JP4662294B1 - Oral preparation - Google Patents
Oral preparation Download PDFInfo
- Publication number
- JP4662294B1 JP4662294B1 JP2010032605A JP2010032605A JP4662294B1 JP 4662294 B1 JP4662294 B1 JP 4662294B1 JP 2010032605 A JP2010032605 A JP 2010032605A JP 2010032605 A JP2010032605 A JP 2010032605A JP 4662294 B1 JP4662294 B1 JP 4662294B1
- Authority
- JP
- Japan
- Prior art keywords
- oral preparation
- liquid
- caries
- solution
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cosmetics (AREA)
- Dental Preparations (AREA)
Abstract
【課題】
象牙細管の封鎖性に優れ、歯質の耐酸性向上と再石灰化能力があり、簡便な操作で短時間に処置可能で、安全で、審美性にも優れた、う蝕予防及び初期う蝕治療剤、象牙質知覚過敏症予防及び/又は治療剤、及び窩洞形成歯面の裏層用剤に適した口腔用剤、並びに該口腔用剤調製用のキットを提供する。
【解決手段】
フルオロアルミノシリケートガラス微粒子を分散させた液(A)と、シュウ酸化合物の酸性水溶液(B)とからなる、口腔用剤。
【選択図】 なし
【Task】
Excellent dentinal tubule sealing, improved tooth acid resistance and remineralization ability, can be treated in a short time with simple operation, safe and aesthetic, caries prevention and initial caries Provided are a therapeutic agent, an agent for preventing and / or treating dentine hypersensitivity, and an agent for oral cavity suitable for an agent for backing of a cavity forming tooth surface, and a kit for preparing the oral agent.
[Solution]
An oral preparation comprising a liquid (A) in which fluoroaluminosilicate glass fine particles are dispersed and an acidic aqueous solution (B) of an oxalic acid compound.
[Selection figure] None
Description
本発明は、所要の処理時間が短く、かつ効率的にう蝕予防及び初期う蝕治療、象牙質知覚過敏予防及び/又は治療等の歯科治療が可能な口腔用剤に関する。
より詳しくは、液体製剤塗布という簡便な操作で短時間のうちに歯面上に微粒子の析出物が生成することにより、(1)歯に耐酸性を付与、(2)歯への再石灰化作用を促進、(3)知覚過敏のある象牙質(開口象牙細管)を封鎖する機能を有する口腔用剤に関する。
The present invention relates to an oral preparation capable of performing dental treatment such as caries prevention and initial caries treatment, and prevention and / or treatment of dentin hypersensitivity with a short required treatment time.
More specifically, by depositing fine particles on the tooth surface in a short time with a simple operation of applying a liquid preparation, (1) imparting acid resistance to the tooth, and (2) remineralizing the tooth. The present invention relates to an oral preparation having a function of accelerating the action, and (3) sealing a sensitive dentin (open dentinal tubule).
歯冠は、外側から、エナメル質、象牙質、歯髄の三層構造によって構成されている。
エナメル質は、ハイドロキシアパタイトを主成分とする硬質かつ高度に不溶性の層であるが、口内細菌による食物残さの解糖作用などによって生じた酸性媒質にさらされると、リン酸イオンやカルシウムイオンの溶出(脱灰)が促進され、う蝕の初期病巣として、白斑(ホワイトスポット)が発生し、いわゆる虫歯に発展する。
う蝕予防のための1手法として、フッ素塗布が知られている。すなわち、歯牙をフッ素イオン源によって処理すると、ハイドロキシアパタイトがフルオロアパタイトに改変し、耐酸性が付与されて、リン酸イオンやカルシウムイオンの溶出(脱灰)が抑制され、ハイドロキシアパタイトの生成(再石灰化)を促進する作用効果を有することは周知であり、例えば、フッ素イオン源を含むフッ化物製剤を、歯牙表面に塗布するう蝕の予防処置法が広く実施されている。
当該フッ化物製剤として歯科の医療現場において一般的に用いられる製剤は、リン酸酸性フッ素溶液(以下、「APF」という。)であり、その作用原理は、APFがリン酸酸性であるため、リン酸により歯質が脱灰され、溶出したカルシウムイオンがフッ素イオンと反応し、フッ化カルシウムが歯牙表面に形成するというものである。しかし、APF処置の問題点は、口腔内では唾液に曝され、効果が十分発現しないおそれが高いことである。そのため、APFを歯に塗布した状態で4分間の保持時間を要し、その後さらに30分以上の飲食を禁止する必要があるなど、歯科医の手間、患者の負担、ともに大きいことが制約となっていた。しかも歯面に析出したフッ化カルシウムは、脱灰(酸性)環境において唾液中に溶出してしまい再石灰化促進効果に乏しいことが知られている。
From the outside, the crown is composed of a three-layer structure of enamel, dentin, and pulp.
Enamel is a hard and highly insoluble layer composed mainly of hydroxyapatite. However, when exposed to an acidic medium caused by the glycolytic action of food residues by oral bacteria, elution of phosphate ions and calcium ions occurs. (Decalcification) is promoted, and as a primary lesion of caries, vitiligo (white spot) is generated and develops into so-called caries.
As one method for preventing caries, fluorine coating is known. In other words, when a tooth is treated with a fluorine ion source, hydroxyapatite is converted to fluoroapatite, acid resistance is imparted, elution (decalcification) of phosphate ions and calcium ions is suppressed, and hydroxyapatite is produced (re-lime) It is well known that it has the effect of promoting the conversion of dental caries. For example, a caries preventive treatment method in which a fluoride preparation containing a fluoride ion source is applied to the tooth surface is widely used.
A preparation generally used in the dental medical field as the fluoride preparation is a phosphoric acid acidic fluorine solution (hereinafter referred to as “APF”). The tooth is decalcified by the acid, and the eluted calcium ions react with the fluorine ions to form calcium fluoride on the tooth surface. However, the problem with APF treatment is that it is highly exposed to saliva in the oral cavity and there is a high possibility that the effect will not be fully manifested. For this reason, it takes 4 minutes of holding time with APF applied to the teeth, and after that, it is necessary to prohibit eating and drinking for 30 minutes or more. It was. Moreover, it is known that calcium fluoride deposited on the tooth surface is eluted in saliva in a decalcified (acidic) environment and has a poor remineralization promoting effect.
また、フッ素イオン源とともに、カルシウムイオン源、リン酸イオン源、リン酸カルシウム等を配合した口腔用組成物も報告されている。歯面にフッ化カルシウムとリン酸カルシウムを同時に析出させることにより、脱灰(酸性)環境において唾液中への溶出を防止し、再石灰化促進効果を期待するものである。 In addition, oral compositions containing a calcium ion source, a phosphate ion source, calcium phosphate and the like in addition to a fluorine ion source have been reported. By precipitating calcium fluoride and calcium phosphate simultaneously on the tooth surface, elution into saliva is prevented in a decalcified (acidic) environment, and a remineralization promoting effect is expected.
さらに、歯科用セメントの1種であるグラスアイオノマーセメントも、ガラス成分として含まれるフッ素による歯質強化作用が期待できるとされている。グラスアイオノマーセメントは、生体親和性、接着性、及び審美性に優れることから、う蝕窩洞充填、クラウン、インレー、ブリッジや矯正用ブラケットの合着等に広く用いられているが、硬化初期に唾液などの水分に触れると、硬化反応が阻害され、最終的な物性が低下する。また、硬化後の研磨面が粗く、皮膜厚さが厚いために、舌触りや審美性に劣るなどの欠点があることから、その改良が試みられている。そのうち、研磨面の粗さや皮膜厚さの改良法として、比重2.4〜4.0、平均粒径0.02〜4μm、BET比表面積2.5〜6.0m2/gであるグラスアイオノマーセメント用粉末を用いることの提案がされている(特許文献1)。しかし、具体例としては、平均粒径2.0〜2.2μm、最大粒子径3.49〜3.95μmのものが示されているにすぎない。同文献におけるように、歯科用のグラスアイオノマーセメント粉末は、建材用としてのセメントと同様に、用時に専用のセメント液と練和して用いられるものであって、自体が液剤として使用されることは想定されていないし、その例も報告されていない。 Furthermore, it is said that a glass ionomer cement, which is a kind of dental cement, can be expected to have a tooth strengthening action by fluorine contained as a glass component. Glass ionomer cement is widely used for caries cavity filling, crowns, inlays, bridges and orthodontic brackets because of its excellent biocompatibility, adhesion, and aesthetics. When exposed to moisture such as, the curing reaction is inhibited and the final physical properties are lowered. In addition, since the polished surface after curing is rough and the film thickness is thick, there are disadvantages such as inferior touch and aesthetics. Among them, a glass ionomer having a specific gravity of 2.4 to 4.0, an average particle size of 0.02 to 4 μm, and a BET specific surface area of 2.5 to 6.0 m 2 / g as a method for improving the roughness of the polished surface and the film thickness. It has been proposed to use cement powder (Patent Document 1). However, as a specific example, only an average particle size of 2.0 to 2.2 μm and a maximum particle size of 3.49 to 3.95 μm are shown. As in the same document, dental glass ionomer cement powder is kneaded with a dedicated cement solution at the time of use, like cement for building materials, and itself used as a liquid agent. Is not envisaged and no examples have been reported.
う蝕のほか、歯科臨床において、激しい疼痛を訴えるものに象牙質知覚過敏症がある。歯冠は、前記のとおり、エナメル質、象牙質、歯髄の3層で構成され、象牙質全体を、象牙細管が走っている。象牙質知覚過敏症は、エナメル質や歯肉などにより被覆されている象牙細管が何らかの原因で開口した場合に、惹起されることが多い。例えば、う蝕や、研磨剤を含有する歯科製剤の使用、審美性を目的とする漂白等による摩耗、また、老化による歯肉の退縮などの原因により象牙細管が露出、開口した場合にも冷水や擦過刺激によって一時的ではあるが激しい痛みが惹起される。
象牙質知覚過敏症の発症機序は十分に解明されていないが、動水力学説が有力視されている。動水力学説は象牙質に加えられたさまざまな刺激形態が、象牙細管内液の移動を引き起こし、歯髄側の神経繊維を興奮させるという説である。
In addition to caries, dentinal hypersensitivity is one that complains of severe pain in dental practice. As described above, the dental crown is composed of three layers of enamel, dentin, and dental pulp, and dentinal tubules run through the entire dentin. Dentine hypersensitivity is often caused when a dentinal tubule covered with enamel or gingiva is opened for some reason. For example, if dentinal tubules are exposed or opened due to caries, use of dental preparations containing abrasives, wear due to bleaching for aesthetic purposes, or gingival retraction due to aging, cold water or Scratch stimulation causes temporary but severe pain.
Although the pathogenesis of dentin hypersensitivity has not been fully elucidated, hydrodynamic theory is considered promising. The hydrodynamic theory is a theory that various stimulation forms applied to the dentin cause fluid movement in the dentinal tubule and excite nerve fibers on the pulp side.
したがって、象牙細管内液の移動を阻害する処置が、象牙質知覚過敏の改善に有効であり、例えば、歯をシールするための樹脂と溶媒を含むバーニッシュの塗布などで例示されるように、象牙細管を封鎖することにより象牙質知覚過敏症が低減あるいは消失することが報告されている。
象牙質知覚過敏治療法としては、次のようなものが挙げられる。(1)象牙細管を封鎖する治療法:シュウ酸カリウムの他、レジン、塩化ストロンチウム、フッ化ジアミン銀、HY材、フッ化ナトリウム溶液、フッ化ナトリウム配合パスタ、水酸化カルシウム剤、イオン導入法など(非特許文献1)、(2)露出象牙質被覆による治療法:セメント、パラホルム配合包帯剤など、(3)欠損部の修復:グラスアイオノマーセメント、接着性レジンなど、(4)歯髄神経の鎮静による治療:消炎沈痛剤の服用、ソフトレーザーの照射など、(5)歯髄抜去療法。
Therefore, a treatment that inhibits the movement of dentinal tubule fluid is effective in improving the sensitivity of dentinal perception, for example, as exemplified by the application of a varnish containing a resin and a solvent for sealing teeth. It has been reported that dentin hypersensitivity is reduced or eliminated by blocking dentinal tubules.
Dentine hypersensitivity treatments include the following: (1) Treatment method for sealing dentinal tubules: Resin, strontium chloride, silver diamine diamine, HY material, sodium fluoride solution, sodium fluoride-containing pasta, calcium hydroxide agent, iontophoresis, etc. in addition to potassium oxalate (Non-patent document 1), (2) Treatment with exposed dentin coating: cement, paraform combination dressing, etc. (3) Repair of defect: glass ionomer cement, adhesive resin, etc. (4) Sedation of pulp nerve (5) Tooth pulp extraction therapy, such as taking anti-inflammatory analgesics and soft laser irradiation.
このうち、(3)の、歯質に対し接着性のあるグラスアイオノマーセメントや接着性レジンは、強固な皮膜を形成し除去が困難であるため、根面の歯周再生療法が適用になる可能性がある場合には好ましくない。
(4)は、一時的な効果しかなく、(5)は、歯髄即ち神経を完全に取り除くことで、神経とともに血管も除去され、痛みはなくなるが歯牙を犠牲にすることになる。
(1)及び(2)は、歯髄や歯牙を犠牲にしない治療法であって、大きな欠損がない場合に有効である。しかし、(2)のセメントにはpHが低いものもあり、選択には注意を要する。パラホルム配合包帯剤は、その成分のパラホルムアルデヒドが歯髄を固定する作用を有するが、口腔内での適用として安全とは言い難い。(1)のうち、フッ化ナトリウム溶液及びフッ化ナトリウム配合パスタとしては、通常2%フッ化ナトリウム(中性)が用いられるが、象牙細管を封鎖しないため、知覚過敏抑制の効果はきわめて弱い。水酸化カルシウムは、歯髄保護の目的に用いられると有効であるが、冷水痛など通常の象牙質知覚過敏症に対する効果はきわめて弱い。イオン導入法とは、イオントレーに2%フッ化ナトリウム液(中性)を含浸し、電流を流すことにより積極的にフッ素を取り込ませる方法であり、高額なフッ素イオン導入装置を必要とする。
さらに、(1)及び(2)は、有効な成分を含有する材料を歯面に塗布するだけであることから、効果は一時的であることも多い。
材料の粒子径が象牙細管径よりも小さく、2液の反応が象牙細管内で起こり、微粒子の反応物(析出物)が短時間で生じれば、象牙細管閉鎖が可能となる。さらに、このような微粒子が象牙質表面を一様に被覆し、象牙細管を塞ぐなら、象牙細管への刺激が遮断され、大きな治療効果が期待できる。そのためには、材料の物性に工夫が必要であるが、従来の材料は、その点の改良が十分になされていたとは言い難い。
HY材(商品名:エイチワイシー)は、タンニン、フッ化亜鉛、フッ化ストロンチウムと酸化亜鉛の混合粉末である。タンニンの収斂作用による知覚過敏抑制とフッ化物によるう蝕予防が期待されるが、水と接触すると瞬時に硬化するため操作性に問題がある。また硬化物は口腔内で黒っぽく着色するという難点もある。
フッ化ジアミン銀製剤(商品名:サホライド)は、歯面塗布も容易で長時間歯面に残存し、知覚過敏の治療及び二次う蝕予防効果も優れているが、銀の沈着により塗布部分の歯質がお歯黒のように黒く着色し、審美性に致命的な問題があり、適用が限定されている。
(3)については、例えば、エナメル質に覆われていない歯頸部は、歯ブラシにより、摩耗が起きやすく、摩耗した箇所は、象牙細管が開口し、知覚過敏が生じやすい。このような象牙細管が開口した他のケースでも、その部位の歯牙を切削し、セメントや接着性レジンなどを充填することで、欠損部の修復と同時に、知覚過敏の治療を行うことができる。しかし、知覚過敏症の象牙質の特徴は、う蝕(軟化象牙質)が認められないことから、健全な歯牙の切削を回避する治療法が求められている。
Of these, the glass ionomer cement and adhesive resin (3), which have adhesiveness to the tooth structure, form a strong film and are difficult to remove. Therefore, it is possible to apply periodontal regeneration therapy on the root surface. It is not preferable when there is a property.
(4) has only a temporary effect, and (5) completely removes the pulp, that is, the nerve, thereby removing the blood vessel together with the nerve, eliminating pain but sacrificing the tooth.
(1) and (2) are treatments that do not sacrifice the pulp and teeth, and are effective when there is no large defect. However, some cements (2) have a low pH, so care must be taken when selecting them. The paraform-containing dressing has an action of fixing the dental pulp by its component paraformaldehyde, but is not safe for application in the oral cavity. Among (1), 2% sodium fluoride (neutral) is usually used as the sodium fluoride solution and the sodium fluoride-containing pasta, but since the dentinal tubules are not blocked, the effect of suppressing hypersensitivity is extremely weak. Calcium hydroxide is effective when used for the purpose of protecting the pulp, but its effect on normal dentin hypersensitivity such as cold water pain is extremely weak. The ion introduction method is a method in which an ion tray is impregnated with a 2% sodium fluoride solution (neutral), and fluorine is actively taken in by passing an electric current, which requires an expensive fluorine ion introduction device.
Furthermore, since (1) and (2) only apply a material containing an effective ingredient to the tooth surface, the effect is often temporary.
If the particle diameter of the material is smaller than the diameter of the dentinal tubule and a two-liquid reaction occurs in the dentinal tubule and a reaction product (precipitate) of fine particles is generated in a short time, the dentinal tubule can be closed. Further, if such fine particles uniformly cover the dentin surface and block the dentinal tubules, stimulation to the dentinal tubules is blocked and a great therapeutic effect can be expected. For that purpose, it is necessary to devise the physical properties of the material, but it is difficult to say that the conventional material has been sufficiently improved in that respect.
The HY material (trade name: HYC) is a mixed powder of tannin, zinc fluoride, strontium fluoride and zinc oxide. Although suppression of hypersensitivity by the astringent action of tannin and prevention of dental caries by fluoride are expected, there is a problem in operability because it hardens instantly when it comes into contact with water. In addition, the cured product has a drawback that it is colored blackish in the oral cavity.
The fluorinated diamine silver preparation (trade name: Saphoride) is easy to apply on the tooth surface and remains on the tooth surface for a long time. It is excellent in treating hypersensitivity and preventing secondary caries. The teeth are colored black like a black tooth, and there is a fatal problem in aesthetics, and its application is limited.
With regard to (3), for example, the tooth neck that is not covered with enamel is likely to be worn by the toothbrush, and the dentinal tubule is opened at the worn portion, and hypersensitivity is likely to occur. Even in other cases in which such dentinal tubules are opened, by cutting the tooth at the site and filling it with cement, adhesive resin, or the like, it is possible to treat the hypersensitivity simultaneously with the repair of the defect. However, since the feature of dentin of hypersensitivity is that no caries (soft dentin) is observed, a treatment method that avoids healthy tooth cutting is required.
そのため、象牙質知覚過敏症の治療剤として、現在、最も有力視されているのはシュウ酸塩を用いる方法であり、液体製剤として簡便に用いることができるものとしては、約2%のシュウ酸塩(アルカリ金属塩もしくはアンモニウム塩)水溶液(特許文献2)や、30%シュウ酸カリウム水溶液と3%シュウ酸水素カリウム水溶液の二液セット(特許文献3)がO. P. Laboratories社の象牙質知覚過敏症治療剤(Dentin
Desensitizer)として、さらに1.5〜10.0重量%のシュウ酸カリウム塩二水和物からなり、pH2.0〜4.0の水溶液(特許文献4)が、米国Phoenix Dental社の歯科用象牙質知覚過敏抑制材料(Super Seal)として臨床応用されているが、これらはすべて、再石灰化や二次う蝕予防効果を奏するものではない。
For this reason, the most promising method for treating dentin hypersensitivity is oxalate, and about 2% oxalic acid can be easily used as a liquid preparation. Salt (alkali metal salt or ammonium salt) aqueous solution (Patent Document 2) and two-part set (Patent Document 3) of 30% potassium oxalate aqueous solution and 3% potassium hydrogen oxalate aqueous solution (Patent Document 3) Dentin of OP Laboratories Hypersensitivity treatment (Dentin
An aqueous solution (Patent Document 4) consisting of 1.5 to 10.0% by weight of potassium oxalate dihydrate and having a pH of 2.0 to 4.0 (Patent Document 4) is used as dental dentist of Phoenix Dental, USA. Although it has been clinically applied as a material for suppressing quality of hypersensitivity (Super Seal), they do not all have a remineralization or secondary caries prevention effect.
象牙質知覚過敏症の治療剤は、歯科診療中に歯面に塗布し、数十秒後に水洗いできるなど、短時間で処置が終わることが望ましく、しかも効果として知覚過敏抑制だけでなく、二次ウ蝕予防および治療効果を有していることが望ましい。さらに、審美的に問題なければ、広範囲の症例に適用できる材料として期待できる。
さらに、混合液が象牙細管や初期う蝕病巣内に浸透し、短時間でナノ微粒子の析出物を生成する材料、しかも析出物中に石灰化が期待できるフッ素化合物を含有することも望まれていたが、それらの条件を十分に満たす材料は未だ報告されていない。
また、象牙細管径より小さい粒子径でカルシウム化合物と反応して象牙細管径より大きな凝集体を形成する水性高分子エマルジョン粒子を含有する象牙質知覚過敏症用歯科用組成物も提案されている(特許文献5)が、再石灰化や二次う蝕予防効果を奏するものではない。
窩洞形成後や、歯科補綴物装着後に、温度刺激などにより誘発痛が生じることがある。う蝕が進行している場合などは、歯髄近くまで達する深い窩洞形成がなされるため、治療後にもかかわらず、誘発痛がしばしば見られる。それを避けるため、歯髄に近い窩洞面に、水酸化カルシウムやグラスアイオノマーセメントなどで裏層する。しかし、水酸化カルシウムは、歯髄保護効果は高いが、歯質接着性はなく、脱落しやすいため、水酸化カルシウム層の上に、さらに、他のセメント類で裏層しなくてはならず、煩雑である。グラスアイオノマーセメントには、上記のとおりの問題点がある。
It is desirable that the treatment for dentine hypersensitivity is applied to the tooth surface during dental treatment and can be washed with water after several tens of seconds, and the treatment should be completed in a short time. It is desirable to have a caries prevention and treatment effect. Furthermore, if there is no aesthetic problem, it can be expected as a material applicable to a wide range of cases.
Furthermore, it is also desired that the mixed solution penetrates into the dentinal tubules and the initial carious lesion and generates a nanoparticle precipitate in a short time, and that the precipitate contains a fluorine compound that can be expected to be calcified. However, no material that satisfies these conditions has been reported yet.
Also proposed is a dental composition for dentin hypersensitivity containing aqueous polymer emulsion particles that react with calcium compounds at a particle size smaller than the dentinal tubule size to form an aggregate larger than the dentinal tubule size. (Patent Document 5) does not provide remineralization or secondary caries prevention effect.
Induced pain may occur due to temperature stimulation after cavity formation or dental prosthesis placement. In some cases, such as when the caries is progressing, deep cavities are formed that reach close to the pulp, and evoked pain is often seen despite treatment. To avoid this, the cavity surface near the pulp is covered with calcium hydroxide or glass ionomer cement. However, calcium hydroxide has a high protective effect on the pulp, but does not adhere to the tooth and is easy to fall off. Therefore, it must be covered with another cement on the calcium hydroxide layer. It is complicated. Glass ionomer cement has problems as described above.
前記のとおり、知覚過敏抑制とう蝕予防の両機能を十分に発揮するものは、現在までのところ、唯一フッ化ジアミン銀のみであるが、銀の沈着により塗布部分の歯質が真っ黒に着色し、審美性に致命的な問題があった。
う蝕予防のための酸性フッ素塗布の処置は、防湿のための塗布後の保持時間(約4分間)が長いため、歯科医師、患者双方にとって利便性が悪いという問題点があった。
As described above, only fluorinated diamine silver is the only one that exhibits both the functions of hypersensitivity suppression and caries prevention so far, but the deposited part of the tooth is colored black. There was a fatal problem with aesthetics.
The treatment with acidic fluorine for preventing dental caries has a problem that it is inconvenient for both dentists and patients because the retention time (about 4 minutes) after application for moisture prevention is long.
そこで、本発明が解決しようとする課題は、象牙細管の封鎖性に優れ、歯質の耐酸性向上と再石灰化(う蝕予防及び初期う蝕治療)能力があり、簡便な操作で短時間(10〜20秒)に処置可能で、安全で、審美性にも優れた、う蝕予防及び初期う蝕治療剤、象牙質知覚過敏症予防及び/又は治療剤、並びに窩洞形成歯面の裏層用剤に適した口腔用剤を提供することにある。 Therefore, the problem to be solved by the present invention is excellent in sealing ability of dentinal tubules, and has the ability to improve acid resistance and remineralization (caries prevention and initial caries treatment) of teeth, and can be performed in a short time with simple operation. (10-20 seconds), safe and aesthetically pleasing caries prevention and early caries treatment, dentine hypersensitivity prevention and / or treatment, and cavity on the cavity surface An object of the present invention is to provide an oral preparation suitable for a layer preparation.
本発明者らは、鋭意研究の結果、従来粉末として使用されていたフルオロアルミノシリケートガラスを水中に微粒子の状態で分散させたところ、沈殿を生じることなく安定な分散液が得られること、また、これを別途調製したシュウ酸水溶液と用時に混合して歯牙表面に塗布するという簡便な操作によって、う蝕部又は象牙質露出部に、シュウ酸カルシウム及びフッ化カルシウムを含むシリケート・シュウ酸塩の微粒子析出物を形成させること、当該混合液のpHを調整することで歯面上への微粒子析出が確実なものになること、これらのことで再石灰化ないし、象牙質細管の閉塞が可能となることを見出し、本発明を完成した。
このとき、歯面を処置する際のpHは特に重要であり、処置の初期(混合10秒後)では、歯質脱灰によるCaイオンを利用するため、作用液、すなわち、フルオロアルミノシリケートガラス微粒子を分散させた液(A)と、シュウ酸化合物の酸性水溶液(B)を用時混合した液は、歯質脱灰が可能なpH0.5〜4に、処置の終期においては、シュウ酸カルシウム及びフッ化カルシウムの析出するpH2〜5付近に徐々に推移するよう制御されている。
As a result of diligent research, the present inventors have dispersed fluoroaluminosilicate glass, which has been used as a conventional powder, in water in the form of fine particles, whereby a stable dispersion can be obtained without causing precipitation. This is mixed with a separately prepared oxalic acid aqueous solution at the time of use and applied to the tooth surface, and the caries or dentin exposed part is composed of silicate oxalate containing calcium oxalate and calcium fluoride. By forming fine particle precipitates, adjusting the pH of the mixture to ensure fine particle precipitation on the tooth surface, these enable remineralization or occlusion of dentinal tubules The present invention was completed.
At this time, pH at the time of treating the tooth surface is particularly important, and in the initial stage of treatment (after 10 seconds of mixing), Ca ions due to tooth decalcification are used, so the working fluid, that is, fluoroaluminosilicate glass fine particles The solution obtained by mixing the solution (A) in which the oxalic acid compound is dispersed with the acidic aqueous solution (B) of the oxalic acid compound has a pH of 0.5 to 4 capable of decalcification of the tooth, and calcium oxalate at the end of the treatment. And it controls so that it may gradually change to pH 2-5 vicinity where calcium fluoride precipitates.
本発明は、フルオロアルミノシリケートガラス微粒子を分散させた液(A)と、酸性のシュウ酸化合物水溶液(B)からなり、とくに、う蝕予防及び初期う蝕治療剤、象牙質知覚過敏症予防及び/又は治療剤、並びに窩洞形成歯面の裏層用剤に適した口腔用剤を提供する。
フルオロアルミノシリケートガラス微粒子は、構成元素として、Si:5〜25質量%、Al:5〜35質量%、F:1〜25質量%、更にNa、K、Mgから選ばれる少なくとも1種を合計1〜10質量%含み、さらに、その他の構成元素として、Ca、Sr、Baなどのアルカリ土類金属、あるいはZr、La、Y、Tiなどの金属元素等を含んでいてもよい。
フルオロアルミノシリケートガラス微粒子は、体積基準粒度分布において小径側から測定した、50%位置の粒子径(D50)が1μm以下のもの、90%位置の粒子径(D90)が2.5μm以下のものであり、好ましくは、D50が0.5μmのもの、D90が2μm以下のものである。
フルオロアルミノシリケートガラス微粒子を分散させた液(A)のpHは6〜12であり、シュウ酸化合物の酸性水溶液(B)のpHが0.5〜3であり、(A)及び(B)の混合液の混合10秒後のpHが0.5〜4であることが好ましい。
シュウ酸化合物としては、例えば、シュウ酸、シュウ酸水素ナトリウム、シュウ酸二ナトリウム、シュウ酸水素カリウム、シュウ酸二カリウム、シュウ酸水素リチウム、シュウ酸二リチウム、シュウ酸水素アンモニウム、シュウ酸二アンモニウムなどが挙げられる。なかでもシュウ酸、およびシュウ酸水素カリウムが好ましい。
The present invention comprises a liquid (A) in which fluoroaluminosilicate glass fine particles are dispersed and an acidic oxalic acid compound aqueous solution (B), and in particular, caries prevention and early caries treatment agent, dentin hypersensitivity prevention and The present invention provides an oral preparation suitable for a therapeutic agent and an agent for lining a cavity forming tooth surface.
The fluoroaluminosilicate glass fine particles contain, as constituent elements, a total of 1 at least one selected from Si: 5 to 25% by mass, Al: 5 to 35% by mass, F: 1 to 25% by mass, and Na, K, and Mg. In addition, it may contain 10% by mass or more, and other constituent elements may include alkaline earth metals such as Ca, Sr, and Ba, or metal elements such as Zr, La, Y, and Ti.
The fluoroaluminosilicate glass fine particles are those having a 50% particle size (D50) of 1 μm or less and a 90% particle size (D90) of 2.5 μm or less, as measured from the small diameter side in the volume-based particle size distribution. Preferably, D50 is 0.5 μm, and D90 is 2 μm or less.
The pH of the liquid (A) in which the fluoroaluminosilicate glass fine particles are dispersed is 6 to 12, the pH of the acidic aqueous solution (B) of the oxalic acid compound is 0.5 to 3, and (A) and (B) The pH after 10 seconds of mixing of the mixed solution is preferably 0.5-4.
Examples of oxalic acid compounds include oxalic acid, sodium hydrogen oxalate, disodium oxalate, potassium hydrogen oxalate, dipotassium oxalate, lithium hydrogen oxalate, dilithium oxalate, ammonium hydrogen oxalate, and diammonium oxalate. Etc. Of these, oxalic acid and potassium hydrogen oxalate are preferred.
本発明において再石灰化の原理は、以下のとおりと推定される。
すなわち、シュウ酸による歯質脱灰で溶出したCaイオンは、歯牙表面にシュウ酸カルシウムを析出する。同時にこれらのCaイオンは、フルオロアルミノシリケートガラス微粒子から溶出したフッ素イオンとも反応してフッ化カルシウムを析出する。フッ素イオンを溶出した後のフルオロアルミノシリケートガラス微粒子は、シュウ酸との反応によりシリケート・シュウ酸塩を析出する。これらの析出物は、発明者の電子顕微鏡観察によると歯牙表面に微粒子(約0.01〜1.0μm)の混合層を形成するが、歯牙表面に適用する際の液のpHを適切に制御することにより、当該形成した析出物は強固に歯牙表面に付着する。すなわち、歯牙表面の処置の初期(混合10秒後)においては、歯質を脱灰させるために低いpH、0.5〜4とし、処置の終期においては、シュウ酸カルシウム及びフッ化カルシウムを析出させるためにpHが2〜5付近となるよう、処置の初期から終期にかけて徐々にpHを推移させている。このようにして形成した微粒子析出物により脱灰歯質を再石灰化し、また、微粒子析出物が露出した象牙細管中に侵入して封鎖することによって、知覚過敏症状を治癒させることが可能となる。
In the present invention, the principle of remineralization is estimated as follows.
That is, Ca ions eluted by tooth decalcification with oxalic acid precipitate calcium oxalate on the tooth surface. At the same time, these Ca ions react with fluorine ions eluted from the fluoroaluminosilicate glass fine particles to precipitate calcium fluoride. The fluoroaluminosilicate glass fine particles after elution of fluorine ions precipitate silicate / oxalate by reaction with oxalic acid. According to the inventor's electron microscope observation, these precipitates form a mixed layer of fine particles (about 0.01 to 1.0 μm) on the tooth surface, but appropriately control the pH of the liquid when applied to the tooth surface. By doing so, the formed precipitate firmly adheres to the tooth surface. That is, at the initial stage of the tooth surface treatment (after 10 seconds of mixing), a low pH is set to 0.5 to 4 to decalcify the tooth substance, and calcium oxalate and calcium fluoride are precipitated at the end of the treatment. Therefore, the pH is gradually changed from the initial stage to the final stage of treatment so that the pH is around 2 to 5. By remineralizing the demineralized tooth by the fine particle deposit formed in this way, and entering and sealing into the exposed dentinal tubule, it becomes possible to cure the hypersensitivity symptom. .
従来、歯科製剤において、フルオロアルミノシリケートガラスは粉末の形態で使用されてきたが、使用時に、その都度液剤と混合するなど、処置に手間がかかるうえ、粒子サイズが大きく、舌触りや審美性に劣るものであったところ、これを粒子径(D90)が2μm以下の粒子サイズに粉砕して、水中に分散させた分散液は、非常に安定に保存可能であり、従来の、固(粉末)/液混合塗布に代わる、液/液混合塗布が可能となった。液液混合のための混合操作が容易であり、ガラス粉末が微粒子として均一に分散するため、塗布時の反応は速く、保持時間を要することなく、短時間で析出が完了する。
すなわち、混合溶液塗布という簡便な操作によって歯牙表面上に生成した微粒子の析出物(反応生成物であるフッ化カルシウム,シュウ酸カルシウム,シリケート・シュウ酸塩)が、う蝕部を保護するとともに、再石灰化を惹起する。また、象牙細管内に侵入し、細管内で微粒子の反応生成物(フッ化カルシウム,シュウ酸カルシウム,シリケート・シュウ酸塩)を析出させて露出した象牙細管を封鎖するため、象牙細管封鎖効果が大きく、即効性であるとともに持続性に優れる象牙質知覚過敏症治療剤とすることができる。さらに、この析出物はブラッシング等でも簡単に取れてしまうことはない。よって、本発明は、短時間の処理で多くのフッ化物を効率的に歯に取り込ませることを可能にし、かつ、従来のセメント材料による治療が困難であったミクロレベルの象牙細管部やう蝕脱灰面など、所望の部位に微粒子の析出物を析出させることにより、う蝕予防及び初期う蝕治療剤、象牙質知覚過敏症予防及び/又は治療剤、並びに窩洞形成歯面の裏層用剤として使用することができる。
Conventionally, fluoroaluminosilicate glass has been used in the form of powder in dental preparations. However, it takes time and effort to mix it with a liquid agent each time it is used, and the particle size is large, and the touch and aesthetics are inferior. As a result, a dispersion obtained by pulverizing this to a particle size having a particle size (D90) of 2 μm or less and dispersing it in water can be stored very stably, and the conventional solid (powder) / Liquid / liquid mixed coating can be used instead of liquid mixed coating. Since the mixing operation for liquid-liquid mixing is easy and the glass powder is uniformly dispersed as fine particles, the reaction at the time of application is fast, and the deposition is completed in a short time without requiring a holding time.
That is, precipitates of fine particles (reaction product calcium fluoride, calcium oxalate, silicate, oxalate) generated on the tooth surface by a simple operation of application of the mixed solution protect the carious portion, Causes remineralization. In addition, it penetrates into the dentinal tubule and deposits reaction products (calcium fluoride, calcium oxalate, silicate, oxalate) in the tubule to seal the exposed dentinal tubule. It can be used as a therapeutic agent for dentine hypersensitivity that is large and has immediate effect and excellent durability. Further, the precipitate is not easily removed by brushing or the like. Therefore, the present invention makes it possible to efficiently incorporate a large amount of fluoride into a tooth with a short treatment, and at the same time, it is difficult to treat with a conventional cement material. Caries prevention and initial caries treatment agent, dentin hypersensitivity prevention and / or treatment agent, and agent for backing layer of cavity forming tooth surface by depositing fine particle deposit on desired site such as ash surface Can be used as
虫歯を予防する方法として、(1)歯に耐酸性を与えることにより、歯を構成する成分を、むし歯の直接的原因になる酸に溶けにくくすること、(2)歯への再石灰化作用を促進することにより、溶け出した歯の成分をより多く補うことが挙げられる。
本発明に係る混合液を歯に適用することにより、歯の表面に微粒子のフッ化カルシウム、シュウ酸カルシウム及びシリケート・シュウ酸塩を形成させるために、フッ素イオン及びCaイオンを供給することが可能となる。また、フッ化カルシウムとシュウ酸カルシウムを同時にシリケート・シュウ酸塩の層内に形成させることにより、脱灰(酸性)環境下でもフッ化カルシウムが溶出することなく、歯質内への取り込み(フルオロアパタイト形成)により歯の耐酸性を向上させ、再石灰化を促進することができる。本発明の特筆すべき長所は、歯面塗布の処置に要する時間の短縮である。本発明の処置時間は10〜30秒間と従来品と比較して10分の1以下の短時間であり、適用後は水洗することができるので、酸性フッ素塗布のような不快な酸味・誤飲の恐れがなく、塗布時の4分間にわたる保持時間や、その後の数十分以上にわたる含嗽や飲食の制限が不要であるなど、歯科医師の手間や患者(特に子供)への負担がはるかに低減され、口腔用剤としての使用感が大幅に改善できる。
したがって、本発明に係る口腔用剤は、象牙質知覚過敏抑制効果と同時に、高いう蝕予防と初期う蝕治療効果をも得ることを可能にした。
As a method for preventing dental caries, (1) by imparting acid resistance to teeth, the components constituting the teeth are made difficult to dissolve in acids that directly cause cavity, and (2) remineralization action on teeth. By promoting the above, it is possible to supplement more of the dissolved tooth components.
By applying the liquid mixture according to the present invention to teeth, it is possible to supply fluorine ions and Ca ions to form fine calcium fluoride, calcium oxalate and silicate oxalate on the tooth surface. It becomes. In addition, by simultaneously forming calcium fluoride and calcium oxalate in the silicate / oxalate layer, calcium fluoride does not elute even in a decalcified (acidic) environment and is taken into the tooth (fluoro Apatite formation) can improve the acid resistance of teeth and promote remineralization. A notable advantage of the present invention is a reduction in the time required for tooth surface application treatment. The treatment time of the present invention is 10 to 30 seconds, which is a short time of 1/10 or less compared with the conventional product, and can be washed with water after application. The burden on dentists and patients (especially children) is greatly reduced, as there is no need for the retention time for 4 minutes at the time of application, and the limitation of gargle and eating and drinking over several tens of minutes after application. Therefore, the usability as an oral preparation can be greatly improved.
Therefore, the oral preparation according to the present invention makes it possible to obtain a high caries prevention and initial caries treatment effect as well as a dentine hypersensitivity suppressing effect.
また、う蝕が進んだ場合に、軟化牙質を除き、窩洞形成して、充填または補綴物で修復を行うが、その際、本発明の混合液を窩洞の壁に塗布することで、上記と同様にさらなるう蝕の進行を抑制でき、う蝕予防効果を有する。切削時の物理的刺激から一時的に知覚過敏症となることがある。また、切削により歯髄を覆う健全な象牙質が薄くなった場合にも、誘発痛知覚過敏症がおきる。本発明品を使用することにより、切削後の象牙質知覚過敏の予防/又は治療効果を有する、窩洞形成歯面の裏層用剤としても有用である。
そして、本発明の材料は、歯科診療中に歯面に塗布し、数十秒後に水洗いできるなど、短時間で処置が終えることができることは、裏層用剤として、非常に有用である。裏層が完了した後、すぐに充填処置を行うことができ、また、裏層の直後に、歯科補綴物のための印象採得が可能になる。しかも効果が知覚過敏抑制だけではなく、二次う蝕予防及び治療効果を有する。さらに審美性にも優れ、広範囲の症例に適用できる材料として期待できる口腔用剤である。即ち、一般的な象牙質知覚過敏症、初期ウ蝕の予防及び/又は治療に優れた効果を示すだけでなく、広く、歯周基本治療後に発症する知覚過敏の抑制と二次う蝕予防効果(歯周病分野)、インレーやクラウン形成面の知覚過敏の抑制と二次う蝕予防効果(歯科補綴分野)、根面う蝕の治療(歯科保存分野)、矯正用ブラケット周辺に生じる白斑歯(エナメル質初期う蝕)を削らずに治療(歯科矯正分野)することなど、広範囲の症例への応用が可能となった。
Further, when the caries progresses, the softened dentin is removed, the cavity is formed, and repair is performed with a filling or a prosthesis. At that time, the mixed liquid of the present invention is applied to the cavity wall, thereby It can suppress the progress of further caries as well as prevent caries. There may be temporary hypersensitivity due to physical stimulation during cutting. Induced pain hypersensitivity also occurs when healthy dentin covering the pulp becomes thin by cutting. By using the product of the present invention, it is also useful as an agent for the back layer of the cavity forming tooth surface, which has the effect of preventing / treating dentine hypersensitivity after cutting.
The material of the present invention is very useful as an agent for the back layer, such that it can be applied in a short period of time, such as being applied to the tooth surface during dental practice and being washed with water after several tens of seconds. The filling procedure can be performed immediately after the back layer is completed, and an impression can be taken for the dental prosthesis immediately after the back layer. Moreover, the effect is not only suppressing hypersensitivity but also preventing and treating secondary caries. Furthermore, it is an oral preparation that is excellent in aesthetics and can be expected as a material applicable to a wide range of cases. In other words, it exhibits not only an excellent effect in the prevention and / or treatment of general dentin hypersensitivity and initial caries, but also a wide range of suppression of hypersensitivity that develops after basic periodontal treatment and secondary caries prevention effect. (Periodontal disease field), suppression of hypersensitivity on the inlay and crown forming surface and secondary caries prevention effect (dental prosthesis field), root caries treatment (dental preservation field), vitiligo teeth around orthodontic brackets It has become possible to apply to a wide range of cases, such as treatment (orthodontic field) without removing (enamel initial caries).
本発明において、フルオロアルミノシリケートガラスは、構成元素として、Si:5〜25質量%、Al:5〜35質量%、F:1〜25質量%、更にNa、K、Mgから選ばれる少なくとも1種を合計1〜10質量%含み、さらに、その他の構成元素として、Ca、Sr、Baなどのアルカリ土類金属、あるいはZr、La、Y、Tiなどの金属元素等を含んでいてもよい。
フルオロアルミノシリケートガラスは、充填、シーラント及び合着用途の化学硬化型及び光硬化型のグラスアイオノマーセメント製品(例えば、フジI(ジーシー社製)、ハイボンドグラスアイオノマーCX(松風社製)、トクヤマイオノタイトF(トクヤマデンタル社製)等)に用いられているガラスや、特開平11−180815号公報、特開2002−60342号公報に示される組成のガラスを使用してもよく、また、各構成イオンの供給源としての酸化珪素、酸化アルミニウム、リン酸カルシウム、リン酸アルミニウム、フッ化ナトリウム、モノフルオロリン酸ナトリウム、フッ化錫などの化合物を各適量混合し、融解後急冷して得られるガラスを用いてもよい。
In the present invention, the fluoroaluminosilicate glass is composed of at least one selected from Si: 5 to 25% by mass, Al: 5 to 35% by mass, F: 1 to 25% by mass, and Na, K, and Mg as constituent elements. In addition, 1 to 10 mass% in total may be included, and as other constituent elements, alkaline earth metals such as Ca, Sr, and Ba, or metal elements such as Zr, La, Y, and Ti may be included.
Fluoroaluminosilicate glass is a chemical and light curable glass ionomer cement product (for example, Fuji I (GC Corporation), High Bond Glass Ionomer CX (Matsukaze Corporation), Tokuyama Iono for filling, sealant and bonding applications Glass used in Tight F (manufactured by Tokuyama Dental Co., Ltd.) and the like, and glass having a composition shown in JP-A Nos. 11-180815 and 2002-60342 may be used. Use glass obtained by mixing appropriate amounts of compounds such as silicon oxide, aluminum oxide, calcium phosphate, aluminum phosphate, sodium fluoride, sodium monofluorophosphate, tin fluoride, etc. May be.
本発明において、フルオロアルミノシリケートガラスは、ボールミル、ジェットミル等、通常の粉砕装置によって、体積基準粒度分布における平均粒子径(D50)2〜5μm程度に粉砕し、これを、さらに、湿式微粉砕機・分散機(ビーズミル)等の粉砕装置によって、微粉砕し、体積基準粒度分布において小径側から測定した90%の粒子径(D90)が2μm以下のものを得る。当該粒子径が2.5μmよりも大きくなると、分散性が低下し、保存時に凝集や沈殿が生じやすくなるばかりでなく、使用時も適用歯面に大きな粒子が付着してしまい、確実な象牙細管閉塞効果や再石灰化、二次う蝕予防効果が得られなくなる。 In the present invention, the fluoroaluminosilicate glass is pulverized to a mean particle diameter (D50) of about 2 to 5 μm in a volume-based particle size distribution by a normal pulverizer such as a ball mill or a jet mill, and this is further wet-pulverized. Finely pulverize by a pulverizer such as a disperser (bead mill) to obtain a 90% particle diameter (D90) of 2 μm or less measured from the small diameter side in the volume-based particle size distribution. When the particle size is larger than 2.5 μm, the dispersibility is lowered, and not only aggregation and precipitation are likely to occur during storage, but also large particles adhere to the application tooth surface during use, so that reliable dentinal tubules The obstruction effect, remineralization, and secondary caries prevention effect cannot be obtained.
フルオロアルミノシリケートガラスの粉末を、水などの媒体溶液中に、0.5質量%〜45質量%、好ましくは、1質量%〜30質量%、より好ましくは5質量%〜20質量%の割合加え、ビーズミルなど微粉砕可能な粉砕装置で粉砕処理することによって、フルオロアルミノシリケートガラス微粒子の安定な分散液(以下、「A液」という。)が得られる。フルオロアルミノシリケートガラス微粒子が0.5質量%より少ないと、フルオロアルミノシリケートガラス微粒子の濃度が低くなりすぎて、シュウ酸化合物の酸性水溶液(以下、「B液」という。)と混合・塗布した時に、フッ化カルシウム等の析出量が不十分となり、45質量%より多いと、A液の粘性が高く使用が困難となる。
媒体溶液は、水が好ましいが、A液の安定性の向上の目的で、歯面適用時の水洗に影響されないようなプロピレングリコール、ポリエチレングリコールなどの水可溶性溶媒を加えてもよい。
Fluoroaluminosilicate glass powder is added in a medium solution such as water at a ratio of 0.5% to 45% by weight, preferably 1% to 30% by weight, more preferably 5% to 20% by weight. A stable dispersion of fluoroaluminosilicate glass fine particles (hereinafter referred to as “liquid A”) can be obtained by pulverizing with a pulverizing apparatus such as a bead mill. When the amount of fluoroaluminosilicate glass particles is less than 0.5% by mass, the concentration of the fluoroaluminosilicate glass particles becomes too low, and when mixed and applied with an acidic aqueous solution of an oxalic acid compound (hereinafter referred to as “B solution”). If the amount of precipitation of calcium fluoride or the like is insufficient and the amount is more than 45% by mass, the viscosity of the liquid A is so high that it is difficult to use.
The medium solution is preferably water, but for the purpose of improving the stability of the solution A, a water-soluble solvent such as propylene glycol or polyethylene glycol which is not affected by washing with water when the tooth surface is applied may be added.
A液は、ガラスの構成元素によりpH6〜12、好ましくは6.5〜10.5に調整するが、分散液調製時に、シュウ酸水素塩、硫酸水素塩等のpH調整剤を加えることによっても調整することができる。フルオロアルミノシリケートガラス微粒子の分散液には、さらに、分散安定性を阻害しない範囲で、所望により、ヘキサメタリン酸塩、ポリリン酸塩等の分散剤、フッ化ナトリウムあるいはフッ化第一スズ等のフッ素イオン供給物質等を添加してもよい。 Liquid A is adjusted to pH 6 to 12, preferably 6.5 to 10.5, depending on the constituent elements of the glass, but it can also be adjusted by adding a pH adjuster such as hydrogen oxalate or hydrogen sulfate during the preparation of the dispersion. Can be adjusted. The dispersion of the fluoroaluminosilicate glass fine particles may further include a dispersant such as hexametaphosphate and polyphosphate, and a fluorine ion such as sodium fluoride or stannous fluoride, as long as the dispersion stability is not impaired. Feed materials and the like may be added.
本発明において、B液は、シュウ酸化合物を水に溶解して酸性水溶液を調製するが、水に、酸性のシュウ酸化合物の1種ないし複数種加えても、中性のシュウ酸化合物に他の酸を加えてもよく、シュウ酸イオンの合計は0.5質量%〜15質量%、好ましくは1〜10質量%含有する酸性水溶液である。 In the present invention, the solution B is prepared by dissolving an oxalic acid compound in water to prepare an acidic aqueous solution. However, even if one or more acidic oxalic acid compounds are added to water, An acid aqueous solution containing 0.5 mass% to 15 mass%, preferably 1 to 10 mass%, of the oxalate ion may be added.
本発明においては、pH6〜12のA液とpH0.5〜3のB液を混合したとき、混合液の混合10秒後のpHが0.5〜4であることが望ましい。この範囲では、歯質に含まれるカルシウムイオンが短時間で効率的にシュウ酸カルシウム、フッ化カルシウム、シリケート・シュウ酸塩として析出し、歯牙表面に定着させることができる。その結果、歯へのフッ素取り込み量が増加し、フッ化物はフッ化カルシウムとして歯に吸着される。混合液のpHが0.5より低くなると、歯質を過剰脱灰する危険性があり、フッ化カルシウムが溶解しフッ素取り込み量が低下する。pHが4より高くなると、シュウ酸とガラス及び歯質との反応が緩慢になり、析出物を得るのに長時間を必要とするので好ましくない。 In the present invention, when the solution A having a pH of 6 to 12 and the solution B having a pH of 0.5 to 3 are mixed, the pH after mixing of the mixed solution is preferably 0.5 to 4. Within this range, calcium ions contained in the tooth can be efficiently precipitated in a short time as calcium oxalate, calcium fluoride, silicate oxalate, and fixed on the tooth surface. As a result, the amount of fluorine taken into the tooth increases, and fluoride is adsorbed on the tooth as calcium fluoride. When the pH of the mixed solution is lower than 0.5, there is a risk of excessive decalcification of the tooth, and calcium fluoride dissolves and the fluorine uptake amount decreases. A pH higher than 4 is not preferable because the reaction between oxalic acid and glass and tooth becomes slow, and a long time is required to obtain a precipitate.
本発明におけるA液及びB液は、用時に各適量をとって混合し、直ちに、処置部(う蝕部、象牙質知覚過敏部)又は窩洞形成歯面に、10秒ないし30秒間塗布保持することによって、フッ化カルシウム及びシュウ酸カルシウムを含むシリケート・シュウ酸塩の微粒子析出物からなる被膜が形成される。また、歯面への塗布は、A液とB液とを、別々に歯面に塗布し、歯面上で混合することもできる。
商業用の製剤としては、本発明のA液及びB液は、それぞれ別々の包装体としてもよく、また、A液とB液を組み合わせたキットとしての包装体としてもよい。
In the present invention, liquid A and liquid B are mixed in appropriate amounts at the time of use, and immediately applied and held on the treatment site (carious site, dentin hypersensitive region) or cavity forming tooth surface for 10 to 30 seconds. As a result, a film made of fine deposits of silicate and oxalate containing calcium fluoride and calcium oxalate is formed. Moreover, the application to a tooth surface can also apply | coat A liquid and B liquid to a tooth surface separately, and can also mix on a tooth surface.
As a commercial preparation, the liquid A and the liquid B of the present invention may each be a separate package, or may be a package as a kit in which the liquid A and the liquid B are combined.
以下に、実施例及び比較例を示して本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。以下の実施例において、「%」は、「質量%」を示す。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following examples, “%” indicates “% by mass”.
[実施例1] (1)フルオロアルミノシリケートガラス微粒子の分散液(A1液)の作製
SiO2:25.8g,Al2O3:20.9g,CaF2:17.8g,La2O3:16.4g,Ca2(H2PO4)2:9.43g,Na2CO3:15.9g,CaO:0.50gを乳鉢にて充分に混合撹拌し、得られたバッチを磁器るつぼに入れ、電気炉にて約7℃/min.の昇温速度で1100℃まで昇温した。5時間係留した後、融液を水中に流して急冷しガラスを得た。得られたガラスをボールミル(湿式)で粉砕し、体積基準粒度分布における平均粒子径(D50)3.2μmのフルオロアルミノシリケートガラス粉末(a1)を得た。このフルオロアルミノシリケートガラス粉末(a1)を、15%の濃度で精製水を媒体として湿式微粉砕機・分散機(ビーズミル:アシザワ・ファインテック社製ナノゲッターDMR110)を用い、周速10m/s(使用ビーズ:ZrO2 0.2mm)で90分間処理、体積基準粒度分布における平均粒子径(D50)0.38μm、同粒度分布において小径側から測定した90%位置の粒子径(D90)0.77μmのフルオロアルミノシリケートガラス微粒子の分散液(A1液)を得た。該ガラス分散液(A1液)のpHは8.6であった。
(2)シュウ酸水溶液(B1液)の調製
シュウ酸を精製水に溶解して、シュウ酸6.9%の水溶液(B1液)(pH:0.88)を得た。
[Example 1] (1) Preparation of dispersion of fluoroaluminosilicate glass fine particles (A 1 liquid)
SiO 2 : 25.8 g, Al 2 O 3 : 20.9 g, CaF 2 : 17.8 g, La 2 O 3 : 16.4 g, Ca 2 (H 2 PO 4 ) 2 : 9.43 g, Na 2 CO 3 : 15.9 g, CaO: 0.50 g was sufficiently mixed and stirred in a mortar, and the resulting batch was placed in a porcelain crucible and heated to 1100 ° C. at a rate of about 7 ° C./min. In an electric furnace. did. After mooring for 5 hours, the melt was poured into water and quenched to obtain glass. The obtained glass was pulverized with a ball mill (wet) to obtain fluoroaluminosilicate glass powder (a 1 ) having an average particle size (D50) of 3.2 μm in a volume-based particle size distribution. The fluoroaluminosilicate glass powder (a 1 ) was purified at a concentration of 15% using a wet pulverizer / disperser (bead mill: Nanogetter DMR110 manufactured by Ashizawa Finetech) at a peripheral speed of 10 m / s. (Used beads: ZrO 2 0.2 mm) for 90 minutes, average particle size (D50) in volume-based particle size distribution (D50) 0.38 μm, particle size at 90% position measured from the smaller diameter side (D90) in the same particle size distribution. dispersion of fluoroaluminosilicate glass particles of 77μm to (a 1 solution) was obtained. The pH of the glass dispersion (A 1 solution) was 8.6.
(2) Preparation of oxalic acid aqueous solution (B 1 solution) Oxalic acid was dissolved in purified water to obtain an aqueous solution (B 1 solution) of 6.9% oxalic acid (pH: 0.88).
[実施例2] (1)フルオロアルミノシリケートガラス微粒子の分散液(A2液)の作製
CaF2:51.5g, CaO:16.3g,SiO2:12.1g,Al2(HPO4)3:8.26g,Al2O3:7.23g,Na2AlF6:4.52gを乳鉢にて充分に混合撹拌し、得られたバッチを磁器るつぼに入れ、電気炉にて約5℃/min.の昇温速度で1100℃まで昇温した。5時間係留した後、融液を水中に流して急冷しガラスを得た。得られたガラスを乾式ジェットミルで粉砕し、体積基準粒度分布における平均粒子径(D50)2.4μmのフルオロアルミノシリケートガラス粉末(a2)を得た。このフルオロアルミノシリケートガラス粉末(a2)を、13%の濃度で実施例1と同様にビーズミルを用い、周速10〜15m/s(使用ビーズ:ZrO2 0.3mm)で90分間処理、体積基準粒度分布における平均粒子径(D50)が0.42μm、同粒度分布において小径側から測定した90%位置の粒子径(D90)が1.27μmのフルオロアルミノシリケートガラス微粒子の分散液(A2液)を得た。該ガラス分散液(A2液)のpHは10.2であった。
(2)シュウ酸水溶液(B2液)の調製
シュウ酸8g及び硝酸カリウム1gを精製水に溶解して100gとした水溶液(B2液)(pH:0.56)を得た。
[Example 2] (1) Preparation of dispersion (A 2 liquid) of fluoroaluminosilicate glass fine particles
CaF 2 : 51.5 g, CaO: 16.3 g, SiO 2 : 12.1 g, Al 2 (HPO 4 ) 3 : 8.26 g, Al 2 O 3 : 7.23 g, Na 2 AlF 6 : 4.52 g The mixture was sufficiently mixed and stirred in a mortar, and the resulting batch was placed in a porcelain crucible and heated to 1100 ° C. at a temperature increase rate of about 5 ° C./min. In an electric furnace. After mooring for 5 hours, the melt was poured into water and quenched to obtain glass. The obtained glass was pulverized with a dry jet mill to obtain a fluoroaluminosilicate glass powder (a 2 ) having an average particle size (D50) of 2.4 μm in a volume-based particle size distribution. This fluoroaluminosilicate glass powder (a 2 ) was treated for 90 minutes at a peripheral speed of 10-15 m / s (beads used: ZrO 2 0.3 mm) at a concentration of 13% using a bead mill as in Example 1. Volume Dispersion liquid of fluoroaluminosilicate glass fine particles having an average particle diameter (D50) of 0.42 μm in the standard particle size distribution and a 90% particle diameter (D90) of 1.27 μm measured from the smaller diameter side in the same particle size distribution (A 2 liquid) ) The pH of the glass dispersion (A 2 solution) was 10.2.
(2) Preparation of oxalic acid aqueous solution (B 2 solution) 8 g of oxalic acid and 1 g of potassium nitrate were dissolved in purified water to obtain 100 g of an aqueous solution (B 2 solution) (pH: 0.56).
[実施例3] (1)フルオロアルミノシリケートガラス微粒子の分散液(A3液)の作製
SiO2:40.3g,Al2O3:33.8g,Na2CO3:15.5g,Al2(HPO4)3:7.77g, Na2AlF6:5.31g,ZrO2:2.82g,La2O3:0.24g,Y2O3:0.79gを用いて、実施例1と同様の手順でガラスを調製し、体積基準粒度分布における平均粒子径(D50)4.8μmのフルオロアルミノシリケートガラス粉末(a3)を得た。このフルオロアルミノシリケートガラス粉末(a3)を、10%の濃度で実施例1と同様にビーズミルを用い、体積基準粒度分布における平均粒子径(D50)が0.33μm、同粒度分布において小径側から測定した90%位置の粒子径(D90)が1.44μmのフルオロアルミノシリケートガラス微粒子の分散液(A3液)を得た。該ガラス分散液(A3)のpHは7.3であった。
(2)シュウ酸水溶液(B3液)の調製
シュウ酸水素カリウム1.76gを精製水に溶かし、70%硝酸1.24gを加えた後に精製水を加えて100gとした水溶液(B3液)(pH:0.89)を得た。
Preparation of Example 3 (1) Dispersion of fluoroaluminosilicate glass particles (A 3 solution)
SiO 2 : 40.3 g, Al 2 O 3 : 33.8 g, Na 2 CO 3 : 15.5 g, Al 2 (HPO 4 ) 3 : 7.77 g, Na 2 AlF 6 : 5.31 g, ZrO 2 : 2 .82 g, La 2 O 3 : 0.24 g, Y 2 O 3 : 0.79 g were used to prepare a glass in the same procedure as in Example 1, and the average particle size (D50) in the volume-based particle size distribution. An 8 μm fluoroaluminosilicate glass powder (a 3 ) was obtained. This fluoroaluminosilicate glass powder (a 3 ) was bead-milled at a concentration of 10% in the same manner as in Example 1, the average particle size (D50) in the volume-based particle size distribution was 0.33 μm, and from the smaller diameter side in the same particle size distribution. particle size of the measured 90% position (D90) was obtained dispersion of fluoroaluminosilicate glass particles of 1.44μm to (a 3 solution). The pH of the glass dispersion (A 3 ) was 7.3.
(2) Preparation of aqueous oxalic acid solution (B 3 solution) 1.76 g of potassium hydrogen oxalate was dissolved in purified water, 1.24 g of 70% nitric acid was added, and then purified water was added to make 100 g (B 3 solution). (PH: 0.89) was obtained.
[実施例4] (1)フルオロアルミノシリケートガラス微粒子の分散液(A4液)の作製
SiO2:29.1g,CaF2:20.5g,Al2O3:13.3g,CaO:12.1g,MgO:10.2g,Na2AlF6:9.35g,KHCO3:6.82g, Ca2(H2PO4)2:2.38gを用いて、実施例2と同様の手順でガラスを調製し、体積基準粒度分布における平均粒子径(D50)2.2μmのフルオロアルミノシリケートガラス粉末(a4)を得た。このフルオロアルミノシリケートガラス粉末(a4)を、18%の濃度で実施例1と同様にビーズミルを用い、体積基準粒度分布における平均粒子径(D50)が0.31μm、同粒度分布において小径側から測定した90%位置の粒子径(D90)が1.11μmのフルオロアルミノシリケートガラス微粒子の分散液(A4液)を得た。該ガラス分散液(A4液)のpHは8.0であった。
(2)シュウ酸水溶液(B4液)の調製
シュウ酸を精製水に溶解して、シュウ酸6.9%の水溶液(B4液)(pH:0.88)を得た。
Preparation of Example 4 (1) Dispersion of fluoroaluminosilicate glass particles (A 4 solution)
SiO 2: 29.1g, CaF 2: 20.5g, Al 2 O 3: 13.3g, CaO: 12.1g, MgO: 10.2g,
(2) Preparation of oxalic acid aqueous solution (B 4 solution) Oxalic acid was dissolved in purified water to obtain an aqueous solution (B 4 solution) of 6.9% oxalic acid (pH: 0.88).
[実施例5] (1)フルオロアルミノシリケートガラス微粒子の分散液 (A5液)の作製
SiO2:22.6g,ZrO2:18.4g,Al2O3:17.3g,La2O3:15.7g,SrCO3:13.8g,Na2HPO4:3.48g,CaO:3.24g,K2HPO4:3.16g,Al2(HPO4)3:2.89g,CaF2:2.37g,Y2O3:1.58gを用いて、実施例1と同様の手順でガラスを調製し、体積基準粒度分布における平均粒子径(D50)6.2μmのフルオロアルミノシリケートガラス粉末(a5)を得た。このフルオロアルミノシリケートガラス粉末(a5)を、10%の濃度で実施例1と同様にビーズミルを用い、体積基準粒度分布における平均粒子径(D50)が0.43μm、同粒度分布において小径側から測定した90%位置の粒子径(D90)が1.94μmのフルオロアルミノシリケートガラス微粒子の分散液(A5液)を得た。該ガラス分散液(A5液)のpHは6.8であった。
(2)シュウ酸水溶液(B5液)の調製
シュウ酸二カリウム4.1gを精製水に溶かし、70%硝酸2.2gを加えた後に精製水を加えて100gとした水溶液(B5液)(pH:1.84)を得た。
Preparation of Example 5 (1) Dispersion of fluoroaluminosilicate glass particles (A 5 solution)
SiO 2 : 22.6 g, ZrO 2 : 18.4 g, Al 2 O 3 : 17.3 g, La 2 O 3 : 15.7 g, SrCO 3 : 13.8 g, Na 2 HPO 4 : 3.48 g, CaO: 3.24 g, K 2 HPO 4 : 3.16 g, Al 2 (HPO 4 ) 3 : 2.89 g, CaF 2 : 2.37 g, Y 2 O 3 : 1.58 g Glass was prepared according to the procedure to obtain fluoroaluminosilicate glass powder (a 5 ) having an average particle size (D50) of 6.2 μm in the volume-based particle size distribution. This fluoroaluminosilicate glass powder (a 5 ) was bead-milled at a concentration of 10% in the same manner as in Example 1 and the average particle size (D50) in the volume-based particle size distribution was 0.43 μm. particle size of the measured 90% position (D90) was obtained dispersion of fluoroaluminosilicate glass particles of 1.94μm to (a 5 solution). The pH of the glass dispersion (A 5 solution) was 6.8.
(2) was dissolved preparation oxalate dipotassium 4.1g of oxalic acid aqueous solution (B 5 liquid) in purified water, aqueous solution with 100g added purified water after addition of 70% nitric acid 2.2 g (B 5 liquid) (PH: 1.84) was obtained.
[実施例6] 象牙細管の封鎖効果
(1)疑似知覚過敏象牙質の作製
ウシ抜去前歯よりエナメル質を削除し、知覚過敏を想定して象牙細管を開口させるため、15%EDTA水溶液(pH7.2)で1分間処理した。以下、これを疑似知覚過敏象牙質という。
(2)実験方法
疑似知覚過敏象牙質に、各実施例記載のA液及びB液を表1に記載の採取比で混合した。混合の操作に要する時間は10秒とした。その後ただちに、防湿し乾燥した歯面に、マイクロブラシにて、20〜30秒間こするように塗布した後、歯面を水洗、乾燥し、処理面を目視にて歯面の着色状況を確認した。なお、混合液のpHの変化を別途混合後2分まで測定した(図1)。つぎに、本試料の処理表面及びマイセルとマレットで垂直破折させた割断面について、フィールドエミッション走査型電子顕微鏡(日本電子社製JSM−7000F)にて観察し、処理表面の500倍観察像から象牙細管閉塞率(観察像中の閉塞象牙細管数/観察像中の象牙細管数の百分率)を求めた。同時にエネルギー分散形X線分光(EDS)にて、処理表面への析出物の元素分析を行った。同様の実験は表2に示すような比較例に対しても行った。比較例1は、実施例1において、フルオロアルミノシリケートガラス微粒子の粒子径を、3.34μm(D50)、6.63μm(D90)であるものに変えた以外は実施例1と同様に行い、比較例2〜4は、それぞれ特許文献1、特許文献2及び特許文献3に記載の組成物に対して実施したが、このときの処理方法はそれぞれの特許文献に記載の方法で行った。
[Example 6] Sealing effect of dentinal tubules (1) Preparation of pseudo-hypersensitive dentin To remove the enamel from the front teeth extracted from the bovine and open the dentinal tubules assuming hypersensitivity, a 15% EDTA aqueous solution (pH 7. 2) for 1 minute. Hereinafter, this is called pseudo-hypersensitive dentin.
(2) Experimental method The liquid A and the liquid B described in each example were mixed with the pseudo-hypersensitive dentin at a sampling ratio described in Table 1. The time required for the mixing operation was 10 seconds. Immediately after that, after applying the moisture-proof and dried tooth surface with a microbrush so as to be rubbed for 20 to 30 seconds, the tooth surface was washed with water and dried, and the treatment surface was visually checked for coloring of the tooth surface. . The change in pH of the mixed solution was measured until 2 minutes after separately mixing (FIG. 1). Next, the treated surface of this sample and the fractured surface perpendicularly broken with mycel and mallet were observed with a field emission scanning electron microscope (JSM-7000F, manufactured by JEOL Ltd.), and from the 500 times observed image of the treated surface. The dentinal tubule occlusion rate (number of occluded dentinal tubules in the observed image / percentage of the number of dentinal tubules in the observed image) was determined. At the same time, elemental analysis of precipitates on the treated surface was performed by energy dispersive X-ray spectroscopy (EDS). A similar experiment was performed on comparative examples as shown in Table 2. Comparative Example 1 was carried out in the same manner as in Example 1 except that the particle diameter of the fluoroaluminosilicate glass fine particles was changed to those of 3.34 μm (D50) and 6.63 μm (D90) in Example 1. Although Examples 2-4 were implemented with respect to the composition as described in
(3)評価
各実施例の混合液について、混合10秒後のpHは表1に示すとおり歯質の脱灰に適したpH0.5〜4であるが、いずれも混合後徐々に高くなり、混合して30秒後には、Ca塩の析出に適したpH2〜5となっていることを確認した(図1)。このとき、実施例1〜5のA液は分散安定性に富み、使用中も何ら問題なかったのに対して、比較例1のA液は使用中に粉末成分が沈殿し、使用上の問題が見受けられたが、試験に際しては強制的に振り混ぜて使用した。
各処理表面の電子顕微鏡による観察の結果、実施例1〜5及び比較例2〜4の処理では、いずれも象牙細管開口部は製剤由来の凝集物もしくは析出物等で閉塞されており、高い象牙細管閉塞率を示したのに対し、比較例1では歯面に生成した析出物が大きいために象牙細管閉塞率は低くなった。なお、実施例1〜5に示す混合液での処理で析出した析出物の粒子サイズは、電子顕微鏡観察によると0.01〜1.0μmと、ガラス分散液(A液)中の粒子サイズがよく反映されており、このサイズの析出物で処理表面は完全に覆われていた。割断面の観察により、実施例1〜5の処理では10μm程度の深さで象牙細管閉塞物の析出状況が認められた。
エネルギー分散形X線分光(EDS)により、実施例1〜5の処理による処理表面への析出物の元素分析でSi、Al、その他ガラス由来の元素が確認され、ガラス分散液(A液)中の成分とシュウ酸との反応物であることが確認できた。
(3) Evaluation Regarding the mixed solution of each Example, the pH after mixing for 10 seconds is pH 0.5 to 4 suitable for decalcification of the tooth as shown in Table 1, but gradually increases after mixing, 30 seconds after mixing, it was confirmed that the pH was 2 to 5 suitable for the precipitation of Ca salt (FIG. 1). At this time, the liquid A of Examples 1 to 5 was rich in dispersion stability and had no problem during use, whereas the liquid component of Comparative Example 1 had a powder component precipitated during use, which was a problem in use. However, it was forcibly shaken during the test.
As a result of observation of each treated surface with an electron microscope, in the treatments of Examples 1 to 5 and Comparative Examples 2 to 4, the dentinal tubule openings were all blocked with preparation-derived aggregates or precipitates, and high ivory While the tubule occlusion rate was shown, in Comparative Example 1, the dentinal tubule occlusion rate was low because of the large precipitate formed on the tooth surface. In addition, as for the particle size of the deposit which precipitated by the process with the liquid mixture shown in Examples 1-5, according to an electron microscope observation, the particle size in a glass dispersion liquid (A liquid) is 0.01-1.0 micrometer. Reflected well, the treated surface was completely covered with precipitates of this size. According to the observation of the fractured surface, in the treatments of Examples 1 to 5, precipitation of dentinal tubule obstructions was observed at a depth of about 10 μm.
By energy dispersive X-ray spectroscopy (EDS), Si, Al and other glass-derived elements were confirmed by elemental analysis of precipitates on the treated surface by the treatment of Examples 1 to 5, and in the glass dispersion liquid (A liquid) It was confirmed that this was a reaction product of oxalic acid.
[実施例7] 歯周治療中の象牙質知覚過敏に対する有効性の評価
(1)方法
歯周基本治療によって歯肉が退縮し、根面露出によりエアーや冷水に対して知覚過敏を訴えた患者20名に対し、実施例1の処方液を用いて20秒間、知覚過敏の部分をこするように塗布し、水洗した後、エアーシリンジによる冷刺激に対する反応(被験者の自覚症状)により判定した。エアーシリンジは、患歯から1cm離し、3秒間エアーを吹き付けた。
(2)結果
本発明品(実施例1)による20秒間の処置を受けた後、象牙質知覚過敏症状のある患者のほとんど(20人中19人)は、冷刺激による誘発痛は生じなくなり、象牙質知覚過敏症状は消失した。
この結果から、本発明にかかる実施例1の組成物が、象牙質知覚過敏に対する改善効果が高いことが実証された。
[Example 7] Evaluation of efficacy against dentin hypersensitivity during periodontal treatment (1) Method
20 patients with gingival retraction caused by basic periodontal treatment and complaining of hypersensitivity to air and cold water due to root surface exposure were rubbed for 20 seconds using the prescription solution of Example 1 for 20 seconds. After applying and washing with water, the reaction to the cold stimulus by the air syringe (subject's subjective symptoms) was determined. The air syringe was 1 cm away from the affected tooth and air was blown for 3 seconds.
(2) Results After receiving the treatment for 20 seconds with the product of the present invention (Example 1), most of the patients with dentinal hypersensitivity symptoms (19 out of 20) no longer experience cold pain-induced pain, Dentin hypersensitivity symptoms disappeared.
From this result, it was demonstrated that the composition of Example 1 according to the present invention has a high improvement effect on dentin hypersensitivity.
[実施例8] 耐酸性試験
(1)方法
フッ化物の応用がエナメル質初期う蝕試料の再石灰化に与える影響をQUANTITATIVE Light-induced Fluorescence (QLF)法を用いてin situ環境にて観察できることが知られている。(口腔衛生学会雑誌 57(1), 2-12, 2007)
実施例1のA1液とB1液を10秒間混合し、ウシ前歯エナメル質面に20秒間塗布、水洗、乾燥した後、0.1M(0.92%)乳酸緩衝溶液で12時間脱灰後にQLF法(測定装置:Quantitative Light-Fluorescence(商品名:QLF-TM、Inspector Dental
Care BV社製、以下QLFともいう)による測定を行ってΔF値を算出した。同様に、比較例2〜4の組成物を表2に記載のとおりに塗布してΔF値を算出した。ΔF値は負の値をとり、その絶対値が大きくなるほど、強く脱灰を受けていることとなり、初期う蝕病変の脱灰深度と相関を示すといわれているパラメータである。
(2)結果
実施例1の処方におけるΔF値は−0.8であったのに対し、比較例2〜4の組成物におけるΔF値はそれぞれ−12.2、−10.0及び−15.2であり、従来の技術と比較して大幅な耐酸性の付与がなされていることが確認できた。
[Example 8] Acid resistance test (1) Method The effect of application of fluoride on the remineralization of enamel initial caries samples can be observed in situ using the QUANTITATIVE Light-induced Fluorescence (QLF) method. It has been known. (Journal of Oral Hygiene 57 (1), 2-12, 2007)
The A 1 solution and the B 1 solution of Example 1 were mixed for 10 seconds, applied to the bovine anterior tooth enamel surface for 20 seconds, washed with water, dried, and then decalcified with a 0.1 M (0.92%) lactate buffer solution for 12 hours. Later, the QLF method (measurement device: Quantitative Light-Fluorescence (trade name: QLF-TM, Inspector Dental)
Measurement by Care BV (hereinafter also referred to as QLF) was performed to calculate the ΔF value. Similarly, the compositions of Comparative Examples 2 to 4 were applied as described in Table 2, and ΔF values were calculated. The ΔF value takes a negative value, and the larger the absolute value, the stronger the decalcification, which is a parameter that is said to correlate with the decalcification depth of the initial caries lesion.
(2) Results The ΔF value in the formulation of Example 1 was −0.8, whereas the ΔF values in the compositions of Comparative Examples 2 to 4 were −12.2, −10.0, and −15. 2. It was confirmed that significant acid resistance was imparted compared to the conventional technology.
本発明に係る分散液(A)と水溶液(B)の混合液を歯に適用することにより、短時間の処置で多くのフッ化物を効率的に歯に取り込ませ、高い耐酸性の付与、ひいては再石灰化促進、二次う蝕予防を可能にし、かつ、処置の際に生じるフッ化カルシウム、シュウ酸カルシウム、シリケート・シュウ酸塩の微粒子による象牙細管を閉塞する効果により、高い象牙質知覚過敏の防止効果を得ることができる。
By applying the mixed liquid of the dispersion (A) and the aqueous solution (B) according to the present invention to the teeth, a large amount of fluoride can be efficiently taken into the teeth in a short treatment, and high acid resistance is imparted. High dentinal hypersensitivity due to the effect of occluding the dentinal tubules by the fine particles of calcium fluoride, calcium oxalate and silicate oxalate, which can promote remineralization and prevent secondary dental caries Can be prevented.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010032605A JP4662294B1 (en) | 2010-02-17 | 2010-02-17 | Oral preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010032605A JP4662294B1 (en) | 2010-02-17 | 2010-02-17 | Oral preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4662294B1 true JP4662294B1 (en) | 2011-03-30 |
JP2011168516A JP2011168516A (en) | 2011-09-01 |
Family
ID=43952822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010032605A Expired - Fee Related JP4662294B1 (en) | 2010-02-17 | 2010-02-17 | Oral preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4662294B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210346260A1 (en) * | 2020-05-05 | 2021-11-11 | The Procter & Gamble Company | Oral Care Compositions Comprising Dicarboxylic Acid |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5653553B1 (en) * | 2014-05-30 | 2015-01-14 | 株式会社松風 | Ion sustained release gum composition |
JP5653552B1 (en) * | 2014-05-30 | 2015-01-14 | 株式会社松風 | Ion sustained release varnish composition |
JP6208904B1 (en) * | 2017-01-31 | 2017-10-04 | 淳一 綿引 | Non-surgical periodontal regeneration therapy |
JP7530352B2 (en) | 2018-09-05 | 2024-08-07 | アイアール サイエンティフィック インコーポレイティド | Glass composition |
WO2020240980A1 (en) * | 2019-05-27 | 2020-12-03 | 株式会社ジーシー | Dental kit and method for preventing dental caries |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06116153A (en) * | 1992-10-02 | 1994-04-26 | Lion Corp | Embrocation for hyperesthesia |
JP3466350B2 (en) * | 1994-12-13 | 2003-11-10 | サンメディカル株式会社 | Dental composition for dentin hypersensitivity |
JP2000086421A (en) * | 1998-09-08 | 2000-03-28 | Gc Corp | Adhesive set for dental purpose |
JP2001247456A (en) * | 2000-03-08 | 2001-09-11 | Kunio Ishikawa | Oxalic acid-based therapeutic agent for dentinal hyperesthesia |
DE10304758A1 (en) * | 2003-02-05 | 2004-08-26 | Heraeus Kulzer Gmbh & Co. Kg | Curable dental materials |
-
2010
- 2010-02-17 JP JP2010032605A patent/JP4662294B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210346260A1 (en) * | 2020-05-05 | 2021-11-11 | The Procter & Gamble Company | Oral Care Compositions Comprising Dicarboxylic Acid |
Also Published As
Publication number | Publication date |
---|---|
JP2011168516A (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4693191B2 (en) | Oral preparation | |
JP5816352B2 (en) | Method for producing dentin hypersensitivity inhibitor | |
JP5838524B2 (en) | Dentin hypersensitivity inhibitor and method for producing the same | |
CN103006701B (en) | Compositions and methods for preventing or treating dentin-associated symptoms or diseases | |
Han et al. | A comparative study of fluoride-releasing adhesive resin materials | |
JP4662294B1 (en) | Oral preparation | |
Lee et al. | In vitro study of dentinal tubule occlusion with sol-gel DP-bioglass for treatment of dentin hypersensitivity | |
EP2902006B1 (en) | Curable composition for dentistry, and method for producing same | |
Miyaji et al. | Suppression of root caries progression by application of Nanoseal®: A single-blind randomized clinical trial | |
JPH05255029A (en) | Composition for treating tooth plane | |
Haznedaroglu et al. | evaluation of enamel adjacent to an improved GIC sealant after different enamel pre-treatment | |
Badr et al. | The effectiveness of a nano-hydroxyapatite paste and a tri-calcium phosphate fluoride varnish in white spot lesions remineralization (randomized clinical trial) | |
JP5834355B2 (en) | Hypersensitivity inhibitor and method for producing the same | |
Rosianu et al. | Low viscosity resin penetration degree in incipient caries lesions | |
TWI483740B (en) | Composition and method for preventing or treating dentin-related symptoms or diseases | |
Hamadani et al. | A modern look at the Cvek pulpotomy. | |
Chabuk et al. | Enamel White Spot Lesions: A Review of Etiology, Prevention, and Treatment | |
Febriani et al. | The potential of hydroxyapatite toothpaste towards the hypersensitive tooth | |
Alkhudhairy et al. | Resin Loaded with Nanoparticles and Remineralizing Agents on the Bond Integrity and Microleakage of Tooth Color Restoration Bonded to the Bleached Enamel Surface | |
Satou et al. | Improved Enamel Acid Resistance Using Biocompatible Nano-Hydroxyapatite Coating Method. Materials 2022, 15, 7171 | |
JP2024005110A (en) | dental hardening calcium phosphate cement | |
El Shahawi et al. | Effect of addition of calcium phosphate nanoparticles to bleaching agents on surface hardness and color change of enamel | |
El Shahawi et al. | EFFECT OF ADDITION OF CALCIUM PHOSPHATE NANOPARTICLES TO BLEACHING AGENTS ON SURFACE HARDNESS AND COLOR CHANGE OF ENAMEL. AN IN VITRO STUDY | |
Khan et al. | Protecting Eroded Dentine Against Multiple Acid Challenge with Bioglass | |
EP4268794A1 (en) | Curable calcium phosphate dental cement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |