperature drop from the fixing temperature of the bonding agent 5 to the normal temperature, and the bonding agent in the direction of arrow F in the figure. Since the Faraday rotator 2 is pulled through 5, there arises a problem that the extinction ratio of the Faraday rotator is lowered and cracks are generated in the low melting point glass 5. On the other hand, in FIG. 2B of the present invention, since the bonding agents 5a and 5b are separated, the Faraday rotator 2 is not easily affected by the contraction of the magnet 7. 2 and the bonding agent 5 are less likely to crack.

本発明は接合剤5a、5bとして低融点ガラスを用いた場合について説明したが、これに限ることはなく、常温より高い温度で硬化する接合剤、たとえば熱硬化型の樹脂接着剤や、ハンダ、ロウ材による接合についても同様の効果を得ることができる。特に本実施例で説明した低融点ガラス5を接合剤として用いた場合、光学素子2、3、4のメッキ等の前処理は不要であり工数の削減が実現する、または、樹脂による接合に比較して非常に堅固な固定が実現し、高温高湿化での特性劣化がなくなり、信頼性の高い光アイソレータが実現する、等の効果が期待される。   Although this invention demonstrated the case where low melting glass was used as joining agent 5a, 5b, it is not restricted to this, For example, the joining agent hardened | cured at temperature higher than normal temperature, for example, a thermosetting type resin adhesive, solder, The same effect can be obtained for the joining with the brazing material. In particular, when the low melting point glass 5 described in the present embodiment is used as a bonding agent, pretreatment such as plating of the optical elements 2, 3, and 4 is unnecessary, and the number of man-hours can be reduced, or compared with bonding by resin. As a result, it is possible to achieve an effect such as realizing a very firm fixation, eliminating characteristic deterioration due to high temperature and high humidity, and realizing a highly reliable optical isolator.

図3は、本発明の光アイソレータの第2の実施形態を示す斜視図である。   FIG. 3 is a perspective view showing a second embodiment of the optical isolator of the present invention.

実装基板6に形成される接合剤5a、5bの間には、互いが接触しないように実装基板6に溝8が形成されており、溝8は、実装基板6の上面を横断して形成されており、2本の溝8に囲まれた平面には光学素子1が接合され、2本の溝8、8の外側の2平面に磁石が固定される構成としている。これにより、特に接合剤5a、5bの焼成時に発生しやすい接触による不良を確実に防止する効果がある。本実施例も第一の実施例と同様の効果を有し、磁石7からの引っ張り応力を光学素子1がさらに受けにくい構成である。   A groove 8 is formed in the mounting substrate 6 between the bonding agents 5a and 5b formed on the mounting substrate 6 so as not to contact each other. The groove 8 is formed across the upper surface of the mounting substrate 6. The optical element 1 is bonded to the plane surrounded by the two grooves 8, and the magnet is fixed to the two planes outside the two grooves 8, 8. Thereby, there exists an effect which prevents reliably the defect by the contact which tends to generate | occur | produce especially at the time of baking of bonding agent 5a, 5b. This embodiment also has the same effect as the first embodiment, and has a configuration in which the optical element 1 is more difficult to receive tensile stress from the magnet 7.

以上説明したように、本発明の構成によれば、磁石7と光学素子1を共通の実装基板6に高温にて溶融、接合する接合剤を用いて接合する構成の光アイソレータにおいて、磁石7を接合剤5aで、光学素子1を接合剤5bで接合し、接合剤5aと接合剤5bとは互いに確実に接触しない構成とすることで、光学素子1への応力を緩和することができ、光学素子の特性劣化、クラック、脱落の課題を解決することができる。   As described above, according to the configuration of the present invention, in the optical isolator configured to bond the magnet 7 and the optical element 1 to the common mounting substrate 6 at a high temperature using a bonding agent, the magnet 7 The optical element 1 is bonded with the bonding agent 5b with the bonding agent 5a, and the bonding agent 5a and the bonding agent 5b are configured not to contact each other with certainty, so that the stress on the optical element 1 can be reduced. The problems of device characteristic deterioration, cracks, and dropout can be solved.

本発明の実施例として、磁石と実装基板の接合剤と、光学素子と実装基板の接合剤を、熱膨張係数の異なる材料で試作した本発明の光アイソレータCを試作し、図2(b)に示した光アイソレータBと接合強度と特性の比較を行った。各部品と構成について以下に説明する。

As an example of the present invention, an optical isolator C according to the present invention, in which a bonding agent between a magnet and a mounting substrate and an bonding element between an optical element and a mounting substrate are made of materials having different coefficients of thermal expansion, was manufactured as a prototype, and FIG. The optical isolator B shown in FIG . 1 was compared with the bonding strength and characteristics. Each component and configuration will be described below.

偏光子は、コーニング社製のポーラコア(製品名)を用い、サイズは1mm角で厚み0.2mmのものを使用し、基板との実装辺を基準辺とし、入射側の偏光子3は基準辺に平行な偏波方向を透過し、出射側の偏光子4は基準辺に対して45度の偏波方向を透過するように設定した。偏光子の熱膨張係数は6.5×10−6/℃である。 The polarizer used is a polar core (product name) manufactured by Corning, the size is 1 mm square and the thickness is 0.2 mm, the mounting side with the substrate is the reference side, and the polarizer 3 on the incident side is the reference side The output side polarizer 4 is set to transmit a polarization direction of 45 degrees with respect to the reference side. The thermal expansion coefficient of the polarizer is 6.5 × 10 −6 / ° C.

ファラデー回転子はビスマス置換ガーネットを用い、サイズは1mm角で厚み0.4mm、飽和磁界強度中における偏波回転角は45度であった。いずれも波長1.55μmの光に対して動作する素子であり、偏光子、ファラデー回転子の両面には対空気(n=1)の反射防止膜が施されている。ファラデー回転子の熱膨張係数は10×10−6/℃である。 The Faraday rotator was a bismuth-substituted garnet, the size was 1 mm square, the thickness was 0.4 mm, and the polarization rotation angle in the saturation magnetic field strength was 45 degrees. Both are elements that operate with respect to light having a wavelength of 1.55 μm, and antireflection films for air (n = 1) are applied to both surfaces of the polarizer and the Faraday rotator. The thermal expansion coefficient of the Faraday rotator is 10 × 10 −6 / ° C.

光アイソレータとも実装基板材料にジルコニア基板を用い、その上面に低融点ガラスをあらかじめ塗布しておく。ジルコニアの熱膨張係数は10.5×10−6/℃であり、ファラデー回転子の熱膨張係数とほぼ同じであり、ファラデー回転子に実装基板からの応力の影響を受けない構成とした。光アイソレータBは、磁石と実装基板の接合、及び光学素子と実装基板の接合に、8×10 −6 /℃の熱膨張係数の1種類の低融点ガラスを用いた。光アイソレータCは、磁石と実装基板の接合には実装基板のジルコニアより若干
熱膨張係数が小さい9.5×10 −6 /℃の低融点ガラスを用い、光学素子と実装基板の接合には光学素子の内、熱膨張係数の小さい偏光子の熱膨張係数6.5×10 −6 /℃より若干熱膨張係数が小さい6.0×10 −6 /℃の低融点ガラスを用い、以上2種類の低融点ガラスを用いた。

For both optical isolators B and C , a zirconia substrate is used as a mounting substrate material, and a low-melting glass is coated on the upper surface in advance. The thermal expansion coefficient of zirconia is 10.5 × 10 −6 / ° C., which is almost the same as the thermal expansion coefficient of the Faraday rotator, and the Faraday rotator is not affected by the stress from the mounting substrate . In the optical isolator B, one kind of low-melting glass having a thermal expansion coefficient of 8 × 10 −6 / ° C. was used for bonding the magnet and the mounting substrate and bonding the optical element and the mounting substrate . The optical isolator C is slightly different from the zirconia of the mounting board for bonding the magnet and the mounting board.
A low-melting glass with a low thermal expansion coefficient of 9.5 × 10 −6 / ° C. is used, and the optical expansion coefficient of the polarizer with a small thermal expansion coefficient is 6.5 × among the optical elements for bonding the optical element and the mounting substrate. using 10 -6 / ° C. some thermal expansion coefficient than the smaller 6.0 × 10 -6 / ℃ low melting point glass, using two kinds of low melting point glass or more.

実装基板のサイズは幅W=3mm、長さD=1.5mm、厚みt=0.3mmで、光アイソレータBに用いる実装基板Bは、そのほぼ中央部に幅W=1mm、長さD=1.5mmの第一の低融点ガラスを塗布し、第一の低融点ガラス領域の両側に幅W=0.8mm、長さD=1.5mmの第二の低融点ガラスを塗布し、第一の低融点ガラスと第二の低融点ガラスは約0.2mmの幅で分離されている。磁石は幅W=0.8mm、長さD=1.4mm、厚みT=1.4mmの略直方体の磁石を2個用いた。

The mounting substrate has a width W = 3 mm, a length D = 1.5 mm, and a thickness t = 0.3 mm. The mounting substrate B used for the optical isolator B has a width W = 1 mm and a length D = A first low melting glass of 1.5 mm is applied, a second low melting glass of width W = 0.8 mm and length D = 1.5 mm is applied to both sides of the first low melting glass region, One low melting glass and the second low melting glass are separated by a width of about 0.2 mm. Two magnets having a substantially rectangular parallelepiped shape having a width W = 0.8 mm, a length D = 1.4 mm, and a thickness T = 1.4 mm were used.

光アイソレータB、Cとも試作条件は同じくし、低融点ガラスを介して偏光子とファラデー回転子と偏光子の各光学素子の基準辺、および磁石を実装基板に接合した。接合は、低融点ガラスの溶融温度380度、1分で焼成した。The optical isolators B and C have the same trial production conditions, and the reference side of each optical element of the polarizer, the Faraday rotator, and the polarizer, and the magnet are bonded to the mounting substrate through a low melting point glass. The bonding was performed at a melting temperature of 380 ° C. for 1 minute for the low-melting glass.

表1は試作した5個の光アイソレータのアイソレーション特性、磁石と実装基板の圧縮せん断強度、光学素子と実装基板の圧縮せん断強度、とその平均値を示す。圧縮方向は光軸Zの方向とした。Table 1 shows the isolation characteristics of five prototype optical isolators, the compression shear strength of the magnet and the mounting substrate, the compression shear strength of the optical element and the mounting substrate, and the average value thereof. The compression direction was the direction of the optical axis Z.

Figure 0004666931
Figure 0004666931

光アイソレータCのアイソレーション特性は、光アイソレータBに対して4dBほど劣るものの、一般的なアイソレーション特性35dB以上をクリアしている。また接合強度の点では、磁石および光学素子ともその接合強度は光アイソレータBに対して平均値で3.6〜4.2N/mmThe isolation characteristic of the optical isolator C is inferior to that of the optical isolator B by about 4 dB, but clears a general isolation characteristic of 35 dB or more. In terms of bonding strength, the bonding strength of both the magnet and the optical element is 3.6 to 4.2 N / mm on average with respect to the optical isolator B. 2 ほど大きくなり、本発明による接合強度の改善が確認できた。It was confirmed that the bonding strength was improved by the present invention.

以上の試作により、光学特性が安定し、かつ、組み立てが容易で工数が少なく、光学素子の脱落、クラック、特性劣化がない信頼性に優れた光アイソレータを提供することができる。   By the above trial manufacture, it is possible to provide an optical isolator having stable optical characteristics, easy assembly, less man-hours, and excellent in reliability without dropping, cracking, and characteristic deterioration of optical elements.

アイソレータの熱応力の数値解析を行った。解析条件としては、ファラデー回転子2の熱膨張係数を10.0×10−6(1/℃)、偏光子3、4の熱膨張係数を6.34×10−6(1/℃)、磁石5の熱膨張係数を光軸方向を6.5×10−6(1/℃)、光軸と垂直方向を13.0×10−6(1/℃)、接合剤5の熱膨張係数を9.0×10−6(1/℃)及び6.0×10−6(1/℃)の二種類、接合剤5の融点を380℃とし、20℃まで温度を下げた際の熱応力を見た。この時の実装基板6の材質をアルミナとし、その熱膨張係数を7.1×10−6(1/℃)とした。

Numerical analysis of thermal stress of optical isolator was performed. As analysis conditions, the thermal expansion coefficient of the Faraday rotator 2 is 10.0 × 10 −6 (1 / ° C.), the thermal expansion coefficients of the polarizers 3 and 4 are 6.34 × 10 −6 (1 / ° C.), The thermal expansion coefficient of the magnet 5 is 6.5 × 10 −6 (1 / ° C.) in the optical axis direction, 13.0 × 10 −6 (1 / ° C.) in the direction perpendicular to the optical axis, and the thermal expansion coefficient of the bonding agent 5. Of 9.0 × 10 −6 (1 / ° C.) and 6.0 × 10 −6 (1 / ° C.), the melting point of the bonding agent 5 is 380 ° C., and the heat when the temperature is lowered to 20 ° C. I saw the stress. The material of the mounting substrate 6 at this time was alumina, and its thermal expansion coefficient was 7.1 × 10 −6 (1 / ° C.).

解析のパターンとしては、図2(a)の光アイソレータで接合剤5の熱膨張係数が9.0×10−6(1/℃)(パターン1)、図2(a)の光アイソレータで接合剤5の熱膨張係数が6.0×10−6(1/℃)(パターン2)、図2(b)の光アイソレータで接合剤5の熱膨張係数が9.0×10−6(1/℃)(パターン3)、図2(b)の光アイソレータで接合剤5の熱膨張係数が6.0×10−6(1/℃)(パターン4)の4パターンについて解析を行った。解析結果を表2に示す。また、パターン1、2についての応力分布を図4に示す。

Figure 0004666931
As an analysis pattern, the optical isolator of FIG. 2 (a) has a thermal expansion coefficient of 9.0 × 10 −6 (1 / ° C.) (Pattern 1), and the optical isolator of FIG. 2 (a). The thermal expansion coefficient of the agent 5 is 6.0 × 10 −6 (1 / ° C.) (pattern 2), and the thermal expansion coefficient of the bonding agent 5 is 9.0 × 10 −6 (1 in the optical isolator of FIG. 2B). / ° C.) (Pattern 3) and 4 patterns with a thermal expansion coefficient of 6.0 × 10 −6 (1 / ° C.) (Pattern 4) of the bonding agent 5 were analyzed using the optical isolator of FIG. The analysis results are shown in Table 2. FIG. 4 shows the stress distribution for the patterns 1 and 2.
Figure 0004666931

以上の解析より、接合剤5の熱膨張係数が低い方がファラデー回転子への応力が低くなることがわかった。この場合も、図2(b)に示される接合剤5a、bの分離は、ファラデー回転子2の応力低減に有効であり、クラックや特性劣化に効果があることが確認できた。
[図面の簡単な説明]
From the above analysis, it was found that the stress on the Faraday rotator is lower when the thermal expansion coefficient of the bonding agent 5 is lower. Also in this case, it was confirmed that the separation of the bonding agents 5a and 5b shown in FIG. 2B is effective in reducing the stress of the Faraday rotator 2 and effective in cracking and deterioration of characteristics.
[Brief description of drawings]

本発明の光アイソレータの実施形態を示す斜視図である。It is a perspective view which shows embodiment of the optical isolator of this invention. 本発明の効果について説明する断面図である。It is sectional drawing explaining the effect of this invention. 本発明の光アイソレータの第2の実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the optical isolator of this invention. 応力解析結果の応力分布の斜視図である。It is a perspective view of stress distribution of a stress analysis result. 従来の小型化された光アイソレータの構成を示す図である。It is a figure which shows the structure of the conventional optical isolator miniaturized.

符号の説明Explanation of symbols

1、21:光学素子
10、11、15:光アイソレータ
2、16:ファラデー回転子
3、4、17、18:偏光子
5:接合剤
6、20:実装基板
7、19、22:磁石
8:溝
1, 2: Optical elements 10, 11, 15: Optical isolator 2, 16: Faraday rotator 3, 4, 17, 18: Polarizer 5: Bonding agent 6, 20: Mounting substrate 7, 19, 22: Magnet 8: groove

Claims (3)

ファラデー回転子及び偏光子を含む光学素子と磁石とが、平板状の実装基板上面に接合剤を介して一体化されている光アイソレータにおいて、前記接合剤が実装基板上面で光学素子と接合する領域と磁石と接合する領域とに分離されており、前記光学素子と前記実装基板との間には、前記ファラデー回転子,前記偏光子および前記実装基板のいずれか小さい方の熱膨張係数以下の熱膨張係数を有する接合剤を介在させ、前記磁石と前記実装基板との間には、前記磁石および前記実装基板のいずれか小さい方の熱膨張係数以下の熱膨張係数を有する接合剤を介在させていることを特徴とする光アイソレータ。 In an optical isolator in which an optical element including a Faraday rotator and a polarizer and a magnet are integrated on a flat mounting board upper surface via a bonding agent, the bonding agent is bonded to the optical element on the mounting board upper surface. Between the optical element and the mounting substrate, the heat of the Faraday rotator, the polarizer, and the mounting substrate, which is smaller than the thermal expansion coefficient, whichever is smaller. A bonding agent having an expansion coefficient is interposed, and a bonding agent having a thermal expansion coefficient equal to or lower than the smaller one of the magnet and the mounting board is interposed between the magnet and the mounting board. An optical isolator characterized by comprising: 前記接合剤が低融点ガラスからなることを特徴とする請求項1記載の光アイソレータ。 Claim 1 Symbol placement of the optical isolator, wherein said bonding agent is made of a low-melting-point glass. 前記実装基板の光学素子の接合領域と、前記実装基板の磁石の接合領域との間に溝が形成されていることを特徴とする請求項1または2記載の光アイソレータ。 The optical isolator according to claim 1 or 2 , wherein a groove is formed between a bonding region of the optical element of the mounting substrate and a bonding region of the magnet of the mounting substrate.
JP2004052548A 2003-09-25 2004-02-26 Optical isolator Expired - Fee Related JP4666931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052548A JP4666931B2 (en) 2003-09-25 2004-02-26 Optical isolator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003333109 2003-09-25
JP2004052548A JP4666931B2 (en) 2003-09-25 2004-02-26 Optical isolator

Publications (2)

Publication Number Publication Date
JP2005122090A JP2005122090A (en) 2005-05-12
JP4666931B2 true JP4666931B2 (en) 2011-04-06

Family

ID=34622004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052548A Expired - Fee Related JP4666931B2 (en) 2003-09-25 2004-02-26 Optical isolator

Country Status (1)

Country Link
JP (1) JP4666931B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105354A (en) * 1998-09-30 2000-04-11 Kyocera Corp Element for optical isolator
JP2003043416A (en) * 2001-07-30 2003-02-13 Kyocera Corp Optical isolator
JP2003255269A (en) * 2002-02-27 2003-09-10 Kyocera Corp Optical isolator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105354A (en) * 1998-09-30 2000-04-11 Kyocera Corp Element for optical isolator
JP2003043416A (en) * 2001-07-30 2003-02-13 Kyocera Corp Optical isolator
JP2003255269A (en) * 2002-02-27 2003-09-10 Kyocera Corp Optical isolator

Also Published As

Publication number Publication date
JP2005122090A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4548988B2 (en) Receptacle with optical isolator and its assembly method
JP4666931B2 (en) Optical isolator
JP2003255269A (en) Optical isolator
JP2008276204A (en) Optical device and optical receptacle using the same
JP2006098561A (en) Optical isolator
JP4683852B2 (en) Optical isolator
JPH08146351A (en) Element for optical isolator and its production
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JP4340102B2 (en) Optical isolator
JP2009075577A (en) Optical component, method of manufacturing the same, and optical isolator using the same
JP3739686B2 (en) Embedded optical isolator
JP2005283697A (en) Optical isolator
JP2005283799A (en) Optical isolator
JP2020194149A (en) Optical element, manufacturing method thereof, optical isolator, and optical transmission device
JP2005215328A (en) Optical isolator
JP2003315736A (en) Optical isolator
JP2004354646A (en) Optical isolator and its assembly method
JP4443212B2 (en) Method for manufacturing optical isolator element
JP4395365B2 (en) Optical isolator
JP4683916B2 (en) Optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JP2006098493A (en) Compound optical component and optical isolator element
JP2001091899A (en) Surface mounting type isolator
JP3881555B2 (en) Ferrule for optical fiber and stub and receptacle with optical isolator using the same
WO2003001276A1 (en) Optical isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees