[go: up one dir, main page]

JP4665831B2 - Power stabilization system, control device, and control program thereof - Google Patents

Power stabilization system, control device, and control program thereof Download PDF

Info

Publication number
JP4665831B2
JP4665831B2 JP2006144697A JP2006144697A JP4665831B2 JP 4665831 B2 JP4665831 B2 JP 4665831B2 JP 2006144697 A JP2006144697 A JP 2006144697A JP 2006144697 A JP2006144697 A JP 2006144697A JP 4665831 B2 JP4665831 B2 JP 4665831B2
Authority
JP
Japan
Prior art keywords
power
stored
correction signal
compensation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006144697A
Other languages
Japanese (ja)
Other versions
JP2007318883A (en
Inventor
亨 神通川
哲夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006144697A priority Critical patent/JP4665831B2/en
Publication of JP2007318883A publication Critical patent/JP2007318883A/en
Application granted granted Critical
Publication of JP4665831B2 publication Critical patent/JP4665831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力貯蔵装置を用いて分散電源による電力変動を安定化させる技術に関する。   The present invention relates to a technique for stabilizing power fluctuations caused by a distributed power source using a power storage device.

近年、風力や太陽光等の自然エネルギーを利用した分散型電源の電力系統への連系が増加している。しかし、自然エネルギーを利用した分散型電源は、風速などの自然条件に応じて時々刻々と出力が変動するため、特に僻地や離島などの弱い電力系統では系統の周波数や電圧の変動が生じ、問題となる場合がある。   In recent years, interconnection of distributed power sources using natural energy such as wind power and sunlight has increased. However, since the output of a distributed power source that uses natural energy fluctuates from moment to moment depending on natural conditions such as wind speed, system frequency and voltage fluctuations occur especially in weak power systems such as remote areas and remote islands. It may become.

そこで、従来より、フライホイールや二次電池等の電力貯蔵装置を用いて、電力の吸収または放出を行うことにより、自然エネルギーを利用した分散型電源の出力変動を補償する電力安定化システムが開発されている。例えば、風力発電機の出力変動補償を行う場合、風力発電機の発電出力が増加した場合には、電力貯蔵装置の電力放出を減少または電力吸収を増大させ、一方、風力発電機の発電出力が減少した場合には、電力貯蔵装置の電力吸収を減少または電力放出を増大させる。これにより、風力発電機と電力貯蔵装置の連系点の電力変動が補償される。   Therefore, a power stabilization system has been developed that compensates for output fluctuations of distributed power sources using natural energy by absorbing or discharging power using a power storage device such as a flywheel or secondary battery. Has been. For example, when the output fluctuation of the wind power generator is compensated, if the power output of the wind power generator is increased, the power discharge of the power storage device is reduced or the power absorption is increased, while the power output of the wind power generator is increased. If so, it reduces the power absorption of the power storage device or increases the power release. This compensates for power fluctuations at the connection point between the wind power generator and the power storage device.

ところで、電力貯蔵装置や電力変換器では充放電の際に損失が発生するため、電力貯蔵装置に蓄えられる平均的な貯蔵電力量は徐々に減少し、終には貯蔵電力量下限値に至り電力変動補償効果が得られなくなってしまう。また、有効電力変動量の平均値が電力貯蔵装置へ充電する方向に偏っていた場合には、電力貯蔵装置に蓄えられる平均的な貯蔵電力量は徐々に増加し、終には貯蔵電力量上限値に至り電力変動補償効果が得られなくなってしまう。そこで、電力貯蔵装置の充放電量の平均的な偏りを補正し、貯蔵電力量が長期的に貯蔵電力量上下限値で張り付いてしまう状態を防止するための、各種制御方式が提案されている。   By the way, in power storage devices and power converters, losses occur during charging and discharging, so the average stored power amount stored in the power storage device gradually decreases and eventually reaches the lower limit value of stored power amount. The fluctuation compensation effect cannot be obtained. In addition, when the average value of the active power fluctuation amount is biased in the direction of charging the power storage device, the average stored power amount stored in the power storage device gradually increases, and finally the upper limit of the stored power amount The power fluctuation compensation effect cannot be obtained. Therefore, various control methods have been proposed to correct the average bias of the charge / discharge amount of the power storage device and prevent the stored power amount from sticking to the stored power amount upper and lower limits over the long term. Yes.

例えば、フライホイールの制御装置において、貯蔵電力量に相当するフライホイールの回転速度と、回転速度上限値と下限値との間に設定される目標回転速度との差異に基づいて、回転速度が目標回転速度に近づくよう、フライホイールへの出力指令値に補正信号を加算することで、フライホイールの充放電量の平均的な偏りを制御する技術について提供されている(例えば、特許文献1)。   For example, in the flywheel control device, the rotational speed is set to the target based on the difference between the rotational speed of the flywheel corresponding to the stored electric energy and the target rotational speed set between the rotational speed upper limit value and the lower limit value. A technique for controlling the average bias of the charge / discharge amount of the flywheel by adding a correction signal to the output command value to the flywheel so as to approach the rotation speed is provided (for example, Patent Document 1).

この他、二次電池の制御装置において、端子電圧の許容範囲内に上下2つのしきい値を予め設定しておき、貯蔵電力量に相当する二次電池の端子電圧がこれらしきい値を超えた場合に、端子電圧許容範囲の中間方向に近づけるよう、二次電池への出力指令値を補正することにより、二次電池の充放電量の平均的な偏りを制御する技術について提供されている(例えば、非特許文献1)。なお、ここでの補正は、分散型電源の有効電力計測値から変動成分を除去した補償目標値に対し、補正値を加算することにより行っている。
特開2001−339995号公報 蓄電池併設風力発電導入可能性調査、NEDO−NP−0004、2002年2月
In addition, in the control device for the secondary battery, two upper and lower threshold values are set in advance within the allowable range of the terminal voltage, and the terminal voltage of the secondary battery corresponding to the stored electric energy exceeds these threshold values. In this case, there is provided a technique for controlling the average bias of the charge / discharge amount of the secondary battery by correcting the output command value to the secondary battery so as to approach the intermediate direction of the terminal voltage allowable range. (For example, Non-Patent Document 1). The correction here is performed by adding the correction value to the compensation target value obtained by removing the fluctuation component from the active power measurement value of the distributed power source.
JP 2001-339995 A Feasibility study of wind power generation with storage battery, NEDO-NP-0004, February 2002

分散型電源の出力範囲には上下限値が存在する。分散型電源の出力が出力下限値付近の場合、分散型電源の出力は出力下限値以下にはならないため、電力変動の多くは出力が増加する方向、即ち立ち上がり方向に発生する。しかし、貯蔵電力量空き容量が不足した場合、増加する電力変動成分を電力貯蔵装置が吸収しきれず、貯蔵電力量が貯蔵電力量上限値に達して以降は電力変動補償効果が得られないという問題があった。   There are upper and lower limits in the output range of the distributed power source. When the output of the distributed power source is close to the output lower limit value, the output of the distributed power source does not fall below the output lower limit value, so that most of the power fluctuation occurs in the direction in which the output increases, that is, the rising direction. However, if the stored power amount is insufficient, the power storage device cannot absorb the increasing power fluctuation component, and the power fluctuation compensation effect cannot be obtained after the stored power amount reaches the upper limit value of the stored power amount. was there.

同様に、分散型電源の出力が出力上限値付近の場合、分散型電源の出力は出力上限値以上にはならないため、電力変動の多くは出力が減少する方向、即ち立ち下がり方向に発生する。しかし、貯蔵電力量が不足した場合、減少する電力変動成分を電力貯蔵装置の貯蔵電力量では補償しきれず、貯蔵電力量が貯蔵電力量下限値に達して以降は電力変動補償効果が得られないという問題があった。   Similarly, when the output of the distributed power source is in the vicinity of the output upper limit value, the output of the distributed power source does not exceed the output upper limit value. Therefore, most of the power fluctuation occurs in the direction in which the output decreases, that is, in the falling direction. However, when the amount of stored power is insufficient, the power fluctuation component that decreases can not be compensated for by the stored power amount of the power storage device, and the power fluctuation compensation effect cannot be obtained after the stored power amount reaches the lower limit value of the stored power amount. There was a problem.

従来技術においては、貯蔵電力量に応じて電力貯蔵装置の充放電量の平均的な偏りを補正はしていた。しかし、分散型電源出力が立ち上がる場合、あるいは立ち下がる場合に生じる電力変動に備えて、あらかじめ貯蔵電力量、あるいは貯蔵電力量空き容量を確保する補正技術については存在しなかった。   In the prior art, the average bias of the charge / discharge amount of the power storage device is corrected according to the stored power amount. However, there has been no correction technique for securing a stored power amount or a stored power amount free capacity in advance in preparation for power fluctuations that occur when the distributed power supply output rises or falls.

本発明は、分散型電源の出力に応じて分散型電源の立ち上がり、あるいは立ち下りのときの電力変動補償に必要な貯蔵電力量、あるいは貯蔵電力量空き容量を確保することにより、分散型電源の立ち上がり、あるいは立ち下りの際の電力変動に対し、効果的な電力変動補償を可能とする技術を提供することを目的とする。   The present invention secures a storage power amount necessary for power fluctuation compensation at the time of rising or falling of a distributed power source according to the output of the distributed power source, or a free space capacity of the stored power source. It is an object of the present invention to provide a technique that enables effective power fluctuation compensation for power fluctuation at the time of rising or falling.

上記課題を解決するために、本発明に係る電力安定化システムは、分散型電源とともに交流電力系統に接続され、該分散型電源の有効電力変動を抑制するための電力安定化システムであって、電力を貯蔵し、前記交流電力系統に対して充放電を行う電力貯蔵装置と、前記分散型電源の有効電力を有効電力計測値として検出する有効電力検出手段と、前記電力貯蔵装置の貯蔵電力量または該貯蔵電力量に相当する信号を検出する貯蔵電力量検出手段と、前記有効電力計測値の変動成分に基づいて補償電力を演算する補償電力演算手段と、前記貯蔵電力量が貯蔵電力量上限値から所定の範囲内にある場合、電力貯蔵装置から放電する方向に補償電力補正信号を生成し、前記貯蔵電力量が貯蔵電力量下限値から所定の範囲内にある場合、電力貯蔵装置へ充電する方向に補償電力補正信号を生成する、補償電力補正信号生成手段と、前記補償電力と前記補償電力補正信号とに基づいて前記補償電力の補正を行い補正補償電力を生成する補償電力補正手段と、補正補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段と、前記電力変換器制御手段から発せられた電力変換器出力指令に応じて、前記電力貯蔵装置と前記交流電力系統との間で充放電電力を相互に変換する電力変換器を備え、前記補償電力補正信号生成手段は、有効電力計測値が分散型電源の出力下限値から所定の範囲内にある場合、前記補償電力補正手段における電力貯蔵装置から放電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成し、および/または、有効電力計測値が分散型電源の出力上限値から所定の範囲内にある場合、前記補償電力補正手段における電力貯蔵装置へ充電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成することによって実現できる。   In order to solve the above problem, a power stabilization system according to the present invention is connected to an AC power system together with a distributed power source, and is a power stabilization system for suppressing fluctuations in active power of the distributed power source, A power storage device for storing power and charging / discharging the AC power system, an active power detection means for detecting active power of the distributed power source as an active power measurement value, and a stored power amount of the power storage device Or a stored power amount detecting means for detecting a signal corresponding to the stored power amount, a compensation power calculating means for calculating compensation power based on a fluctuation component of the active power measurement value, and the stored power amount is an upper limit of stored power amount If the stored power amount is within a predetermined range from the lower limit value of the stored power amount, a compensation power correction signal is generated in a direction of discharging from the power storage device. Compensation power correction signal generating means for generating a compensation power correction signal in a charging direction, and compensation power correction for correcting the compensation power based on the compensation power and the compensation power correction signal to generate a compensation compensation power Means, power converter control means for transmitting a power converter output command according to the corrected compensation power, and the power storage device and the alternating current according to a power converter output command issued from the power converter control means. A power converter that mutually converts charge / discharge power between the power system and the compensation power correction signal generation means, when the active power measurement value is within a predetermined range from the output lower limit value of the distributed power source, The compensation power correction signal is generated so as to promote the correction processing performed in the direction of discharging from the power storage device in the compensation power correction means, and / or the active power measurement value is output from the distributed power source. If there from the upper limit value within a predetermined range, it can be realized by generating the compensating power correction signal so as to facilitate the correction process performed in the direction of charging the power storage device in the compensating power correcting means.

上記構成の電力安定化システムによれば、前記補償電力補正信号生成手段において、前記貯蔵電力量が貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax、ここでEHは貯蔵電力量上限しきい値、ただしEH<Emax)にあると判定した場合、電力貯蔵装置から放電する方向に補償電力補正信号を生成することにより、通常は貯蔵電力量が長期的に貯蔵電力量上限値で張り付いてしまう状態を防止する。ここで、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL、ここでPLは出力下限しきい値、ただしPmin<PL)である場合、前記補償電力補正手段における電力貯蔵装置から放電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成する。例えば、上記判定範囲を広げる(EH’〜Emax、ここでEH’は変更後の貯蔵電力量上限しきい値、ただしEH’<EH)ことにより、電力貯蔵装置から放電する方向に補償電力補正信号を生成しやすくする(補正開始タイミングの早期化、補正期間の延長)。あるいは、上記補償電力補正信号を電力貯蔵装置から放電する方向に増加させることにより、電力貯蔵装置から放電する方向に行う補正効果を通常より高める。これにより、分散型電源の立ち上がり方向の電力変動を吸収するために必要な貯蔵電力量空き容量を確保することができる。なお、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)であっても電力貯蔵装置に十分な貯蔵電力量空き容量があれば放電方向の補正はかからないため、不要な補正がかかることは無い。結果、増加する電力変動成分を電力貯蔵装置が吸収しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち上がる際の電力変動を効果的に補償することが可能となる。   According to the power stabilization system having the above configuration, in the compensation power correction signal generating means, the stored power amount is within a predetermined range from the stored power amount upper limit value Emax (EH to Emax, where EH is the upper limit of the stored power amount). If it is determined that the threshold value, but EH <Emax, is generated, a compensation power correction signal is generated in the direction of discharging from the power storage device. To prevent the situation. Here, when the output of the distributed power source is within a predetermined range from the output lower limit value Pmin (Pmin to PL, where PL is the output lower limit threshold, where Pmin <PL), the power storage in the compensation power correction means The compensation power correction signal is generated so as to accelerate the correction process performed in the direction of discharging from the apparatus. For example, by expanding the determination range (EH ′ to Emax, where EH ′ is the changed storage power amount upper limit threshold, where EH ′ <EH), the compensation power correction signal in the direction of discharging from the power storage device (Prompt the start timing of correction, extend the correction period). Alternatively, by increasing the compensation power correction signal in the direction of discharging from the power storage device, the correction effect performed in the direction of discharging from the power storage device is enhanced more than usual. As a result, it is possible to secure a free storage power amount necessary for absorbing power fluctuations in the rising direction of the distributed power source. Note that even if the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the discharge direction is not corrected if the power storage device has a sufficient storage power capacity, which is unnecessary. There is no correction. As a result, it is possible to reduce the risk that the power storage device cannot absorb the increasing power fluctuation component and cannot compensate for the power fluctuation, and effectively compensate for the power fluctuation when the distributed power source is started up.

同様に、前記補償電力補正信号生成手段において、前記貯蔵電力量が貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL、ここでELは貯蔵電力量下限しきい値、ただしEmin<EL)にあると判定した場合、電力貯蔵装置へ充電する方向に補償電力補正信号を生成することにより、通常は貯蔵電力量が長期的に貯蔵電力量下限値で張り付いてしまう状態を防止する。ここで、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax、ここでPHは出力上限しきい値、ただしPH<Pmax)である場合、前記補償電力補正手段における電力貯蔵装置へ充電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成する。例えば、上記判定範囲を広げる(Emin〜EL’、 ここでEL’は変更後の貯蔵電力量下限しきい値、ただしEL<EL’)ことにより、電力貯蔵装置へ充電する方向に補償電力補正信号を生成しやすくする(補正開始タイミングの早期化、補正期間の延長)。あるいは、上記補償電力補正信号を電力貯蔵装置へ充電する方向に増加させることにより、電力貯蔵装置へ充電する方向に行う補正効果を通常より高める。これにより、分散型電源の立ち下がり方向の電力変動を補償するために必要な貯蔵電力量を確保することができる。なお、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)であっても電力貯蔵装置に十分な貯蔵電力量があれば充電方向の補正はかからないため、不要な補正がかかることは無い。結果、減少する電力変動成分を電力貯蔵装置が補償しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち下がる際の電力変動を効果的に補償することが可能となる。   Similarly, in the compensation power correction signal generating means, the stored power amount is within a predetermined range from the stored power amount lower limit value Emin (Emin to EL, where EL is a stored power amount lower limit threshold, where Emin <EL). If it is determined that the power is stored in the power storage device, a compensation power correction signal is generated in a direction in which the power storage device is charged. Here, when the output of the distributed power source is within a predetermined range from the output upper limit value Pmax (PH to Pmax, where PH is the output upper limit threshold, where PH <Pmax), the power storage in the compensation power correction means The compensation power correction signal is generated so as to accelerate the correction process performed in the direction of charging the device. For example, by expanding the determination range (Emin to EL ′, where EL ′ is a lower threshold value of the stored power amount after change, where EL <EL ′), a compensation power correction signal in the direction of charging the power storage device (Prompt the start timing of correction, extend the correction period). Alternatively, by increasing the compensation power correction signal in the direction of charging the power storage device, the correction effect performed in the direction of charging the power storage device is enhanced than usual. As a result, the amount of stored power necessary to compensate for power fluctuations in the falling direction of the distributed power supply can be ensured. Even if the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, if the power storage device has a sufficient amount of stored power, the charging direction is not corrected. There is no such thing. As a result, it is possible to reduce the risk that the power storage device cannot fully compensate for the decreasing power fluctuation component and cannot compensate for the power fluctuation, and to effectively compensate for the power fluctuation when the distributed power supply falls.

なお、前記補償電力補正信号生成手段は、有効電力計測値が分散型電源の出力下限値から所定の範囲内にある場合、貯蔵電力量を増加させる方向に貯蔵電力量補正信号を出力し、および/または、有効電力計測値が分散型電源の出力上限値から所定の範囲内にある場合、貯蔵電力量を減少させる貯蔵電力量補正信号を出力する貯蔵電力量補正信号演算手段と、貯蔵電力量と前記貯蔵電力量補正信号とに基づいて貯蔵電力量の補正を行い、補正貯蔵電力量を生成する貯蔵電力量補正手段と、前記補正貯蔵電力量が電力貯蔵装置の貯蔵電力量上限値から所定の範囲内にある場合、電力貯蔵装置から放電する方向に前記補償電力補正信号を出力し、前記補正貯蔵電力量が電力貯蔵装置の貯蔵電力量下限値から所定の範囲内にある場合、電力貯蔵装置へ充電する方向に前記補償電力補正信号を出力する補償電力補正信号演算手段とから構成してもよい。   The compensation power correction signal generation means outputs a stored power amount correction signal in a direction to increase the stored power amount when the active power measurement value is within a predetermined range from the output lower limit value of the distributed power source, and And / or a stored power amount correction signal calculating means for outputting a stored power amount correction signal for reducing the stored power amount when the active power measurement value is within a predetermined range from the output upper limit value of the distributed power source, and the stored power amount And a stored power amount correcting means for correcting the stored power amount based on the stored power amount correction signal and generating a corrected stored power amount, and the corrected stored power amount is predetermined from a stored power amount upper limit value of the power storage device. The compensation power correction signal is output in the direction of discharging from the power storage device, and when the corrected storage power amount is within a predetermined range from the storage energy lower limit of the power storage device, the power storage To equipment Compensation power correction signal calculation means for outputting the compensation power correction signal in the charging direction may be used.

上記構成の補償電力補正信号生成手段によれば、前記補償電力補正信号演算手段において、前記貯蔵電力量が貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax)にあると判定した場合、電力貯蔵装置から放電する方向に補償電力補正信号を生成し、また、前記貯蔵電力量が貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL)にあると判定した場合、電力貯蔵装置へ充電する方向に補償電力補正信号を生成することにより、貯蔵電力量が長期的に上下限値で張り付いてしまう状態を防止する。   According to the compensation power correction signal generation unit configured as described above, when the compensation power correction signal calculation unit determines that the stored power amount is within a predetermined range (EH to Emax) from the stored power amount upper limit value Emax, A compensation power correction signal is generated in a direction of discharging from the power storage device, and when it is determined that the stored power amount is within a predetermined range (Emin to EL) from the stored power amount lower limit Emin, to the power storage device By generating the compensation power correction signal in the charging direction, a state where the stored power amount sticks to the upper and lower limit values in the long term is prevented.

ところで、貯蔵電力量補正信号演算手段において、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)である場合、貯蔵電力量を増加させる方向に貯蔵電力量補正信号を出力し、貯蔵電力量補正手段において貯蔵電力量と前記貯蔵電力量補正信号とに基づいて貯蔵電力量の補正を行い、補正貯蔵電力量を生成する。つまり、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)である場合、補正貯蔵電力量を実際の貯蔵電力量より貯蔵電力量上限値に近づける。これにより、前記補償電力補正信号演算手段において、電力貯蔵装置から放電する方向に補償電力補正信号を生成しやすくする。あるいは上記補償電力補正信号を電力貯蔵装置から放電する方向に増加させる。結果、分散型電源の立ち上がり方向の電力変動を吸収するために必要な貯蔵電力量空き容量を確保することができる。   By the way, when the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the stored power amount correction signal calculation means outputs the stored power amount correction signal in the direction of increasing the stored power amount. Then, the stored power amount correcting means corrects the stored power amount based on the stored power amount and the stored power amount correction signal to generate a corrected stored power amount. That is, when the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the corrected stored power amount is made closer to the stored power amount upper limit value than the actual stored power amount. Thereby, the compensation power correction signal calculation means makes it easy to generate a compensation power correction signal in the direction of discharging from the power storage device. Alternatively, the compensation power correction signal is increased in the direction of discharging from the power storage device. As a result, it is possible to secure a free storage power amount necessary for absorbing the power fluctuation in the rising direction of the distributed power source.

同様に、貯蔵電力量補正信号演算手段において、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)である場合、貯蔵電力量を減少させる方向に貯蔵電力量補正信号を出力し、貯蔵電力量補正手段において貯蔵電力量と前記貯蔵電力量補正信号とに基づいて貯蔵電力量の補正を行い、補正貯蔵電力量を生成する。つまり、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)である場合、補正貯蔵電力量を実際の貯蔵電力量より貯蔵電力量下限値に近づける。これにより、前記補償電力補正信号演算手段において、電力貯蔵装置へ充電する方向に補償電力補正信号を生成しやすくする。あるいは上記補償電力補正信号を電力貯蔵装置へ充電する方向に増加させる。結果、分散型電源の立ち下がり方向の電力変動を補償するために必要な貯蔵電力量を確保することができる。   Similarly, when the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax in the stored power amount correction signal calculation means, the stored power amount correction signal is set so as to decrease the stored power amount. The stored power amount correction means corrects the stored power amount based on the stored power amount and the stored power amount correction signal, and generates a corrected stored power amount. That is, when the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the corrected stored power amount is made closer to the stored power amount lower limit value than the actual stored power amount. Thereby, the compensation power correction signal calculation means makes it easy to generate a compensation power correction signal in the direction of charging the power storage device. Alternatively, the compensation power correction signal is increased in the direction of charging the power storage device. As a result, it is possible to ensure the amount of stored power necessary to compensate for power fluctuations in the falling direction of the distributed power source.

更には、前記貯蔵電力量補正信号演算手段は、前記分散型電源の出力可能範囲の中で、低出力時補正開始しきい値Th1、低出力時補正終了しきい値Th2、高出力時補正終了しきい値Th3、高出力時補正開始しきい値Th4を、Th1<Th2<Th3<Th4、となるように設定し、有効電力計測値が低下し前記Th1を下回った場合に、貯蔵電力量を増加させる方向に前記貯蔵電力量補正信号の出力を開始し、その後、有効電力計測値が上昇し前記Th2を上回った場合に、該貯蔵電力量補正信号の出力を停止し、有効電力計測値が上昇し前記Th4を上回った場合に、貯蔵電力量を減少させる方向に前記貯蔵電力量補正信号の出力を開始し、その後、有効電力計測値が低下し前記Th3を下回った場合に、該貯蔵電力量補正信号の出力を停止するよう動作することによって実現してもよい。   Further, the stored power amount correction signal calculation means includes a low output correction start threshold Th1, a low output correction end threshold Th2, and a high output correction end within the output possible range of the distributed power source. When the threshold value Th3 and the high output correction start threshold value Th4 are set to satisfy Th1 <Th2 <Th3 <Th4, and the active power measurement value decreases and falls below the Th1, the stored power amount is reduced. When the output of the stored power amount correction signal is started in the direction of increasing, and then the active power measurement value rises and exceeds the Th2, the output of the stored power amount correction signal is stopped, and the active power measurement value is When it rises and exceeds Th4, it starts outputting the stored power amount correction signal in a direction to decrease the stored power amount. After that, when the active power measurement value decreases and falls below Th3, the stored power amount Amount correction signal It may be realized by acting to stop the force.

上記構成の貯蔵電力量補正信号演算手段によれば、低出力時補正開始しきい値Th1、低出力時補正終了しきい値Th2を分散型電源の出力下限値に近づけて設定し、高出力時補正終了しきい値Th3、高出力時補正開始しきい値Th4を分散型電源の出力上限値に近づけて設定することにより、分散型電源の出力が出力下限値Pmin近傍あるいは出力上限値Pmax近傍である場合にのみ貯蔵電力量補正信号を出力することができるため、分散型電源が出力下限値Pmin近傍あるいは出力上限値Pmax近傍で無い場合における不要な補正動作を防止することができる。また補正開始しきい値と補正終了しきい値を別々に設定するため、一旦貯蔵電力量補正信号の出力を開始した場合は分散型電源の出力が(補正終了しきい値にかかるほど)大きく変動しない限り、出力が停止することはなく、また出力が停止した後、分散型電源の出力が(補正開始しきい値にかかるほど)大きく変動しない限り、出力が再開することはないため、補正動作が頻繁に入り切り(ON/OFF)することを防ぐことができる。   According to the stored power amount correction signal calculation means having the above configuration, the low output correction start threshold value Th1 and the low output correction end threshold value Th2 are set close to the output lower limit value of the distributed power source, By setting the correction end threshold Th3 and the high output correction start threshold Th4 close to the output upper limit value of the distributed power source, the output of the distributed power source is in the vicinity of the output lower limit value Pmin or the output upper limit value Pmax. Since the stored power amount correction signal can be output only in some cases, an unnecessary correction operation can be prevented when the distributed power source is not near the output lower limit value Pmin or the output upper limit value Pmax. Since the correction start threshold value and the correction end threshold value are set separately, once the output of the stored energy correction signal is started, the output of the distributed power source fluctuates greatly (approaching the correction end threshold value). The output will not stop unless the output is stopped, and after the output stops, the output will not resume unless the output of the distributed power source fluctuates significantly (so that it reaches the correction start threshold). Can be prevented from being frequently turned on and off (ON / OFF).

あるいは、前記補償電力補正信号生成手段は、貯蔵電力量が貯蔵電力量上限しきい値EHを上回った場合、前記電力貯蔵装置から放電する方向に前記補償電力補正信号を出力し、貯蔵電力量が貯蔵電力量下限しきい値ELを下回った場合、前記電力貯蔵装置へ充電する方向に前記補償電力補正信号を出力する補償電力補正信号演算手段と、有効電力計測値が前記分散型電源の出力下限値から所定の範囲内にある場合、前記貯蔵電力量上限しきい値EHを減少させる方向にしきい値補正信号を出力し、および/または、有効電力計測値が前記分散型電源の出力上限値から所定の範囲内にある場合、前記貯蔵電力量下限しきい値ELを増加させる方向にしきい値補正信号を出力するしきい値補正信号演算手段とから構成してもよい。   Alternatively, when the stored power amount exceeds the stored power amount upper limit threshold EH, the compensated power correction signal generating unit outputs the compensated power correction signal in a direction of discharging from the power storage device, and the stored power amount is Compensation power correction signal calculation means for outputting the compensation power correction signal in a direction to charge the power storage device when the stored power amount lower limit threshold EL is below, and an active power measurement value is an output lower limit of the distributed power source When the value is within a predetermined range, a threshold value correction signal is output in a direction to decrease the stored power amount upper limit threshold value EH, and / or the active power measurement value is determined from the output upper limit value of the distributed power source. When it is within the predetermined range, it may be constituted by threshold correction signal calculation means for outputting a threshold correction signal in a direction to increase the stored power amount lower limit threshold EL.

上記構成の補償電力補正信号生成手段によれば、前記補償電力補正信号演算手段において、前記貯蔵電力量が貯蔵電力量上限しきい値EHを上回った場合、電力貯蔵装置から放電する方向に補償電力補正信号を生成し、前記貯蔵電力量が貯蔵電力量下限しきい値ELを下回った場合、電力貯蔵装置へ充電する方向に補償電力補正信号を生成することにより、通常、貯蔵電力量が長期的に上下限値で張り付いてしまう状態を防止する。   According to the compensation power correction signal generation means having the above configuration, in the compensation power correction signal calculation means, when the stored power amount exceeds the stored power amount upper limit threshold EH, the compensation power in the direction of discharging from the power storage device. A correction signal is generated, and when the stored power amount falls below the stored power amount lower limit threshold EL, a compensation power correction signal is generated in a direction to charge the power storage device, so that the stored power amount is usually long-term. The state where it sticks to the upper and lower limit values is prevented.

ところで、しきい値補正信号演算手段において、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)にある場合、貯蔵電力量上限しきい値EHを減少させる方向にしきい値補正信号を出力する。これにより、前記補償電力補正信号演算手段において、電力貯蔵装置から放電する方向に補正がかかりやすくなり、分散型電源の立ち上がり方向の電力変動を吸収するために必要な貯蔵電力量空き容量を確保することができる。   By the way, in the threshold correction signal calculation means, when the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the threshold value is set so as to decrease the stored power amount upper limit threshold value EH. Output a correction signal. Thereby, in the compensation power correction signal calculation means, it becomes easy to apply correction in the direction of discharging from the power storage device, and the storage power amount vacant capacity necessary for absorbing the power fluctuation in the rising direction of the distributed power source is secured. be able to.

同様に、しきい値補正信号演算手段において、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)にある場合、貯蔵電力量下限しきい値ELを増加させる方向にしきい値補正信号を出力する。これにより、前記補償電力補正信号演算手段において、電力貯蔵装置へ充電する方向に補正がかかりやすくなり、分散型電源の立ち下がり方向の電力変動を補償するために必要な貯蔵電力量を確保することができる。   Similarly, in the threshold correction signal calculation means, when the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the threshold is set so as to increase the stored power amount lower limit threshold EL. A value correction signal is output. Thereby, in the compensation power correction signal calculation means, correction is easily applied in the charging direction of the power storage device, and the amount of stored power necessary for compensating for the power fluctuation in the falling direction of the distributed power source is ensured. Can do.

更には、前記しきい値補正信号演算手段は、前記分散型電源の出力可能範囲の中で、低出力時補正開始しきい値Th5、低出力時補正終了しきい値Th6、高出力時補正終了しきい値Th7、高出力時補正開始しきい値Th8を、Th5<Th6<Th7<Th8、となるように設定し、有効電力計測値が低下し前記Th5を下回った場合に、前記貯蔵電力量上限しきい値EHを減少させる方向に前記しきい値補正信号の出力を開始し、その後、有効電力計測値が上昇し前記Th6を上回った場合に、該しきい値補正信号の出力を停止し、有効電力計測値が上昇し前記Th8を上回った場合に、前記貯蔵電力量下限しきい値ELを増加させる方向に前記しきい値補正信号の出力を開始し、その後、有効電力計測値が低下し前記Th7を下回った場合に、該しきい値補正信号の出力を停止するよう動作することによって実現してもよい。   Further, the threshold value correction signal calculation means includes a low output correction start threshold value Th5, a low output correction end threshold value Th6, and a high output correction end within the output possible range of the distributed power source. When the threshold value Th7 and the high output correction start threshold value Th8 are set such that Th5 <Th6 <Th7 <Th8, and the active power measurement value decreases and falls below the Th5, the stored power amount The output of the threshold correction signal is started in the direction of decreasing the upper threshold EH, and then the output of the threshold correction signal is stopped when the active power measurement value rises and exceeds Th6. When the active power measurement value rises and exceeds the Th8, output of the threshold correction signal is started in the direction of increasing the stored power amount lower limit threshold EL, and then the active power measurement value decreases. And below the Th7 If it may be achieved by acting to stop the output of the threshold correction signal.

上記構成のしきい値補正信号演算手段によれば、低出力時補正開始しきい値Th5、低出力時補正終了しきい値Th6を分散型電源の出力下限値に近づけて設定し、高出力時補正終了しきい値Th7、高出力時補正開始しきい値Th8を分散型電源の出力上限値に近づけて設定することにより、分散型電源の出力が出力下限値Pmin近傍あるいは出力上限値Pmax近傍である場合にのみしきい値補正信号を出力することができるため、分散型電源の出力が出力下限値Pmin近傍あるいは出力上限値Pmax近傍で無い場合における不要な補正動作を防止することができる。また補正開始しきい値と補正終了しきい値を別々に設定するため、一旦しきい値補正信号の出力を開始した場合は分散型電源の出力が(補正終了しきい値にかかるほど)大きく変動しない限り、出力が停止することはなく、また出力が停止した後、分散型電源の出力が(補正開始しきい値にかかるほど)大きく変動しない限り、出力が再開することはないため、補正動作が頻繁に入り切り(ON/OFF)することを防ぐことができる。   According to the threshold value correction signal calculation means having the above configuration, the low output correction start threshold value Th5 and the low output correction end threshold value Th6 are set close to the output lower limit value of the distributed power source, By setting the correction end threshold Th7 and the high output correction start threshold Th8 close to the output upper limit value of the distributed power source, the output of the distributed power source is in the vicinity of the output lower limit value Pmin or the output upper limit value Pmax. Since the threshold value correction signal can be output only in some cases, unnecessary correction operation can be prevented when the output of the distributed power source is not near the output lower limit value Pmin or the output upper limit value Pmax. In addition, since the correction start threshold value and the correction end threshold value are set separately, once the output of the threshold correction signal is started, the output of the distributed power source greatly fluctuates (as the correction end threshold is applied). The output will not stop unless the output is stopped, and after the output stops, the output will not resume unless the output of the distributed power source fluctuates significantly (so that it reaches the correction start threshold). Can be prevented from being frequently turned on and off (ON / OFF).

なお、本発明は、上記電力安定化システムに限定されるものではない。上記方法を実現する制御装置、方法、およびそのプログラム等であっても、本発明に含まれる。   Note that the present invention is not limited to the power stabilization system. A control device, a method, and a program for realizing the above method are also included in the present invention.

本発明によれば、不要な補正動作や頻繁な補正動作を防止しつつ、分散型電源の立ち上がりあるいは立ち下りの電力変動を補償するために必要な貯蔵電力量、あるいは貯蔵電力量空き容量が確保され、効果的な電力変動補償が可能となる。   According to the present invention, the amount of stored power or the amount of stored power required to compensate for power fluctuations at the rising or falling of a distributed power source is ensured while preventing unnecessary correction operations and frequent correction operations. Thus, effective power fluctuation compensation is possible.

以下、本発明の好適な実施の形態について、図面を参照しながら詳細に説明する。
図1は、本発明の一実施の形態である電力安定化システムの構成の一例を示す概念図である。図1に示す電力安定化システム10は、電力貯蔵装置5、電力変換器6、制御装置1から構成され、変圧器7を介して電力系統4に接続する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing an example of the configuration of a power stabilization system according to an embodiment of the present invention. A power stabilization system 10 illustrated in FIG. 1 includes a power storage device 5, a power converter 6, and a control device 1, and is connected to the power system 4 via a transformer 7.

また、以下の説明においては、電力安定化システム10は自然エネルギーを利用した分散型電源の出力変動補償を行う場合を想定し、例として風力発電機2が、変圧器3を介して電力系統4に接続されているとする。なお、交流電力系統に連系された分散型電源であれば、風力発電機2に限らず、例えば太陽光発電等であってもよい。   In the following description, it is assumed that the power stabilization system 10 performs output fluctuation compensation of a distributed power source using natural energy. As an example, the wind power generator 2 is connected to the power system 4 via the transformer 3. Is connected. In addition, as long as it is a distributed power source linked to an AC power system, it is not limited to the wind power generator 2 and may be solar power generation, for example.

電力貯蔵装置5は、例えばフライホイール、二次電池、キャパシタ等である。
電力変換器6は、制御装置1からの電力変換器出力指令値PO(ここでは、電力貯蔵装置5から電力を放出する方向を、“正”とする)に基づいて、電力系統4と電力貯蔵装置5との間で電力PSの授受を行う。電力貯蔵装置5がフライホイールである場合は、フライホイール側の交流電力と電力系統4側の交流電力を双方向に変換する。電力貯蔵装置5が二次電池・キャパシタ等である場合には、二次電池・キャパシタ側の直流電力と電力系統4側の交流電力を双方向に変換する。
The power storage device 5 is, for example, a flywheel, a secondary battery, a capacitor, or the like.
The power converter 6 is connected to the power system 4 and the power storage based on the power converter output command value PO from the control device 1 (here, the direction in which the power is discharged from the power storage device 5 is “positive”). The power PS is exchanged with the device 5. When the power storage device 5 is a flywheel, the AC power on the flywheel side and the AC power on the power system 4 side are converted in both directions. When the power storage device 5 is a secondary battery / capacitor or the like, the DC power on the secondary battery / capacitor side and the AC power on the power system 4 side are converted bidirectionally.

制御装置1は、有効電力検出部11、補償電力演算部12、貯蔵電力量検出部14、補償電力補正信号生成部15、補償電力補正部16、電力変換器制御部13、等を有する。
なお、制御装置1は、特に図示しないが、CPU等と、メモリや各種記憶媒体(ハードディスク等)等の記憶装置等を備えており、以下に説明する各種補正信号の演算処理、補償電力の演算処理および電力変換器の制御処理等については、ハードウェアによって実現してもよいし、CPUが記憶装置に記憶されている所定のアプリケーションプログラムを読出して実行することにより実現してもよい。また、ハードウェアによって実現する場合、プログラマブルコントローラ等のディジタル回路を用いて制御してもよいし、オペアンプ等によるアナログ制御回路で実現してもよい。
The control device 1 includes an active power detection unit 11, a compensation power calculation unit 12, a stored power amount detection unit 14, a compensation power correction signal generation unit 15, a compensation power correction unit 16, a power converter control unit 13, and the like.
Although not particularly shown, the control device 1 includes a CPU and the like, a storage device such as a memory and various storage media (hard disk, etc.), etc., and various correction signal calculation processing and compensation power calculation described below. The processing and the control processing of the power converter may be realized by hardware, or may be realized by the CPU reading and executing a predetermined application program stored in the storage device. Further, when realized by hardware, it may be controlled using a digital circuit such as a programmable controller, or may be realized by an analog control circuit such as an operational amplifier.

有効電力検出部11は、風力発電機2の出力端の電圧・電流値に基づいて、風力発電機2の有効電力計測値PGを検出する。
補償電力演算部12は、ハイパスフィルタ等から構成され、有効電力計測値PGから有効電力変動成分を抽出し補償電力ΔPG(ここでは、電力貯蔵装置5から電力を放出する方向を、“正”とする)を演算する。なお、補償電力演算部12は、有効電力変動成分を抽出する機能を有していれば、何次のハイパスフィルタを用いても良く、あるいは、ハイパスフィルタを何段か直列させる構成でも良い。あるいは、ローパスフィルタ等の変動分を除去するフィルタ(有効電力変動成分を除去する機能を有していれば、何次のローパスフィルタを用いても良く、あるいは、ローパスフィルタを何段か直列させる構成でも良い。)や、移動平均等の平滑化処理等により有効電力計測値PGから有効電力変動成分を除去して補償目標値PAを演算し、さらに補償目標値PAから有効電力計測値PGを減算することにより補償電力ΔPGを演算する構成としても良い。
The active power detection unit 11 detects the active power measurement value PG of the wind power generator 2 based on the voltage / current value at the output end of the wind power generator 2.
Compensation power calculation unit 12 is composed of a high-pass filter or the like, extracts active power fluctuation component from active power measurement value PG, and compensates power ΔPG (here, the direction in which power is discharged from power storage device 5 is “positive”. )). Note that the compensation power calculation unit 12 may use any number of high-pass filters or may have a configuration in which several stages of high-pass filters are connected in series as long as it has a function of extracting the active power fluctuation component. Alternatively, a filter that removes fluctuations such as a low-pass filter (any number of low-pass filters may be used as long as it has a function of removing active power fluctuation components, or a configuration in which several stages of low-pass filters are connected in series. It is also possible to calculate the compensation target value PA by removing the active power fluctuation component from the active power measurement value PG by smoothing processing such as moving average, and subtract the active power measurement value PG from the compensation target value PA. By doing so, it may be configured to calculate the compensation power ΔPG.

貯蔵電力量検出部14は、電力貯蔵装置5の貯蔵電力量ESを、直接あるいは間接的に検出/算出する。例えば電力貯蔵装置5がフライホイールである場合は、フライホイール回転数を検出し、二次電池・キャパシタ等である場合は端子電圧を検出して、検出結果に基づいて貯蔵電力量ESを算出する。   The stored power amount detection unit 14 detects / calculates the stored power amount ES of the power storage device 5 directly or indirectly. For example, when the power storage device 5 is a flywheel, the rotational speed of the flywheel is detected. When the power storage device 5 is a secondary battery, a capacitor, or the like, the terminal voltage is detected, and the stored power amount ES is calculated based on the detection result. .

補償電力補正信号生成部15は、前記貯蔵電力量ESが貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax、ここでEHは貯蔵電力量上限しきい値、ただしEH<Emax)にある場合、電力貯蔵装置5から放電する方向(ここでは“正”方向)に補償電力補正信号PCを生成し、前記貯蔵電力量ESが貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL、ここでELは貯蔵電力量下限しきい値、ただしEmin<EL)にある場合、電力貯蔵装置5へ充電する方向(ここでは“負”方向)に補償電力補正信号PCを生成する。ただし、有効電力計測値PGが分散型電源の出力下限値Pminから所定の範囲内(Pmin〜PL、ここでPLは出力下限しきい値、ただしPmin<PL)にある場合、補償電力補正部16における電力貯蔵装置5から放電する方向の補正処理を促進させ(補正量の増加、補正開始タイミングの早期化、補正期間の延長、等)、および/または、有効電力計測値PGが分散型電源の出力上限値Pmaxから所定の範囲内(PH〜Pmax、ここでPHは出力上限しきい値、ただしPH<Pmax)にある場合、補償電力補正部16における電力貯蔵装置5へ充電する方向の補正処理を促進させる(補正量の増加、補正開始タイミングの早期化、補正期間の延長、等)操作を行う。この補償電力補正信号生成部15のより詳細な構成および原理は後述の実施形態にて説明する。   The compensation power correction signal generation unit 15 is configured such that the stored power amount ES is within a predetermined range from the stored power amount upper limit value Emax (EH to Emax, where EH is a stored power amount upper limit threshold, but EH <Emax). In this case, the compensation power correction signal PC is generated in the direction of discharging from the power storage device 5 (here, the “positive” direction), and the stored power amount ES is within a predetermined range from the stored power amount lower limit Emin (Emin to EL, Here, when EL is at the stored energy lower limit threshold, where Emin <EL, the compensation power correction signal PC is generated in the direction in which the power storage device 5 is charged (here, the “negative” direction). However, when the active power measurement value PG is within a predetermined range from the output lower limit value Pmin of the distributed power supply (Pmin to PL, where PL is the output lower limit threshold, where Pmin <PL), the compensation power correction unit 16 The correction process in the direction of discharging from the power storage device 5 is promoted (increase correction amount, advance correction start timing, extend correction period, etc.), and / or the active power measurement value PG is a distributed power source. When the output upper limit value Pmax is within a predetermined range (PH to Pmax, where PH is an output upper limit threshold, where PH <Pmax), the compensation power correction unit 16 corrects the power storage device 5 in the charging direction. (The increase of the correction amount, the advancement of the correction start timing, the extension of the correction period, etc.) are performed. A more detailed configuration and principle of the compensation power correction signal generation unit 15 will be described in an embodiment described later.

補償電力補正部16は、例えば前記補償電力ΔPGに前記補償電力補正信号PCを加算することで前記補償電力ΔPGの補正を行い、補正補償電力ΔPG’を算出する。その場合前述の補償電力補正信号PCは、貯蔵電力量ESが貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax)にある場合、プラスの値とし、前記貯蔵電力量ESが貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL)にある場合、マイナスの値とする。   The compensation power correction unit 16 corrects the compensation power ΔPG, for example, by adding the compensation power correction signal PC to the compensation power ΔPG, and calculates a compensation compensation power ΔPG ′. In this case, the compensation power correction signal PC described above is a positive value when the stored power amount ES is within a predetermined range (EH to Emax) from the stored power amount upper limit value Emax, and the stored power amount ES is the stored power amount. When it is within a predetermined range (Emin to EL) from the lower limit value Emin, it is set to a negative value.

電力変換器制御部13は、補償電力補正部16において算出された補正補償電力ΔPG’の大きさに応じて電力変換器出力指令値POを生成し、電力変換器出力指令値POに基づいて電力変換器6を制御し、電力貯蔵装置5に電力PSを充放電させる。   The power converter control unit 13 generates a power converter output command value PO according to the magnitude of the corrected compensation power ΔPG ′ calculated by the compensation power correction unit 16, and power based on the power converter output command value PO. The converter 6 is controlled, and the power storage device 5 is charged and discharged with the power PS.

上述の構成の本実施の形態の制御装置の特徴は、補償電力補正信号生成部15において、有効電力計測値PGが分散型電源の出力下限値Pminから所定の範囲内(Pmin〜PL)にある場合においては、補償電力補正部16における電力貯蔵装置5から放電する方向の補正処理を促進させ(補正量の増加、補正開始タイミングの早期化、補正期間の延長、等)、および/または、有効電力計測値PGが分散型電源の出力上限値Pmaxから所定の範囲内(PH〜Pmax)にある場合、補償電力補正部16における電力貯蔵装置5へ充電する方向の補正処理を促進させる(補正量の増加、補正開始タイミングの早期化、補正期間の延長、等)操作を行うことにある。   The control device according to the present embodiment having the above-described configuration is characterized in that, in the compensated power correction signal generation unit 15, the active power measurement value PG is within a predetermined range (Pmin to PL) from the output lower limit value Pmin of the distributed power supply. In some cases, the compensation power correction unit 16 promotes correction processing in the direction of discharging from the power storage device 5 (increase correction amount, advance correction start timing, extend correction period, etc.) and / or be effective When the power measurement value PG is within a predetermined range (PH to Pmax) from the output upper limit value Pmax of the distributed power source, the compensation power correction unit 16 accelerates the correction process in the direction of charging the power storage device 5 (correction amount). , Increase the correction start timing, extend the correction period, etc.).

補償電力補正信号生成部15を実現する第1の構成例を図2に示す。
貯蔵電力量補正信号演算部21では、有効電力計測値PGが分散型電源の出力下限値Pminから所定の範囲内(Pmin〜PL)にある場合、貯蔵電力量を増加させる方向に貯蔵電力量補正信号ECを出力し、および/または、有効電力計測値PGが分散型電源の出力上限値Pmaxから所定の範囲内(PH〜Pmax)にある場合、貯蔵電力量を減少させる貯蔵電力量補正信号ECを出力する。
A first configuration example for realizing the compensation power correction signal generation unit 15 is shown in FIG.
In the stored power amount correction signal calculation unit 21, when the active power measurement value PG is within a predetermined range (Pmin to PL) from the output lower limit value Pmin of the distributed power source, the stored power amount correction is performed in the direction of increasing the stored power amount. When the signal EC is output and / or the active power measurement value PG is within a predetermined range (PH to Pmax) from the output upper limit value Pmax of the distributed power source, the stored power amount correction signal EC for decreasing the stored power amount Is output.

なお、図2中では貯蔵電力量補正信号演算部21において、出力下限しきい値PL、出力上限しきい値PHに対し、それぞれ補正開始しきい値、補正終了しきい値を設ける例を示す。つまり、低出力時補正開始しきい値Th1、低出力時補正終了しきい値Th2、高出力時補正終了しきい値Th3、高出力時補正開始しきい値Th4を設ける。   FIG. 2 shows an example in which the stored power amount correction signal calculation unit 21 provides a correction start threshold value and a correction end threshold value for the output lower limit threshold value PL and the output upper limit threshold value PH, respectively. That is, a low output correction start threshold Th1, a low output correction end threshold Th2, a high output correction end threshold Th3, and a high output correction start threshold Th4 are provided.

そして、分散型電源の出力可能範囲の中で、Th1<Th2<Th3<Th4、となるように設定する。
また、低出力時の貯蔵電力量補正信号ECp(≧0.0)及び高出力時の貯蔵電力量補正信号ECm(≦0.0)を設定する。
And it sets so that it may become Th1 <Th2 <Th3 <Th4 within the output possible range of a distributed power supply.
Further, a stored power amount correction signal ECp (≧ 0.0) at low output and a stored power amount correction signal ECm (≦ 0.0) at high output are set.

貯蔵電力量補正信号演算部21は、有効電力検出部で算出した有効電力計測値PGを入力とし、有効電力計測値PGと、Th1、Th2、Th3、Th4の各々との関係に基づいて、貯蔵電力量補正信号ECとして、貯蔵電力量補正信号ECm、0(零)、貯蔵電力量補正信号ECpのいずれかを出力する。   The stored power amount correction signal calculation unit 21 receives the active power measurement value PG calculated by the active power detection unit as an input, and stores based on the relationship between the active power measurement value PG and each of Th1, Th2, Th3, and Th4. As the power amount correction signal EC, any one of the stored power amount correction signal ECm, 0 (zero) and the stored power amount correction signal ECp is output.

貯蔵電力量補正信号演算部21は、有効電力計測値PGが低下し低出力時補正開始しきい値Th1を下回った場合に、貯蔵電力量補正信号ECとして貯蔵電力量補正信号ECpの出力を開始する。貯蔵電力量補正信号ECpはプラスの信号であり、後段の貯蔵電力量補正部22においては貯蔵電力量ESに貯蔵電力量補正信号ECを加算するため、補正貯蔵電力量ES’は貯蔵電力量ESに対し貯蔵電力量補正信号ECp分だけ増加することになる。   The stored power amount correction signal calculation unit 21 starts outputting the stored power amount correction signal ECp as the stored power amount correction signal EC when the active power measurement value PG decreases and falls below the low output correction start threshold value Th1. To do. The stored power amount correction signal ECp is a positive signal, and the stored power amount correction unit 22 in the subsequent stage adds the stored power amount correction signal EC to the stored power amount ES, so that the corrected stored power amount ES ′ is the stored power amount ES. On the other hand, the stored power amount correction signal ECp is increased.

その後、有効電力計測値PGが上昇し低出力時補正終了しきい値Th2を上回った場合に、貯蔵電力量補正信号演算部21は、その貯蔵電力量補正信号ECpの出力を停止する。すなわち貯蔵電力量補正信号ECは零になる。   Thereafter, when the active power measurement value PG increases and exceeds the low output correction end threshold Th2, the stored power amount correction signal calculation unit 21 stops outputting the stored power amount correction signal ECp. That is, the stored power amount correction signal EC becomes zero.

同様に、貯蔵電力量補正信号演算部21は、有効電力計測値PGが上昇し高出力時補正開始しきい値Th4を上回った場合に、貯蔵電力量補正信号ECとして貯蔵電力量補正信号ECmの出力を開始する。貯蔵電力量補正信号ECmはマイナスの信号であり、後述する貯蔵電力量補正部22においては貯蔵電力量ESに貯蔵電力量補正信号ECを加算するため、補正貯蔵電力量ES’は貯蔵電力量ESに対し貯蔵電力量補正信号ECm分だけ減少することになる。   Similarly, when the active power measurement value PG increases and exceeds the high power correction start threshold value Th4, the stored power amount correction signal calculation unit 21 sets the stored power amount correction signal ECm as the stored power amount correction signal EC. Start output. The stored power amount correction signal ECm is a negative signal. Since the stored power amount correction unit 22 described later adds the stored power amount correction signal EC to the stored power amount ES, the corrected stored power amount ES ′ is the stored power amount ES. On the other hand, the stored power amount correction signal ECm is decreased.

その後、有効電力計測値PGが低下し高出力時補正終了しきい値Th3を下回った場合に、貯蔵電力量補正信号演算部21は、その貯蔵電力量補正信号ECmの出力を停止する。すなわち貯蔵電力量補正信号ECは零になる。   After that, when the active power measurement value PG decreases and falls below the high output correction end threshold Th3, the stored power amount correction signal calculation unit 21 stops outputting the stored power amount correction signal ECm. That is, the stored power amount correction signal EC becomes zero.

貯蔵電力量補正部22は、貯蔵電力量ESと前記貯蔵電力量補正信号ECとに基づいて貯蔵電力量ESの補正を行い、補正貯蔵電力量ES’を生成する。
なお図2中では、貯蔵電力量ESに貯蔵電力量補正信号ECを加算することで貯蔵電力量ESの補正を行い、補正貯蔵電力量ES’を算出する例を示す。これはあくまで例であり、貯蔵電力量ESに貯蔵電力量補正信号ECを乗算することにより貯蔵電力量ESの補正を行っても良い。ただしその場合、前述の貯蔵電力量補正信号演算部21において、出力信号である貯蔵電力量補正信号ECが、有効電力計測値PGが分散型電源の出力下限値Pminから所定の範囲内(Pmin〜PL)にある場合、1.0以上の値となり、有効電力計測値PGが分散型電源の出力上限値Pmaxから所定の範囲内(PH〜Pmax)にある場合、1.0以下の値となり、それ以外の場合は値が1.0となるように、貯蔵電力量補正信号演算部21を構成する必要がある。
The stored power amount correction unit 22 corrects the stored power amount ES based on the stored power amount ES and the stored power amount correction signal EC to generate a corrected stored power amount ES ′.
FIG. 2 shows an example of correcting the stored power amount ES by adding the stored power amount correction signal EC to the stored power amount ES and calculating the corrected stored power amount ES ′. This is merely an example, and the stored power amount ES may be corrected by multiplying the stored power amount ES by the stored power amount correction signal EC. However, in that case, in the above-described stored power amount correction signal calculation unit 21, the stored power amount correction signal EC, which is an output signal, has an active power measurement value PG within a predetermined range from the output lower limit Pmin of the distributed power source (Pmin to PL) is a value of 1.0 or more, and when the active power measurement value PG is within a predetermined range (PH to Pmax) from the output upper limit value Pmax of the distributed power source, the value is 1.0 or less. In other cases, it is necessary to configure the stored power amount correction signal calculation unit 21 so that the value becomes 1.0.

補償電力補正信号演算部23は補正貯蔵電力量ES’が貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax)にある場合、電力貯蔵装置から放電する方向、即ちプラスの補償電力補正信号PCを出力し、補正貯蔵電力量ES’が電力貯蔵装置の貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL)にある場合、電力貯蔵装置へ充電する方向、即ちマイナスの補償電力補正信号PCを出力する。   The compensation power correction signal calculation unit 23, when the corrected storage power amount ES ′ is within a predetermined range (EH to Emax) from the storage power amount upper limit value Emax, the direction of discharging from the power storage device, that is, a positive compensation power correction signal. When the PC is output and the corrected storage energy ES ′ is within a predetermined range (Emin to EL) from the storage energy lower limit Emin of the power storage device, the charging direction of the power storage device, that is, the negative compensation power correction The signal PC is output.

なお、図2中では補償電力補正信号演算部23において、貯蔵電力量下限しきい値EL、貯蔵電力量上限しきい値EHを設ける例を示す。
貯蔵電力量下限しきい値EL、貯蔵電力量上限しきい値EHは、電力貯蔵装置5における貯蔵電力量ESの許容運転範囲内(たとえば、フライホイールでは回転数の上下限と下限値の間、二次電池では端子電圧の上下限と下限値の間)で、EL<EH、となるように設定する。
FIG. 2 shows an example in which the compensation power correction signal calculation unit 23 is provided with a stored power amount lower limit threshold EL and a stored power amount upper limit threshold EH.
The stored power amount lower limit threshold EL and the stored power amount upper limit threshold EH are within the allowable operating range of the stored power amount ES in the power storage device 5 (for example, between the upper and lower limits of the rotational speed of the flywheel, In the secondary battery, the terminal voltage is set so that EL <EH between the upper and lower limits of the terminal voltage.

また、低貯蔵電力量時の補償電力補正信号PCm(≦0.0)及び高貯蔵電力量時の補償電力補正信号PCp(≧0.0)を設定する。
補償電力補正信号演算部23は、補正貯蔵電力量ES’を入力とし、補正貯蔵電力量ES’と、EL、EHの各々との関係に基づいて、補償電力補正信号PCとして、補償電力補正信号PCm、0(零)、補償電力補正信号PCpのいずれかを出力する。
Also, a compensation power correction signal PCm (≦ 0.0) at the time of low stored power amount and a compensation power correction signal PCp (≧ 0.0) at the time of high storage power amount are set.
The compensation power correction signal calculation unit 23 receives the correction storage power amount ES ′ as an input, and uses the compensation power correction signal PC as a compensation power correction signal PC based on the relationship between the correction storage power amount ES ′ and each of EL and EH. One of PCm, 0 (zero), and compensation power correction signal PCp is output.

補償電力補正信号演算部23は、補正貯蔵電力量ES’が低下し貯蔵電力量下限しきい値ELを下回った場合に、補償電力補正信号PCとして補償電力補正信号PCmの出力を開始する。補償電力補正信号PCmはマイナスの信号であり、後段の補償電力補正部16においては補償電力ΔPGに補償電力補正信号PCを加算するため、補正補償電力ΔPG’は補償電力ΔPGに対し補償電力補正信号PCm分だけ電力貯蔵装置へ充電する方向にシフトすることになる。   The compensation power correction signal calculation unit 23 starts outputting the compensation power correction signal PCm as the compensation power correction signal PC when the correction storage power amount ES ′ decreases and falls below the storage power amount lower limit threshold EL. The compensation power correction signal PCm is a negative signal. Since the compensation power correction unit 16 in the subsequent stage adds the compensation power correction signal PC to the compensation power ΔPG, the compensation power compensation signal ΔPG ′ is a compensation power compensation signal for the compensation power ΔPG. It shifts to the direction which charges an electric power storage apparatus by PCm.

その後、補正貯蔵電力量ES’が上昇し貯蔵電力量下限しきい値ELを上回った場合に、補償電力補正信号演算部23は、その補償電力補正信号PCmの出力を停止する。すなわち補償電力補正信号PCは零になる。   Thereafter, when the corrected stored power amount ES ′ increases and exceeds the stored power amount lower limit threshold EL, the compensation power correction signal calculation unit 23 stops outputting the compensation power correction signal PCm. That is, the compensation power correction signal PC becomes zero.

同様に、補償電力補正信号演算部23は、補正貯蔵電力量ES’が上昇し貯蔵電力量上限しきい値EHを上回った場合に、補償電力補正信号PCとして補償電力補正信号PCpの出力を開始する。補償電力補正信号PCpはプラスの信号であり、後段の補償電力補正部16においては補償電力ΔPGに補償電力補正信号PCを加算するため、補正補償電力ΔPG’は補償電力ΔPGに対し補償電力補正信号PCp分だけ電力貯蔵装置5から放電する方向にシフトすることになる。   Similarly, the compensation power correction signal calculation unit 23 starts outputting the compensation power correction signal PCp as the compensation power correction signal PC when the correction storage power amount ES ′ increases and exceeds the storage power amount upper limit threshold EH. To do. The compensation power correction signal PCp is a positive signal. Since the compensation power correction unit 16 in the subsequent stage adds the compensation power correction signal PC to the compensation power ΔPG, the compensation compensation power ΔPG ′ is a compensation power correction signal with respect to the compensation power ΔPG. The shift is in the direction of discharging from the power storage device 5 by the amount of PCp.

その後、補正貯蔵電力量ES’が低下し貯蔵電力量上限しきい値EHを下回った場合に、補償電力補正信号演算部23は、その補償電力補正信号PCpの出力を停止する。すなわち補償電力補正信号PCは零になる。   Thereafter, when the corrected stored power amount ES ′ decreases and falls below the stored power amount upper limit threshold value EH, the compensation power correction signal calculation unit 23 stops outputting the compensation power correction signal PCp. That is, the compensation power correction signal PC becomes zero.

補償電力補正信号生成部を図2の様に構成することにより、補償電力補正信号演算部23において、補正貯蔵電力量ES’が貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax)にあると判定した場合、電力貯蔵装置5から放電する方向に補償電力補正信号PCを生成し、また、補正貯蔵電力量ES’が貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL)にあると判定した場合、電力貯蔵装置5へ充電する方向に補償電力補正信号PCを生成することにより、貯蔵電力量が長期的に上下限値で張り付いてしまう状態を防止する。   By configuring the compensation power correction signal generation unit as shown in FIG. 2, in the compensation power correction signal calculation unit 23, the corrected storage power amount ES ′ falls within a predetermined range (EH to Emax) from the storage power amount upper limit value Emax. When it is determined that there is a compensation power correction signal PC in the direction of discharging from the power storage device 5, the corrected storage power amount ES ′ is within a predetermined range (Emin to EL) from the stored power amount lower limit Emin. If it is determined that there is, the compensation power correction signal PC is generated in the direction in which the power storage device 5 is charged, thereby preventing the state where the stored power amount sticks to the upper and lower limit values in the long term.

ところで、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)である場合、貯蔵電力量補正信号演算部21、及び貯蔵電力量補正部22によって、貯蔵電力量ESは増加方向に補正される。これにより補正貯蔵電力量ES’は実際の貯蔵電力量ESより貯蔵電力量上限値Emaxに近づくことになり、貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax)に入りやすくなる。これは、電力貯蔵装置5から放電する方向に補償電力補正信号PCを生成する際、補償電力補正信号PCの生成可否を判定する所定範囲(EH〜Emax)を拡大(EH’〜Emax、ここでEH’は変更後の貯蔵電力量上限しきい値、ただしEH’<EH)することと同じであり、電力貯蔵装置から放電する方向に補正がかかりやすく(補正開始タイミングの早期化、補正期間の延長)なる。なお、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)であっても電力貯蔵装置5に十分な貯蔵電力量空き容量があれば放電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち上がり方向の電力変動を吸収するために必要な貯蔵電力量空き容量を確保することができ、増加する電力変動成分を電力貯蔵装置5が吸収しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち上がる際の電力変動を効果的に補償することが可能となる。   By the way, when the output of the distributed power supply is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the stored power amount ES is increased by the stored power amount correction signal calculation unit 21 and the stored power amount correction unit 22. Corrected in the direction. As a result, the corrected stored power amount ES 'is closer to the stored power amount upper limit value Emax than the actual stored power amount ES, and easily enters a predetermined range (EH to Emax) from the stored power amount upper limit value Emax. This is because when the compensation power correction signal PC is generated in the direction of discharging from the power storage device 5, a predetermined range (EH to Emax) for determining whether or not the compensation power correction signal PC can be generated is expanded (EH ′ to Emax, where EH 'is the same as changing the stored energy upper limit threshold, but EH' <EH, and it is easy to make corrections in the direction of discharging from the power storage device (early correction start timing, correction period Extension). Note that even if the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, if the power storage device 5 has a sufficient storage power capacity, the discharge direction is not corrected, so it is unnecessary. No correction is required. As a result, it is possible to secure an available storage power capacity free capacity for absorbing power fluctuations in the rising direction of the distributed power supply, and the power storage device 5 cannot absorb the increasing power fluctuation components, thus making it impossible to compensate for power fluctuations. It is possible to reduce the risk and effectively compensate for the power fluctuation when the distributed power source is started up.

同様に、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)である場合、貯蔵電力量補正信号演算部21、及び貯蔵電力量補正部22によって、貯蔵電力量ESは減少方向に補正される。これにより補正貯蔵電力量ES’は実際の貯蔵電力量ESより貯蔵電力量下限値Eminに近づくことになり、貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL)に入りやすくなる。これは、電力貯蔵装置5へ充電する方向に補償電力補正信号PCを生成する際、補償電力補正信号PCの生成可否を判定する所定範囲(Emin〜EL)を拡大(Emin〜EL’、ここでEL’は変更後の貯蔵電力量下限しきい値、ただしEL<EL’)することと同じであり、電力貯蔵装置5へ充電する方向に補正がかかりやすく(補正開始タイミングの早期化、補正期間の延長)なる。なお、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)であっても電力貯蔵装置5に十分な貯蔵電力量があれば充電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち下がり方向の電力変動を補償するために必要な貯蔵電力量を確保することができ、減少する電力変動成分を電力貯蔵装置5が補償しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち下がる際の電力変動を効果的に補償することが可能となる。   Similarly, when the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the stored power amount ES is calculated by the stored power amount correction signal calculation unit 21 and the stored power amount correction unit 22. It is corrected in the decreasing direction. As a result, the corrected stored power amount ES 'approaches the stored power amount lower limit value Emin than the actual stored power amount ES, and easily enters a predetermined range (Emin to EL) from the stored power amount lower limit value Emin. This is to expand a predetermined range (Emin to EL) for determining whether or not the compensation power correction signal PC can be generated when generating the compensation power correction signal PC in the direction of charging the power storage device 5 (Emin to EL ′, where EL ′ is the same as the stored energy lower limit threshold after change, where EL <EL ′), and the direction in which the power storage device 5 is charged is likely to be corrected (advanced correction start timing, correction period) Extension). Even if the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the charging direction is not corrected if the power storage device 5 has a sufficient amount of stored power. Will not take. As a result, the amount of stored power necessary to compensate for power fluctuations in the falling direction of the distributed power supply can be ensured, and the power storage device 5 cannot fully compensate for the reduced power fluctuation components, thus making it impossible to compensate for power fluctuations. It is possible to effectively compensate for power fluctuations when the distributed power supply falls.

なお、貯蔵電力量補正信号演算部21において、出力下限しきい値PL、出力上限しきい値PHに対し、それぞれ補正開始しきい値、補正終了しきい値(低出力時補正開始しきい値Th1、低出力時補正終了しきい値Th2、高出力時補正終了しきい値Th3、高出力時補正開始しきい値Th4)を設け、低出力時補正開始しきい値Th1、低出力時補正終了しきい値Th2を分散型電源の出力下限値Pminに近づけて設定し、高出力時補正終了しきい値Th3、高出力時補正開始しきい値Th4を分散型電源の出力上限値Pmaxに近づけて設定することにより、分散型電源の出力が出力下限値Pmin近傍、あるいは出力上限値Pmax近傍に至った場合にのみ、貯蔵電力量補正信号ECを出力することができるため、分散型電源の出力が出力下限値Pmin近傍、あるいは出力上限値Pmax近傍で無い場合における不要な補正動作を防止することができる。また補正開始しきい値と補正終了しきい値を別々に設定するため、一旦貯蔵電力量補正信号ECの出力を開始した場合は分散型電源の出力が(補正終了しきい値にかかるほど)大きく変動しない限り、貯蔵電力量補正信号ECの出力が停止することはなく、また貯蔵電力量補正信号ECの出力が停止した後、分散型電源の出力が(補正開始しきい値にかかるほど)大きく変動しない限り、貯蔵電力量補正信号ECの出力が再開することはないため、貯蔵電力量補正信号ECによる補正動作が頻繁に入り切り(ON/OFF)することを防ぐことができる。   In the stored power amount correction signal calculation unit 21, the correction start threshold value and the correction end threshold value (low output correction start threshold value Th1) are respectively set for the output lower limit threshold value PL and the output upper limit threshold value PH. Low output correction end threshold Th2, high output correction end threshold Th3, high output correction start threshold Th4), low output correction start threshold Th1, low output correction end The threshold value Th2 is set close to the output lower limit value Pmin of the distributed power source, and the high power correction end threshold value Th3 and the high output correction start threshold value Th4 are set close to the output upper limit value Pmax of the distributed power source. As a result, the stored power amount correction signal EC can be output only when the output of the distributed power source reaches the vicinity of the output lower limit value Pmin or the output upper limit value Pmax. There it is possible to prevent unnecessary correcting operations when the output lower limit value Pmin vicinity or not an output upper limit value Pmax vicinity. In addition, since the correction start threshold value and the correction end threshold value are set separately, once the output of the stored power amount correction signal EC is started, the output of the distributed power source becomes larger (approaching the correction end threshold value). As long as it does not fluctuate, the output of the stored power amount correction signal EC does not stop, and after the output of the stored power amount correction signal EC stops, the output of the distributed power source becomes larger (approaching the correction start threshold). As long as it does not fluctuate, the output of the stored power amount correction signal EC does not resume, so that it is possible to prevent the correction operation by the stored power amount correction signal EC from being frequently turned on and off (ON / OFF).

補償電力補正信号演算部を実現する他の構成例を図3に示す。なお、補償電力補正信号演算部以外の構成は図2に示す通りとする。
図3における補償電力補正信号演算部23Aでは、補正貯蔵電力量ES’を入力とし、補正貯蔵電力量ES’がある基準値THを上回った場合、プラスの補償電力補正信号PCを出力し、補正貯蔵電力量ES’がある基準値THを下回った場合、マイナスの補償電力補正信号PCを出力し、なおかつ補正貯蔵電力量ES’が基準値THから離れるほどその信号の絶対値を大きくする。
FIG. 3 shows another configuration example for realizing the compensation power correction signal calculation unit. The configuration other than the compensation power correction signal calculation unit is as shown in FIG.
The compensation power correction signal calculation unit 23A in FIG. 3 receives the corrected stored power amount ES ′ as an input, and outputs a positive compensation power correction signal PC when the corrected stored power amount ES ′ exceeds a certain reference value TH. When the stored power amount ES ′ falls below a certain reference value TH, a negative compensation power correction signal PC is output, and the absolute value of the signal increases as the corrected stored power amount ES ′ increases from the reference value TH.

本構成における基準値THは基準値TH=貯蔵電力量下限しきい値EL=貯蔵電力量上限しきい値EHとみなすことができ、本構成によれば、補正貯蔵電力量ES’が貯蔵電力量上限値Emaxから基準値THの範囲内(TH〜Emax、ただしTH<Emax)にあると判定した場合、電力貯蔵装置5から放電する方向に補償電力補正信号PCを生成し、補正貯蔵電力量ES’が貯蔵電力量下限値Eminから基準値THの範囲内(Emin〜TH、ただしEmin<TH)にあると判定した場合、電力貯蔵装置5へ充電する方向に補償電力補正信号PCを生成することになる。   The reference value TH in this configuration can be regarded as reference value TH = stored energy lower limit threshold EL = stored energy upper limit threshold EH. According to this configuration, the corrected stored energy ES ′ is stored energy. When it is determined that the value is within the range of the reference value TH from the upper limit value Emax (TH to Emax, where TH <Emax), the compensation power correction signal PC is generated in the direction of discharging from the power storage device 5, and the corrected stored power amount ES When it is determined that 'is within the range of the stored power amount lower limit value Emin to the reference value TH (Emin to TH, where Emin <TH), the compensation power correction signal PC is generated in the direction in which the power storage device 5 is charged. become.

補償電力補正信号演算部を図3の様に構成した場合、貯蔵電力量補正信号演算部21、及び貯蔵電力量補正部22による貯蔵電力量ESの補正は、補償電力補正信号演算部23Aに対し以下のような影響を及ぼす。   When the compensation power correction signal calculation unit is configured as shown in FIG. 3, the correction of the stored power amount ES by the storage power amount correction signal calculation unit 21 and the storage power amount correction unit 22 is performed on the compensation power correction signal calculation unit 23A. It has the following effects.

補正貯蔵電力量ES’が実際の貯蔵電力量ESより増加するように補正された場合、補償電力補正信号演算部23Aからの補償電力補正信号PCは(実際の貯蔵電力量ESが入力された場合と比較して)増加する。つまり、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)である場合、補償電力補正信号PCは電力貯蔵装置5から放電する方向にシフトすることになり、補償電力補正部16においては、電力貯蔵装置5から放電する方向に補正効果が強まることになる。すなわち、補償電力補正部16における電力貯蔵装置5から放電する方向にする補正処理が、より促進されることとなる。なお、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)であっても電力貯蔵装置5に十分な貯蔵電力量空き容量があれば放電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち上がり方向の電力変動を吸収するために必要な貯蔵電力量空き容量を確保することができ、増加する電力変動成分を電力貯蔵装置5が吸収しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち上がる際の電力変動を効果的に補償することが可能となる。   When the corrected stored power amount ES ′ is corrected so as to increase from the actual stored power amount ES, the compensation power correction signal PC from the compensation power correction signal calculation unit 23A is (when the actual stored power amount ES is input). Increase). That is, when the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the compensation power correction signal PC is shifted in the direction of discharging from the power storage device 5, and the compensation power correction is performed. In the part 16, the correction effect is strengthened in the direction of discharging from the power storage device 5. That is, the correction process in which the compensation power correction unit 16 discharges from the power storage device 5 is further promoted. Note that even if the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, if the power storage device 5 has a sufficient storage power capacity, the discharge direction is not corrected, so it is unnecessary. No correction is required. As a result, it is possible to secure an available storage power capacity free capacity for absorbing power fluctuations in the rising direction of the distributed power supply, and the power storage device 5 cannot absorb the increasing power fluctuation components, thus making it impossible to compensate for power fluctuations. It is possible to reduce the risk and effectively compensate for the power fluctuation when the distributed power source is started up.

同様に、補正貯蔵電力量ES’が実際の貯蔵電力量ESより減少するように補正された場合、補償電力補正信号演算部23Aからの補償電力補正信号PCは(実際の貯蔵電力量ESが入力された場合と比較して)減少する。つまり、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)である場合、補償電力補正信号PCは電力貯蔵装置5へ充電する方向にシフトすることになり、補償電力補正部16においては、電力貯蔵装置5へ充電する方向に補正効果が強まることになる。すなわち、補償電力補正部16における電力貯蔵装置5に充電する方向にする補正処理が、より促進されることとなる。なお、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)であっても電力貯蔵装置5に十分な貯蔵電力量があれば充電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち下がり方向の電力変動を補償するために必要な貯蔵電力量を確保することができ、減少する電力変動成分を電力貯蔵装置5が補償しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち下がる際の電力変動を効果的に補償することが可能となる。   Similarly, when the corrected storage power amount ES ′ is corrected so as to be smaller than the actual storage power amount ES, the compensation power correction signal PC from the compensation power correction signal calculation unit 23A (the actual storage power amount ES is input). (Compared to the case). That is, when the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the compensated power correction signal PC is shifted in the direction of charging the power storage device 5 and compensated power compensation. In the part 16, the correction effect is strengthened in the direction in which the power storage device 5 is charged. In other words, the correction process for charging the power storage device 5 in the compensation power correction unit 16 is further promoted. Even if the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the charging direction is not corrected if the power storage device 5 has a sufficient amount of stored power. Will not take. As a result, the amount of stored power necessary to compensate for power fluctuations in the falling direction of the distributed power supply can be ensured, and the power storage device 5 cannot fully compensate for the reduced power fluctuation components, thus making it impossible to compensate for power fluctuations. It is possible to effectively compensate for power fluctuations when the distributed power supply falls.

補償電力補正信号生成部を実現する第2の構成例を図4に示す。
しきい値補正信号演算部31では、有効電力計測値PGが分散型電源の出力下限値Pminから所定の範囲内(Pmin〜PL)にある場合、貯蔵電力量上限しきい値EHを減少させる方向にしきい値補正信号LCを出力し、および/または、有効電力計測値PGが分散型電源の出力上限値Pmaxから所定の範囲内(PH〜Pmax)にある場合、貯蔵電力量下限しきい値ELを増加させる方向にしきい値補正信号LCを出力する。
A second configuration example for realizing the compensation power correction signal generation unit is shown in FIG.
In the threshold correction signal calculation unit 31, when the active power measurement value PG is within a predetermined range (Pmin to PL) from the output lower limit value Pmin of the distributed power source, the stored power amount upper limit threshold value EH is decreased. When the threshold correction signal LC is output and / or the active power measurement value PG is within a predetermined range (PH to Pmax) from the output upper limit value Pmax of the distributed power source, the stored power amount lower limit threshold EL The threshold value correction signal LC is output in the direction of increasing.

なお、図4中ではしきい値補正信号演算部31において、出力下限しきい値PL、出力上限しきい値PHに対し、それぞれ補正開始しきい値、補正終了しきい値を設ける例を示す。つまり、低出力時補正開始しきい値Th5、低出力時補正終了しきい値Th6、高出力時補正終了しきい値Th7、高出力時補正開始しきい値Th8を設ける。   FIG. 4 shows an example in which the threshold value correction signal calculation unit 31 provides a correction start threshold value and a correction end threshold value for the output lower limit threshold value PL and the output upper limit threshold value PH, respectively. That is, a low output correction start threshold Th5, a low output correction end threshold Th6, a high output correction end threshold Th7, and a high output correction start threshold Th8 are provided.

そして、分散型電源の出力可能範囲の中で、Th5<Th6<Th7<Th8、となるように設定する。
また、低出力時のしきい値補正信号LCm(≦0.0)及び高出力時のしきい値補正信号LCp(≧0.0)を設定する。
And it sets so that it may become Th5 <Th6 <Th7 <Th8 in the output possible range of a distributed power supply.
Further, a threshold correction signal LCm (≦ 0.0) at the time of low output and a threshold correction signal LCp (≧ 0.0) at the time of high output are set.

しきい値補正信号演算部31は、有効電力検出部で算出した有効電力計測値PGを入力とし、有効電力計測値PGと、Th5、Th6、Th7、Th8の各々との関係に基づいて、しきい値補正信号LCとして、しきい値補正信号LCm、0(零)、しきい値補正信号LCpのいずれかを出力する。   The threshold correction signal calculation unit 31 receives the active power measurement value PG calculated by the active power detection unit as an input, and based on the relationship between the active power measurement value PG and each of Th5, Th6, Th7, and Th8. As the threshold correction signal LC, any one of the threshold correction signal LCm, 0 (zero), and the threshold correction signal LCp is output.

しきい値補正信号演算部31は、有効電力計測値PGが低下し低出力時補正開始しきい値Th5を下回った場合に、しきい値補正信号LCとしてしきい値補正信号LCmの出力を開始する。しきい値補正信号LCmはマイナスの信号であり、後段の補償電力補正信号演算部32においては貯蔵電力量上限しきい値EHがしきい値補正信号LCm分だけ減少することになる。   The threshold correction signal calculation unit 31 starts outputting the threshold correction signal LCm as the threshold correction signal LC when the active power measurement value PG decreases and falls below the low output correction start threshold Th5. To do. The threshold value correction signal LCm is a negative signal, and the stored power amount upper limit threshold value EH is decreased by the threshold value correction signal LCm in the compensation power correction signal calculation unit 32 at the subsequent stage.

その後、有効電力計測値PGが上昇し低出力時補正終了しきい値Th6を上回った場合に、しきい値補正信号演算部31は、そのしきい値補正信号LCmの出力を停止する。すなわちしきい値補正信号LCは零になる。   Thereafter, when the active power measurement value PG rises and exceeds the low output correction end threshold Th6, the threshold correction signal calculation unit 31 stops outputting the threshold correction signal LCm. That is, the threshold correction signal LC becomes zero.

同様に、しきい値補正信号演算部31は、有効電力計測値PGが上昇し高出力時補正開始しきい値Th8を上回った場合に、しきい値補正信号LCとしてしきい値補正信号LCpの出力を開始する。しきい値補正信号LCpはプラスの信号であり、後段の補償電力補正信号演算部32においては貯蔵電力量下限しきい値ELがしきい値補正信号LCp分だけ増加することになる。   Similarly, the threshold correction signal calculation unit 31 calculates the threshold correction signal LCp as the threshold correction signal LC when the active power measurement value PG increases and exceeds the high output correction start threshold Th8. Start output. The threshold correction signal LCp is a positive signal, and the stored power amount lower limit threshold EL is increased by the threshold correction signal LCp in the subsequent compensation power correction signal calculation unit 32.

その後、有効電力計測値PGが低下し高出力時補正終了しきい値Th7を下回った場合に、しきい値補正信号演算部31は、そのしきい値補正信号LCpの出力を停止する。すなわちしきい値補正信号LCは零になる。   Thereafter, when the active power measurement value PG decreases and falls below the high output correction end threshold Th7, the threshold correction signal calculation unit 31 stops outputting the threshold correction signal LCp. That is, the threshold correction signal LC becomes zero.

補償電力補正信号演算部32は貯蔵電力量ESが貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax、ここでEHは貯蔵電力量上限しきい値)にある場合、電力貯蔵装置5から放電する方向、即ちプラスの補償電力補正信号PCを出力し、貯蔵電力量ESが電力貯蔵装置5の貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL、ここでELは貯蔵電力量下限しきい値)にある場合、電力貯蔵装置5へ充電する方向、即ちマイナスの補償電力補正信号PCを出力する。   When the stored power amount ES is within a predetermined range from the stored power amount upper limit value Emax (EH to Emax, where EH is a stored power amount upper limit threshold value), the compensation power correction signal calculation unit 32 starts from the power storage device 5. A discharging direction, that is, a positive compensation power correction signal PC is output, and the stored energy ES is within a predetermined range from the stored energy lower limit Emin of the power storage device 5 (Emin to EL, where EL is the stored energy lower limit) In the case of the threshold value), the charging direction of the power storage device 5, that is, a negative compensation power correction signal PC is output.

ただし、上記しきい値補正信号演算部31からのしきい値補正信号LCに応じて、貯蔵電力量上限しきい値EH、および/または、貯蔵電力量下限しきい値ELは変化する。つまり、有効電力計測値PGが分散型電源の出力下限値Pminから所定の範囲内(Pmin〜PL)にある場合、貯蔵電力量上限しきい値EHはしきい値補正信号LCm分だけ減少しEH’(ここでEH’は変更後の貯蔵電力量上限しきい値)となる。および/または、有効電力計測値PGが分散型電源の出力上限値Pmaxから所定の範囲内(PH〜Pmax)にある場合、貯蔵電力量下限しきい値ELはしきい値補正信号LCp分だけ増加しEL’(ここでEL’は変更後の貯蔵電力量下限しきい値)となる。   However, the stored power amount upper limit threshold value EH and / or the stored power amount lower limit threshold value EL change in accordance with the threshold value correction signal LC from the threshold value correction signal calculation unit 31. That is, when the active power measurement value PG is within a predetermined range (Pmin to PL) from the output lower limit value Pmin of the distributed power source, the stored power amount upper limit threshold value EH decreases by the threshold value correction signal LCm, and EH '(Where EH' is the upper threshold value of the stored power amount after the change). And / or when the active power measurement value PG is within a predetermined range (PH to Pmax) from the output upper limit value Pmax of the distributed power source, the stored power amount lower limit threshold EL is increased by the threshold correction signal LCp. EL ′ (where EL ′ is the threshold value for the stored energy lower limit after the change).

貯蔵電力量下限しきい値EL、貯蔵電力量上限しきい値EHは、電力貯蔵装置5における貯蔵電力量ESの許容運転範囲内(たとえば、フライホイールでは回転数の上下限と下限値の間、二次電池では端子電圧の上下限と下限値の間)で、EL<EH、となるように設定する。   The stored power amount lower limit threshold EL and the stored power amount upper limit threshold EH are within the allowable operating range of the stored power amount ES in the power storage device 5 (for example, between the upper and lower limits of the rotational speed of the flywheel, In the secondary battery, the terminal voltage is set so that EL <EH between the upper and lower limits of the terminal voltage.

また、低貯蔵電力量時の補償電力補正信号PCm(≦0.0)及び高貯蔵電力量時の補償電力補正信号PCp(≧0.0)を設定する。
補償電力補正信号演算部32は、貯蔵電力量ESを入力とし、貯蔵電力量ESと、EL(EL’)、EH(EH’)の各々との関係に基づいて、補償電力補正信号PCとして、補償電力補正信号PCm、0(零)、補償電力補正信号PCpのいずれかを出力する。
Also, a compensation power correction signal PCm (≦ 0.0) at the time of low stored power amount and a compensation power correction signal PCp (≧ 0.0) at the time of high storage power amount are set.
The compensation power correction signal calculation unit 32 receives the stored power amount ES, and based on the relationship between the stored power amount ES and each of EL (EL ′) and EH (EH ′), as the compensation power correction signal PC, One of the compensation power correction signal PCm, 0 (zero) and the compensation power correction signal PCp is output.

補償電力補正信号演算部32は、貯蔵電力量ESが低下し貯蔵電力量下限しきい値EL(EL’)を下回った場合に、補償電力補正信号PCとして補償電力補正信号PCmの出力を開始する。補償電力補正信号PCmはマイナスの信号であり、後段の補償電力補正部16においては補償電力ΔPGに補償電力補正信号PCを加算するため、補正補償電力ΔPG’は補償電力ΔPGに対し補償電力補正信号PCm分だけ電力貯蔵装置5へ充電する方向にシフトすることになる。   The compensation power correction signal calculation unit 32 starts outputting the compensation power correction signal PCm as the compensation power correction signal PC when the stored power amount ES decreases and falls below the stored power amount lower limit threshold EL (EL ′). . The compensation power correction signal PCm is a negative signal. Since the compensation power correction unit 16 in the subsequent stage adds the compensation power correction signal PC to the compensation power ΔPG, the compensation power compensation signal ΔPG ′ is a compensation power compensation signal for the compensation power ΔPG. The power storage device 5 is shifted in the direction of charging by PCm.

その後、貯蔵電力量ESが上昇し貯蔵電力量下限しきい値EL(EL’)を上回った場合に、補償電力補正信号演算部32は、その補償電力補正信号PCmの出力を停止する。すなわち補償電力補正信号PCは零になる。   Thereafter, when the stored power amount ES rises and exceeds the stored power amount lower limit threshold EL (EL ′), the compensation power correction signal calculation unit 32 stops outputting the compensation power correction signal PCm. That is, the compensation power correction signal PC becomes zero.

同様に、補償電力補正信号演算部32は、貯蔵電力量ESが上昇し貯蔵電力量上限しきい値EH(EH’)を上回った場合に、補償電力補正信号PCとして補償電力補正信号PCpの出力を開始する。補償電力補正信号PCpはプラスの信号であり、後段の補償電力補正部16においては補償電力ΔPGに補償電力補正信号PCを加算するため、補正補償電力ΔPG’は補償電力ΔPGに対し補償電力補正信号PCp分だけ電力貯蔵装置から放電する方向にシフトすることになる。   Similarly, the compensation power correction signal calculation unit 32 outputs the compensation power correction signal PCp as the compensation power correction signal PC when the stored power amount ES rises and exceeds the stored power amount upper limit threshold EH (EH ′). To start. The compensation power correction signal PCp is a positive signal. Since the compensation power correction unit 16 in the subsequent stage adds the compensation power correction signal PC to the compensation power ΔPG, the compensation compensation power ΔPG ′ is a compensation power correction signal with respect to the compensation power ΔPG. It shifts in the direction of discharging from the power storage device by PCp.

その後、貯蔵電力量ESが低下し貯蔵電力量上限しきい値EH(EH’)を下回った場合に、補償電力補正信号演算部32は、その補償電力補正信号PCpの出力を停止する。すなわち補償電力補正信号PCは零になる。   Thereafter, when the stored power amount ES decreases and falls below the stored power amount upper limit threshold EH (EH ′), the compensation power correction signal calculation unit 32 stops outputting the compensation power correction signal PCp. That is, the compensation power correction signal PC becomes zero.

補償電力補正信号生成部を図4の様に構成することにより、補償電力補正信号演算部において、貯蔵電力量ESが貯蔵電力量上限値Emaxから所定の範囲内(EH〜Emax、あるいはEH’〜Emax)にあると判定した場合、電力貯蔵装置5から放電する方向に補償電力補正信号PCを生成し、また、補正貯蔵電力量ESが貯蔵電力量下限値Eminから所定の範囲内(Emin〜EL、あるいはEmin〜EL’)にあると判定した場合、電力貯蔵装置5へ充電する方向に補償電力補正信号PCを生成することにより、貯蔵電力量が長期的に上下限値で張り付いてしまう状態を防止する。   By configuring the compensation power correction signal generation unit as shown in FIG. 4, the compensation power correction signal calculation unit has a stored power amount ES within a predetermined range from the stored power amount upper limit value Emax (EH to Emax or EH ′ to Emax), the compensation power correction signal PC is generated in the direction of discharging from the power storage device 5, and the corrected storage power amount ES is within a predetermined range (Emin to EL) from the stored power amount lower limit Emin. Or Emin to EL ′), when the compensation power correction signal PC is generated in the direction of charging the power storage device 5, the stored power amount sticks to the upper and lower limit values in the long term. To prevent.

ところで、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)である場合、しきい値補正信号演算部31からのしきい値補正信号LCによって、貯蔵電力量上限しきい値EHは減少方向に補正され、EH’となる。   By the way, when the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the threshold value of the stored power amount is exceeded by the threshold value correction signal LC from the threshold value correction signal calculation unit 31. The value EH is corrected in the decreasing direction and becomes EH ′.

これにより、電力貯蔵装置5から放電する方向に補償電力補正信号PCを生成する際、補償電力補正信号PCの生成可否を判定する所定範囲(EH〜Emax)が拡大(EH’〜Emax、ただしEH’<EH)し、電力貯蔵装置5から放電する方向に補正がかかりやすく(補正開始タイミングの早期化、補正期間の延長)なる。なお、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)であっても電力貯蔵装置5に十分な貯蔵電力量空き容量があれば放電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち上がり方向の電力変動を吸収するために必要な貯蔵電力量空き容量を確保することができ、増加する電力変動成分を電力貯蔵装置5が吸収しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち上がる際の電力変動を効果的に補償することが可能となる。   Thus, when the compensation power correction signal PC is generated in the direction of discharging from the power storage device 5, the predetermined range (EH to Emax) for determining whether or not the compensation power correction signal PC can be generated is expanded (EH ′ to Emax, where EH '<EH), and it is easy to make correction in the direction of discharging from the power storage device 5 (early correction start timing, extension of the correction period). Note that even if the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, if the power storage device 5 has a sufficient storage power capacity, the discharge direction is not corrected, so it is unnecessary. No correction is required. As a result, it is possible to secure an available storage power capacity free capacity for absorbing power fluctuations in the rising direction of the distributed power supply, and the power storage device 5 cannot absorb the increasing power fluctuation components, thus making it impossible to compensate for power fluctuations. It is possible to reduce the risk and effectively compensate for the power fluctuation when the distributed power source is started up.

同様に、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)である場合、しきい値補正信号演算部31からのしきい値補正信号LCによって、貯蔵電力量下限しきい値ELは増加方向に補正され、EL’となる。   Similarly, when the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the stored power amount lower limit is set by the threshold value correction signal LC from the threshold value correction signal calculation unit 31. The threshold value EL is corrected in the increasing direction to become EL ′.

これにより電力貯蔵装置5へ充電する方向に補償電力補正信号PCを生成する際、補償電力補正信号PCの生成可否を判定する所定範囲(Emin〜EL)が拡大(Emin〜EL’、ただしEL<EL’)し、電力貯蔵装置へ充電する方向に補正がかかりやすく(補正開始タイミングの早期化、補正期間の延長)なる。なお、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)であっても電力貯蔵装置5に十分な貯蔵電力量があれば充電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち下がり方向の電力変動を補償するために必要な貯蔵電力量を確保することができ、減少する電力変動成分を電力貯蔵装置が補償しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち下がる際の電力変動を効果的に補償することが可能となる。   As a result, when the compensation power correction signal PC is generated in the direction of charging the power storage device 5, the predetermined range (Emin to EL) for determining whether or not the compensation power correction signal PC can be generated is expanded (Emin to EL ′, where EL < EL ′) and correction is likely to be applied in the direction of charging the power storage device (adjustment of the correction start timing and extension of the correction period). Even if the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the charging direction is not corrected if the power storage device 5 has a sufficient amount of stored power. Will not take. As a result, the amount of stored power required to compensate for power fluctuations in the falling direction of the distributed power supply can be secured, and the power storage device cannot compensate for the decreasing power fluctuation components, thus making it impossible to compensate for power fluctuations. This makes it possible to effectively compensate for power fluctuations when the distributed power supply falls.

なお、しきい値補正信号演算部31において、出力下限しきい値PL、出力上限しきい値PHに対し、それぞれ補正開始しきい値、補正終了しきい値(低出力時補正開始しきい値Th5、低出力時補正終了しきい値Th6、高出力時補正終了しきい値Th7、高出力時補正開始しきい値Th8)を設け、低出力時補正開始しきい値Th5、低出力時補正終了しきい値Th6を分散型電源の出力下限値Pminに近づけて設定し、高出力時補正終了しきい値Th7、高出力時補正開始しきい値Th8を分散型電源の出力上限値Pmaxに近づけて設定することにより、分散型電源の出力が出力下限値Pmin近傍、あるいは出力上限値Pmax近傍に至った場合にのみ、しきい値補正信号LCを出力することができるため、分散型電源の出力が出力下限値Pmin近傍、あるいは出力上限値Pmax近傍で無い場合における不要な補正動作を防止することができる。また補正開始しきい値と補正終了しきい値を別々に設定するため、一旦しきい値補正信号LCの出力を開始した場合は分散型電源の出力が(補正終了しきい値にかかるほど)大きく変動しない限り、しきい値補正信号LCの出力が停止することはなく、またしきい値補正信号LCの出力が停止した後、分散型電源の出力が(補正開始しきい値にかかるほど)大きく変動しない限り、しきい値補正信号LCの出力が再開することはないため、しきい値補正信号LCによる補正動作が頻繁に入り切り(ON/OFF)することを防ぐことができる。   In the threshold correction signal calculation unit 31, the correction start threshold value and the correction end threshold value (low output correction start threshold value Th5) for the output lower limit threshold value PL and the output upper limit threshold value PH, respectively. Low output correction end threshold Th6, high output correction end threshold Th7, high output correction start threshold Th8), low output correction start threshold Th5, low output correction end The threshold value Th6 is set close to the output lower limit value Pmin of the distributed power source, and the high power correction end threshold value Th7 and the high output correction start threshold value Th8 are set close to the output upper limit value Pmax of the distributed power source. As a result, the threshold correction signal LC can be output only when the output of the distributed power source reaches the vicinity of the output lower limit value Pmin or the output upper limit value Pmax. It is possible to prevent an unnecessary correction operation when not force lower-limit value Pmin vicinity or the output upper limit value Pmax vicinity. In addition, since the correction start threshold value and the correction end threshold value are set separately, once the output of the threshold correction signal LC is started, the output of the distributed power source becomes larger (as it reaches the correction end threshold value). As long as it does not fluctuate, the output of the threshold correction signal LC does not stop, and after the output of the threshold correction signal LC stops, the output of the distributed power source increases (approaching the correction start threshold). As long as it does not fluctuate, the output of the threshold value correction signal LC does not resume, so that it is possible to prevent the correction operation by the threshold value correction signal LC from being frequently turned on and off (ON / OFF).

補償電力補正信号演算部を実現する他の構成例を図5に示す。なお、補償電力補正信号演算部以外の構成は図4に示す通りとする。
図5における補償電力補正信号演算部32Aでは、貯蔵電力量ESを入力とし、貯蔵電力量ESがある基準値THを上回った場合、プラスの補償電力補正信号PCを出力し、貯蔵電力量ESがある基準値THを下回った場合、マイナスの補償電力補正信号PCを出力し、なおかつ貯蔵電力量ESが基準値THから離れるほどその信号の絶対値を大きくする。
FIG. 5 shows another configuration example for realizing the compensation power correction signal calculation unit. The configuration other than the compensation power correction signal calculation unit is as shown in FIG.
In the compensation power correction signal calculation unit 32A in FIG. 5, when the stored power amount ES is input and the stored power amount ES exceeds a certain reference value TH, a positive compensation power correction signal PC is output, and the stored power amount ES is When the value falls below a certain reference value TH, a negative compensation power correction signal PC is output, and the absolute value of the signal increases as the stored power amount ES departs from the reference value TH.

ただし、上記しきい値補正信号演算部31からのしきい値補正信号LCに応じて、基準値THは変化する。つまり、有効電力計測値PGが分散型電源の出力下限値Pminから所定の範囲内(Pmin〜PL)にある場合、基準値THはしきい値補正信号LCm分だけ減少し、および/または、有効電力計測値PGが分散型電源の出力上限値Pmaxから所定の範囲内(PH〜Pmax)にある場合、基準値THはしきい値補正信号LCp分だけ増加する。   However, the reference value TH changes according to the threshold correction signal LC from the threshold correction signal calculation unit 31. That is, when the active power measurement value PG is within a predetermined range (Pmin to PL) from the output lower limit value Pmin of the distributed power source, the reference value TH is decreased by the threshold correction signal LCm and / or effective. When the power measurement value PG is within a predetermined range (PH to Pmax) from the output upper limit value Pmax of the distributed power source, the reference value TH increases by the threshold value correction signal LCp.

補償電力補正信号演算部を図5の様に構成した場合、しきい値補正信号演算部31からのしきい値補正信号LCは、補償電力補正信号演算部32Aに対し以下のような影響を及ぼす。   When the compensation power correction signal calculation unit is configured as shown in FIG. 5, the threshold correction signal LC from the threshold correction signal calculation unit 31 has the following effects on the compensation power correction signal calculation unit 32A. .

しきい値補正信号LCmにより基準値THが減少するように補正された場合、補償電力補正信号演算部32Aからの補償電力補正信号PCは(基準値THに対して補正を行わなかった場合と比較して)増加する。つまり、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)である場合、補償電力補正信号PCは電力貯蔵装置5から放電する方向にシフトすることになり、補償電力補正部16においては、電力貯蔵装置5から放電する方向に補正効果が強まることになる。すなわち、補償電力補正部16における電力貯蔵装置5から放電する方向にする補正処理が、より促進されることとなる。なお、分散型電源の出力が出力下限値Pminから所定の範囲内(Pmin〜PL)であっても電力貯蔵装置5に十分な貯蔵電力量空き容量があれば放電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち上がり方向の電力変動を吸収するために必要な貯蔵電力量空き容量を確保することができ、増加する電力変動成分を電力貯蔵装置5が吸収しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち上がる際の電力変動を効果的に補償することが可能となる。   When the reference value TH is corrected so as to decrease by the threshold correction signal LCm, the compensation power correction signal PC from the compensation power correction signal calculation unit 32A is compared with the case where the correction is not performed on the reference value TH. Increase). That is, when the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, the compensation power correction signal PC is shifted in the direction of discharging from the power storage device 5, and the compensation power correction is performed. In the part 16, the correction effect is strengthened in the direction of discharging from the power storage device 5. That is, the correction process in which the compensation power correction unit 16 discharges from the power storage device 5 is further promoted. Note that even if the output of the distributed power source is within a predetermined range (Pmin to PL) from the output lower limit value Pmin, if the power storage device 5 has a sufficient storage power capacity, the discharge direction is not corrected, so it is unnecessary. No correction is required. As a result, it is possible to secure an available storage power capacity free capacity for absorbing power fluctuations in the rising direction of the distributed power supply, and the power storage device 5 cannot absorb the increasing power fluctuation components, thus making it impossible to compensate for power fluctuations. It is possible to reduce the risk and effectively compensate for the power fluctuation when the distributed power source is started up.

同様に、しきい値補正信号LCpにより基準値THが増加するように補正された場合、補償電力補正信号演算部32Aからの補償電力補正信号PCは(基準値THに対して補正を行わなかった場合と比較して)減少する。つまり、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)である場合、補償電力補正信号PCは電力貯蔵装置5へ充電する方向にシフトすることになり、補償電力補正部16においては、電力貯蔵装置5へ充電する方向に補正効果が強まることになる。すなわち、補償電力補正部16における電力貯蔵装置5に充電する方向にする補正処理が、より促進されることとなる。なお、分散型電源の出力が出力上限値Pmaxから所定の範囲内(PH〜Pmax)であっても電力貯蔵装置5に十分な貯蔵電力量があれば充電方向の補正はかからないため、不要な補正がかかることは無い。結果、分散型電源の立ち下がり方向の電力変動を補償するために必要な貯蔵電力量を確保することができ、減少する電力変動成分を電力貯蔵装置5が補償しきれず電力変動補償ができなくなるリスクを低減し、分散型電源が立ち下がる際の電力変動を効果的に補償することが可能となる。   Similarly, when the reference value TH is corrected so as to increase by the threshold value correction signal LCp, the compensation power correction signal PC from the compensation power correction signal calculation unit 32A is not corrected with respect to the reference value TH. Decrease). That is, when the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the compensated power correction signal PC is shifted in the direction of charging the power storage device 5 and compensated power compensation. In the part 16, the correction effect is strengthened in the direction in which the power storage device 5 is charged. In other words, the correction process for charging the power storage device 5 in the compensation power correction unit 16 is further promoted. Even if the output of the distributed power source is within a predetermined range (PH to Pmax) from the output upper limit value Pmax, the charging direction is not corrected if the power storage device 5 has a sufficient amount of stored power. Will not take. As a result, the amount of stored power necessary to compensate for power fluctuations in the falling direction of the distributed power supply can be ensured, and the power storage device 5 cannot fully compensate for the reduced power fluctuation components, thus making it impossible to compensate for power fluctuations. It is possible to effectively compensate for power fluctuations when the distributed power supply falls.

以上説明した電力安定化システム10の効果について、図6から図10に示す検証結果を参照して説明することとする。ここでは、風力発電機の出力変動補償のために、図1から図3に示す構成を備えた電力貯蔵装置5を用いた電力安定化システム10において、貯蔵電力量補正信号演算部21、及び貯蔵電力量補正部22による貯蔵電力量ESの補正を行った場合(以下「貯蔵電力量補正制御有り」)の実測波形を示す。また、図8、図9、図10においては、比較のため、貯蔵電力量補正信号演算部21、及び貯蔵電力量補正部22による貯蔵電力量ESの補正を行わない場合(以下「貯蔵電力量補正制御無し」)のシミュレーション結果を併せて示す。   The effects of the power stabilization system 10 described above will be described with reference to the verification results shown in FIGS. Here, in order to compensate the output fluctuation of the wind power generator, in the power stabilization system 10 using the power storage device 5 having the configuration shown in FIGS. 1 to 3, the stored power amount correction signal calculation unit 21 and the storage The measured waveform when the stored power amount ES is corrected by the power amount correcting unit 22 (hereinafter, “with stored power amount correction control”) is shown. 8, 9, and 10, for the sake of comparison, the stored power amount ES is not corrected by the stored power amount correction signal calculation unit 21 and the stored power amount correction unit 22 (hereinafter referred to as “stored power amount”). The simulation results of “no correction control”) are also shown.

なお、実機において制御装置1内の構成を変えることは難しく、仮に構成を変更したとしても、補償対象である風力発電の出力は風任せで再現できないため、ここでは、貯蔵電力量補正制御無しの場合の電力貯蔵装置5を用いた電力安定化システムをモデル化し、実機において計測した風力発電出力データを入力することで、すなわち同じデータを入力することで、上記シミュレーション結果を得ている。   In addition, since it is difficult to change the configuration in the control device 1 in an actual machine, and even if the configuration is changed, the output of the wind power generation that is the compensation target cannot be reproduced with the wind, so here the stored power amount correction control is not performed. The simulation result is obtained by modeling the power stabilization system using the power storage device 5 and inputting the wind power generation output data measured in the actual machine, that is, by inputting the same data.

図6は、風力発電機(分散型電源)2の有効電力計測値PGを示したグラフである。図6に示す通り、0秒から7000秒近辺において、風力発電機(分散型電源)2の有効電力計測値PGがゼロに近く、その後7000秒近辺から9000秒近辺にかけて風力発電機(分散型電源)2の有効電力計測値PGが大きく増加していることが分かる。   FIG. 6 is a graph showing the active power measurement value PG of the wind power generator (distributed power source) 2. As shown in FIG. 6, the active power measurement value PG of the wind power generator (distributed power source) 2 is close to zero in the vicinity of 0 to 7000 seconds, and then the wind power generator (distributed power source) from about 7000 seconds to about 9000 seconds. ) It can be seen that the active power measurement value PG of 2 is greatly increased.

図7は、貯蔵電力量補正信号ECを示したグラフである。図6に示す通り、0秒から7000秒近辺においては、風力発電機(分散型電源)2の出力がゼロに近い。このため、プラスの貯蔵電力量補正信号ECを出力し、貯蔵電力量ESを増加方向に補正している。   FIG. 7 is a graph showing the stored power amount correction signal EC. As shown in FIG. 6, the output of the wind power generator (distributed power source) 2 is close to zero in the vicinity of 0 to 7000 seconds. For this reason, a positive stored power amount correction signal EC is output to correct the stored power amount ES in the increasing direction.

図8は、貯蔵電力量補正制御有りの場合の貯蔵電力量ES(図中ES1)と、貯蔵電力量補正制御無しの場合の貯蔵電力量ES(図中ES2)を示したグラフである。
先に図7に示した通り、貯蔵電力量補正制御有りの場合においては、0秒から7000秒近辺において風力発電機(分散型電源)2の出力がゼロに近いため、貯蔵電力量補正信号ECを出力し、貯蔵電力量ESを増加方向に補正した結果、図8におけるES1に示すように、0秒から5000秒近辺においては貯蔵電力量に十分な空き容量が確保されたことが分かる。
FIG. 8 is a graph showing the stored power amount ES (ES1 in the figure) with the stored power amount correction control and the stored power amount ES (ES2 in the figure) without the stored power amount correction control.
As shown in FIG. 7, when the stored power amount correction control is performed, the output of the wind power generator (distributed power source) 2 is close to zero in the vicinity of 0 to 7000 seconds. , And as a result of correcting the stored power amount ES in the increasing direction, as shown by ES1 in FIG. 8, it can be seen that a sufficient free space for the stored power amount is secured in the vicinity of 0 to 5000 seconds.

図9は、貯蔵電力量補正制御有りの場合の補正信号PC(図中PC1)と、貯蔵電力量補正制御無しの場合の補正信号PC(図中PC2)を示したグラフである。
図7に示す通り、貯蔵電力量補正制御により0秒から7000秒近辺において貯蔵電力量補正信号ECを出力しているが、図8におけるES1で分かるように、0秒から5000秒近辺においては、貯蔵電力量ESに十分な空き容量がある。このため、図9におけるPC1に示すように、補正信号PCは出力されていない。即ち貯蔵電力量補正制御を行っていても、十分な貯蔵電力量の空き容量(貯蔵電力量)がある場合には不要な補正動作を行わないことを示している。
FIG. 9 is a graph showing a correction signal PC (PC1 in the figure) when the stored power amount correction control is present and a correction signal PC (PC2 in the figure) when the stored power amount correction control is not present.
As shown in FIG. 7, the stored power amount correction signal EC is output in the vicinity of 0 to 7000 seconds by the stored power amount correction control. As can be seen from ES1 in FIG. 8, in the vicinity of 0 to 5000 seconds, There is sufficient free space in the stored energy ES. For this reason, as indicated by PC1 in FIG. 9, the correction signal PC is not output. That is, even if the stored power amount correction control is performed, an unnecessary correction operation is not performed when there is a vacant capacity (stored power amount) of a sufficient stored power amount.

また、貯蔵電力量補正制御により貯蔵電力量が増加方向に補正され、補償電力補正信号演算部23において貯蔵電力量を放電する方向に補正がかかりやすくなった結果、図9におけるPC1に示すように、5000秒近辺から6000秒近辺にかけては、補正信号PCが出力されている。すなわち、貯蔵電力量補正制御によって、必要な貯蔵電力量の容量(空き容量)を確保するよう動作していることが分かる。   Further, as a result of the stored power amount being corrected in the increasing direction by the stored power amount correction control and being easily corrected in the direction in which the stored power amount is discharged in the compensation power correction signal calculation unit 23, as shown by PC1 in FIG. The correction signal PC is output from around 5000 seconds to around 6000 seconds. In other words, it can be seen that the storage power amount correction control operates so as to secure a necessary storage power amount capacity (free capacity).

一方、貯蔵電力量補正制御無しの場合、図8におけるES2に示す通り、7000秒から9000秒近辺において貯蔵電力量の空き容量が逼迫している。この結果、図9におけるPC2に示すように、補償電力補正信号が出力され、貯蔵電力量の空き容量を確保するよう動作していることが分かる。   On the other hand, when there is no stored power amount correction control, as shown by ES2 in FIG. 8, the free space of the stored power amount is tight around 7000 seconds to 9000 seconds. As a result, as shown in PC2 in FIG. 9, it can be seen that the compensation power correction signal is output, and the operation is performed to ensure the free capacity of the stored power amount.

図10は、風力発電機2の出力である有効電力値PGと電力安定化システムの出力PSとの合計値、つまり補償後有効電力PG+PSを示したグラフである。貯蔵電力量補正制御有りの場合の補償後有効電力PG+PS(図中PG+PS1)の実測波形と、貯蔵電力量補正制御無しの場合の補償後有効電力PG+PS(図中PG+PS2)のシミュレーション結果、および(補償前の)有効電力計測値PGを示したグラフである。   FIG. 10 is a graph showing the total value of the active power value PG, which is the output of the wind power generator 2, and the output PS of the power stabilization system, that is, the compensated active power PG + PS. Measured waveform of compensated effective power PG + PS (PG + PS1 in the figure) with stored power amount correction control and compensated effective power PG + PS (PG + PS2 in the figure) without stored power amount correction control ) And the active power measurement value PG (before compensation).

図10におけるPGに示す通り、5000秒近辺から6000秒近辺にかけて、風力発電機(分散型電源)2の出力がゼロに近く、かつ図8におけるES1に示すように、貯蔵電力量が若干上限値に近づいたため、貯蔵電力量補正制御有りの場合、5000秒近辺から6000秒近辺にかけて貯蔵電力量をあらかじめ放電するよう制御した結果、図10におけるPG+PS1に示す通り、補償後有効電力が増加していることが確認できる。また、貯蔵電力量補正制御により貯蔵電力量の空き容量が確保できたため、7000秒近辺から9000秒近辺にかけての風力発電機(分散型電源)2の出力増加による変動を抑制できていることについても同様に、図10におけるPG+PS1から分かる。   As shown by PG in FIG. 10, the output of the wind power generator (distributed power source) 2 is close to zero from around 5000 seconds to around 6000 seconds, and the stored power amount is slightly higher than the upper limit value as shown by ES1 in FIG. Therefore, when the stored power amount correction control is present, as a result of controlling the stored power amount to be discharged in advance from around 5000 seconds to around 6000 seconds, the effective power after compensation increases as shown by PG + PS1 in FIG. Can be confirmed. Moreover, since the free space of the stored power amount can be secured by the stored power amount correction control, the fluctuation due to the increase in the output of the wind power generator (distributed power source) 2 from around 7000 seconds to around 9000 seconds can be suppressed. Similarly, it can be seen from PG + PS1 in FIG.

一方、貯蔵電力量補正制御無しの場合、7000秒近辺から9000秒近辺にかけての風力発電機(分散型電源)2の出力増加により貯蔵電力量が上限に近づくと共に、貯蔵電力量が上限に近づいたことによる貯蔵電力量補正がかかる。その結果、図10におけるPG+PS2に示す通り、7000秒近辺から9000秒近辺にかけての風力発電機(分散型電源)2の出力増加による変動を十分に抑制できていないことが分かる。   On the other hand, in the case of no storage power amount correction control, the storage power amount approaches the upper limit as the output of the wind power generator (distributed power source) 2 increases from around 7000 seconds to around 9000 seconds, and the stored power amount approaches the upper limit. Therefore, it is necessary to correct the stored energy. As a result, as shown by PG + PS2 in FIG. 10, it can be seen that fluctuation due to an increase in the output of the wind power generator (distributed power source) 2 from around 7000 seconds to around 9000 seconds cannot be sufficiently suppressed.

以上説明したように、本例の電力貯蔵装置を用いた電力安定化システムによれば、分散型電源の出力に応じて貯蔵電力量、あるいは補償電力補正信号演算部の貯蔵電力量上下限しきい値を補正し、分散型電源の立ち上がり(立ち下り)時の電力変動補償に必要な貯蔵電力量(貯蔵電力量空き容量)を確保することにより、分散型電源の立ち上がり(立ち下り)時の電力変動に対し効果的な電力変動補償が可能な、電力貯蔵装置を用いた電力安定化システム、その制御装置等を提供することができる。   As described above, according to the power stabilization system using the power storage device of this example, the upper and lower limits of the stored power amount or the stored power amount of the compensation power correction signal calculation unit according to the output of the distributed power source. Power at the time of rising (falling) of the distributed power supply by correcting the value and securing the amount of stored power (storage power free space) necessary for power fluctuation compensation at the time of rising (falling) of the distributed power supply It is possible to provide a power stabilization system using a power storage device, a control device thereof, and the like that can effectively compensate for power fluctuations against fluctuations.

本実施形態に係る電力安定化システムの構成図である。It is a lineblock diagram of the power stabilization system concerning this embodiment. 補償電力補正信号生成部の第1の構成例である。It is a 1st structural example of a compensation electric power correction signal generation part. 図2の補償電力補正信号生成部を構成する補償電力補正信号演算部の他の構成例である。It is another example of a structure of the compensation power correction signal calculating part which comprises the compensation power correction signal generation part of FIG. 補償電力補正信号生成部の第2の構成例である。It is a 2nd structural example of a compensation electric power correction signal generation part. 図4の補償電力補正信号生成部を構成する補償電力補正信号演算部の他の構成例である。6 is another configuration example of a compensation power correction signal calculation unit that constitutes the compensation power correction signal generation unit of FIG. 4. 風力発電機(分散型電源)の有効電力計測値を示したグラフである。It is the graph which showed the active power measurement value of the wind power generator (distributed power supply). 貯蔵電力量補正信号を示したグラフである。It is the graph which showed the stored electric energy correction signal. 貯蔵電力量補正制御有りの場合および貯蔵電力量補正制御無しの場合についての貯蔵電力量を示したグラフである。It is the graph which showed the stored electric energy in the case with storage electric energy correction control, and the case without storage electric energy correction control. 貯蔵電力量補正制御有りの場合および貯蔵電力量補正制御無しの場合についての補償電力補正信号を示したグラフである。It is the graph which showed the compensation electric power correction signal about the case with storage electric energy correction control, and the case without storage electric energy correction control. 補償後有効電力を示したグラフである。It is the graph which showed the effective power after compensation.

符号の説明Explanation of symbols

1 制御装置
2 風力発電機
3 変圧器
4 電力系統
5 電力貯蔵装置
6 電力変換器
7 変圧器
10 電力安定化システム
11 有効電力検出部
12 補償電力演算部
13 電力変換器制御部
14 貯蔵電力量検出部
15 補償電力補正信号生成部
16 補償電力補正部
DESCRIPTION OF SYMBOLS 1 Control apparatus 2 Wind generator 3 Transformer 4 Electric power system 5 Power storage apparatus 6 Power converter 7 Transformer 10 Power stabilization system 11 Active power detection part 12 Compensation power calculation part 13 Power converter control part 14 Power storage amount detection 15 Compensation power correction signal generation unit 16 Compensation power correction unit

Claims (7)

分散型電源とともに交流電力系統に接続され、該分散型電源の有効電力変動を抑制するための電力安定化システムであって、
電力を貯蔵し、前記交流電力系統に対して充放電を行う電力貯蔵装置と、
前記分散型電源の有効電力を有効電力計測値として検出する有効電力検出手段と、
前記電力貯蔵装置の貯蔵電力量または該貯蔵電力量に相当する信号を検出する貯蔵電力量検出手段と、
前記有効電力計測値の変動成分に基づいて補償電力を演算する補償電力演算手段と、
前記貯蔵電力量が貯蔵電力量上限値から所定の範囲内にある場合、電力貯蔵装置から放電する方向に補償電力補正信号を生成し、前記貯蔵電力量が貯蔵電力量下限値から所定の範囲内にある場合、電力貯蔵装置へ充電する方向に補償電力補正信号を生成する、補償電力補正信号生成手段と、
前記補償電力と前記補償電力補正信号とに基づいて前記補償電力の補正を行い、補正補償電力を生成する補償電力補正手段と、
前記補正補償電力に応じて電力変換器出力指令を発信する電力変換器制御手段と、
前記電力変換器制御手段から発せられた電力変換器出力指令に応じて、前記電力貯蔵装置と前記交流電力系統との間で充放電電力を相互に変換する電力変換器を備え、
前記補償電力補正信号生成手段は、
有効電力計測値が分散型電源の出力下限値から所定の範囲内にある場合、前記補償電力補正手段における電力貯蔵装置から放電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成し、
および/または、有効電力計測値が分散型電源の出力上限値から所定の範囲内にある場合、前記補償電力補正手段における電力貯蔵装置へ充電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成する
ことを特徴とする電力貯蔵装置を用いた電力安定化システム。
A power stabilization system connected to an AC power system together with a distributed power source to suppress fluctuations in active power of the distributed power source,
A power storage device for storing power and charging / discharging the AC power system;
Active power detection means for detecting the active power of the distributed power source as an active power measurement value;
A stored power amount detecting means for detecting a stored power amount of the power storage device or a signal corresponding to the stored power amount;
Compensation power calculation means for calculating compensation power based on a fluctuation component of the active power measurement value;
When the stored power amount is within a predetermined range from the stored power amount upper limit value, a compensation power correction signal is generated in a direction of discharging from the power storage device, and the stored power amount is within a predetermined range from the stored power amount lower limit value. A compensation power correction signal generating means for generating a compensation power correction signal in a direction to charge the power storage device,
Compensation power correction means for correcting the compensation power based on the compensation power and the compensation power correction signal and generating corrected compensation power;
Power converter control means for transmitting a power converter output command according to the corrected compensation power;
In accordance with a power converter output command issued from the power converter control means, a power converter that mutually converts charge / discharge power between the power storage device and the AC power system,
The compensation power correction signal generation means includes:
When the active power measurement value is within a predetermined range from the output lower limit value of the distributed power source, the compensation power correction signal is generated so as to promote the correction processing performed in the direction of discharging from the power storage device in the compensation power correction means. And
And / or, when the active power measurement value is within a predetermined range from the output upper limit value of the distributed power source, the compensation power so as to promote correction processing performed in the direction of charging the power storage device in the compensation power correction means. A power stabilization system using a power storage device, characterized by generating a correction signal.
前記補償電力補正信号生成手段は、
有効電力計測値が前記分散型電源の出力下限値から所定の範囲内にある場合、貯蔵電力量を増加させる方向に貯蔵電力量補正信号を出力し、および/または、有効電力計測値が前記分散型電源の出力上限値から所定の範囲内にある場合、貯蔵電力量を減少させる貯蔵電力量補正信号を出力する貯蔵電力量補正信号演算手段と、
貯蔵電力量と前記貯蔵電力量補正信号とに基づいて貯蔵電力量の補正を行い、補正貯蔵電力量を生成する貯蔵電力量補正手段と、
前記補正貯蔵電力量が前記電力貯蔵装置の貯蔵電力量上限値から所定の範囲内にある場合、該電力貯蔵装置から放電する方向に前記補償電力補正信号を出力し、前記補正貯蔵電力量が前記電力貯蔵装置の貯蔵電力量下限値から所定の範囲内にある場合、該電力貯蔵装置へ充電する方向に前記補償電力補正信号を出力する補償電力補正信号演算手段と、
から構成されることを特徴とする請求項1記載の電力安定化システム。
The compensation power correction signal generation means includes:
When the active power measurement value is within a predetermined range from the output lower limit value of the distributed power source, a stored power amount correction signal is output in a direction to increase the stored power amount, and / or the active power measurement value is A storage power amount correction signal calculating means for outputting a stored power amount correction signal for reducing the stored power amount when the output power upper limit value is within a predetermined range;
A stored power amount correcting means for correcting the stored power amount based on the stored power amount and the stored power amount correction signal, and generating a corrected stored power amount;
When the corrected stored power amount is within a predetermined range from the upper limit value of the stored power amount of the power storage device, the compensation power correction signal is output in a direction of discharging from the power storage device, and the corrected stored power amount is A compensation power correction signal calculation means for outputting the compensation power correction signal in a direction to charge the power storage device when the power storage device is within a predetermined range from the lower limit value of the stored power amount of the power storage device;
The power stabilization system according to claim 1, comprising:
前記貯蔵電力量補正信号演算手段は、
前記分散型電源の出力可能範囲の中で、低出力時補正開始しきい値Th1、低出力時補正終了しきい値Th2、高出力時補正終了しきい値Th3、高出力時補正開始しきい値Th4を、Th1<Th2<Th3<Th4、となるように設定し、
有効電力計測値が低下し前記Th1を下回った場合に、貯蔵電力量を増加させる方向に前記貯蔵電力量補正信号の出力を開始し、その後、有効電力計測値が上昇し前記Th2を上回った場合に、該貯蔵電力量補正信号の出力を停止し、
有効電力計測値が上昇し前記Th4を上回った場合に、貯蔵電力量を減少させる方向に前記貯蔵電力量補正信号の出力を開始し、その後、有効電力計測値が低下し前記Th3を下回った場合に、該貯蔵電力量補正信号の出力を停止する
ことを特徴とする請求項2記載の電力安定化システム。
The stored power amount correction signal calculation means includes:
Within the output possible range of the distributed power source, the low output correction start threshold Th1, the low output correction end threshold Th2, the high output correction end threshold Th3, and the high output correction start threshold Th4 is set so that Th1 <Th2 <Th3 <Th4,
When the active power measurement value decreases and falls below the Th1, the output of the stored power amount correction signal is started in the direction of increasing the stored power amount, and then the active power measurement value rises and exceeds the Th2 The output of the stored energy correction signal is stopped,
When the active power measurement value rises and exceeds the Th4, the output of the stored power amount correction signal is started in the direction of decreasing the stored power amount, and then the active power measurement value decreases and falls below the Th3 The power stabilization system according to claim 2, wherein the output of the stored power amount correction signal is stopped.
前記補償電力補正信号生成手段は、
貯蔵電力量が貯蔵電力量上限しきい値EHを上回った場合、前記電力貯蔵装置から放電する方向に前記補償電力補正信号を出力し、貯蔵電力量が貯蔵電力量下限しきい値ELを下回った場合、前記電力貯蔵装置へ充電する方向に前記補償電力補正信号を出力する補償電力補正信号演算手段と、
有効電力計測値が前記分散型電源の出力下限値から所定の範囲内にある場合、前記貯蔵電力量上限しきい値EHを減少させる方向にしきい値補正信号を出力し、および/または、有効電力計測値が前記分散型電源の出力上限値から所定の範囲内にある場合、前記貯蔵電力量下限しきい値ELを増加させる方向にしきい値補正信号を出力するしきい値補正信号演算手段と、
から構成されることを特徴とする請求項1記載の電力安定化システム。
The compensation power correction signal generation means includes:
When the stored power amount exceeds the stored power amount upper limit threshold value EH, the compensation power correction signal is output in the direction of discharging from the power storage device, and the stored power amount falls below the stored power amount lower limit threshold value EL. A compensation power correction signal calculating means for outputting the compensation power correction signal in a direction to charge the power storage device;
When an active power measurement value is within a predetermined range from an output lower limit value of the distributed power source, a threshold correction signal is output in a direction to decrease the stored power amount upper limit threshold value EH, and / or active power A threshold value correction signal calculating means for outputting a threshold value correction signal in a direction to increase the stored power amount lower limit threshold value EL when the measured value is within a predetermined range from the output upper limit value of the distributed power source;
The power stabilization system according to claim 1, comprising:
前記しきい値補正信号演算手段は、
前記分散型電源の出力可能範囲の中で、低出力時補正開始しきい値Th5、低出力時補正終了しきい値Th6、高出力時補正終了しきい値Th7、高出力時補正開始しきい値Th8を、Th5<Th6<Th7<Th8、となるように設定し、
有効電力計測値が低下し前記Th5を下回った場合に、前記貯蔵電力量上限しきい値EHを減少させる方向に前記しきい値補正信号の出力を開始し、その後、有効電力計測値が上昇し前記Th6を上回った場合に、該しきい値補正信号の出力を停止し、
有効電力計測値が上昇し前記Th8を上回った場合に、前記貯蔵電力量下限しきい値ELを増加させる方向に前記しきい値補正信号の出力を開始し、その後、有効電力計測値が低下し前記Th7を下回った場合に、該しきい値補正信号の出力を停止する
ことを特徴とする請求項4記載の電力安定化システム。
The threshold correction signal calculation means includes:
Among the possible output ranges of the distributed power source, the low output correction start threshold Th5, the low output correction end threshold Th6, the high output correction end threshold Th7, and the high output correction start threshold Th8 is set so that Th5 <Th6 <Th7 <Th8,
When the active power measurement value decreases and falls below Th5, output of the threshold correction signal is started in a direction to decrease the stored power amount upper limit threshold value EH, and then the active power measurement value increases. When the value exceeds Th6, the output of the threshold correction signal is stopped,
When the active power measurement value rises and exceeds the Th8, output of the threshold value correction signal is started in the direction of increasing the stored power amount lower limit threshold EL, and then the active power measurement value decreases. The power stabilization system according to claim 4, wherein the output of the threshold value correction signal is stopped when the value falls below Th7.
電力貯蔵装置に貯蔵されている電力の充放電を制御するための制御装置であって、
前記分散型電源の有効電力を有効電力計測値として検出する有効電力検出手段と、
前記電力貯蔵装置の貯蔵電力量または該貯蔵電力量に相当する信号を検出する貯蔵電力量検出手段と、
前記有効電力計測値の変動成分に基づいて補償電力を演算する補償電力演算手段と、
前記貯蔵電力量が貯蔵電力量上限値から所定の範囲内にある場合、電力貯蔵装置から放電する方向に補償電力補正信号を生成し、前記貯蔵電力量が貯蔵電力量下限値から所定の範囲内にある場合、電力貯蔵装置へ充電する方向に補償電力補正信号を生成する、補償電力補正信号生成手段と、
前記補償電力と前記補償電力補正信号とに基づいて前記補償電力の補正を行い補正補償電力を生成する補償電力補正手段と、
前記補正補償電力に応じた電力変換器出力指令値によって電力変換器の変換動作を制御する電力変換器制御手段と、
を備え、
前記補償電力補正信号生成手段は、
有効電力計測値が分散型電源の出力下限値から所定の範囲内にある場合、前記補償電力補正手段における電力貯蔵装置から放電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成し、
および/または、有効電力計測値が分散型電源の出力上限値から所定の範囲内にある場合、前記補償電力補正手段における電力貯蔵装置へ充電する方向に行う補正処理を促進させるように前記補償電力補正信号を生成する
ことを特徴とする制御装置。
A control device for controlling charging / discharging of power stored in a power storage device,
Active power detection means for detecting the active power of the distributed power source as an active power measurement value;
A stored power amount detecting means for detecting a stored power amount of the power storage device or a signal corresponding to the stored power amount;
Compensation power calculation means for calculating compensation power based on a fluctuation component of the active power measurement value;
When the stored power amount is within a predetermined range from the stored power amount upper limit value, a compensation power correction signal is generated in a direction of discharging from the power storage device, and the stored power amount is within a predetermined range from the stored power amount lower limit value. A compensation power correction signal generating means for generating a compensation power correction signal in a direction to charge the power storage device,
Compensation power correction means for correcting the compensation power based on the compensation power and the compensation power correction signal to generate a corrected compensation power;
Power converter control means for controlling the conversion operation of the power converter by a power converter output command value corresponding to the corrected compensation power;
With
The compensation power correction signal generation means includes:
When the active power measurement value is within a predetermined range from the output lower limit value of the distributed power source, the compensation power correction signal is generated so as to promote the correction processing performed in the direction of discharging from the power storage device in the compensation power correction means. And
And / or, when the active power measurement value is within a predetermined range from the output upper limit value of the distributed power source, the compensation power so as to promote correction processing performed in the direction of charging the power storage device in the compensation power correction means. A control device that generates a correction signal.
電力貯蔵装置に貯蔵されている電力の充放電を制御するための制御装置において使用される制御プログラムであって、
前記貯蔵電力量が貯蔵電力量上限値から所定の範囲内にある場合、電力貯蔵装置から放電する方向に電力貯蔵装置に貯蔵されている電力の充放電を制御する信号を補正し、前記貯蔵電力量が貯蔵電力量下限値から所定の範囲内にある場合、電力貯蔵装置へ充電する方向に電力貯蔵装置に貯蔵されている電力の充放電を制御する信号を補正し、
かつ、
有効電力計測値が該分散型電源の出力下限値から所定の範囲内にある場合、電力貯蔵装置から放電する方向に行う補正を促進させる処理を実行し、
および/または、有効電力計測値が該分散型電源の出力上限値から所定の範囲内にある場合、電力貯蔵装置へ充電する方向に行う補正を促進させる処理を実行する、
処理をコンピュータに実行させることを特徴とする制御プログラム。
A control program used in a control device for controlling charge / discharge of power stored in a power storage device,
When the stored power amount is within a predetermined range from the stored power amount upper limit value, a signal for controlling charging / discharging of the power stored in the power storage device in a direction of discharging from the power storage device is corrected, and the stored power If the amount is within a predetermined range from the stored energy lower limit, correct the signal that controls the charging and discharging of the power stored in the power storage device in the direction of charging the power storage device,
And,
When the active power measurement value is within a predetermined range from the output lower limit value of the distributed power source, a process for promoting correction to be performed in the direction of discharging from the power storage device is executed,
And / or when the active power measurement value is within a predetermined range from the output upper limit value of the distributed power source, a process for promoting correction to be performed in the direction of charging the power storage device is executed.
A control program for causing a computer to execute processing.
JP2006144697A 2006-05-24 2006-05-24 Power stabilization system, control device, and control program thereof Active JP4665831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144697A JP4665831B2 (en) 2006-05-24 2006-05-24 Power stabilization system, control device, and control program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144697A JP4665831B2 (en) 2006-05-24 2006-05-24 Power stabilization system, control device, and control program thereof

Publications (2)

Publication Number Publication Date
JP2007318883A JP2007318883A (en) 2007-12-06
JP4665831B2 true JP4665831B2 (en) 2011-04-06

Family

ID=38852225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144697A Active JP4665831B2 (en) 2006-05-24 2006-05-24 Power stabilization system, control device, and control program thereof

Country Status (1)

Country Link
JP (1) JP4665831B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558172B2 (en) * 2010-04-01 2014-07-23 株式会社東芝 Power stabilization system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327080A (en) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The Power storage device and control method of distributed power supply system equipped therewith
JP2002017044A (en) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The Power fluctuation smoothing apparatus and method for controlling distributed power supply system comprising the same
JP2004260929A (en) * 2003-02-26 2004-09-16 Ishikawajima Harima Heavy Ind Co Ltd Wind power output stabilization device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327080A (en) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The Power storage device and control method of distributed power supply system equipped therewith
JP2002017044A (en) * 2000-06-30 2002-01-18 Kansai Electric Power Co Inc:The Power fluctuation smoothing apparatus and method for controlling distributed power supply system comprising the same
JP2004260929A (en) * 2003-02-26 2004-09-16 Ishikawajima Harima Heavy Ind Co Ltd Wind power output stabilization device

Also Published As

Publication number Publication date
JP2007318883A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4715624B2 (en) Power stabilization system, power stabilization control program, and power stabilization control method
JP4782245B1 (en) Wind turbine generator control device and control method
JP2010022122A (en) Stabilization control method for distributed power supply
US20150008743A1 (en) Power Supply System
CN107836077B (en) Motor control device
JP2011234563A (en) Storage battery control system and storage battery control method
JP2007330017A (en) Power stabilization system using power storage device and control device thereof
TW201203575A (en) Solar power generation system
JP6471936B2 (en) Power converter and control method of power converter
WO2011122672A1 (en) Power supply system, power supply method, and control program for power supply system
JP7238608B2 (en) INVERTER CONTROL DEVICE, INVERTER CONTROL PROGRAM AND INVERTER CONTROL METHOD
JP5478137B2 (en) Power stabilization device and its control device
WO2017110276A1 (en) Electric power supply system, control device for electric power supply system, and program
JP2007306669A (en) Power stabilization system using power storage device
WO2018116823A1 (en) Natural energy power generation system, reactive power controller, or natural energy power generation system control method
JP5502558B2 (en) Isolated operation detection device, isolated operation detection method, and grid-connected inverter system provided with an isolated operation detection device
JP2012100487A (en) Power system stabilizing apparatus
JP4665831B2 (en) Power stabilization system, control device, and control program thereof
CN101997312A (en) Method for quickly and effectively inhibiting frequency fluctuation of island power grid
JP2015061331A (en) Voltage fluctuation suppression device
JP5558172B2 (en) Power stabilization system
CN102204058B (en) Output power control apparatus
JP2009112175A (en) Power stabilization system
JP2018064328A (en) Power converter and control method thereof
CN108429287A (en) A kind of honourable power slide control and system based on mixed energy storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250