[go: up one dir, main page]

JP4662013B2 - Polyamide resin composition and method for producing the same - Google Patents

Polyamide resin composition and method for producing the same Download PDF

Info

Publication number
JP4662013B2
JP4662013B2 JP2003337788A JP2003337788A JP4662013B2 JP 4662013 B2 JP4662013 B2 JP 4662013B2 JP 2003337788 A JP2003337788 A JP 2003337788A JP 2003337788 A JP2003337788 A JP 2003337788A JP 4662013 B2 JP4662013 B2 JP 4662013B2
Authority
JP
Japan
Prior art keywords
resin composition
polyamide resin
polyamide
clay
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003337788A
Other languages
Japanese (ja)
Other versions
JP2004143447A (en
Inventor
淳 三田寺
和生 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003337788A priority Critical patent/JP4662013B2/en
Publication of JP2004143447A publication Critical patent/JP2004143447A/en
Application granted granted Critical
Publication of JP4662013B2 publication Critical patent/JP4662013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、有機化クレイを含有するポリアミド樹脂組成物、及びその製造方法に関する。詳しくは、特定の有機化クレイとポリアミドからなるポリアミド樹脂組成物であって、ガスバリア性に優れるポリアミド樹脂組成物、及びその製造方法に関する。   The present invention relates to a polyamide resin composition containing an organized clay and a method for producing the same. Specifically, the present invention relates to a polyamide resin composition comprising a specific organoclay and a polyamide, which is excellent in gas barrier properties, and a method for producing the same.

ポリアミドは機械性能や加工性に優れ、かつ比較的高いガスバリア性を有することから、自動車や電気電子部品などの射出成形材料としてはもちろんのこと、食品、飲料、薬品、電子部品等の包装資材として幅広く利用されている。ポリアミドの中でもメタキシリレンジアミンを主成分とするジアミン成分とアジピン酸を主成分とするジカルボン酸成分から重縮合により得られるポリメタキシリレンアジパミド(以下「ナイロンMXD6」ということがある)は、酸素、炭酸ガス等のガス状物質に対し、他のポリアミドと比較して低い透過性を示すことから、ガスバリア性を要求されるフィルム、ボトル等の包装資材を構成する材料としての利用がすすめられている。しかし、近年、さらに長期間にわたって食品や飲料等の鮮度を保持することが可能な包装材料の要求が高まっており、ナイロンMXD6においても、より一層のガスバリア性能の向上が要求されている。   Polyamide is excellent in mechanical performance and processability and has a relatively high gas barrier property. Therefore, it is not only used as an injection molding material for automobiles and electrical and electronic parts, but also as a packaging material for foods, beverages, chemicals, and electronic parts. Widely used. Among polyamides, polymetaxylylene adipamide (hereinafter sometimes referred to as “nylon MXD6”) obtained by polycondensation from a diamine component mainly composed of metaxylylenediamine and a dicarboxylic acid component mainly composed of adipic acid, It shows low permeability compared to other polyamides for gaseous substances such as oxygen and carbon dioxide, so it is recommended for use as a material for packaging materials such as films and bottles that require gas barrier properties. ing. However, in recent years, there has been an increasing demand for packaging materials that can maintain the freshness of foods, beverages, and the like for a longer period of time, and nylon MXD6 is also required to have further improved gas barrier performance.

ガスバリア性能向上の手段の一つとして、ポリアミドにクレイを均一に分散させポリアミド樹脂組成物を得る方法がある(例えば、特許文献1参照。)。また、ポリアミドにクレイを均一に分散させたポリアミド樹脂組成物を製造する方法として、ポリアミドとクレイを、二軸押出機を用いて溶融混練する方法がある(例えば、特許文献2参照。)。しかし、上記方法では、溶融混練時にスクリューの回転によって強い剪断応力をナイロンMXD6と有機化クレイの混合物に加える必要があり、このときに発生する剪断発熱によって有機化クレイの有機化剤は分解し、クレイが凝集するため、クレイが完全に微分散せず、ガスバリア性が向上しないばかりか、有機化剤分解物が悪臭の原因ともなっていた。
特開昭62−74957号公報 特開平9−217012号公報
As one of the means for improving the gas barrier performance, there is a method of obtaining a polyamide resin composition by uniformly dispersing clay in polyamide (see, for example, Patent Document 1). As a method for producing a polyamide resin composition in which clay is uniformly dispersed in polyamide, there is a method in which polyamide and clay are melt-kneaded using a twin-screw extruder (for example, see Patent Document 2). However, in the above method, it is necessary to apply a strong shear stress to the mixture of nylon MXD6 and the organized clay by the rotation of the screw during melt kneading, and the organized agent of the organized clay is decomposed by the shearing heat generated at this time, Since clay agglomerates, the clay is not completely finely dispersed, the gas barrier property is not improved, and the decomposition product of the organic agent has also caused a bad odor.
JP-A-62-74957 Japanese Patent Laid-Open No. 9-217012

本発明は、上記の課題を解消し、クレイの分散が良く、ガスバリア性に優れ、臭気の少ないポリアミド樹脂組成物を提供することである。   This invention is providing the polyamide resin composition which eliminates said subject, is excellent in dispersion | distribution of clay, is excellent in gas barrier property, and has few odors.

本発明者らは、上記課題を解決するため鋭意検討した結果、ナイロンMXD6と特定の有機化クレイを特定の条件で溶融混練することによって、ガスバリア性に優れ、かつ従来解決することのできなかった悪臭の少ないポリアミド樹脂組成物を得られることを見いだし、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have excellent gas barrier properties and could not be solved conventionally by melt-kneading nylon MXD6 and specific organic clay under specific conditions. It has been found that a polyamide resin composition with less offensive odor can be obtained, and the present invention has been completed.

すなわち本発明は、メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸を50モル%以上含むジカルボン酸成分とを重縮合して得られるポリアミド(A)と有機化クレイ(B)を、溶融混練してポリアミド樹脂組成物を製造する方法であって、溶融混練温度がポリアミド(A)の融点以上、かつ有機化クレイ(B)をJIS K−7120に記載の測定方法により熱重量測定したときに有機化クレイ(B)の10重量%が減少する温度以下であり、混練装置により該装置内の材料に与えられる比エネルギーが0.2〜0.45kWh/kgであり、かつ、混練装置内の滞留時間が60〜1200秒となる条件下で溶融混練することを特徴とするポリアミド樹脂組成物の製造方法に関するものである。   That is, the present invention polycondenses a diamine component containing 70 mol% or more of metaxylylenediamine and a dicarboxylic acid component containing 50 mol% or more of an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms. A method of producing a polyamide resin composition by melt-kneading the obtained polyamide (A) and the organized clay (B), wherein the melt-kneading temperature is not lower than the melting point of the polyamide (A) and the organized clay (B). Is a temperature at which 10% by weight of the organized clay (B) decreases when thermogravimetrically measured by the measuring method described in JIS K-7120, and the specific energy given to the material in the apparatus by the kneading apparatus is 0. A process for producing a polyamide resin composition, characterized by being melt-kneaded under a condition of 2 to 0.45 kWh / kg and a residence time in the kneading apparatus of 60 to 1200 seconds It is intended to.

また本発明は、上述した製造方法により得られるポリアミド樹脂組成物、更には該樹脂組成物を利用してなる包装材料及び包装容器に関するものである。   The present invention also relates to a polyamide resin composition obtained by the above-described manufacturing method, and further to a packaging material and a packaging container using the resin composition.

本発明のポリアミド樹脂組成物及びその製造方法は、有機化クレイの分散性が優れ、ガスバリア性、透明性に優れるのはもちろんのこと、臭気の少ないものであり、従来のもの以上にその商品価値は高く、工業的に優れたものである。   The polyamide resin composition of the present invention and the method for producing the same are excellent in dispersibility of the organized clay, gas barrier properties and transparency, as well as less odor, and more commercial value than conventional ones. Is high and industrially superior.

以下に本発明を詳しく説明する。本発明で使用するポリアミド(A)は、メタキシリレンジアミンを主成分とするジアミン成分と炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸を主成分とするジカルボン酸成分とを重縮合することにより得られるポリアミドである。   The present invention is described in detail below. The polyamide (A) used in the present invention comprises a diamine component mainly composed of metaxylylenediamine and a dicarboxylic acid component mainly composed of an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms. It is a polyamide obtained by condensation.

本発明で使用するジアミン成分は、メタキシリレンジアミンを70モル%以上、好ましくは75モル%以上、さらに好ましくは80モル%以上含むものである。ジアミン成分中のメタキシリレンジアミン量が70モル%より少ないと、ポリアミド(A)のガスバリア性が低下するため好ましくない。本発明においてメタキシリレンジアミン以外に使用できるジアミン成分としては、テトラメチレンジアミン、ペンタメチレンジアミン、2−メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチル−ヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、等の脂肪族ジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環族ジアミン、ビス(4−アミノフェニル)エーテル、パラフェニレンジアミン、パラキシリレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン類等を例示することができるが、これらに限定されるものではない。   The diamine component used in the present invention contains metaxylylenediamine at 70 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more. When the amount of metaxylylenediamine in the diamine component is less than 70 mol%, the gas barrier property of the polyamide (A) is lowered, which is not preferable. Examples of diamine components that can be used in addition to metaxylylenediamine in the present invention include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, Aliphatic diamines such as dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis ( Aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) Caroline, alicyclic diamines such as bis (aminomethyl) tricyclodecane, diamines having aromatic rings such as bis (4-aminophenyl) ether, paraphenylenediamine, paraxylylenediamine, bis (aminomethyl) naphthalene, etc. However, the present invention is not limited to these examples.

本発明で使用するジカルボン酸成分は、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸を50モル%以上、好ましくは60モル%以上、さらに好ましくは70モル%以上含むものである。ジカルボン酸成分中の炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸が50モル%より少ないとポリアミド(A)の結晶性が低下してポリアミド(A)のガスバリア性が低下するため好ましくない。本発明で使用する炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示できるが、これらの中でもアジピン酸が好ましい。また本発明では上記α,ω−直鎖脂肪族ジカルボン酸以外のジカルボン酸として、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等に例示される芳香族ジカルボン酸類を添加することもできる。さらに、ポリアミド(A)の重縮合時に分子量調節剤として少量のモノアミン、モノカルボン酸を加えてもよい。   The dicarboxylic acid component used in the present invention contains an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms in an amount of 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more. When the α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms in the dicarboxylic acid component is less than 50 mol%, the crystallinity of the polyamide (A) is lowered and the gas barrier property of the polyamide (A) is lowered. It is not preferable. Examples of the α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms used in the present invention include succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, undecanedioic acid, Aliphatic dicarboxylic acids such as dodecanedioic acid can be exemplified, but among these, adipic acid is preferred. In the present invention, aromatic dicarboxylic acids exemplified by terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and the like can be added as dicarboxylic acids other than the α, ω-linear aliphatic dicarboxylic acid. Furthermore, a small amount of monoamine or monocarboxylic acid may be added as a molecular weight regulator during the polycondensation of the polyamide (A).

ポリアミド(A)は、溶融重縮合法により製造できる。例えば、メタキシリレンジアミンとアジピン酸からなるナイロン塩を水の存在下に、加圧状態で昇温し、加えた水及び縮合水を除きながら溶融状態で重合させる方法により製造される。また、メタキシリレンジアミンを溶融状態のアジピン酸に直接加えて、常圧下で重縮合する方法によっても製造される。この場合、反応系を均一な液状状態で保つために、メタキシリレンジアミンをアジピン酸に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。   The polyamide (A) can be produced by a melt polycondensation method. For example, it is manufactured by a method in which a nylon salt composed of metaxylylenediamine and adipic acid is heated in the presence of water in a pressurized state and polymerized in a molten state while removing added water and condensed water. Further, it is also produced by a method in which metaxylylenediamine is directly added to molten adipic acid and polycondensed under normal pressure. In this case, in order to keep the reaction system in a uniform liquid state, metaxylylenediamine is continuously added to adipic acid, and during this time, the reaction system is raised so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide. The polycondensation proceeds while warming.

また、ポリアミド(A)は、溶融重合法により製造された後に、固相重合を行うことによって重縮合を行っても良い。ポリアミド樹脂(A)の製造方法は特に限定されるものではなく、従来公知の方法、重合条件により製造される。   The polyamide (A) may be subjected to polycondensation by solid-phase polymerization after being produced by a melt polymerization method. The manufacturing method of a polyamide resin (A) is not specifically limited, It manufactures by a conventionally well-known method and polymerization conditions.

ポリアミド(A)の数平均分子量は、2000〜50000であることが好ましく、7000〜45000であればさらに好ましい。なおここでいう数平均分子量とはポリアミド(A)の末端アミノ基濃度[NH](μeq/g)と末端カルボキシル基濃度[COOH](μeq/g)を塩酸又は水酸化ナトリウム水溶液を用いた中和滴定により求め、次式で算出したものである。
数平均分子量=2000000/([COOH]+[NH])
数平均分子量が2000未満では溶融粘度が低すぎるため、ポリアミド(A)と有機化クレイ(B)を溶融混練した時にポリアミド(A)の溶融粘度が低すぎ、有機化クレイに剪断応力がかかりにくくなるため、有機化クレイが均一に分散しないため好ましくない。また数平均分子量が50000より大きいとポリアミド(A)は製造が困難である。なお、ポリアミド(A)の数平均分子量を表す指標としては相対粘度を用いることができる。ここでいう相対粘度とはポリアミド1gを96%硫酸100mlに溶解して、キャノンフェンスケ型粘度計等を用いて25℃で測定した値を表す。本発明で使用するポリアミド(A)の相対粘度はおよそ1.1〜4.7の範囲となる。
The number average molecular weight of the polyamide (A) is preferably 2000 to 50000, more preferably 7000 to 45000. The number average molecular weight referred to here is a terminal amino group concentration [NH 2 ] (μeq / g) and a terminal carboxyl group concentration [COOH] (μeq / g) of polyamide (A) using hydrochloric acid or an aqueous sodium hydroxide solution. It is obtained by neutralization titration and calculated by the following formula.
Number average molecular weight = 2000000 / ([COOH] + [NH 2 ])
When the number average molecular weight is less than 2000, the melt viscosity is too low. Therefore, when the polyamide (A) and the organoclay (B) are melt-kneaded, the melt viscosity of the polyamide (A) is too low and it is difficult for shear stress to be applied to the organoclay. Therefore, the organized clay is not preferable because it is not uniformly dispersed. On the other hand, when the number average molecular weight is larger than 50000, the polyamide (A) is difficult to produce. In addition, a relative viscosity can be used as a parameter | index showing the number average molecular weight of polyamide (A). The relative viscosity here refers to a value obtained by dissolving 1 g of polyamide in 100 ml of 96% sulfuric acid and measuring at 25 ° C. using a Canon Fenceke viscometer or the like. The relative viscosity of the polyamide (A) used in the present invention is in the range of about 1.1 to 4.7.

また、ポリアミド(A)は、反応したジカルボン酸成分に対するジアミン成分のモル比(反応したジアミンのモル数/反応したジカルボン酸のモル数)が0.990〜1.100であることが好ましく、より好ましくは0.991〜1.000、さらに好ましくは0.992〜0.999のものが用いられる。反応モル比が0.990〜1.100の範囲から外れる場合、ポリアミド(A)の数平均分子量が増加しにくくなるため好ましくない。また反応モル比が1.100より大きい場合は、ポリアミド(A)の末端アミノ基が過剰になり、これから得られる製品のヘーズが上昇したり、ゲル化物が発生しやすくなる傾向があることから好ましくない。ここで、反応モル比(r)は次式で求められる。
r=(1−cN−b(C−N))/(1−cC+a(C−N))
式中、a:M/2
b:M/2
c:18.015
:ジアミンの分子量(g/mol)
:ジカルボン酸の分子量(g/mol)
N:末端アミノ基濃度(当量/g)
C:末端カルボキシル基濃度(当量/g)
The polyamide (A) preferably has a molar ratio of the diamine component to the reacted dicarboxylic acid component (the number of reacted diamines / the number of reacted dicarboxylic acids) of 0.990 to 1.100, Preferably 0.991 to 1.000, more preferably 0.992 to 0.999. When the reaction molar ratio is out of the range of 0.990 to 1.100, it is not preferable because the number average molecular weight of the polyamide (A) is hardly increased. Moreover, when the reaction molar ratio is larger than 1.100, the terminal amino group of the polyamide (A) becomes excessive, and the haze of the product obtained from this tends to increase or gelation tends to occur, which is preferable. Absent. Here, the reaction molar ratio (r) is obtained by the following equation.
r = (1-cN-b (CN)) / (1-cC + a (CN))
In the formula, a: M 1/2
b: M 2/2
c: 18.015
M 1 : Molecular weight of diamine (g / mol)
M 2 : Molecular weight of dicarboxylic acid (g / mol)
N: Terminal amino group concentration (equivalent / g)
C: Terminal carboxyl group concentration (equivalent / g)

ポリアミド(A)には、溶融成形時の加工安定性を高めるため、あるいはポリアミド樹脂の着色を防止するためにリン化合物を添加することができる。リン化合物としてはアルカリ金属又はアルカリ土類金属を含むリン化合物が好適に使用され、例えば、ナトリウム、マグネシウム、カルシウム等のアルカリ金属又はアルカリ土類金属のリン酸塩、次亜リン酸塩、亜リン酸塩が挙げられるが、特にアルカリ金属又はアルカリ土類金属の次亜リン酸塩を使用したものがポリアミドの着色防止効果に特に優れるため好ましく用いられる。リン化合物の濃度はリン原子として1〜500ppm、好ましくは350ppm以下、更に好ましくは200ppm以下である。リン原子濃度が500ppmを超えても着色防止効果に変化はなく、むしろこれを利用して得られるフィルムのヘーズが上昇するため好ましくない。   A phosphorous compound can be added to the polyamide (A) in order to increase the processing stability during melt molding or to prevent the polyamide resin from being colored. As the phosphorus compound, a phosphorus compound containing an alkali metal or an alkaline earth metal is preferably used. For example, an alkali metal or alkaline earth metal phosphate such as sodium, magnesium, calcium, hypophosphite, phosphorus Acid salts may be mentioned, but those using alkali metal or alkaline earth metal hypophosphites are particularly preferred because they are particularly excellent in the anti-coloring effect of polyamide. The density | concentration of a phosphorus compound is 1-500 ppm as a phosphorus atom, Preferably it is 350 ppm or less, More preferably, it is 200 ppm or less. Even if the phosphorus atom concentration exceeds 500 ppm, there is no change in the anti-coloring effect. Rather, the haze of the film obtained using this increases, which is not preferable.

本発明で使用する有機化クレイ(B)はクレイを有機化剤で膨潤化処理したものである。有機化クレイ(B)中のクレイは、マイカ、バーミキュライト、スメクタイト等であり、好ましくは0.25〜0.6の電荷密度を有する2−八面体型や3−八面体型の層状珪酸塩であり、2−八面体型としては、モンモリロナイト、バイデライト、ノントロナイト等、3−八面体型としてはヘクトライト、サポナイト等が挙げられる。これらの中でも、モンモリロナイトは高膨潤性を有し、有機化剤の浸透による膨潤が起こり層間が広がりやすいため、ポリアミド樹脂組成物中で分散しやすく、特に好ましい。   Organized clay (B) used in the present invention is obtained by swelling clay with an organic agent. The clay in the organized clay (B) is mica, vermiculite, smectite, etc., preferably 2-octahedral or 3-octahedral layered silicate having a charge density of 0.25 to 0.6. Yes, examples of the 2-octahedron type include montmorillonite, beidellite, and nontronite, and examples of the 3-octahedron type include hectorite and saponite. Among these, montmorillonite is particularly preferable because it has a high swellability, easily swells due to the penetration of the organic agent, and easily spreads between the layers.

前記有機化剤としては、第4級アンモニウム塩が好ましく使用できるが、より好ましくは、炭素数12以上のアルキル基を少なくとも一つ以上有する第4級アンモニウム塩が用いられる。有機化剤の具体例としては、例えばトリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、トリメチルエイコシルアンモニウム塩等のトリメチルアルキルアンモニウム塩;トリメチルオクタデセニルアンモニウム塩、トリメチルオクタデカジエニルアンモニウム塩等のトリメチルアルケニルアンモニウム塩;トリエチルドデシルアンモニウム塩、トリエチルテトラデシルアンモニウム塩、トリエチルヘキサデシルアンモニウム塩、トリエチルオクタデシルアンモニウム塩等のトリエチルアルキルアンモニウム塩;トリブチルドデシルアンモニウム塩、トリブチルテトラデシルアンモニウム塩、トリブチルヘキサデシルアンモニウム塩、トリブチルオクタデシルアンモニウム塩等のトリブチルアルキルアンモニウム塩;ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩等のジメチルジアルキルアンモニウム塩;ジメチルジオクタデセニルアンモニウム塩、ジメチルジオクタデカジエニルアンモニウム塩等のジメチルジアルケニルアンモニウム塩;ジエチルジドデジルアンモニウム塩、ジエチルジテトラデシルアンモニウム塩、ジエチルジヘキサデシルアンモニウム塩、ジエチルジオクタデシルアンモニウム等のジエチルジアルキルアンモニウム塩;ジブチルジドデシルアンモニウム塩、ジブチルジテトラデシルアンモニウム塩、ジブチルジヘキサデシルアンモニウム塩、ジブチルジオクタデシルアンモニウム塩等のジブチルジアルキルアンモニウム塩;メチルベンジルジヘキサデシルアンモニウム塩等のメチルベンジルジアルキルアンモニウム塩;ジベンジルジヘキサデシルアンモニウム塩等のジベンジルジアルキルアンモニウム塩;トリドデシルメチルアンモニウム塩、トリテトラデシルメチルアンモニウム塩、トリオクタデシルメチルアンモニウム塩等のトリアルキルメチルアンモニウム塩;トリドデシルエチルアンモニウム塩等のトリアルキルエチルアンモニウム塩;トリドデシルブチルアンモニウム塩等のトリアルキルブチルアンモニウム塩;メチルジヒドロキシエチル水素化タロウアンモニウム塩;4−アミノ−n−酪酸、6−アミノ−n−カプロン酸、8−アミノカプリル酸、10−アミノデカン酸、12−アミノドデカン酸、14−アミノテトラデカン酸、16−アミノヘキサデカン酸、18−アミノオクタデカン酸等のω−アミノ酸などが挙げられる。中でもトリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩が挙げられ、これらの有機化剤は、単独で、あるいは複数種類の混合物として使用することができる。また、ポリエチレングリコール、プロピレングリコール等のグリコール基を有する4級アンモニウム塩を用いても良い。   As the organic agent, a quaternary ammonium salt can be preferably used. More preferably, a quaternary ammonium salt having at least one alkyl group having 12 or more carbon atoms is used. Specific examples of the organic agent include, for example, trimethyl dodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, and trimethyl alkyl ammonium salt such as trimethyl eicosyl ammonium salt; trimethyl octadecenyl ammonium Salts, trimethyl alkenyl ammonium salts such as trimethyl octadecadienyl ammonium salt; triethyl alkyl ammonium salts such as triethyl dodecyl ammonium salt, triethyl tetradecyl ammonium salt, triethyl hexadecyl ammonium salt, triethyl octadecyl ammonium salt; tributyl dodecyl ammonium salt, tributyl Tetradecyl ammonium salt, tributyl hexadecyl ammonium salt Tributylalkylammonium salts such as tributyloctadecylammonium salt; dimethyldialkylammonium salts such as dimethyldidodecylammonium salt, dimethylditetradecylammonium salt, dimethyldihexadecylammonium salt, dimethyldioctadecylammonium salt, dimethylditallowammonium salt; dimethyl Dioctadecenyl ammonium salt, dimethyl dialkenyl ammonium salt such as dimethyl dioctadecadienyl ammonium salt; diethyl didodecyl ammonium salt, diethyl ditetradecyl ammonium salt, diethyl dihexadecyl ammonium salt, diethyl dioctadecyl ammonium salt, etc. Diethyl dialkyl ammonium salt; dibutyl didodecyl ammonium salt, dibutyl ditetradecyl ammonium salt Dibutyl dialkyl ammonium salts such as dibutyl dihexadecyl ammonium salt and dibutyl dioctadecyl ammonium salt; methyl benzyl dialkyl ammonium salts such as methyl benzyl dihexadecyl ammonium salt; dibenzyl dialkyl ammonium salts such as dibenzyl dihexadecyl ammonium salt; Trialkylmethylammonium salts such as dodecylmethylammonium salt, tritetradecylmethylammonium salt, trioctadecylmethylammonium salt; trialkylethylammonium salts such as tridodecylethylammonium salt; trialkylbutylammonium salts such as tridodecylbutylammonium salt Methyl dihydroxyethyl hydrogenated tallow ammonium salt; 4-amino-n-butyric acid, 6-amino-n-caproic acid, 8 Ω-amino acids such as -aminocaprylic acid, 10-aminodecanoic acid, 12-aminododecanoic acid, 14-aminotetradecanoic acid, 16-aminohexadecanoic acid and 18-aminooctadecanoic acid. Among them, trimethyldodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl Examples include ditallow ammonium salts, and these organic agents can be used alone or as a mixture of plural kinds. Further, a quaternary ammonium salt having a glycol group such as polyethylene glycol or propylene glycol may be used.

前記有機化剤の量は、有機化クレイ(B)の重量の20〜40重量%の範囲であることが好ましく、より好ましくは20〜35重量%の範囲である。有機化剤の量が20重量%より小さいと、クレイが分散しにくいため好ましくない。有機化剤の量が40重量%より大きいと、溶融混練時の熱により劣化、又は分解する有機化剤が多く、クレイが凝集するため、クレイが完全に微分散しないばかりか、アミンやアンモニアなどの有機化剤分解物が悪臭の原因となるため好ましくない。   The amount of the organicizing agent is preferably in the range of 20 to 40% by weight, more preferably in the range of 20 to 35% by weight, based on the weight of the organized clay (B). When the amount of the organic agent is less than 20% by weight, clay is difficult to disperse, which is not preferable. If the amount of the organic agent is larger than 40% by weight, there are many organic agents that are deteriorated or decomposed by heat at the time of melt kneading, and the clay is agglomerated, so that the clay is not completely finely dispersed, and amine, ammonia, etc. Since the decomposition product of the organic agent causes bad odor, it is not preferable.

有機化クレイ(B)を窒素気流下で熱重量測定した際、JIS K−7120で定められる質量変化の開始温度は220℃以上が好ましく、より好ましくは240℃以上、さらに好ましくは250℃以上である。開始温度が220℃より低いと、有機化剤が溶融混練の際に熱により劣化、又は分解し易く、クレイが凝集するため、クレイが完全に微分散しないばかりか、アミンやアンモニアなどの有機化剤分解物が悪臭の原因となるため好ましくない。   When the organoclay (B) is thermogravimetrically measured under a nitrogen stream, the starting temperature of mass change defined by JIS K-7120 is preferably 220 ° C or higher, more preferably 240 ° C or higher, and further preferably 250 ° C or higher. is there. When the starting temperature is lower than 220 ° C., the organic agent is easily deteriorated or decomposed by heat during melt-kneading, and the clay aggregates, so that the clay is not completely finely dispersed, and organic compounds such as amine and ammonia are used. Since the agent decomposition product causes bad odor, it is not preferable.

本発明において、ポリアミド樹脂組成物中の有機化クレイ(B)の含有量は、ポリアミド樹脂組成物中の灰分として1〜10重量%であり、好ましくは1.2〜9重量%、さらに好ましくは1.5〜8重量%である。灰分が1重量%未満では、ガスバリア性の向上効果が十分に現れない。また10重量%より大きいと、ポリアミド中にクレイを均一に分散させることが困難である。ここで、灰分量はポリアミド樹脂組成物3gを1000℃の電気炉中で4時間熱処理(灰化)し、残存する灰分の重量から求めた値である。   In the present invention, the content of the organized clay (B) in the polyamide resin composition is 1 to 10% by weight, preferably 1.2 to 9% by weight, more preferably as ash in the polyamide resin composition. 1.5 to 8% by weight. When the ash content is less than 1% by weight, the effect of improving the gas barrier property is not sufficiently exhibited. On the other hand, if it is larger than 10% by weight, it is difficult to uniformly disperse the clay in the polyamide. Here, the amount of ash is a value determined from the weight of the remaining ash after heat treating (ashing) 3 g of the polyamide resin composition in an electric furnace at 1000 ° C. for 4 hours.

本発明において、ポリアミド樹脂組成物中に含有される有機化クレイ(B)は局所的に凝集することなく均一分散していることがガスバリア性の向上効果が高く好ましい。ここでいう均一分散とは、クレイがポリアミド樹脂組成物中において平板状に分離し、それらの50%以上が5nm以上の層間距離を有し、好ましくは10nm以上の層間距離を有し、より好ましくは20nm以上の層間距離を有することをいう。ここで言う層間距離とは平板状物の重心間距離を意味し、この距離が大きい程、クレイの分散状態が良好と言える。層間距離が5nm以上のものが50%未満であると、ポリアミド樹脂組成物からなる包装材料のヘーズが高く、かつガスバリア性の向上効果が得られないため、好ましくない。なお、有機化クレイ(B)の均一な分散を確認する方法としては、透過型電子顕微鏡でサンプル内部のクレイを観察する方法、走査型電子顕微鏡でサンプル表面を観察する方法、X線回折法(XRD)によりクレイの層間距離を測定する方法などがある。電子顕微鏡を用いれば直接的にクレイの層間距離を測定でき、X線回折法を用いれば、回折プロファイルにクレー由来のピークが現れないとき、クレーの分散は良好であるといえる。   In the present invention, the organized clay (B) contained in the polyamide resin composition is preferably uniformly dispersed without locally agglomerating because the effect of improving gas barrier properties is high. Here, the uniform dispersion means that the clay is separated into a flat plate shape in the polyamide resin composition, and 50% or more of them have an interlayer distance of 5 nm or more, preferably 10 nm or more, more preferably Means having an interlayer distance of 20 nm or more. The interlayer distance referred to here means the distance between the centers of gravity of the flat objects, and the larger the distance, the better the dispersion state of the clay. If the distance between the layers is 5 nm or more and less than 50%, the packaging material made of the polyamide resin composition has a high haze and an effect of improving gas barrier properties cannot be obtained. In addition, as a method of confirming uniform dispersion of the organized clay (B), a method of observing the clay inside the sample with a transmission electron microscope, a method of observing the sample surface with a scanning electron microscope, an X-ray diffraction method ( There is a method of measuring the interlayer distance of clay by XRD). If an electron microscope is used, the clay interlayer distance can be measured directly, and if the X-ray diffraction method is used, when no clay-derived peak appears in the diffraction profile, it can be said that the clay dispersion is good.

本発明のポリアミド樹脂組成物は、ポリアミド(A)と有機化クレイ(B)を溶融混練して得られる。溶融混練するための装置としては、バッチ式混練機、ニーダ、単軸もしくは二軸押出機等、公知の種々の押出機が挙げられるが、これらのなかでも混練能力や、生産性に優れる点から二軸押出機が好ましい。溶融混練温度はポリアミド(A)の融点以上、かつ有機化クレイ(B)を熱重量測定したときに有機化クレイ(B)の10重量%が減少する温度以下であり、好ましくは8%重量減少温度以下、より好ましくは5%重量減少温度以下である。この範囲の温度であれば有機化クレイ(B)が均一に分散しやすい。ここで、熱重量測定は、JIS K−7120に記載の測定方法に準じて実施できる。例えば島津示差熱重量同時測定装置DTG−50にて窒素気流下、昇温速度10℃/分の条件にて行うことができる。また、溶融混練時における実際の樹脂温度はスクリュー回転による剪断発熱によって押出機設定温度よりも高くなることが多いので、押出機出口で樹脂温度を計測する等、できるだけ正確な樹脂温度を測定することが重要である。上記10重量%減少温度を超える温度では、大部分の有機化クレイの有機化剤が熱により劣化、又は分解し、クレイが凝集するため、クレイが完全に微分散しないばかりか、アミンやアンモニアなどの有機化剤分解物が悪臭の原因となるため好ましくない。一方、ポリアミド(A)の融点より低い温度では、ポリアミド(A)が可塑化しないため有機化クレイを分散させることができず好ましくない。   The polyamide resin composition of the present invention can be obtained by melt-kneading polyamide (A) and organized clay (B). Examples of the apparatus for melt kneading include various known extruders such as batch kneaders, kneaders, single-screw or twin-screw extruders, etc. Among these, kneading ability and productivity are excellent. A twin screw extruder is preferred. The melt kneading temperature is not less than the melting point of the polyamide (A) and not more than the temperature at which 10% by weight of the organized clay (B) is reduced when the organoclay (B) is thermogravimetrically measured, preferably 8% by weight reduction. Below the temperature, more preferably below the 5% weight loss temperature. If it is the temperature of this range, organoclay (B) will be easy to disperse | distribute uniformly. Here, thermogravimetry can be performed according to the measurement method described in JIS K-7120. For example, Shimadzu differential thermogravimetric simultaneous measurement apparatus DTG-50 can be carried out under a nitrogen stream under a temperature rising rate of 10 ° C./min. Also, since the actual resin temperature during melt-kneading is often higher than the set temperature of the extruder due to shearing heat generated by screw rotation, measure the resin temperature as accurately as possible, such as by measuring the resin temperature at the exit of the extruder. is important. At temperatures exceeding the above 10% by weight reduction temperature, most of the organoclay organicizing agent deteriorates or decomposes due to heat, and the clay aggregates, so that the clay is not completely finely dispersed, such as amine and ammonia. Since the decomposition product of the organic agent causes bad odor, it is not preferable. On the other hand, when the temperature is lower than the melting point of the polyamide (A), the polyamide (A) is not plasticized, so that the organized clay cannot be dispersed.

本発明のポリアミド樹脂組成物は、ポリアミド(A)と有機化クレイ(B)を溶融混練して得られるが、この際、混練装置により該装置内の材料(ポリアミド(A)及び有機化クレイ(B))に与えられる比エネルギーが0.2〜0.45kWh/kgであることが好ましい。なお、比エネルギーとは、材料の単位重量あたり、単位時間あたり材料に付加されるエネルギーである。比エネルギーが0.2kWh/kgより小さいと混練に十分なエネルギーが得られず、有機化クレイは分散しない。比エネルギーが0.45kWh/kgより大きいと、ポリアミド(A)に過剰なエネルギーが加わり、ポリアミド(A)の粘度が下がるため有機化クレイ(B)は分散が不十分となり易く好ましくない。さらにポリアミド(A)が劣化、損傷するため、YI(黄色度)が増加し、さらにはゲル又はフィッシュアイの増加を招いたり、分子量、溶融粘度が低下するためフィルム、シート等の作製時にドローダウン等が起こりやすくなり、ポリアミド樹脂組成物を利用してなる成形品の商品価値が低下する。   The polyamide resin composition of the present invention is obtained by melt-kneading the polyamide (A) and the organized clay (B). At this time, the materials (polyamide (A) and organized clay ( The specific energy given to B)) is preferably 0.2 to 0.45 kWh / kg. The specific energy is energy added to the material per unit time per unit weight of the material. When the specific energy is less than 0.2 kWh / kg, sufficient energy for kneading cannot be obtained, and the organized clay is not dispersed. When the specific energy is larger than 0.45 kWh / kg, excessive energy is added to the polyamide (A), and the viscosity of the polyamide (A) is lowered. Therefore, the organoclay (B) is not preferable because the dispersion becomes insufficient. In addition, since the polyamide (A) is deteriorated and damaged, the YI (yellowness) increases, and further increases in gel or fish eye, and the molecular weight and melt viscosity decrease. Etc. are likely to occur, and the commercial value of a molded product using the polyamide resin composition is lowered.

本発明において、ポリアミド(A)と有機化クレイ(B)を溶融混練する際は混練装置内の滞留時間が60〜1200秒であることが好ましく、より好ましくは80〜1000秒、さらに好ましくは100〜800秒である。ここで、滞留時間とは、混練に要する時間を意味し、例えば、押出機ではポリアミド(A)と有機化クレイ(B)が押出機供給口にフィードされてからダイより吐出されるまでの時間であり、例えば、ポリアミド樹脂組成物の製造条件において、供給口よりカラーペレット等をフィードし、ダイから吐出されるストランドの色の変化するまでの時間を測定することにより求めることができる。滞留時間が60秒より小さいと、有機化クレイの分散が不十分となりやすく、滞留時間が1200秒より大きいと、ポリアミド(A)の熱履歴が増加してポリアミド劣化して、色調が悪化したり、さらにはゲル又はフィッシュアイの増加を招いたりするため好ましくない。また、有機化クレイ(B)の有機化剤が熱により劣化、又は分解し、クレイが凝集するため、クレイが完全に微分散しないばかりか、アミンやアンモニアなどの有機化剤分解物が悪臭の原因となるため好ましくない。   In the present invention, when the polyamide (A) and the organized clay (B) are melt-kneaded, the residence time in the kneading apparatus is preferably 60 to 1200 seconds, more preferably 80 to 1000 seconds, still more preferably 100. ~ 800 seconds. Here, the residence time means the time required for kneading. For example, in the extruder, the time from when the polyamide (A) and the organized clay (B) are fed to the extruder supply port until they are discharged from the die. For example, in the production conditions of the polyamide resin composition, it can be obtained by feeding color pellets or the like from the supply port and measuring the time until the color of the strand discharged from the die changes. If the residence time is less than 60 seconds, the dispersion of the organized clay tends to be insufficient, and if the residence time is more than 1200 seconds, the heat history of the polyamide (A) increases and the polyamide deteriorates and the color tone deteriorates. Further, it is not preferable because it causes an increase in gel or fish eye. In addition, since the organicizing agent of the organized clay (B) is deteriorated or decomposed by heat and the clay is agglomerated, the clay is not completely finely dispersed, and the decomposed product of the organic agent such as amine or ammonia has a bad odor. It is not preferable because it causes.

本発明のポリアミド樹脂組成物に用いるポリアミド(A)の数平均分子量が2000乃至50000の範囲内である。なお、数平均分子量については、ポリアミド樹脂組成物の用途や成形方法により適宜選択される。例えば、フィルム等、製造時にある程度の流動性が求められる場合には数平均分子量が20000〜30000程度のものが、シート等、製造時に溶融強度が必要とされる場合には30000〜45000程度のものが選択されるが、これに限定されるものではない。   The number average molecular weight of the polyamide (A) used in the polyamide resin composition of the present invention is in the range of 2000 to 50000. The number average molecular weight is appropriately selected depending on the use of the polyamide resin composition and the molding method. For example, a film having a number average molecular weight of about 20000 to 30000 when a certain degree of fluidity is required during production, and a sheet having a melt strength of about 30000 to 45000 when melt strength is required during production. Is selected, but is not limited to this.

なお、本発明のポリアミド樹脂組成物は、溶融混練後に固相重合を行い分子量を増加させることもできる。固相重合するにあたっては、減圧条件、固相重合時間及び固相重合温度等は目的とするポリアミド複合材料の分子量によって任意に設定できる。固相重合するにあたっては、公知の方法により行うことができる。例えば、ポリアミド樹脂組成物をタンブラー(回転式真空槽)あるいはナウタミキサー(内部に回転翼を備えた円錐型の加熱装置)等中に仕込み、回分式操作によって行う方法、ポリアミド樹脂組成物と加熱窒素ガスを連続的に接触させる塔式の連続固相重合法等が挙げられるが、これに限定されるものではない。   In addition, the polyamide resin composition of this invention can also carry out solid-phase polymerization after melt-kneading, and can also increase molecular weight. In the solid phase polymerization, the decompression conditions, the solid phase polymerization time, the solid phase polymerization temperature, and the like can be arbitrarily set depending on the molecular weight of the target polyamide composite material. Solid phase polymerization can be performed by a known method. For example, a method in which a polyamide resin composition is charged into a tumbler (rotary vacuum tank) or a nauta mixer (conical heating device having a rotating blade inside) and the like, and is performed by a batch operation, a polyamide resin composition and heated nitrogen Examples thereof include, but are not limited to, a tower-type continuous solid phase polymerization method in which a gas is continuously contacted.

本発明のポリアミド樹脂組成物は、水分率が0.2重量%未満であることが成形加工上有利である。水分率が0.2重量%以上であると、フィルム製造時に分子量の低下やゲル状ブツ、気泡等が生じやすく、さらにドローダウン等が起こりやすくなるので好ましくなく、その際は乾燥してから使用することが望ましい。ポリアミド樹脂組成物の乾燥は、公知の方法により行うことができる。例えば、ベント付きの押出機でポリアミドを溶融押出する際にシリンダー内部を真空ポンプにより減圧にすることでポリマー中の水分を除去する方法、ポリアミド樹脂をタンブラー(回転式真空槽)中に仕込み、減圧下でポリマーの融点以下の温度で加熱して乾燥する方法等が挙げられるが、これに限定されるものではない。   The polyamide resin composition of the present invention has a moisture content of less than 0.2% by weight, which is advantageous in terms of molding. If the moisture content is 0.2% by weight or more, it is not preferable because it tends to cause a decrease in molecular weight, gelled blisters, air bubbles, etc. during film production, and further tends to cause drawdown. It is desirable to do. The polyamide resin composition can be dried by a known method. For example, when melt-extruding polyamide with a vented extruder, the inside of the cylinder is depressurized with a vacuum pump to remove the water in the polymer, and the polyamide resin is charged into a tumbler (rotary vacuum tank) and decompressed. Although the method of drying by heating at the temperature below the melting point of a polymer below etc. is mentioned, it is not limited to this.

また、本発明のポリアミド樹脂組成物には、本発明の目的を損なわない範囲で、ナイロン6、ナイロン66、ナイロン6,66、ポリエステル、オレフィン等の他樹脂とブレンドでき、ガラス繊維、炭素繊維などの無機充填剤、ガラスフレーク、タルク、カオリン、マイカなどの板状無機充填剤、各種エラストマー類などの耐衝撃性改質材、結晶核剤、脂肪酸アミド系、脂肪酸金属塩系、脂肪酸アマイド系化合物等の滑剤、銅化合物、有機もしくは無機ハロゲン系化合物、ヒンダードフェノール系、ヒンダードアミン系、ヒドラジン系、硫黄系化合物、リン系化合物等の酸化防止剤、熱安定剤、着色防止剤、ベンゾトリアゾール系等の紫外線吸収剤、離型剤、可塑剤、着色剤、難燃剤などの添加剤、酸素補足能を付与する化合物であるコバルト金属を含む化合物やポリアミド樹脂のゲル化防止を目的としたアルカリ化合物等の添加剤を添加することができる。   Further, the polyamide resin composition of the present invention can be blended with other resins such as nylon 6, nylon 66, nylon 6, 66, polyester, olefin, etc. within the range not impairing the object of the present invention, such as glass fiber, carbon fiber, etc. Inorganic fillers, plate-like inorganic fillers such as glass flakes, talc, kaolin and mica, impact modifiers such as various elastomers, crystal nucleating agents, fatty acid amides, fatty acid metal salts, fatty acid amides Lubricants such as copper compounds, organic or inorganic halogen compounds, hindered phenols, hindered amines, hydrazines, sulfur compounds, phosphorus compounds and other antioxidants, heat stabilizers, anti-coloring agents, benzotriazoles, etc. Cobalt is a compound that imparts oxygen scavenging ability, additives such as UV absorbers, mold release agents, plasticizers, colorants, flame retardants, etc. It may be added an additive of an alkali compound such as for the purpose of preventing gelation of a compound or a polyamide resin containing a metal.

本発明のポリアミド樹脂組成物は、ガスバリア性や透明性に優れ、かつ安定した溶融特性を有する。本発明のポリアミド樹脂組成物は、該樹脂組成物を少なくとも一部に利用することで、種々の包装材料あるいは包装容器とすることができる。例えばTダイを備えた押出装置や、インフレーションフィルム製造装置を用いて、単層のフィルムやシートに加工でき、さらに他の樹脂、たとえばポリエチレン、ポリプロピレン、ナイロン6、PETや金属箔、紙等を、押出ラミネートや、共押出などの方法を用いて多層構造のフィルム、シートに加工することができる。さらにラップ、あるいは各種形状のパウチ、容器の蓋材、ボトル、カップ、トレイ、チューブ等の包装容器に利用できる。本発明のポリアミド樹脂組成物を利用して得られた包装容器は、ガスバリア性に優れ、かつ透明性に優れたものであり、例えば、炭酸飲料、ジュース、水、牛乳、日本酒、ウイスキー、焼酎、コーヒー、茶、ゼリー飲料、健康飲料等の液体飲料、調味液、ソース、醤油、ドレッシング、液体だし、マヨネーズ、味噌、すり下ろし香辛料等の調味料、ジャム、クリーム、チョコレートペースト等のペースト状食品、液体スープ、煮物、漬物、シチュー等の液体加工食品に代表される液体系食品やそば、うどん、ラーメン等の生麺及びゆで麺、精米、調湿米、無洗米等の調理前の米類や調理された炊飯米、五目飯、赤飯、米粥等の加工米製品類、粉末スープ、だしの素等の粉末調味料等に代表される高水分食品、乾燥野菜、コーヒー豆、コーヒー粉、お茶、穀物を原料としたお菓子等に代表される低水分食品、その他農薬や殺虫剤等の固体状や溶液状の化学薬品、液体及びペースト状の医薬品、化粧水、化粧クリーム、化粧乳液、整髪料、染毛剤、シャンプー、石鹸、洗剤等、種々の物品を収納することができる。   The polyamide resin composition of the present invention has excellent gas barrier properties and transparency, and has stable melting characteristics. The polyamide resin composition of the present invention can be made into various packaging materials or packaging containers by using the resin composition at least in part. For example, using an extrusion device equipped with a T-die or an inflation film manufacturing device, it can be processed into a single-layer film or sheet, and other resins such as polyethylene, polypropylene, nylon 6, PET, metal foil, paper, etc. It can be processed into a film or sheet having a multilayer structure by a method such as extrusion lamination or coextrusion. Furthermore, it can be used for packaging containers such as wraps or various shapes of pouches, container lids, bottles, cups, trays, and tubes. The packaging container obtained using the polyamide resin composition of the present invention is excellent in gas barrier properties and excellent in transparency, for example, carbonated drink, juice, water, milk, sake, whiskey, shochu, Liquid drinks such as coffee, tea, jelly drinks, health drinks, seasonings, sauces, soy sauce, dressings, liquid soup, seasonings such as mayonnaise, miso, grated spices, pasty foods such as jam, cream, chocolate paste, Liquid foods such as liquid soups, boiled foods, pickles, stews, and raw foods such as buckwheat noodles, noodles, ramen, etc. Cooked cooked rice, processed rice products such as gomoku rice, red rice and rice bran, high-moisture foods such as powdered seasonings such as powdered soup and dashi stock, dried vegetables, coffee beans and coffee , Low-moisture foods such as tea and cereals, other solid and solution chemicals such as pesticides and insecticides, liquid and paste pharmaceuticals, lotions, cosmetic creams, and lotions Various articles such as hair conditioners, hair dyes, shampoos, soaps and detergents can be stored.

以下、実施例等により本発明を具体的に説明する。尚、実施例等において、ポリアミド樹脂組成物の評価方法は、下記の方法によった。
(1)末端アミノ基濃度、末端カルボキシル基濃度
末端アミノ基濃度測定は、ポリアミド0.3〜0.5gを精秤し、フェノール/エタノール=4/1容量溶液30ccに20〜30℃で撹拌溶解した。完全に溶解した後、三菱化学(株)製自動滴定装置を用いて、N/100塩酸水溶液で中和滴定して求めた。
末端カルボキシル基濃度測定は、ポリアミド樹脂0.3〜0.5gを精秤し、ベンジルアルコール溶液30ccに約150℃で撹拌溶解したのち、メタノール10mlを加え、三菱化学(株)製自動滴定装置を用いて、N/100水酸化ナトリウム水溶液で中和滴定して求めた。
(2)相対粘度ηr
ポリアミド1gを精秤し、96%硫酸100mlに20〜30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温槽中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度ηrを算出した。
ηr=(t)/(t0)
(3)水分率
三菱化学(株)製微量水分測定装置CA−05を用いて、窒素雰囲気下、235℃、50分の条件で測定を行った。
(4)ヘーズ
フィルムについて日本電色工業(株)製、色差・濁度測定器COH−300Aを使用し、ASTM D1003に準じてフィルムのヘーズを測定した。
(5)酸素透過係数
フィルムについてASTM D3985に準じて測定した。測定はモダンコントロール社製、型式:OX−TRAN 10/50Aを使用し、23℃、相対湿度60%の雰囲気下にて行った。
(6)X線回折(XRD)
測定は理学社製ミニフレックスを使用した。X線源にはCuKαを用い、散乱スリットは4.2度、受光スリットは0.3mm、管電圧30kV管電流15mA、走査範囲は2〜50度、サンプリング幅は0.02度、走査速度5度/分の条件で測定した。
(7)YI
ペレットについて日本電色工業(株)製、Z−Σ80 Color Measuring Systemを使用し、ASTM D1003に準じて透過法で測定した。
(8)熱重量(TG)
島津示差熱重量同時測定装置DTG−50にて昇温速度10℃/分で測定を行った。解析は島津熱分析システムTA−50WSにて行った。
(9)灰分
灰分量はポリアミド樹脂組成物3gを1000℃の電気炉中で4時間灰化させて求めた。
Hereinafter, the present invention will be specifically described with reference to examples and the like. In Examples and the like, the evaluation method of the polyamide resin composition was as follows.
(1) Terminal amino group concentration, terminal carboxyl group concentration The terminal amino group concentration was measured by accurately weighing 0.3 to 0.5 g of polyamide, and stirring and dissolving at 30 to 30 ° C. in 30 cc of phenol / ethanol = 4/1 volume solution. did. After complete dissolution, it was determined by neutralization titration with an aqueous N / 100 hydrochloric acid solution using an automatic titrator manufactured by Mitsubishi Chemical Corporation.
For terminal carboxyl group concentration measurement, 0.3-0.5 g of polyamide resin is precisely weighed, dissolved in 30 cc of benzyl alcohol solution with stirring at about 150 ° C., 10 ml of methanol is added, and an automatic titrator manufactured by Mitsubishi Chemical Corporation is used. It was determined by neutralization titration with an N / 100 aqueous sodium hydroxide solution.
(2) Relative viscosity ηr
1 g of polyamide was precisely weighed and dissolved in 100 ml of 96% sulfuric acid with stirring at 20-30 ° C. After complete dissolution, 5 ml of the solution was quickly taken into a Cannon Fenceke viscometer, and left for 10 minutes in a thermostatic bath at 25 ° C., and then the drop time (t) was measured. Further, the dropping time (t0) of 96% sulfuric acid itself was measured in the same manner. The relative viscosity ηr was calculated from t and t0 according to the following equation.
ηr = (t) / (t0)
(3) Moisture content Using a trace moisture measuring device CA-05 manufactured by Mitsubishi Chemical Corporation, measurement was performed under conditions of 235 ° C. and 50 minutes in a nitrogen atmosphere.
(4) Haze The haze of the film was measured according to ASTM D1003 using a color difference / turbidity measuring device COH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
(5) Oxygen permeability coefficient The film was measured according to ASTM D3985. The measurement was carried out in an atmosphere of 23 ° C. and 60% relative humidity using a model manufactured by Modern Control Co., Ltd., model: OX-TRAN 10 / 50A.
(6) X-ray diffraction (XRD)
The measurement used a Rigaku Corporation mini flex. CuKα is used as the X-ray source, the scattering slit is 4.2 degrees, the light receiving slit is 0.3 mm, the tube voltage is 30 kV, the tube current is 15 mA, the scanning range is 2 to 50 degrees, the sampling width is 0.02 degrees, and the scanning speed is 5 Measured under the condition of degree / minute.
(7) YI
The pellets were measured by a permeation method according to ASTM D1003 using a Z-Σ80 Color Measuring System manufactured by Nippon Denshoku Industries Co., Ltd.
(8) Thermal weight (TG)
Measurement was performed at a temperature increase rate of 10 ° C./min with a Shimadzu differential thermogravimetric simultaneous measurement apparatus DTG-50. The analysis was performed with Shimadzu thermal analysis system TA-50WS.
(9) Ash content The ash content was determined by ashing 3 g of the polyamide resin composition in an electric furnace at 1000 ° C. for 4 hours.

尚、本実施例、比較例で使用した有機化クレイ(1)は、白石工業製NewDオルベンであり、モンモリロナイトをジメチルジオクタデシルアンモニウム塩(有機化クレイ中で40重量%)で有機化処理した物で、熱重量測定における質量変化の開始温度は243℃、中間温度は345℃、終了温度は437℃、重量減少率は39%である。尚、10重量%減少温度は305℃である。有機化クレイ(2)は、モンモリロナイトを有機処理した物で、熱重量測定における質量変化の開始温度は213℃、中間温度は282℃、終了温度は350℃、重量減少率は21%である。尚、10重量%減少温度は281℃である。   The organoclay (1) used in this example and comparative example is NewD Orbene manufactured by Shiroishi Kogyo, and montmorillonite is organically treated with dimethyldioctadecylammonium salt (40% by weight in the organoclay). In the thermogravimetry, the mass change start temperature is 243 ° C., the intermediate temperature is 345 ° C., the end temperature is 437 ° C., and the weight loss rate is 39%. The 10% by weight reduction temperature is 305 ° C. Organized clay (2) is a product obtained by organically treating montmorillonite. The thermogravimetric mass change start temperature is 213 ° C., the intermediate temperature is 282 ° C., the end temperature is 350 ° C., and the weight loss rate is 21%. The 10% by weight reduction temperature is 281 ° C.

<実施例1>
メタキシリレンジアミンとアジピン酸を溶融状態で所定時間重縮合後、重合槽下部のノズルからストランドとして取り出し、空冷した後ペレット形状に切断し、ポリメタキシレンアジパミド(PA1)を得た。合成したPA1(ηr=2.56、モル比0.994、融点237℃)96.6重量%と有機化クレイ(1)3.4重量%をそれぞれ別のフィーダーを用いてベント付の同方向回転二軸押出機に供給し、前記押出機にて、289℃、比エネルギー0.362kWh/kg、滞留時間300秒の条件で溶融混練してポリアミド樹脂組成物PA11のペレットを100kg製造した。PA11のηrは2.42、YIは44.6であった。また、有機化剤の分解に由来する、アミン、アンモニア様の臭気は感じられなかった。上記で得られたペレットを供給速度1.2kg/時間でシリンダー径20mmの単軸押出機に供給し、Tダイを通じてフィルム状物を押出しロール上で固化し、厚さ80μmのフィルムを得た。フィルムの外観は良好で、ヘーズは1.3%、酸素透過係数は0.1ml・mm/m・day・MPaであり、非常に良好なガスバリア性能及び透明性を持つフィルムを得ることができた。またXRDによる観察ではクレイの顕著なピークは観察されなかった。
<Example 1>
Metaxylylenediamine and adipic acid were polycondensed in a molten state for a predetermined time, taken out as a strand from the nozzle at the bottom of the polymerization tank, air-cooled, and then cut into pellets to obtain polymetaxylene adipamide (PA1). Synthesized PA1 (ηr = 2.56, molar ratio 0.994, melting point 237 ° C.) 96.6% by weight and organoclay (1) 3.4% by weight in the same direction with vents using separate feeders 100 kg of polyamide resin composition PA11 pellets were produced by melting and kneading the mixture at 289 ° C., specific energy of 0.362 kWh / kg, and residence time of 300 seconds. Ηr of PA11 was 2.42 and YI was 44.6. Also, no amine or ammonia-like odor derived from the decomposition of the organic agent was felt. The pellets obtained above were supplied to a single screw extruder having a cylinder diameter of 20 mm at a supply rate of 1.2 kg / hour, and the film-like product was solidified on an extrusion roll through a T die to obtain a film having a thickness of 80 μm. Appearance of the film is good, haze is 1.3%, oxygen permeability coefficient is 0.1ml · mm / m 2 · day · MPa, and a film with very good gas barrier performance and transparency can be obtained. It was. In addition, a remarkable clay peak was not observed by observation by XRD.

<実施例2>
メタキシリレンジアミンとアジピン酸を溶融状態で所定時間重縮合後、重合槽下部のノズルからストランドとして取り出し、空冷した後ペレット形状に切断し、ポリメタキシレンアジパミド(PA2)を得た。PA2(ηr=2.63、モル比0.994、融点237℃)96.6重量%と有機化クレイ(1)3.4重量%をそれぞれ別のフィーダーを用いてベント付の同方向回転二軸押出機に供給し、前記押出機にて、288℃、比エネルギー0.357kWh/kg、滞留時間200秒の条件で溶融混練してポリアミド樹脂組成物PA21のペレットを100kg製造した。PA21のηrは2.45、YIは44.0であった。また、有機化剤の分解に由来する、アミン、アンモニア様の臭気は感じられなかった。上記で得られたペレットを供給速度1.2kg/時間でシリンダー径20mmのTダイ付き単軸押出機に供給し、Tダイを通じてフィルム状物を押出しロール上で固化し、厚さ44μmのフィルムを得た。フィルムの外観は良好で、ヘーズは3.0%、酸素透過係数は0.4ml・mm/m・day・MPaであり、非常に良好なガスバリア性能及び透明性を持つフィルムを得ることができた。またXRDによる観察ではクレイの顕著なピークは観察されなかった。
<Example 2>
Metaxylylenediamine and adipic acid were polycondensed for a predetermined time in a molten state, then taken out as a strand from the nozzle at the bottom of the polymerization tank, air-cooled, and then cut into pellets to obtain polymetaxylene adipamide (PA2). PA2 (ηr = 2.63, molar ratio 0.994, melting point 237 ° C.) 96.6% by weight and organoclay (1) 3.4% by weight were respectively rotated in the same direction with a vent using separate feeders. 100 kg of polyamide resin composition PA21 pellets were produced by melting and kneading the mixture at 288 ° C., specific energy of 0.357 kWh / kg, and residence time of 200 seconds. Ηr of PA21 was 2.45, and YI was 44.0. Also, no amine or ammonia-like odor derived from the decomposition of the organic agent was felt. The pellets obtained above were supplied to a single-screw extruder with a T-die having a cylinder diameter of 20 mm at a supply rate of 1.2 kg / hour, the film-like product was extruded through the T-die and solidified on a roll, and a 44 μm thick film was obtained. Obtained. Appearance of the film is good, haze is 3.0%, oxygen permeability coefficient is 0.4ml · mm / m 2 · day · MPa, and a film with very good gas barrier performance and transparency can be obtained. It was. In addition, a remarkable clay peak was not observed by observation by XRD.

<実施例3>
実施例1で合成したPA1(ηr=2.56、モル比0.994、融点237℃)96.6重量%と有機化クレイ(1)3.4重量%をそれぞれ別のフィーダーを用いてベント付の同方向回転二軸押出機に供給し、前記押出機にて、308℃、比エネルギー0.442kWh/kg、滞留時間240秒の条件で溶融混練してポリアミド樹脂組成物PA12のペレットを100kg製造した。PA12のηrは2.26、YIは57.7であった。また、有機化剤の分解に由来する、アミン、アンモニア様の臭気が感じられなかった。上記で得られたペレットを供給速度1.2kg/時間でシリンダー径20mmのTダイ付き単軸押出機に供給し、Tダイを通じてフィルム状物を押出しロール上で固化し、厚さ36μmのフィルムを得た。フィルムの外観は良好で、ヘーズは6%、酸素透過係数は0.3ml・mm/m・day・MPaであり、非常に良好なガスバリア性能及び透明性を持つフィルムを得ることができた。またXRDによる観察ではクレイの顕著なピークは観察されなかった。
<Example 3>
The PA1 synthesized in Example 1 (ηr = 2.56, molar ratio 0.994, melting point 237 ° C.) 96.6% by weight and organoclay (1) 3.4% by weight were vented using separate feeders. 100 kg of polyamide resin composition PA12 pellets are melted and kneaded under the conditions of 308 ° C., specific energy of 0.442 kWh / kg and residence time of 240 seconds. Manufactured. Ηr of PA12 was 2.26, and YI was 57.7. Also, no amine or ammonia-like odor derived from the decomposition of the organic agent was felt. The pellets obtained above are supplied to a single-screw extruder with a T-die having a cylinder diameter of 20 mm at a supply speed of 1.2 kg / hour, the film-like material is extruded through the T-die and solidified on a roll, and a film having a thickness of 36 μm is obtained. Obtained. The appearance of the film was good, the haze was 6%, the oxygen permeability coefficient was 0.3 ml · mm / m 2 · day · MPa, and a film having very good gas barrier performance and transparency could be obtained. In addition, a remarkable clay peak was not observed by observation by XRD.

<比較例1>
実施例2で合成したPA2(ηr=2.63、モル比0.994、融点237℃)96.6重量%と有機化クレイ(1)3.4重量%をベント付の同方向回転二軸押出機で、323℃、比エネルギー0.59kWh/kg、滞留時間160秒の条件で溶融混練してポリアミド樹脂組成物PA22のペレットを100kg製造した。PA22のηrは1.96、YIは78.5であった。また、有機化剤の分解に由来する、アミン、アンモニア様の臭気が感じられた。上記で得られたペレットを供給速度1.2kg/時間でシリンダー径20mmのTダイ付き単軸押出機に供給し、Tダイを通じてフィルム状物を押出しロール上で固化し、厚さ58μmのフィルムを得たが、粘度が低いため厚みむらが起こった。フィルムの外観は不良で、多数の凝集物、フィッシュアイが観察され、良好な性能を持つフィルムを得ることができなかった。またXRDによる観察ではクレイの顕著なピークが観察され、有機化クレイはポリアミド中に良好に分散していなかった。
<Comparative Example 1>
PA2 (ηr = 2.63, molar ratio 0.994, melting point 237 ° C.) synthesized in Example 2 96.6% by weight and organoclay (1) 3.4% by weight are rotated in the same direction with a vent. 100 kg of polyamide resin composition PA22 pellets were produced by melt-kneading with an extruder under conditions of 323 ° C., specific energy of 0.59 kWh / kg, and residence time of 160 seconds. Ηr of PA22 was 1.96, and YI was 78.5. Also, amine- and ammonia-like odors derived from the decomposition of the organic agent were felt. The pellets obtained above were supplied to a single-screw extruder with a T-die having a cylinder diameter of 20 mm at a supply rate of 1.2 kg / hour, the film-like product was extruded through the T-die and solidified on a roll, and a film having a thickness of 58 μm was obtained. Although the viscosity was low, uneven thickness occurred. The appearance of the film was poor, and a large number of aggregates and fish eyes were observed, and a film having good performance could not be obtained. Further, when observed by XRD, a remarkable peak of clay was observed, and the organized clay was not well dispersed in the polyamide.

<比較例2>
実施例1で合成したPA1(ηr=2.56、モル比0.994、融点237℃)96.6重量%と有機化クレイ(2)3.4重量%をそれぞれ別のフィーダーを用いてベント付の同方向回転二軸押出機に供給し、前記押出機にて、275℃、比エネルギー0.362kWh/kg、滞留時間280秒の条件で溶融混練してポリアミド樹脂組成物PA13のペレットを100kg製造した。PA13のηrは2.30、YIは55.5であった。該ペレットからは、有機化剤の分解に由来する、アミン、アンモニア様の臭気が感じられた。上記で得られたペレットを供給速度1.2kg/時間でシリンダー径20mmのTダイ付き単軸押出機に供給し、Tダイを通じてフィルム状物を押出しロール上で固化し、厚さ36μmのフィルムを得たが、フィルムの外観は不良で多数の凝集物が観察され、良好な性能を持つフィルムを得ることができなかった。またXRDによる観察ではクレイの顕著なピークは観察され、有機化クレイはポリアミド中に良好に分散していなかった。
<Comparative Example 2>
The PA1 synthesized in Example 1 (ηr = 2.56, molar ratio 0.994, melting point 237 ° C.) 96.6 wt% and organoclay (2) 3.4 wt% were vented using separate feeders. 100 kg of polyamide resin composition PA13 pellets are melt-kneaded under the conditions of 275 ° C., specific energy of 0.362 kWh / kg, and residence time of 280 seconds. Manufactured. PA13 had a ηr of 2.30 and a YI of 55.5. From the pellet, an amine-like and ammonia-like odor derived from the decomposition of the organic agent was felt. The pellets obtained above are supplied to a single-screw extruder with a T-die having a cylinder diameter of 20 mm at a supply speed of 1.2 kg / hour, the film-like material is extruded through the T-die and solidified on a roll, and a film having a thickness of 36 μm is obtained. Although the film was poor in appearance, a large number of aggregates were observed, and a film having good performance could not be obtained. Further, when observed by XRD, a remarkable peak of clay was observed, and the organized clay was not well dispersed in the polyamide.

<比較例3>
実施例2で合成したPA2(ηr=2.63、モル比0.994、融点237℃)96.6重量%と有機化クレイ(1)3.4重量%をベント付の同方向回転二軸押出機で、329℃、比エネルギー0.42kWh/kg、滞留時間250秒の条件で溶融混練してポリアミド樹脂組成物PA23のペレットを20kg製造した。PA23のηrは2.06、YIは71.5であった。また、有機化剤の分解に由来する、アミン、アンモニア様の臭気が感じられた。上記で得られたペレットを供給速度1.2kg/時間でシリンダー径20mmのTダイ付き単軸押出機に供給し、Tダイを通じてフィルム状物を押出しロール上で固化し、厚さ58μmのフィルムを得たが、フィルムの外観は不良で、多数の凝集物、フィッシュアイが観察され、良好な性能を持つフィルムを得ることができなかった。またXRDによる観察ではクレイの顕著なピークが観察され、有機化クレイはポリアミド中に良好に分散していなかった。
<Comparative Example 3>
PA2 (ηr = 2.63, molar ratio 0.994, melting point 237 ° C.) synthesized in Example 2 96.6% by weight and organoclay (1) 3.4% by weight are rotated in the same direction with a vent. 20 kg of polyamide resin composition PA23 pellets were produced by melt-kneading in an extruder at 329 ° C., specific energy of 0.42 kWh / kg, and residence time of 250 seconds. PA23 had a ηr of 2.06 and a YI of 71.5. Also, amine- and ammonia-like odors derived from the decomposition of the organic agent were felt. The pellets obtained above were supplied to a single-screw extruder with a T-die having a cylinder diameter of 20 mm at a supply rate of 1.2 kg / hour, the film-like product was extruded through the T-die and solidified on a roll, and a film having a thickness of 58 μm was obtained. Although the film was poor in appearance, many aggregates and fish eyes were observed, and a film having good performance could not be obtained. Further, when observed by XRD, a remarkable peak of clay was observed, and the organized clay was not well dispersed in the polyamide.

以上の実施例で説明したように、本発明の方法でポリアミド樹脂組成物を製造した実施例1乃至3は、有機化クレイの分散が良好で、YIも低く、有機処理剤及び樹脂の劣化は少ない。これを用いてフィルムを製造した場合、ガスバリア性、透明性は非常に優れ、品質が優れた製品を得ることができた。   As described in the above examples, Examples 1 to 3 in which the polyamide resin composition was produced by the method of the present invention had good dispersion of the organized clay, low YI, and deterioration of the organic treatment agent and the resin. Few. When a film was produced using this, a product with excellent gas barrier properties and transparency and excellent quality could be obtained.

一方、比較例1乃至3に示したように本発明と異なる方法で製造されたポリアミド樹脂組成物は、有機処理剤が分解し有機化クレイの分散が悪く、臭気も感じられた。また、YIは高く樹脂が劣化している場合がある。これを用いてフィルムを製造した場合、フィルムの外観は不良で、多数の凝集物、フィッシュアイが観察され、品質が劣っていた。   On the other hand, as shown in Comparative Examples 1 to 3, in the polyamide resin composition produced by a method different from the present invention, the organic treating agent was decomposed, the dispersion of the organoclay was bad, and odor was also felt. Further, YI is high and the resin may be deteriorated. When a film was produced using this, the appearance of the film was poor, many agglomerates and fish eyes were observed, and the quality was poor.

本発明のポリアミド樹脂組成物は、種々の包装材料や包装容器に利用できる。   The polyamide resin composition of the present invention can be used for various packaging materials and packaging containers.

Claims (8)

メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸を50モル%以上含むジカルボン酸成分とを重縮合して得られるポリアミド(A)と有機化クレイ(B)を、溶融混練してポリアミド樹脂組成物を製造する方法であって、溶融混練温度がポリアミド(A)の融点以上、かつ有機化クレイ(B)をJIS K−7120に記載の測定方法により熱重量測定したときに有機化クレイ(B)の10重量%が減少する温度以下であり、混練装置により該装置内の材料に与えられる比エネルギーが0.357〜0.45kWh/kgであり、かつ、混練装置内の滞留時間が60〜1200秒となる条件下で溶融混練することを特徴とするポリアミド樹脂組成物の製造方法。 Polyamide obtained by polycondensation of a diamine component containing 70 mol% or more of metaxylylenediamine and a dicarboxylic acid component containing 50 mol% or more of an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms (A ) And an organized clay (B) to produce a polyamide resin composition by melting and kneading, and the melt-kneading temperature is equal to or higher than the melting point of the polyamide (A), and the organized clay (B) is converted to JIS K-7120. 10% by weight or less of the organoclay (B) when thermogravimetrically measured by the measurement method described in the above, and the specific energy given to the material in the apparatus by the kneading apparatus is 0.357-0 . A process for producing a polyamide resin composition, characterized by being 45 kWh / kg and melt-kneaded under a condition that the residence time in the kneading apparatus is 60 to 1200 seconds. 有機化クレイ(B)中の有機化剤の量が、有機化クレイ重量の20〜40重量%の範囲である請求項1記載のポリアミド樹脂組成物の製造方法。 The method for producing a polyamide resin composition according to claim 1, wherein the amount of the organic agent in the organized clay (B) is in the range of 20 to 40% by weight of the weight of the organized clay. 有機化クレイ(B)が該クレイを窒素気流下で熱重量測定した際の質量変化の開始温度(JIS K−7120準拠)が220℃以上のものである請求項1記載のポリアミド樹脂組成物の製造方法。 2. The polyamide resin composition according to claim 1, wherein the organoclay (B) has a mass change starting temperature (based on JIS K-7120) of 220 ° C. or higher when the clay is thermogravimetrically measured under a nitrogen stream. Production method. 前記混練装置が二軸押出機である請求項1記載のポリアミド樹脂組成物の製造方法。 The method for producing a polyamide resin composition according to claim 1, wherein the kneading apparatus is a twin screw extruder. 請求項1〜4のいずれかに記載の製造方法で得られたポリアミド樹脂組成物。 A polyamide resin composition obtained by the production method according to claim 1. 1000℃、4時間の条件下で熱処理することで測定した灰分量が1〜10重量%である請求項5記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 5, wherein the ash content measured by heat treatment at 1000 ° C for 4 hours is 1 to 10% by weight. 請求項5又は6記載のポリアミド樹脂組成物を利用してなる包装材料。 A packaging material using the polyamide resin composition according to claim 5 or 6. 請求項5又は6記載のポリアミド樹脂組成物を利用してなる包装容器。 A packaging container using the polyamide resin composition according to claim 5 or 6.
JP2003337788A 2002-10-03 2003-09-29 Polyamide resin composition and method for producing the same Expired - Fee Related JP4662013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337788A JP4662013B2 (en) 2002-10-03 2003-09-29 Polyamide resin composition and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002291426 2002-10-03
JP2003337788A JP4662013B2 (en) 2002-10-03 2003-09-29 Polyamide resin composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004143447A JP2004143447A (en) 2004-05-20
JP4662013B2 true JP4662013B2 (en) 2011-03-30

Family

ID=32473421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337788A Expired - Fee Related JP4662013B2 (en) 2002-10-03 2003-09-29 Polyamide resin composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4662013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894167B2 (en) * 2004-09-16 2012-03-14 東レ株式会社 Polyamide resin composition and method for producing the same
JP4894168B2 (en) * 2005-03-25 2012-03-14 東レ株式会社 Polyamide resin composition and method for producing the same
JP5648634B2 (en) * 2009-06-09 2015-01-07 三菱瓦斯化学株式会社 Polyamide resin composition and molded product
KR101693635B1 (en) * 2015-06-15 2017-01-06 현대자동차주식회사 Polyamide composite resin composition for fuel filler pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038006A (en) * 2000-05-19 2002-02-06 Mitsubishi Gas Chem Co Inc Polyamide resin composition and method of producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859987A (en) * 1994-08-22 1996-03-05 Mitsubishi Eng Plast Kk Method for producing resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038006A (en) * 2000-05-19 2002-02-06 Mitsubishi Gas Chem Co Inc Polyamide resin composition and method of producing the same

Also Published As

Publication number Publication date
JP2004143447A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP5949546B2 (en) Polyamide resin composition
US7265187B2 (en) Process for production of polyamide composite material
JP5825255B2 (en) Polyamide resin composition
JP4321197B2 (en) Method for producing polyamide composite material
EP2679635B1 (en) Masterbatch, and method of preparing polyamide resin composition using masterbatch
AU2002301517B2 (en) Polyamide Resin Composition
AU2003202517B2 (en) Nylon MXD6 based biaxially stretched polyamide film of low permeability to gases and production method thereof
JP4662013B2 (en) Polyamide resin composition and method for producing the same
JP2011140620A (en) Polyamide resin composition
JP4228197B2 (en) Biaxially stretched film and method for producing the same
JP4207526B2 (en) Polyamide resin composition
JP4535223B2 (en) Polyamide composite material and method for producing the same
JP2005272535A (en) Composition for polyamide composite material and polyamide composite material
JP5640472B2 (en) Polyamide resin composition
JP2011140619A (en) Polyamide resin composition
JP2015052024A (en) Method for preparing master batch, method for preparing polyamide resin composition, and molded article
JP2005060634A (en) Composite material consisting of resin and inorganic filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

R151 Written notification of patent or utility model registration

Ref document number: 4662013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees