[go: up one dir, main page]

JP4662223B2 - Gas-liquid centrifuge - Google Patents

Gas-liquid centrifuge Download PDF

Info

Publication number
JP4662223B2
JP4662223B2 JP2001271177A JP2001271177A JP4662223B2 JP 4662223 B2 JP4662223 B2 JP 4662223B2 JP 2001271177 A JP2001271177 A JP 2001271177A JP 2001271177 A JP2001271177 A JP 2001271177A JP 4662223 B2 JP4662223 B2 JP 4662223B2
Authority
JP
Japan
Prior art keywords
liquid
gas
flow path
rotor
central cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001271177A
Other languages
Japanese (ja)
Other versions
JP2003080114A (en
Inventor
康匡 高木
俊一 岡屋
昇 篠崎
雄作 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2001271177A priority Critical patent/JP4662223B2/en
Publication of JP2003080114A publication Critical patent/JP2003080114A/en
Application granted granted Critical
Publication of JP4662223B2 publication Critical patent/JP4662223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Centrifugal Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、宇宙空間でガスを同伴せずに水分を完全分離するための気液遠心分離装置に関する。
【0002】
【従来の技術】
図3は、固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC)の原理図である。この燃料電池は、電解質にプロトン(H+)導電性を有する高分子膜Tを用い、この膜の両側に薄い多孔質Pt触媒電極(アノードAとカソードC)を付けた構造を有する。それぞれの電極にH2 およびO2を供給し、室温〜100℃前後で動作させると、H2はH2極(アノードA)でH+に酸化され、H+は膜内を移動してO2極(カソードC)に到達する。一方e- は外部回路を通って電気的な仕事をしたのち、O2極に到達する。O2極ではO2が到達したH+およびe-と反応してH2Oに還元される。なお上述した燃料電池では、高分子膜Tの保護のため水蒸気を供給すると共に、カソードCでは反応生成物として水蒸気が形成される。
【0003】
【発明が解決しようとする課題】
宇宙ステーション等で燃料電池を利用する場合、太陽光が利用できない時間帯に燃料電池を利用し、逆に太陽光が利用できる時間帯には、太陽電池等の電力で水蒸気を電気分解してH2およびO2に戻し、再利用することが検討されている。この場合、燃料電池のアノードAとカソードCから出た水滴を含むガスから水滴を分離する必要が生じる。
【0004】
従来、地上においてはかかる気水分離のために、バッチ式遠心分離機が使用される。かかるバッチ式遠心分離機は、分離を要する流体(気液混合流体)を容器に入れ、回転台上にこの容器を取付けて、高速回転することにより、流体に遠心力を作用させ、容器内で重質量物質(液体)を回転台中心から離れた部分に移動させ、逆に軽質量物質(気体)を回転中心近傍に移動させたのち、回転を停止して容器より分離した物質を得るものである。
【0005】
しかし、かかるバッチ式遠心分離機には、以下のような問題点があった。
(1)連続的に分離することが出来ない。
(2)分離対象物が液体と気体の混合ガスの場合に、遠心分離中は液体と気体に分離しているが、一旦停止すると液体中に気体が溶融するため完全な分離が出来ない。
【0006】
また、遠心分離を連続的に行う装置としては、図3に模式的に示す、(A)円筒形遠心沈降分離機、(B)デカンタ形遠心沈降分離機、(C)分離板形遠心沈降分離機、(D)遠心ろ過機、等が知られている。
しかし、これらの連続式遠心分離機は、液体中の固形分の分離等には適しているが、気液混合流体からの水滴分離に適用した場合には、液体が少ない場合に液体と共にガスが同伴され、逆に気体が少ない場合に気体に液体が同伴されるおそれがあった。
【0007】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、姿勢変化の激しい宇宙空間で使用することができ、液体に同伴されるガスを最小限に抑え、かつガス中に同伴される液体も最小限に抑えることができる気液遠心分離装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、軸心Zを中心に高速回転駆動される円板状のロータ(12)と、該ロータを間隔を隔てて囲むハウジング(14)とを備え、前記ロータ(12)は、軸心Zを含む中央部分に設けられた中空円板状の中央空洞部(12a)と、軸心Zに沿って外面から中央空洞部まで延び気液混合流体を供給するための中心供給穴(12b)と、軸心Zから半径方向に間隔を隔てた位置で外面から中央空洞部まで延び気体を排気するための排気通路(12c)と、中央空洞部の半径方向外縁とロータの外縁とを連通し液体を排出するための排液流路(13)とを有し、該排液流路(13)は、内端が中央空洞部の半径方向外縁と連通し半径方向外方に延びる内側流路(13a)と、外端がロータの外縁と連通し半径方向内方に延びる外側流路(13b)と、内側流路と外側流路を連通しかつ内側流路との接続点Aが外側流路との接続点Bよりも半径方向外方に設けられた中間流路(13c)とからなり、これにより中間流路に液体を遠心力で保持するトラップ機構(4)を構成する、ことを特徴とする気液遠心分離装置が提供される。
【0009】
上記本発明の構成によれば、円板状のロータ(12)が、軸心Zを中心に高速回転駆動され、その遠心力で液体を遠心分離するので、姿勢変化の激しい宇宙空間でも安定して使用することができる。
【0010】
また、中間流路(13c)が内側流路(13a)と外側流路(13b)を連通し、かつ内側流路との接続点Aが外側流路との接続点Bよりも半径方向外方に設けられているので、これにより中間流路(13c)に液体を遠心力で保持するトラップ機構(4)が構成される。すなわち、遠心分離する気液混合流体に含まれる液体(液滴)が少ない場合、中間流路(13c)に残存する液体は、遠心力により半径方向外方の接続点Aに向かって付勢されるので、内側流路(13a)と中間流路(13c)との接続点A近傍は、常に液体で満たされ、ガスが排液流路(13)を通って液体側に同伴されるのをシールする。従って、液体に同伴されるガスを最小限に抑えることができる。
【0011】
更に、気液混合流体に含まれる液体(液滴)が多い場合には、内側流路(13a)を満たす液体に強い遠心力が作用するので、この圧力が接続点Aの圧力より高くなるように、ロータ(12)の回転速度を予め設定することにより、液体が内部にほとんど溜まることなく、スムースに中間流路(13c)と外側流路(13b)を介して液体を排出することができる。従って、ガス中に同伴される液体も最小限に抑えることができる。
【0012】
本発明の好ましい実施形態によれば、前記中央空洞部(12a)の半径方向外縁に外端が固定され、半径方向内方に延び、中央空洞部を周方向に仕切る複数の内部フィン(6)を有する。
この構成により、複数の内部フィン(6)が軸心Zを中心に高速回転することにより、中央空洞部(12a)の気液混合流体を軸心Zを中心に高速旋回させることができ、遠心力により液体を外方に移動させて気体から効率よく分離することができる。
【0013】
また、前記排気通路(12c)を塞ぎ、液滴を捕獲し気体のみを通す気体透過膜(9)を備える。
この構成により、遠心分離中の液滴が排気通路(12c)を通って気体側に同伴されるのを防止することができる。
【0014】
更に前記ロータ(12)はその外縁部に、外側流路(13b)を挟んで半径外方に突出した1対の円板状鍔部(7)を有し、かつ前記ハウジング(14)は、円板状鍔部(7)を間隔を隔てて囲む1対の凹部(14a)を有し、これにより鍔部と凹部の間に液体を遠心力で保持するシール機構を構成する。
この構成により、ロータ(12)から排出された液体と気体との間を、液体自体でシールして、相互間の混合を防止することができる。
【0015】
前記ロータ(12)は、前記1対の円板状鍔部(7)の間に、半径方向外方に延びる複数の外部フィン(15)を有することが好ましい。
この構成により、ロータ(12)の外縁部とハウジング(14)の間に位置する液体にも遠心力を付加することができ、鍔部(7)と凹部(14a)の間に液体を安定して保持し、そのシール性能を高めることができる。
【0016】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
【0017】
図1は、本発明の気液遠心分離装置の断面図であり、図2は、図1のA−A線における断面図である。図1及び図2に示すように、本発明の気液遠心分離装置10は、軸心Zを中心に高速回転駆動される円板状のロータ12と、ロータ12を間隔を隔てて囲むハウジング14とを備える。ロータ12は、この例では鉛直軸である軸心Zを中心に、電動モータ1により高速に回転駆動される。
なお、姿勢変化の激しい宇宙空間での使用を前提とするため、軸心Zは鉛直に限定されず、任意の方向であってもよい。また、ロータ12の回転速度は、気液混合流体に含まれる液体(液滴)が多い場合でも、液体が内部にほとんど溜まることなく、スムースに液体を分離排出することができる速度(例えば3000rpm以上)に設定する。
【0018】
図1に示すように、ロータ12は、中空円板状の中央空洞部12a、中心供給穴12b、排気通路12c及び排液流路13を有する。
中空円板状の中央空洞部12aは、軸心Zを含む中央部分に設けられる。中心供給穴12bは、軸心Zに沿って外面から中央空洞部12aまで延び、ハウジング14を貫通する流入管5から気液混合流体を中央空洞部12aに供給するようになっている。また、流入管5はこの例では中心供給穴12bにわずかな隙間を隔てて挿入されている。
排気通路12cは、軸心Zから半径方向に間隔を隔てた位置で外面から中央空洞部12aまで延び、気体をハウジング14との間の空間に排気するようになっている。また、ハウジング14には、気体取出管3が設けられ、ロータ12とハウジング14の間の気体を外部に取り出すようになっている。
更に、この排気通路12cには、液滴の通過を防ぐために、気体のみを通す気体透過膜9が設けられている。この気体透過膜9は、水素や酸素の気体分子が通過でき、液滴のように気体分子より大きい粒子は通過できない大きさの貫通穴を有し、この穴により液滴を捕獲し気体のみを通す機能を有する。
【0019】
排液流路13は、図2に示すように、互いに連通した複数対の内側流路13a、外側流路13b及び中間流路13cからなり、中央空洞部12aの半径方向外縁とロータ12の外縁とを連通し、液体を排出する機能を有する。
内側流路13aは、内端が中央空洞部12aの半径方向外縁と連通し、半径方向外方に延び、外端は接続点Aで閉じている。また外側流路13bは、外端がロータ12の外縁と連通し、半径方向内方に延び、内側は接続点Bで閉じている。更に中間流路13cは、内側流路13aと外側流路13bを連通し、かつ内側流路との接続点Aが外側流路との接続点Bよりも半径方向外方に設けられている。すなわち、中間流路13cに液体を遠心力で保持するようにトラップ機構4が設けられている。
【0020】
なお、このトラップ機構4は、この例では、3本の直線流路でZ字形に形成されているが、本発明はこれに限定されず、中間に遠心力で液体がトラップされる限りで自由な流路に形成することができる。例えば、3本の曲線流路でS字形に形成してもよい。
【0021】
また、中央空洞部12aの気液混合流体を軸心Zを中心に高速旋回させるために複数の内部フィン6を有する。この内部フィン6は、中央空洞部12aの半径方向外縁に外端が固定され、半径方向内方に延び、中央空洞部を周方向に仕切るようになっている。
【0022】
ロータ12から排出された液体と気体との間を、液体自体でシールするために、図1に示すように、ロータ12はその外縁部に、外側流路13bを挟んで半径外方に突出した1対の円板状鍔部7を有する。また、ハウジング14は、円板状鍔部7を間隔を隔てて囲む1対の凹部14aを有し、これにより鍔部7と凹部14aの間に液体を遠心力で保持するシール機構を構成するようになっている。
【0023】
更に、図2に示すように、ロータ12の外縁部とハウジング14の間に位置する液体に遠心力を付加するために、ロータ12は、1対の円板状鍔部7の間に、半径方向外方に延びる複数の外部フィン15を有している。
【0024】
以下、上述した本発明の気液遠心分離装置10の作用を説明する。
図2において、トラップ4の内側はロータ12内の中央空洞部12aに開口している。トラップ4は、内側開口部より外側に向うが外周には直接開口せずA点でZ字形状で内側に折り返し、B点で再び折り返し外周に開口する。5は、液体と気体の混合ガスの流入口管であり、回転中心に位置する。流入した混合ガス(気液混合流体)は、ロータ12内に設けた内部フィン6により案内され遠心力が加わる。混合ガスは遠心力にて質量の大きい液体は中央空洞部12a内の外側に質量の軽い気体は、回転中心に分離・移動する。液体は、中央空洞部12a外縁のトラップ孔(内側流路13a)よりトラップに流入しA点に達し溜まる。液体が蓄積されより大きい遠心力が加わると液体は、B点を通り外に押出される。押出された液体は、外縁に設けた外部フィン15でロータ12とハウジング14で構成される渦巻室内に回転し、遠心力により渦巻室の最端縁部に押しのけられ最外縁部に溜まる。液体の滞留量が増加すると液体取出口8よりハウジング外へ出る。
一方、回転中心部に移動した気体は、気体透過膜9を通り気体取出管3よりハウジング外へ出る。ここで、気体透過膜9を通った気体は、渦巻室最外縁部に溜まっている水により渦巻き室に流入することはない。
【0025】
上述した本発明の構成によれば、円板状のロータ12が、軸心Zを中心に高速回転駆動され、その遠心力で液体を遠心分離するので、姿勢変化の激しい宇宙空間でも安定して使用することができる。
【0026】
また、中間流路13cが内側流路13aと外側流路13bを連通し、かつ内側流路との接続点Aが外側流路との接続点Bよりも半径方向外方に設けられているので、これにより中間流路13cに液体を遠心力で保持するトラップ機構4が構成される。すなわち、遠心分離する気液混合流体に含まれる液体(液滴)が少ない場合、中間流路13cに残存する液体は、遠心力により半径方向外方の接続点Aに向かって付勢されるので、内側流路13aと中間流路13cとの接続点A近傍は、常に液体で満たされ、ガスが排液流路13を通って液体側に同伴されるのをシールする。従って、液体に同伴されるガスを最小限に抑えることができる。
【0027】
更に、気液混合流体に含まれる液体(液滴)が多い場合には、内側流路13aを満たす液体に強い遠心力が作用するので、この圧力が接続点Aの圧力より高くなるように、ロータ12の回転速度を予め設定することにより、液体が内部にほとんど溜まることなく、スムースに中間流路13cと外側流路13bを介して液体を排出することができる。従って、ガス中に同伴される液体も最小限に抑えることができる。
【0028】
また、鍔部7と凹部14aの間に液体を遠心力で保持するシール機構を構成することにより、ロータ12から排出された液体と気体との間を、液体自体でシールして、相互間の混合を防止することができる。
【0029】
なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0030】
【発明の効果】
上述したように、本発明は、高速回転する円板状ロータ12の回転中心より遠い位置に液体をロータの内側から外側に通過させる通路(排液流路13)を設けたものである。また、排液流路13の一方はロータ内に開口し、ロータの外に向け設けられるが、ロータの外には直接に開口せず、途中でZ形に折り返し(A点)ロータ内側に向うが、ロータ内側開口せず途中で折り返し(B点)再びロータ外側に向い、外に開口するトラップ機構4を設けた。
【0031】
この構成により、液体・気体の混合ガスは、遠心分離により質量の大きい液体は外に、軽い気体は回転中心部に移動する。液体は、トラップ4のA点の折り返しまで常時満たされる。液体の滞留が増し、液体により大きな遠心力が加わると、液体はA点を通り外に排出される。従って、トラップ部は、常に液体によるシール性が保たれ、気体は分離される。気体は回転中心部に設けた気体排出ポートより取り出される。従って、連続的に液体と気体の分離が可能となる。
【0032】
従って、本発明の気液遠心分離装置は、姿勢変化の激しい宇宙空間で使用することができ、液体に同伴されるガスを最小限に抑え、かつガス中に同伴される液体も最小限に抑えることができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の気液遠心分離装置の断面図である。
【図2】図1のA−A線における断面図である。
【図3】固体高分子型燃料電池の原理図である。
【図4】従来の連続式遠心分離機の模式図である。
【符号の説明】
1 電動モータ、3 気体取出管、4 トラップ機構、
5 流入口管、6 内部フィン、7 円板状鍔部、
8 液体取出口、9 気体透過膜、10 気液遠心分離装置、
12 ロータ、12a 中央空洞部、12b 中心供給穴、
12c 排気通路、13 排液流路、13a 内側流路、
13b 外側流路、13c 中間流路、14 ハウジング、
14a 凹部、15 外部フィン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-liquid centrifuge for completely separating moisture without entraining gas in outer space.
[0002]
[Prior art]
FIG. 3 is a principle diagram of a polymer polymer fuel cell (PEFC). This fuel cell has a structure in which a polymer membrane T having proton (H + ) conductivity is used as an electrolyte, and thin porous Pt catalyst electrodes (anode A and cathode C) are attached to both sides of the membrane. Supplying H 2 and O 2 to the respective electrodes, operating at around room temperature to 100 ° C., H 2 is oxidized to H + with H 2-pole (anode A), H + is moved to the film O It reaches the second pole (cathode C). On the other hand, e reaches the O 2 pole after performing electrical work through an external circuit. At the O 2 electrode, O 2 reacts with the reached H + and e and is reduced to H 2 O. In the fuel cell described above, water vapor is supplied to protect the polymer membrane T, and at the cathode C, water vapor is formed as a reaction product.
[0003]
[Problems to be solved by the invention]
When a fuel cell is used in a space station, etc., the fuel cell is used in a time zone where sunlight is not available, and conversely, in a time zone where sunlight is available, water vapor is electrolyzed with electric power from the solar cell, etc. It is being considered to return to 2 and O 2 for reuse. In this case, it is necessary to separate the water droplets from the gas containing water droplets coming out from the anode A and the cathode C of the fuel cell.
[0004]
Conventionally, batch centrifuges are used on the ground for such steam separation. In such a batch centrifuge, a fluid (gas-liquid mixed fluid) that requires separation is placed in a container, and the container is mounted on a rotating table and rotated at a high speed to cause centrifugal force to act on the fluid. Move the heavy mass material (liquid) to the part away from the center of the turntable, and conversely move the light mass material (gas) to the vicinity of the rotation center, and then stop the rotation to obtain the separated material from the container is there.
[0005]
However, such a batch centrifuge has the following problems.
(1) It cannot be continuously separated.
(2) When the object to be separated is a mixed gas of liquid and gas, it is separated into a liquid and a gas during centrifugation, but once stopped, the gas melts in the liquid and cannot be completely separated.
[0006]
Moreover, as an apparatus which performs centrifugation continuously, as schematically shown in FIG. 3, (A) cylindrical centrifugal sedimentation separator, (B) decanter centrifugal sedimentation separator, (C) separation plate centrifugal sedimentation Machines, (D) centrifugal filters, and the like are known.
However, these continuous centrifuges are suitable for separating solids in a liquid, etc., but when applied to water droplet separation from a gas-liquid mixed fluid, when the liquid is small, the gas is contained together with the liquid. If the gas is accompanied and the amount of gas is small, there is a possibility that the liquid is accompanied by the gas.
[0007]
The present invention has been made to solve such problems. That is, the object of the present invention is that it can be used in a space where the attitude changes rapidly, the gas entrained in the liquid is minimized, and the liquid entrained in the gas is also minimized. The object is to provide a liquid centrifuge.
[0008]
[Means for Solving the Problems]
According to the present invention, it is provided with a disk-shaped rotor (12) that is driven to rotate at high speed about the axis Z, and a housing (14) that surrounds the rotor with a space therebetween, and the rotor (12) includes: A hollow disc-shaped central cavity (12a) provided in a central portion including the shaft center Z, and a center supply hole for supplying a gas-liquid mixed fluid extending from the outer surface along the shaft center Z to the central cavity ( 12b), an exhaust passage (12c) for exhausting gas from the outer surface to the central cavity at a position spaced radially from the axis Z, and a radial outer edge of the central cavity and an outer edge of the rotor A drainage flow path (13) for discharging liquid, and the drainage flow path (13) has an inner end that communicates with a radially outer edge of the central cavity and extends radially outward. A channel (13a) and an outer channel whose outer end communicates with the outer edge of the rotor and extends radially inward 13b), and an intermediate flow path (13c) in which the inner flow path and the outer flow path are communicated and the connection point A between the inner flow path and the outer flow path is provided radially outward. Thus, there is provided a gas-liquid centrifugal separator characterized by constituting a trap mechanism (4) for holding the liquid in the intermediate flow path by centrifugal force.
[0009]
According to the configuration of the present invention, the disk-shaped rotor (12) is driven to rotate at high speed around the axis Z and the liquid is centrifuged by the centrifugal force. Can be used.
[0010]
Further, the intermediate channel (13c) communicates the inner channel (13a) and the outer channel (13b), and the connection point A with the inner channel is radially outward from the connection point B with the outer channel. Thus, the trap mechanism (4) for holding the liquid in the intermediate flow path (13c) by centrifugal force is configured. That is, when the liquid (droplet) contained in the gas-liquid mixed fluid to be centrifuged is small, the liquid remaining in the intermediate flow path (13c) is urged toward the connection point A radially outward by the centrifugal force. Therefore, the vicinity of the connection point A between the inner flow path (13a) and the intermediate flow path (13c) is always filled with liquid, and gas is entrained on the liquid side through the drainage flow path (13). Seal. Therefore, the gas entrained in the liquid can be minimized.
[0011]
Furthermore, when there are many liquids (droplets) contained in the gas-liquid mixed fluid, a strong centrifugal force acts on the liquid filling the inner flow path (13a), so that this pressure becomes higher than the pressure at the connection point A. In addition, by setting the rotational speed of the rotor (12) in advance, the liquid can be smoothly discharged through the intermediate flow path (13c) and the outer flow path (13b) with almost no liquid accumulated inside. . Therefore, the liquid entrained in the gas can be minimized.
[0012]
According to a preferred embodiment of the present invention, a plurality of internal fins (6) having an outer end fixed to a radially outer edge of the central cavity (12a), extending radially inward and partitioning the central cavity in the circumferential direction. Have
With this configuration, the plurality of internal fins (6) rotate at high speed around the axis Z, so that the gas-liquid mixed fluid in the central cavity (12a) can be rotated at high speed around the axis Z, and the centrifugal The liquid can be separated from the gas efficiently by moving the liquid outward by force.
[0013]
The exhaust passage (12c) is closed, and a gas permeable membrane (9) that captures droplets and allows only gas to pass is provided.
With this configuration, it is possible to prevent the droplets being centrifuged from being entrained on the gas side through the exhaust passage (12c).
[0014]
Furthermore, the rotor (12) has a pair of disk-shaped flanges (7) projecting radially outward across the outer flow path (13b) at the outer edge thereof, and the housing (14) It has a pair of recesses (14a) surrounding the disc-shaped collar part (7) with a space therebetween, thereby constituting a seal mechanism for holding the liquid between the collar part and the recess by centrifugal force.
With this configuration, the liquid and gas discharged from the rotor (12) can be sealed with the liquid itself to prevent mixing between them.
[0015]
The rotor (12) preferably has a plurality of external fins (15) extending radially outward between the pair of disc-shaped flanges (7).
With this configuration, centrifugal force can be applied to the liquid positioned between the outer edge of the rotor (12) and the housing (14), and the liquid is stabilized between the flange (7) and the recess (14a). The sealing performance can be enhanced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
[0017]
FIG. 1 is a cross-sectional view of the gas-liquid centrifuge of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA of FIG. As shown in FIGS. 1 and 2, a gas-liquid centrifugal separator 10 of the present invention includes a disk-shaped rotor 12 that is driven to rotate at high speed around an axis Z, and a housing 14 that surrounds the rotor 12 with a space therebetween. With. The rotor 12 is rotationally driven at high speed by the electric motor 1 around an axis Z that is a vertical axis in this example.
Note that the axis Z is not limited to the vertical direction and may be in any direction because it is assumed to be used in outer space where the posture changes rapidly. Further, the rotational speed of the rotor 12 is a speed at which the liquid can be smoothly separated and discharged (for example, 3000 rpm or more), even when there are many liquids (droplets) contained in the gas-liquid mixed fluid, the liquid hardly accumulates inside. ).
[0018]
As shown in FIG. 1, the rotor 12 includes a hollow disc-shaped central cavity 12 a, a center supply hole 12 b, an exhaust passage 12 c, and a drainage passage 13.
The hollow disc-shaped central cavity portion 12 a is provided in a central portion including the axis Z. The center supply hole 12b extends from the outer surface along the axis Z to the central cavity 12a, and supplies the gas-liquid mixed fluid to the central cavity 12a from the inflow pipe 5 penetrating the housing 14. In this example, the inflow pipe 5 is inserted into the center supply hole 12b with a slight gap.
The exhaust passage 12c extends from the outer surface to the central cavity portion 12a at a position spaced apart from the axis Z in the radial direction, and exhausts the gas to the space between the housing 14. Further, the housing 14 is provided with a gas extraction pipe 3 so that the gas between the rotor 12 and the housing 14 is extracted to the outside.
Further, the exhaust passage 12c is provided with a gas permeable membrane 9 through which only gas passes to prevent the passage of droplets. This gas permeable membrane 9 has a through-hole having a size that allows gas molecules such as hydrogen and oxygen to pass therethrough and particles larger than gas molecules such as droplets cannot pass through. It has a function to pass through.
[0019]
As shown in FIG. 2, the drainage flow path 13 includes a plurality of pairs of inner flow paths 13 a, outer flow paths 13 b, and intermediate flow paths 13 c that are in communication with each other. And has a function of discharging the liquid.
The inner flow path 13a has an inner end communicating with a radially outer edge of the central cavity portion 12a, extends radially outward, and the outer end is closed at a connection point A. The outer flow path 13b communicates with the outer edge of the rotor 12 at the outer end, extends inward in the radial direction, and is closed at the connection point B on the inner side. Further, the intermediate flow path 13c communicates the inner flow path 13a and the outer flow path 13b, and the connection point A with the inner flow path is provided radially outward from the connection point B with the outer flow path. That is, the trap mechanism 4 is provided in the intermediate flow path 13c so as to hold the liquid by centrifugal force.
[0020]
In this example, the trap mechanism 4 is formed in a Z shape with three straight flow paths. However, the present invention is not limited to this, and is free as long as the liquid is trapped by a centrifugal force in the middle. It can be formed in a simple flow path. For example, it may be formed in an S shape with three curved flow paths.
[0021]
In addition, a plurality of internal fins 6 are provided to rotate the gas-liquid mixed fluid in the central cavity portion 12a around the axis Z at a high speed. The inner fin 6 has an outer end fixed to the outer edge in the radial direction of the central cavity 12a, extends inward in the radial direction, and partitions the central cavity in the circumferential direction.
[0022]
In order to seal between the liquid discharged from the rotor 12 and the gas with the liquid itself, as shown in FIG. 1, the rotor 12 protrudes radially outward with an outer flow path 13b sandwiched between its outer edges. It has a pair of disk-shaped collars 7. The housing 14 has a pair of recesses 14a surrounding the disc-shaped flange 7 with a space therebetween, thereby constituting a seal mechanism that holds the liquid between the flange 7 and the recess 14a by centrifugal force. It is like that.
[0023]
Further, as shown in FIG. 2, in order to apply centrifugal force to the liquid located between the outer edge of the rotor 12 and the housing 14, the rotor 12 has a radius between a pair of disk-shaped flanges 7. It has a plurality of external fins 15 extending outward in the direction.
[0024]
Hereinafter, the operation of the above-described gas-liquid centrifuge 10 of the present invention will be described.
In FIG. 2, the inside of the trap 4 is open to the central cavity 12 a in the rotor 12. The trap 4 faces outward from the inner opening, but does not open directly to the outer periphery, but is folded back inward in a Z shape at point A, and is folded back to the outer periphery at point B. Reference numeral 5 denotes an inlet pipe for a mixed gas of liquid and gas, which is located at the center of rotation. The inflowing mixed gas (gas-liquid mixed fluid) is guided by the internal fins 6 provided in the rotor 12 and is subjected to centrifugal force. As for the mixed gas, the liquid with a large mass is separated and moved to the center of rotation by the centrifugal force when the liquid has a large mass and outside the central cavity 12a. The liquid flows into the trap from the trap hole (inner flow path 13a) at the outer edge of the central cavity 12a, reaches the point A, and accumulates. As the liquid accumulates and a greater centrifugal force is applied, the liquid is pushed out through point B. The extruded liquid is rotated into the spiral chamber constituted by the rotor 12 and the housing 14 by the external fins 15 provided on the outer edge, and is pushed to the outermost edge portion of the spiral chamber by centrifugal force and collected at the outermost edge portion. When the liquid retention amount increases, the liquid comes out of the housing through the liquid outlet 8.
On the other hand, the gas that has moved to the center of rotation passes through the gas permeable membrane 9 and exits from the gas extraction pipe 3 to the outside of the housing. Here, the gas that has passed through the gas permeable membrane 9 does not flow into the spiral chamber due to water accumulated in the outermost edge of the spiral chamber.
[0025]
According to the configuration of the present invention described above, the disk-like rotor 12 is driven to rotate at high speed around the axis Z, and the liquid is centrifuged by the centrifugal force. Can be used.
[0026]
Further, the intermediate flow path 13c communicates the inner flow path 13a and the outer flow path 13b, and the connection point A with the inner flow path is provided radially outward from the connection point B with the outer flow path. Thus, the trap mechanism 4 that holds the liquid in the intermediate flow path 13c by centrifugal force is configured. That is, when the liquid (droplet) contained in the gas-liquid mixed fluid to be centrifuged is small, the liquid remaining in the intermediate flow path 13c is urged toward the connection point A radially outward by the centrifugal force. The vicinity of the connection point A between the inner flow path 13a and the intermediate flow path 13c is always filled with liquid, and seals that gas is entrained on the liquid side through the drainage flow path 13. Therefore, the gas entrained in the liquid can be minimized.
[0027]
Furthermore, when there are many liquids (droplets) contained in the gas-liquid mixed fluid, a strong centrifugal force acts on the liquid filling the inner flow path 13a, so that this pressure is higher than the pressure at the connection point A. By setting the rotation speed of the rotor 12 in advance, the liquid can be smoothly discharged through the intermediate flow path 13c and the outer flow path 13b without almost collecting the liquid inside. Therefore, the liquid entrained in the gas can be minimized.
[0028]
In addition, by configuring a sealing mechanism that holds the liquid with centrifugal force between the flange portion 7 and the concave portion 14a, the liquid and the gas discharged from the rotor 12 are sealed with the liquid itself, Mixing can be prevented.
[0029]
In addition, this invention is not limited to the Example and embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0030]
【The invention's effect】
As described above, the present invention is provided with a passage (drainage flow path 13) that allows liquid to pass from the inside to the outside of the rotor at a position far from the rotation center of the disk-shaped rotor 12 that rotates at high speed. One of the drainage channels 13 opens into the rotor and is provided outside the rotor, but does not open directly outside the rotor, and is folded back into a Z shape (point A) toward the inside of the rotor. However, the inner side of the rotor is not opened, but it is turned back halfway (point B).
[0031]
With this configuration, the liquid / gas mixed gas is moved to the center of rotation by moving the light gas and the liquid having a large mass outside by centrifugation. The liquid is always filled up to the return of point A of the trap 4. When the retention of the liquid increases and a large centrifugal force is applied to the liquid, the liquid passes through point A and is discharged outside. Therefore, the trap portion is always kept sealed by the liquid, and the gas is separated. The gas is taken out from a gas discharge port provided at the center of rotation. Therefore, it is possible to continuously separate liquid and gas.
[0032]
Therefore, the gas-liquid centrifuge of the present invention can be used in a space where the attitude changes rapidly, minimizing the gas entrained in the liquid and minimizing the liquid entrained in the gas. And so on.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a gas-liquid centrifuge of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a principle diagram of a polymer electrolyte fuel cell.
FIG. 4 is a schematic diagram of a conventional continuous centrifuge.
[Explanation of symbols]
1 electric motor, 3 gas extraction pipe, 4 trap mechanism,
5 Inlet pipe, 6 Internal fin, 7 Disc-shaped buttocks,
8 Liquid outlet, 9 Gas permeable membrane, 10 Gas liquid centrifuge,
12 rotor, 12a central cavity, 12b center supply hole,
12c exhaust passage, 13 drainage flow path, 13a inner flow path,
13b outer channel, 13c intermediate channel, 14 housing,
14a recess, 15 external fin

Claims (5)

軸心Zを中心に高速回転駆動される円板状のロータ(12)と、該ロータを間隔を隔てて囲むハウジング(14)とを備え、
前記ロータ(12)は、軸心Zを含む中央部分に設けられた中空円板状の中央空洞部(12a)と、軸心Zに沿って外面から中央空洞部まで延び気液混合流体を供給するための中心供給穴(12b)と、軸心Zから半径方向に間隔を隔てた位置で外面から中央空洞部まで延び気体を排気するための排気通路(12c)と、中央空洞部の半径方向外縁とロータの外縁とを連通し液体を排出するための排液流路(13)とを有し、
該排液流路(13)は、内端が中央空洞部の半径方向外縁と連通し半径方向外方に延びる内側流路(13a)と、外端がロータの外縁と連通し半径方向内方に延びる外側流路(13b)と、内側流路と外側流路を連通しかつ内側流路との接続点Aが外側流路との接続点Bよりも半径方向外方に設けられた中間流路(13c)とからなり、これにより中間流路に液体を遠心力で保持するトラップ機構(4)を構成する、ことを特徴とする気液遠心分離装置。
A disk-shaped rotor (12) that is driven to rotate at high speed about an axis Z, and a housing (14) that surrounds the rotor at an interval;
The rotor (12) is a hollow disc-shaped central cavity (12a) provided in the central portion including the shaft center Z, and supplies a gas-liquid mixed fluid extending from the outer surface along the shaft Z to the central cavity. A central supply hole (12b), an exhaust passage (12c) for exhausting gas extending from the outer surface to the central cavity at a position spaced from the axis Z in the radial direction, and a radial direction of the central cavity A drainage flow path (13) for discharging the liquid through the outer edge and the outer edge of the rotor;
The drainage channel (13) has an inner channel (13a) whose inner end communicates with the radial outer edge of the central cavity and extends radially outward, and an outer end communicates with the outer edge of the rotor in the radial inner direction. An intermediate flow in which the outer flow path (13b) extending to the inner flow path is connected to the inner flow path and the outer flow path, and the connection point A between the inner flow path and the outer flow path is provided radially outward. A gas-liquid centrifugal separator comprising a passage (13c), thereby constituting a trap mechanism (4) for holding liquid in the intermediate flow path by centrifugal force.
前記中央空洞部(12a)の半径方向外縁に外端が固定され、半径方向内方に延び、中央空洞部を周方向に仕切る複数の内部フィン(6)を有する、ことを特徴とする請求項1に記載の気液遠心分離装置。The outer end is fixed to the radially outer edge of the central cavity (12a), and has a plurality of internal fins (6) extending radially inward and partitioning the central cavity in the circumferential direction. The gas-liquid centrifuge according to 1. 前記排気通路(12c)を塞ぎ、液滴を捕獲し気体のみを通す気体透過膜(9)を備える、ことを特徴とする請求項1に記載の気液遠心分離装置。The gas-liquid centrifuge according to claim 1, further comprising a gas permeable membrane (9) that closes the exhaust passage (12c), captures liquid droplets, and allows only gas to pass therethrough. 前記ロータ(12)はその外縁部に、外側流路(13b)を挟んで半径外方に突出した1対の円板状鍔部(7)を有し、かつ前記ハウジング(14)は、円板状鍔部(7)を間隔を隔てて囲む1対の凹部(14a)を有し、これにより鍔部と凹部の間に液体を遠心力で保持するシール機構を構成する、ことを特徴とする請求項1に記載の気液遠心分離装置。The rotor (12) has a pair of disk-shaped flanges (7) projecting radially outward across the outer flow path (13b) at its outer edge, and the housing (14) It has a pair of recesses (14a) surrounding the plate-like collar part (7) with a space therebetween, thereby constituting a seal mechanism for holding liquid between the collar part and the recess by centrifugal force. The gas-liquid centrifuge according to claim 1. 前記ロータ(12)は、前記1対の円板状鍔部(7)の間に、半径方向外方に延びる複数の外部フィン(15)を有する、ことを特徴とする請求項4に記載の気液遠心分離装置。5. The rotor (12) according to claim 4, wherein the rotor (12) has a plurality of external fins (15) extending radially outwardly between the pair of disc-shaped flanges (7). Gas-liquid centrifuge.
JP2001271177A 2001-09-07 2001-09-07 Gas-liquid centrifuge Expired - Fee Related JP4662223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271177A JP4662223B2 (en) 2001-09-07 2001-09-07 Gas-liquid centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271177A JP4662223B2 (en) 2001-09-07 2001-09-07 Gas-liquid centrifuge

Publications (2)

Publication Number Publication Date
JP2003080114A JP2003080114A (en) 2003-03-18
JP4662223B2 true JP4662223B2 (en) 2011-03-30

Family

ID=19096716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271177A Expired - Fee Related JP4662223B2 (en) 2001-09-07 2001-09-07 Gas-liquid centrifuge

Country Status (1)

Country Link
JP (1) JP4662223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195339A (en) * 2015-11-04 2015-12-30 世林(漯河)冶金设备有限公司 Exhaust device of closed centrifuge

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179417A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Fuel cell system
JP4702666B2 (en) 2005-07-20 2011-06-15 Smc株式会社 Drain separator
JP2007050332A (en) * 2005-08-17 2007-03-01 Keio Gijuku Gas-liquid separator
SE529611C2 (en) 2006-02-13 2007-10-02 Alfa Laval Corp Ab centrifugal
KR101473318B1 (en) 2007-09-28 2014-12-17 삼성에스디아이 주식회사 Recycler for direct methanol fuel cell and managing method thereof
KR101063457B1 (en) 2008-10-15 2011-09-08 삼성전기주식회사 Gas-liquid separator, hydrogen generator and fuel cell power generation system having the same
KR101002647B1 (en) 2009-03-09 2010-12-20 삼성에스디아이 주식회사 Fuel Cell System and Driving Method of Fuel Cell System
EP2478229B1 (en) * 2009-09-15 2020-02-26 Dresser-Rand Company Improved density-based compact separator
JP2011092798A (en) * 2009-10-27 2011-05-12 Keiji Kosan Kk Centrifuge
KR101985024B1 (en) * 2012-12-26 2019-05-31 현대모비스 주식회사 Liquid-gas separator for fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103258A (en) * 1973-01-16 1974-09-30
JPS5177976A (en) * 1974-11-28 1976-07-06 Saint Gobain
JPS58145783A (en) * 1981-12-18 1983-08-30 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Separation of fluid fossil fuel component
JPH07208375A (en) * 1994-01-24 1995-08-08 Ebara Corp Operating liquid invasion preventing device for bearing part clearance of continuous deaerating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103258A (en) * 1973-01-16 1974-09-30
JPS5177976A (en) * 1974-11-28 1976-07-06 Saint Gobain
JPS58145783A (en) * 1981-12-18 1983-08-30 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Separation of fluid fossil fuel component
JPH07208375A (en) * 1994-01-24 1995-08-08 Ebara Corp Operating liquid invasion preventing device for bearing part clearance of continuous deaerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195339A (en) * 2015-11-04 2015-12-30 世林(漯河)冶金设备有限公司 Exhaust device of closed centrifuge
CN105195339B (en) * 2015-11-04 2018-02-02 世林(漯河)冶金设备有限公司 A kind of closed centrifugal machine exhaust apparatus

Also Published As

Publication number Publication date
JP2003080114A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
JP4662223B2 (en) Gas-liquid centrifuge
JP4702666B2 (en) Drain separator
JP5037607B2 (en) centrifuge
US11325136B2 (en) Seal assembly for a centrifugal separator
NO154948B (en) Centrifugal degasser.
EP1140362A1 (en) Rotor assembly for a centrifugal separator
JP5694349B2 (en) Helmetic centrifuge
JPS644820B2 (en)
JP4745659B2 (en) Annular centrifugal force extraction device with immersion stirring rotor
CN110841335A (en) A whole blood separation structure
JPH11347327A (en) Dust collecting apparatus
CN217698335U (en) Fluid separation device and fresh air system
CN116286270A (en) Device and method for centrifugal separation of cells
JPH0380041B2 (en)
KR20220108740A (en) Deaeration apparatus
CN208612349U (en) A kind of fluid mixer
CN217830384U (en) Phase transfer centrifugal separator
GB2173120A (en) Centrifugal contacting apparatus for solvent extraction
CN217093933U (en) Explosion-proof vertical direct-connection upper discharging centrifuge
CN214032539U (en) A purification device for nucleic acid extraction
JPH0236619Y2 (en)
US4283466A (en) Chemical and electrochemical process
RU2024138426A (en) CENTRIFUGATION CHAMBER, CELL CENTRIFUGATION METHOD AND CENTRIFUGATION DEVICE
CN117352776A (en) Water-gas separation device for fuel cell and fuel cell
CN117771742A (en) Phase transfer centrifuge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

R150 Certificate of patent or registration of utility model

Ref document number: 4662223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees