[go: up one dir, main page]

JP4658578B2 - Nozzle ELID grinding method and apparatus - Google Patents

Nozzle ELID grinding method and apparatus Download PDF

Info

Publication number
JP4658578B2
JP4658578B2 JP2004356625A JP2004356625A JP4658578B2 JP 4658578 B2 JP4658578 B2 JP 4658578B2 JP 2004356625 A JP2004356625 A JP 2004356625A JP 2004356625 A JP2004356625 A JP 2004356625A JP 4658578 B2 JP4658578 B2 JP 4658578B2
Authority
JP
Japan
Prior art keywords
nozzle
grindstone
grinding
conductive
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004356625A
Other languages
Japanese (ja)
Other versions
JP2006159369A (en
Inventor
整 大森
嘉宏 上原
和俊 片平
宗明 浅見
憲英 三石
惣一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSEDAI KAKOSHISUTEMU CO.,LTD.
RIKEN
Original Assignee
SHINSEDAI KAKOSHISUTEMU CO.,LTD.
RIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSEDAI KAKOSHISUTEMU CO.,LTD., RIKEN filed Critical SHINSEDAI KAKOSHISUTEMU CO.,LTD.
Priority to JP2004356625A priority Critical patent/JP4658578B2/en
Priority to DE102005058934A priority patent/DE102005058934A1/en
Priority to US11/297,437 priority patent/US7758741B2/en
Publication of JP2006159369A publication Critical patent/JP2006159369A/en
Application granted granted Critical
Publication of JP4658578B2 publication Critical patent/JP4658578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/001Devices or means for dressing or conditioning abrasive surfaces involving the use of electric current

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、電解インプロセスドレッシング研削に係わり、更に詳しくは、砥石対向電極を用いないノズル式ELID研削方法および装置に関する。   The present invention relates to electrolytic in-process dressing grinding, and more particularly to a nozzle-type ELID grinding method and apparatus that does not use a grindstone counter electrode.

近年の科学技術の発展に伴って、超精密加工への要求は飛躍的に高度化しつつあり、この要求を満たす鏡面研削手段として、電解インプロセスドレッシング研削法(Electrolytic In-process Dressing Method:以下、「ELID研削法」と呼ぶ)が本出願人等により開発され、発表されている(理研シンポジウム「鏡面研削の最新技術動向」、平成3年3月5日開催)。   With the development of science and technology in recent years, the demand for ultra-precision machining has been remarkably advanced. As a mirror surface grinding means that satisfies this requirement, an electrolytic in-process dressing grinding method (Electrolytic In-process Dressing Method: hereinafter) "ELID grinding method" has been developed and published by the present applicants etc. (RIKEN symposium "latest technology trend of mirror grinding", held on March 5, 1991).

このELID研削法は、図8に模式的に示すように、従来の電解研削における電極に代えて導電性砥石54を用い、かつこの砥石と隙間(ギャップ)を隔てて対向する電極52(以下、「砥石対向電極」と呼ぶ)を設け、砥石と電極との間に導電性液53を流し、砥石54と電極52との間に電圧を印加し、砥石を電解によりドレッシングしながら、砥石によりワークを研削するものである。すなわち、メタルボンド砥石54を陽極、砥石表面にギャップを隔てて対設された電極52を陰極とし、研削作業と同時に砥石の電解ドレッシングを行うことにより、研削性能を維持・安定させることのできる研削法である。なお、この図において、51はワーク(被研削材)、55はELID電源、56は給電体、57は導電性液のノズルである。   In this ELID grinding method, as schematically shown in FIG. 8, a conductive grindstone 54 is used instead of the electrode in the conventional electrolytic grinding, and the electrode 52 (hereinafter referred to as a gap) is opposed to the grindstone with a gap (gap). (Referred to as “grinding stone counter electrode”), a conductive liquid 53 is allowed to flow between the grindstone and the electrode, a voltage is applied between the grindstone 54 and the electrode 52, and the grindstone is dressed by electrolysis. Is for grinding. That is, by using the metal bond grindstone 54 as an anode and the electrode 52 opposed to the grindstone surface with a gap as a cathode, and performing electrolytic dressing of the grindstone simultaneously with the grinding operation, the grinding performance can be maintained and stabilized. Is the law. In this figure, 51 is a work (material to be ground), 55 is an ELID power source, 56 is a power feeder, and 57 is a nozzle for conductive liquid.

このELID研削法では砥粒を細かくしても電解ドレッシングにより砥粒の目立てにより砥石の目詰まりが生じないので、砥粒を細かくすることにより鏡面のような極めて優れた加工面を研削加工により得ることができる。従って、ELID研削法は、高能率研削から鏡面研削に至るまで砥石の切れ味を維持でき、かつ従来技術では不可能であった高精度な表面を短時間に創成できる手段として、種々の研削加工への適用が提案されている(例えば、特許文献1、2)。   In this ELID grinding method, even if the abrasive grains are made fine, clogging of the grinding stone does not occur due to the abrasive grains being sharpened by electrolytic dressing. By making the abrasive grains fine, an extremely excellent processed surface such as a mirror surface is obtained by grinding. be able to. Therefore, the ELID grinding method can maintain the sharpness of the grindstone from high-efficiency grinding to mirror surface grinding, and can be used for various grinding processes as a means to create a high-precision surface that was impossible with the prior art in a short time. Is proposed (for example, Patent Documents 1 and 2).

特許文献1の「電解ドレッシング制御方法と装置」は、図9に示すように、ノズル64により砥石62と電極63との間に導電性液を流しながら、電源65及び給電体66により砥石と電極との間に電圧を印加し、砥石を電解によりドレッシングしながらワーク61を研削する電解ドレッシング研削において、位置制御装置67により電極と砥石間の電流又は電圧を検出し、この検出値が設定範囲になるように電極移動装置68により砥石と電極間の間隔を調節するものである。   As shown in FIG. 9, the “electrolytic dressing control method and apparatus” of Patent Document 1 is configured such that a conductive liquid is allowed to flow between a grindstone 62 and an electrode 63 by a nozzle 64 while a grindstone and an electrode are fed by a power source 65 and a power supply 66. In the electrolytic dressing grinding in which the workpiece 61 is ground while dressing the grindstone by electrolysis, the position control device 67 detects the current or voltage between the electrode and the grindstone, and the detected value falls within the set range. Thus, the distance between the grindstone and the electrode is adjusted by the electrode moving device 68.

特許文献2の「微細形状加工用ELID研削装置」は、図10に示すように、導電性砥石72と、X-Yテーブルと、砥石の外周面に近接して設けられかつZ軸を中心に自由回転可能な電解用電極76と、電極案内装置78とを備える。電極案内装置78は、一端部が電解用電極76に固定された2本の接触子からなり、各接触子はZ軸を中心とする直径方向に砥石とワークから間隔を隔てて延び、かつワークの一部を間隔を隔てて挟持するものである。   As shown in FIG. 10, the “ELID grinding apparatus for fine shape processing” of Patent Document 2 is provided close to the outer peripheral surface of the conductive grindstone 72, the XY table, and the grindstone, and is centered on the Z axis. An electrolysis electrode 76 that can freely rotate and an electrode guide device 78 are provided. The electrode guide device 78 includes two contacts whose one end is fixed to the electrode 76 for electrolysis. Each contact extends in a diametrical direction centering on the Z axis at a distance from the grindstone and the workpiece. Is partly held at intervals.

特開平7−1333号公報、「電解ドレッシング制御方法と装置」Japanese Patent Laid-Open No. 7-1333, “Electrolytic Dressing Control Method and Apparatus” 特開2002−1657号公報、「微細形状加工用ELID研削装置」Japanese Patent Application Laid-Open No. 2002-1657, “ELID grinding apparatus for fine shape processing”

上述したように、これまでのELID研削法では、砥石の外周部に砥石とわずかな隙間を隔てて対向する電極(「砥石対向電極」)が不可欠であった。
しかしそのため、例えば砥石の直径が1〜2mm程度まで小型化すると電極の小型化やその設置手段等が困難又は不可能となり、装置の小型化に制約が生じる問題点があった。そのため、近年ニーズの増大するマイクロレンズやマイクロレンズ用の金型の加工等において、ELID研削法の適用が難しい問題点があった。
As described above, in the conventional ELID grinding method, an electrode ("grinding stone counter electrode") that faces the outer peripheral portion of the grindstone with a slight gap is indispensable.
However, for example, if the diameter of the grindstone is reduced to about 1 to 2 mm, it is difficult or impossible to reduce the size of the electrode and its installation means, and there is a problem that the size reduction of the apparatus is restricted. For this reason, there has been a problem that it is difficult to apply the ELID grinding method in the processing of microlenses and molds for microlenses, for which needs are increasing in recent years.

本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、従来不可欠と考えられていた砥石対向電極を用いることなくELID研削を行うことができ、これにより例えば砥石の直径が小型化しても容易にELID研削ができるノズル式ELID研削方法および装置を提供することにある。   The present invention has been made to solve such problems. That is, the object of the present invention is to perform ELID grinding without using a grindstone counter electrode, which has been considered to be indispensable in the past. It is to provide a grinding method and apparatus.

本発明によれば、電解媒体を導電性砥石の表面に供給するための流路を有するノズル本体と、該流路内に対向して配置されたノズル電極対と、該ノズル電極対にイオン化用電圧を印加するノズル電源とからなるイオン供給ノズルから回転する導電性砥石の表面に水酸イオン(OH)を含む電解媒体を供給し、砥石表面を電解もしくは化学反応によりドレッシングしながらワークを研削し、
更に、ワークとの接触面を有する導電性砥石を正電位(+)に印加する、ことを特徴とするノズル式ELID研削方法が提供される。
また、前記電解媒体は、アルカリ水溶液又はそのミストである。
According to the present invention, a nozzle body having a flow path for supplying an electrolytic medium to the surface of a conductive grindstone, a nozzle electrode pair disposed opposite to the flow path, and the nozzle electrode pair for ionization An electrolytic medium containing hydroxide ions (OH ) is supplied to the surface of a rotating conductive grinding wheel from an ion supply nozzle consisting of a nozzle power source that applies voltage, and the workpiece is ground while dressing the grinding stone surface by electrolysis or chemical reaction. And
Furthermore, there is provided a nozzle type ELID grinding method characterized by applying a conductive grindstone having a contact surface with a workpiece to a positive potential (+) .
The electrolytic medium is an alkaline aqueous solution or a mist thereof.

また本発明によれば、ワークとの接触面を有し回転する導電性砥石と、導電性砥石の表面に水酸イオン(OH)を含む電解媒体を供給するイオン供給ノズルとを備え、砥石表面を電解もしくは化学反応によりドレッシングしながらワークを研削し、
前記イオン供給ノズルは、前記電解媒体を導電性砥石の表面に供給するための流路を有するノズル本体と、該流路内に対向して配置されたノズル電極対と、該ノズル電極対にイオン化用電圧を印加するノズル電源とからなり、
更に、導電性砥石を正電位(+)に印加する砥石電源を備える、ことを特徴とするノズル式ELID研削装置が提供される。
Further, according to the present invention, the grindstone includes a rotating conductive grindstone having a contact surface with the workpiece, and an ion supply nozzle for supplying an electrolytic medium containing hydroxide ions (OH ) to the surface of the conductive grindstone. Grind the workpiece while dressing the surface by electrolysis or chemical reaction,
The ion supply nozzle includes a nozzle body having a flow path for supplying the electrolytic medium to the surface of the conductive grindstone, a nozzle electrode pair disposed opposite to the flow path, and ionizing the nozzle electrode pair. Ri Do from the nozzle power source for applying a use voltage,
Furthermore, there is provided a nozzle type ELID grinding apparatus comprising a grindstone power source for applying a conductive grindstone to a positive potential (+) .

上記本発明の方法及び装置によれば、イオン供給ノズルを備え、導電性砥石の表面に水酸イオン(OH)を含む電解媒体(アルカリ水溶液又はそのミスト)を供給するので、砥石表面の導電性成分がOHイオンに引き寄せられ積極的に化学反応し溶出する。
従って、イオン供給ノズルの先端部が砥石表面から十分離れた構成でも、砥石表面を電解もしくは化学反応により溶出後、表面が酸化して不導体化されることで、砥石の電解ドレッシング(ELID)が可能となる。
本発明により、砥石の小型化に対応できるとともに、電極の設置場所をノズル先端とすることで砥石外周部が解放されることから、砥石の小型化とともに砥石全周を加工に用いることができる。
従って、従来不可欠と考えられていた砥石対向電極を用いることなくELID研削を行うことができ、これにより例えば砥石の直径が小型化しても容易にELID研削ができる。
According to the method and apparatus of the present invention, an ion supply nozzle is provided, and an electrolytic medium (an alkaline aqueous solution or a mist thereof) containing hydroxide ions (OH ) is supplied to the surface of the conductive grindstone. Sexual components are attracted to OH ions and actively react and elute.
Therefore, even when the tip of the ion supply nozzle is sufficiently separated from the surface of the grindstone, the surface of the grindstone is eluted by electrolysis or chemical reaction, and the surface is oxidized to be non-conductive, so that the electrolytic dressing (ELID) of the grindstone is It becomes possible.
According to the present invention, it is possible to cope with the downsizing of the grindstone, and since the outer peripheral portion of the grindstone is released by setting the electrode installation location as the nozzle tip, the entire grindstone can be used for processing along with the downsizing of the grindstone.
Therefore, ELID grinding can be performed without using the grindstone counter electrode, which has been considered to be indispensable in the past, so that even if the diameter of the grindstone is reduced, for example, ELID grinding can be easily performed.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明のノズル式ELID研削装置の第1実施形態図である。この図に示すように、本発明のノズル式ELID研削装置10は、導電性砥石12、砥石電源14、及びイオン供給ノズル16を備える。   FIG. 1 is a diagram showing a first embodiment of a nozzle-type ELID grinding apparatus according to the present invention. As shown in this figure, the nozzle-type ELID grinding apparatus 10 of the present invention includes a conductive grindstone 12, a grindstone power supply 14, and an ion supply nozzle 16.

導電性砥石12は、非導電性の砥粒(例えばダイヤモンド砥粒)と導電性のボンド部(例えば鋳鉄、銅、青銅、Co,Niなどの金属やカーボン等)からなり、全体として導電性を有し、ボンド部を電解することにより、砥粒の目立(ドレッシング)ができるようになっている。また、導電性砥石12は、ワーク1との接触面12aを有する。
ワーク1は、非導電性材料(ガラス、セラミックス、等)でも導電性材料(例えば、金属材料、半導体)でもよい。ワーク1が導電性材料である場合には、ワーク1は電気的に絶縁され、導電性砥石12と同電位になるように構成されている。
砥石電源14は、導電性砥石12に給電する給電ライン15を備え、+端子14aから給電ライン15を介して導電性砥石12を正電位(+)に印加する。この正電位(+)は、直流パルス電圧であるのが好ましいが、一定電圧であってもよい。
なおこの例では、砥石電源14の陰極(−端子14b)は、接地(アース)している。なお、接地する代わりに、後述するノズル電源19の陰極(−端子)に接続してもよい。
The conductive grindstone 12 is composed of non-conductive abrasive grains (for example, diamond abrasive grains) and conductive bond portions (for example, metals such as cast iron, copper, bronze, Co, and Ni, carbon, etc.), and is electrically conductive as a whole. It is possible to make the abrasive grains stand out (dressing) by electrolyzing the bond portion. The conductive grindstone 12 has a contact surface 12 a with the workpiece 1.
The workpiece 1 may be a non-conductive material (glass, ceramics, etc.) or a conductive material (for example, metal material, semiconductor). When the work 1 is a conductive material, the work 1 is electrically insulated and is configured to have the same potential as the conductive grindstone 12.
The grindstone power source 14 includes a power feed line 15 that feeds power to the conductive grindstone 12, and applies the conductive grindstone 12 to a positive potential (+) from the + terminal 14 a via the power feed line 15. The positive potential (+) is preferably a direct-current pulse voltage, but may be a constant voltage.
In this example, the cathode (-terminal 14b) of the grindstone power supply 14 is grounded. Instead of grounding, a nozzle (-terminal) of a nozzle power source 19 to be described later may be connected.

図2は、図1のイオン供給ノズルの構成図である。この図において、イオン供給ノズル16は、導電性砥石12の表面に水酸イオン(OH-−)を含む電解媒体を供給する機能を有し、流路17aを有するノズル本体17、少なくとも1対のノズル電極対18a,18b、及びノズル電源19を有する。
電解媒体は、導電性を有するアルカリ水溶液又はそのミストであるのがよい。
FIG. 2 is a configuration diagram of the ion supply nozzle of FIG. In this figure, an ion supply nozzle 16 has a function of supplying an electrolytic medium containing hydroxide ions (OH −− ) to the surface of the conductive grindstone 12, and has at least one pair of nozzle main bodies 17 having flow paths 17 a. A nozzle electrode pair 18a, 18b and a nozzle power source 19 are provided.
The electrolytic medium is preferably an alkaline aqueous solution having conductivity or a mist thereof.

ノズル本体17は、流路17aを介して電解媒体2(液又はミスト)を導電性砥石12の表面に供給する。ノズル電極対18a,18bは、ノズル本体17から電気的に絶縁され、流路17a内に対向して配置される。ノズル電源19は、ノズル電極対18a,18bにイオン化用電圧を印加する。このイオン化用電圧は、直流パルス電圧であるのが好ましいが、一定電圧や交流であってもよい。
なおこの例において、ノズル電極対18a,18bは、流路17aに直交し、かつ電極間の間隔が漸減するように対向している。また、ノズル電極の材質は、金属などの導電材でよいが、耐食性に優れた金属等が望ましい。
The nozzle body 17 supplies the electrolytic medium 2 (liquid or mist) to the surface of the conductive grindstone 12 via the flow path 17a. The nozzle electrode pairs 18a and 18b are electrically insulated from the nozzle body 17 and are disposed facing each other in the flow path 17a. The nozzle power source 19 applies an ionization voltage to the nozzle electrode pairs 18a and 18b. The ionization voltage is preferably a direct-current pulse voltage, but may be a constant voltage or an alternating current.
In this example, the nozzle electrode pairs 18a and 18b are orthogonal to the flow path 17a and face each other so that the distance between the electrodes gradually decreases. The material of the nozzle electrode may be a conductive material such as metal, but a metal having excellent corrosion resistance is desirable.

図3は、イオン供給ノズルの別の構成図である。この例では、ノズル電極対18a,18bは、ノズル内に流路に沿って配置されたリング状電極である。イオン供給ノズル16は、砥石面に電解媒体2(例えば研削液又はミスト)と共に水酸イオン(OH)を噴出するようになっている。
なお、電極の配置はこれらに限定されず、流路に直交するように平行に配置してもよく、その他の構成であってもよい。またこの図において、導電性砥石12は、軸心Zを中心に回転する円板状の砥石であるが、本発明の砥石面は、これに限定されず、平板、円弧面、その他の形状であってもよい。
FIG. 3 is another configuration diagram of the ion supply nozzle. In this example, the nozzle electrode pairs 18a and 18b are ring electrodes arranged along the flow path in the nozzle. The ion supply nozzle 16 ejects hydroxide ions (OH ) together with the electrolytic medium 2 (for example, grinding fluid or mist) to the grindstone surface.
The arrangement of the electrodes is not limited to these, and may be arranged in parallel so as to be orthogonal to the flow path, or may have other configurations. Further, in this figure, the conductive grindstone 12 is a disc-shaped grindstone that rotates about the axis Z, but the grindstone surface of the present invention is not limited to this, and is a flat plate, arc surface, or other shape. There may be.

図1において、本発明のノズル式ELID研削装置10は、更に、研削液供給ノズル20を備える。この研削液供給ノズル20は、ノズル電極対18a,18bとノズル電源19を備えず、研削液を導電性砥石12の表面のワーク1との接触部付近に供給する。
かかる研削液供給ノズル20を備えることにより、電解媒体2を導電性砥石12の表面から洗い流し、ワーク1が導電性材料である場合に電解媒体2に残存する水酸イオン(OH-)によるワーク1の腐食を低減することができる。もちろん、研削作用を円滑なものとするための潤滑・冷却効果も発揮する。
In FIG. 1, the nozzle type ELID grinding apparatus 10 of the present invention further includes a grinding fluid supply nozzle 20. The grinding liquid supply nozzle 20 does not include the nozzle electrode pairs 18 a and 18 b and the nozzle power source 19, and supplies the grinding liquid to the vicinity of the contact portion with the workpiece 1 on the surface of the conductive grindstone 12.
By providing the grinding fluid supply nozzle 20, the electrolytic medium 2 is washed away from the surface of the conductive grindstone 12, and when the work 1 is a conductive material, the work 1 due to hydroxide ions (OH ) remaining in the electrolytic medium 2. Corrosion can be reduced. Of course, the lubrication and cooling effect for smooth grinding action is also exhibited.

図4は、本発明のノズル式ELID研削装置の第2実施形態図である。この例において、ワーク1は球形であり、下端部がZ軸を中心に回転する軸と共に回転する。また、導電性砥石12は直径5mmの小径の円柱形状であり、Y軸を中心に回転し、X−Z面内を数値制御される。
また、この例では、砥石電源14とノズル電源19が一体化し、単一のELID電源21を構成している。
FIG. 4 is a second embodiment of the nozzle-type ELID grinding apparatus of the present invention. In this example, the workpiece 1 has a spherical shape, and its lower end rotates with an axis that rotates about the Z axis. The conductive grindstone 12 has a small cylindrical shape with a diameter of 5 mm, rotates about the Y axis, and is numerically controlled in the XZ plane.
In this example, the grindstone power supply 14 and the nozzle power supply 19 are integrated to form a single ELID power supply 21.

図5(A)は、本発明のノズル式ELID研削装置の第3実施形態図である。この例において、ワーク1は、円筒形の凹部1aの底部に半球状の凸部1bを有するディンプルミラーである。このディンプルミラーの円筒形の凹部1aの直径は2〜3mm、半球状の凸部1bの直径は1mm程度である。また、導電性砥石12は直径100μmの下端が球面の円柱形状であり、Z軸を中心に回転し、X−Y−Zの3軸を数値制御して、半球状の凸部の外面を鏡面に加工する。
なお、この例では、砥石電源14及びノズル電源19は、図示していないが、第1実施形態図又は第2実施形態図と同様である。
この加工の際に、導電性砥石12の下端部の加工パスは、図5(B)のように等高線加工の加工パス、同(C)のようにスキャン加工の加工パス、同(D)のように螺旋加工の加工パスのいずれであってもよい。
FIG. 5A is a diagram showing a third embodiment of the nozzle-type ELID grinding apparatus of the present invention. In this example, the workpiece 1 is a dimple mirror having a hemispherical convex portion 1b at the bottom of a cylindrical concave portion 1a. The diameter of the cylindrical concave portion 1a of the dimple mirror is 2 to 3 mm, and the diameter of the hemispherical convex portion 1b is about 1 mm. In addition, the conductive grindstone 12 has a cylindrical shape with a spherical end with a diameter of 100 μm, rotates around the Z axis, and numerically controls the three axes XYZ so that the outer surface of the hemispherical convex portion is a mirror surface. To process.
In this example, the grindstone power source 14 and the nozzle power source 19 are not shown, but are the same as those in the first embodiment diagram or the second embodiment diagram.
In this processing, the processing path of the lower end portion of the conductive grindstone 12 is a contour processing processing path as shown in FIG. 5B, a scanning processing processing path as shown in FIG. Thus, any of the processing paths of spiral processing may be used.

図6(A)は、本発明のノズル式ELID研削装置の第4実施形態図である。この例において、ワーク1は金型や光学素子(例えばフレネルレンズ)等であり、導電性砥石12は両V砥石である。なお片V砥石も同様である。さらに、フレネルレンズの断面を一体化した複数のV字断面形状を持つ総型砥石にも適用できる。
従来の電極式の場合は、どうしても電極と砥石先端部との間に研削液と電解が集中し過ぎ、折角、シャープにツルーイングしても電解ドレッシングの際に形を崩してしまう問題があった。
しかし、本発明では、そうした点を解決できる。すなわち、エッジがシャープにツルーイングされた砥石に対して、シャープネスを崩すことなく、ドレッシングができる。
FIG. 6A is a diagram of a fourth embodiment of the nozzle-type ELID grinding apparatus of the present invention. In this example, the workpiece 1 is a mold, an optical element (for example, a Fresnel lens) or the like, and the conductive grindstone 12 is a double V grindstone. The same applies to the single V grindstone. Furthermore, the present invention can also be applied to a general-purpose grindstone having a plurality of V-shaped cross-sectional shapes in which the Fresnel lens cross-section is integrated.
In the case of the conventional electrode type, there is a problem that the grinding liquid and electrolysis are inevitably concentrated between the electrode and the tip of the grindstone, and the shape is lost during electrolytic dressing even if the truing is performed at an angle or sharpness.
However, the present invention can solve such a problem. That is, dressing can be performed on a grindstone whose edge is sharply trued without losing sharpness.

図6(B)は、本発明のノズル式ELID研削装置の第5実施形態図である。この例において、ワーク1は金型や各種構造部品であり、導電性砥石12は例えば総型砥石である。このような曲面を持つ断面とV字断面を組み合わせた総型砥石でもよい。
また図6(C)は、本発明のノズル式ELID研削装置の第6実施形態図である。この例において、ワーク1は金型、光学素子(回折格子)等である。
図6(A)(B)において、矢印は、ノズルELIDの研削液噴射方向を示している。
図6(A)(B)の形態において、シャープエッジや特定の形状を持つ砥石に対して、形を維持しながら適度なドレッシングを実現できる効果がある。
FIG. 6B is a fifth embodiment of the nozzle-type ELID grinding apparatus of the present invention. In this example, the workpiece 1 is a mold or various structural parts, and the conductive grindstone 12 is, for example, a total grindstone. An all-purpose grindstone combining a section having such a curved surface and a V-shaped section may be used.
FIG. 6C is a sixth embodiment of the nozzle-type ELID grinding apparatus of the present invention. In this example, the workpiece 1 is a mold, an optical element (diffraction grating) or the like.
6 (A) and 6 (B), the arrows indicate the grinding liquid ejection direction of the nozzle ELID.
6 (A) and 6 (B), there is an effect that an appropriate dressing can be realized while maintaining the shape for a grindstone having a sharp edge or a specific shape.

図7は、本発明のノズル式ELID研削装置の第7実施形態図である。この例において、導電性砥石12は切断や微細溝入加工に用いられる薄型砥石である。
薄型砥石の場合、これまでの電極式の場合、砥石を挟む隙間の狭い電極の製作が難しく、電極とのギャップ調整が難しい問題があった。
本発明のノズル式ELID研削の適用により、適切かつ簡便なドレッシングが実現できる。
FIG. 7 is a seventh embodiment of the nozzle type ELID grinding apparatus of the present invention. In this example, the conductive grindstone 12 is a thin grindstone used for cutting and fine grooving.
In the case of a thin grindstone, in the case of the conventional electrode type, there is a problem that it is difficult to manufacture an electrode having a narrow gap between the grindstones, and it is difficult to adjust the gap with the electrode.
By applying the nozzle type ELID grinding of the present invention, an appropriate and simple dressing can be realized.

図1に示した装置を用い、従来の砥石対向電極を用いたELID研削と、本発明のノズル式ELID研削を実施した。
表1は、使用した砥石、被削材、及び電解媒体、表2は、加工条件である。本発明のノズル式ELID研削は、砥石電源とノズル電源を併用し、従来のELID研削では、このうち砥石電源を砥石対向電極と砥石間に印加した。その他の条件は同一である。
Using the apparatus shown in FIG. 1, ELID grinding using a conventional grindstone counter electrode and nozzle type ELID grinding of the present invention were performed.
Table 1 shows the used whetstone, work material, and electrolytic medium, and Table 2 shows the processing conditions. The nozzle-type ELID grinding of the present invention uses a grindstone power supply and a nozzle power supply in combination, and in the conventional ELID grinding, the grindstone power supply is applied between the grindstone counter electrode and the grindstone. Other conditions are the same.

Figure 0004658578
Figure 0004658578

Figure 0004658578
Figure 0004658578

表3は、この実施例で得られた表面粗さと研削能率比の比較表である。この表において、研削比とは、ELID研削を適用しない研削に対する加工速度の比を示している。
この表から、本発明により、従来のELID研削に匹敵する鏡面に近い滑らかな表面粗さが得られることが確認された。また、研削比は従来のELID研削には及ばないものの、ELID研削を適用しない場合よりは倍以上高いことが確認された。
ELID研削を適用しない場合は、同一条件で加工したところ総切込量90μmの1/3程度の段階で、加工抵抗が急上昇し、スピンドルの過負荷異常が発生した。これに対して、本発明のノズル式ELID研削では、低い加工抵抗を最終段階まで維持しており、砥石の目つぶれや目詰まりがなく加工できることが確認された。
Table 3 is a comparison table of the surface roughness and grinding efficiency ratio obtained in this example. In this table, the grinding ratio indicates the ratio of the processing speed to grinding without applying ELID grinding.
From this table, it was confirmed that a smooth surface roughness close to a mirror surface comparable to conventional ELID grinding can be obtained by the present invention. Further, it was confirmed that the grinding ratio is higher than that of the case where ELID grinding is not applied, although it does not reach the conventional ELID grinding.
When ELID grinding was not applied, when machining was performed under the same conditions, the machining resistance increased rapidly at about 1/3 of the total depth of cut of 90 μm, and spindle overload abnormality occurred. On the other hand, in the nozzle type ELID grinding of the present invention, it was confirmed that low machining resistance was maintained up to the final stage, and the grinding could be performed without crushing or clogging of the grindstone.

Figure 0004658578
Figure 0004658578

図4に示した装置を用い、直径5mmの導電性砥石12を用い、直径約30mmの球面を#2000の砥石で加工した。
その結果、研削方向に平行方向の粗さ:Ra0.18μm、Ry1.0μm、研削方向に垂直方向の粗さ:Ra0.16μm、Ry0.9μmの極めて優れた鏡面が得られた。さらに、微粒子の砥石も適用できる。
Using the apparatus shown in FIG. 4, using a conductive grindstone 12 having a diameter of 5 mm, a spherical surface having a diameter of about 30 mm was processed with a # 2000 grindstone.
As a result, an extremely excellent mirror surface with roughness in the direction parallel to the grinding direction: Ra 0.18 μm, Ry 1.0 μm and roughness in the direction perpendicular to the grinding direction: Ra 0.16 μm, Ry 0.9 μm was obtained. Furthermore, a fine grindstone can also be applied.

上述したように、本発明のノズル式ELID研削方法及び装置では、研削液ノズルの先端部に(+)(−)の対となるノズル電極対を形成し、研削液中の水の電気分解によりOH-イオンを砥石表面に供給する。
その時、砥石に(+)の電位((−)電極からみて相対的に(+)の電位として)を与えると、導電性砥石の導電成分がOHイオンに引き寄せられ積極的に反応し溶出しようとすることにより、(+)イオン化とともに、不導体化されることで、砥石のドレッシング(ELID)が可能となる。
従って本発明により、砥石の小型化に対応できるとともに、電極設置場所をノズル先端とすることで砥石外周部が解放されることから、砥石の小型化とともに砥石全周を用いる加工ができる。
As described above, in the nozzle-type ELID grinding method and apparatus of the present invention, a nozzle electrode pair that is a pair of (+) and (−) is formed at the tip of the grinding fluid nozzle, and electrolysis of water in the grinding fluid is performed. OH - ions supplied to the grinding wheel surface.
At that time, the potential of the grindstone (+) - When (() as viewed from the electrode relatively (+) as a potential) gives the conductive component of the conductive grindstone is OH - tries to actively react attracted to the ion elution Thus, dressing (ELID) of a grindstone becomes possible by making it non-conductive along with (+) ionization.
Therefore, according to the present invention, it is possible to cope with the reduction in the size of the grindstone, and since the outer peripheral portion of the grindstone is released by setting the electrode installation location as the nozzle tip, it is possible to perform processing using the entire circumference of the grindstone with the downsizing of the grindstone.

また、砥石に(+)の電位がかかっていることが望ましいが、必ずしも必要ではない。すなわち、研削液にアルカリ水溶液を使用していることから、メタルボンド砥石の金属成分はアルカリ水溶液中において陽イオンとして溶出し易い雰囲気にあり、そうした環境下で、OH-イオンを供給することで、砥石表面での金属イオンとの次のような反応が起こり得る。
M+nOH→M(OH)n+ne・・・(1)
ここで、Mは砥石の導電成分(金属等)であり、OHは、
O→H+OH・・・(2)(水の電気分解)により発生・供給される。
もちろん、砥石の電位を制御できることが、ドレッシング量の制御には望ましいですが、必ずしも必要ではない。
Further, it is desirable that a (+) potential is applied to the grindstone, but this is not always necessary. That is, since an alkaline aqueous solution is used for the grinding fluid, the metal component of the metal bond grindstone is in an atmosphere that easily elutes as cations in the alkaline aqueous solution, and in such an environment, by supplying OH- ions, The following reactions with metal ions on the surface of the wheel can occur.
M + nOH → M (OH) n + ne (1)
Here, M is a conductive component (metal or the like) of the grindstone, and OH is
H 2 O → H + + OH - ··· (2) ( electrolysis of water) is generated and supply by.
Of course, being able to control the potential of the grindstone is desirable for controlling the dressing amount, but it is not always necessary.

なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In addition, this invention is not limited to the Example and embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明のノズル式ELID研削装置の第1実施形態図である。It is 1st Embodiment figure of the nozzle-type ELID grinding apparatus of this invention. 図1のイオン供給ノズルの構成図である。It is a block diagram of the ion supply nozzle of FIG. イオン供給ノズルの別の構成図である。It is another block diagram of an ion supply nozzle. 本発明のノズル式ELID研削装置の第2実施形態図である。It is 2nd Embodiment figure of the nozzle type ELID grinding apparatus of this invention. 本発明のノズル式ELID研削装置の第3実施形態図である。It is 3rd Embodiment figure of the nozzle type ELID grinding apparatus of this invention. 本発明のノズル式ELID研削装置の第4〜6実施形態図である。It is 4th-6th embodiment figure of the nozzle type ELID grinding apparatus of this invention. 本発明のノズル式ELID研削装置の第7実施形態図である。It is a 7th embodiment figure of a nozzle type ELID grinding device of the present invention. 従来のELID研削法の模式図である。It is a schematic diagram of the conventional ELID grinding method. 特許文献1の「電解ドレッシング制御方法と装置」の構成図である。1 is a configuration diagram of “electrolytic dressing control method and apparatus” of Patent Document 1. FIG. 特許文献2の「微細形状加工用ELID研削装置」の構成図である。1 is a configuration diagram of an “ELID grinding apparatus for fine shape processing” in Patent Document 2.

符号の説明Explanation of symbols

1 ワーク、2 電解媒体(液又はミスト)、
10 ノズル式ELID研削装置、
12 導電性砥石、12a 接触面、
14 砥石電源、14b −端子、15 給電ライン、
16 イオン供給ノズル、17 ノズル本体、17a 流路、
18a,18bノズル電極対、19 ノズル電源、
20 研削液供給ノズル、21 ELID電源
1 work, 2 electrolytic medium (liquid or mist),
10 Nozzle type ELID grinding machine,
12 conductive grinding wheel, 12a contact surface,
14 grinding wheel power supply, 14b-terminal, 15 power supply line,
16 ion supply nozzle, 17 nozzle body, 17a flow path,
18a, 18b nozzle electrode pair, 19 nozzle power supply,
20 Grinding fluid supply nozzle, 21 ELID power supply

Claims (5)

電解媒体を導電性砥石の表面に供給するための流路を有するノズル本体と、該流路内に対向して配置されたノズル電極対と、該ノズル電極対にイオン化用電圧を印加するノズル電源とからなるイオン供給ノズルから回転する導電性砥石の表面に水酸イオン(OH)を含む電解媒体を供給し、砥石表面を電解もしくは化学反応によりドレッシングしながらワークを研削し、
更に、ワークとの接触面を有する導電性砥石を正電位(+)に印加する、ことを特徴とするノズル式ELID研削方法。
Nozzle body having a flow path for supplying an electrolytic medium to the surface of a conductive grindstone, a pair of nozzle electrodes disposed in the flow path, and a nozzle power supply for applying an ionization voltage to the nozzle electrode pair An electrolytic medium containing hydroxide ions (OH ) is supplied to the surface of the rotating conductive grindstone from an ion supply nozzle consisting of: and the workpiece is ground while dressing the grindstone surface by electrolysis or chemical reaction ,
Furthermore, the electroconductive grindstone which has a contact surface with a workpiece | work is applied to positive electric potential (+), The nozzle type ELID grinding method characterized by the above-mentioned.
前記電解媒体は、アルカリ水溶液又はそのミストである、ことを特徴とする請求項に記載のノズル式ELID研削方法。 The nozzle type ELID grinding method according to claim 1 , wherein the electrolytic medium is an alkaline aqueous solution or a mist thereof. 前記電極間の間隔は、前記流路の下流側に移行するにつれて漸減している、ことを特徴とする請求項1または2に記載のノズル式ELID研削方法。 Distance between the electrodes, nozzle type ELID grinding method according to claim 1 or 2 gradually decreases, it is characterized as it shifts to the downstream side of the flow path. ワークとの接触面を有し回転する導電性砥石と、導電性砥石の表面に水酸イオン(OH)を含む電解媒体を供給するイオン供給ノズルとを備え、砥石表面を電解もしくは化学反応によりドレッシングしながらワークを研削し、
前記イオン供給ノズルは、前記電解媒体を導電性砥石の表面に供給するための流路を有するノズル本体と、該流路内に対向して配置されたノズル電極対と、該ノズル電極対にイオン化用電圧を印加するノズル電源とからなり、
更に、導電性砥石を正電位(+)に印加する砥石電源を備える、ことを特徴とするノズル式ELID研削装置。
A conductive grindstone that rotates has a contact surface with the workpiece surface hydroxyl ions of the conductive grindstone (OH -) and a ion supply nozzle for supplying an electrolytic medium comprising, by electrolytic or chemical reactions grindstone surface Grind the workpiece while dressing,
The ion supply nozzle includes a nozzle body having a flow path for supplying the electrolytic medium to the surface of the conductive grindstone, a nozzle electrode pair disposed opposite to the flow path, and ionizing the nozzle electrode pair. Ri Do from the nozzle power source for applying a use voltage,
Furthermore, a nozzle-type ELID grinding apparatus comprising a grindstone power source for applying a conductive grindstone to a positive potential (+) .
前記電極間の間隔は、前記流路の下流側に移行するにつれて漸減している、ことを特徴とする請求項に記載のノズル式ELID研削装置。 The nozzle-type ELID grinding apparatus according to claim 4 , wherein the interval between the electrodes gradually decreases as it moves to the downstream side of the flow path.
JP2004356625A 2004-12-09 2004-12-09 Nozzle ELID grinding method and apparatus Expired - Lifetime JP4658578B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004356625A JP4658578B2 (en) 2004-12-09 2004-12-09 Nozzle ELID grinding method and apparatus
DE102005058934A DE102005058934A1 (en) 2004-12-09 2005-12-09 Method and apparatus for nozzle type ELID grinding
US11/297,437 US7758741B2 (en) 2004-12-09 2005-12-09 Method and apparatus for nozzle type ELID grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356625A JP4658578B2 (en) 2004-12-09 2004-12-09 Nozzle ELID grinding method and apparatus

Publications (2)

Publication Number Publication Date
JP2006159369A JP2006159369A (en) 2006-06-22
JP4658578B2 true JP4658578B2 (en) 2011-03-23

Family

ID=36500387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356625A Expired - Lifetime JP4658578B2 (en) 2004-12-09 2004-12-09 Nozzle ELID grinding method and apparatus

Country Status (3)

Country Link
US (1) US7758741B2 (en)
JP (1) JP4658578B2 (en)
DE (1) DE102005058934A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868577B2 (en) * 2006-03-28 2012-02-01 独立行政法人理化学研究所 ELID honing apparatus and method
JP4930984B2 (en) * 2006-08-01 2012-05-16 福岡県 A manufacturing method of a master mold of an axisymmetric lens
US8888596B2 (en) 2009-11-16 2014-11-18 Bally Gaming, Inc. Superstitious gesture influenced gameplay
KR102089868B1 (en) * 2018-10-12 2020-04-23 부산대학교 산학협력단 System for supplying slurry during cmp process
CN110129119B (en) * 2019-05-11 2021-12-10 北京工业大学 Grinding fluid special for ELID grinding of plastic material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061529A (en) * 1959-04-06 1962-10-30 Norton Co Electrolytic grinder and method of grinding
JPS6154908A (en) * 1984-08-27 1986-03-19 株式会社ソディック Method of processing ceramics
JP2580806B2 (en) * 1989-11-21 1997-02-12 三菱マテリアル株式会社 Electrolytic dressing method and apparatus
US5198078A (en) * 1991-07-29 1993-03-30 Oregon Metallurgical Corporation Procedure for electrolyte production of magnesium
US5236566A (en) * 1991-09-24 1993-08-17 Nippon Steel Corporation Vertical type stream plating apparatus
JP3287912B2 (en) 1993-06-18 2002-06-04 理化学研究所 Electrolytic dressing control method and apparatus
JP4341801B2 (en) 2000-06-20 2009-10-14 独立行政法人理化学研究所 ELID grinding machine for fine shape processing
JP4895440B2 (en) * 2001-07-04 2012-03-14 独立行政法人理化学研究所 Method and apparatus for improving surface function of workpiece

Also Published As

Publication number Publication date
US7758741B2 (en) 2010-07-20
JP2006159369A (en) 2006-06-22
US20060124473A1 (en) 2006-06-15
DE102005058934A1 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
EP1072357B1 (en) Elid centerless grinding apparatus
US20100012628A1 (en) Abrasion assisted wire electrical discharge machining process
JP3344558B2 (en) Electric dressing grinding method and apparatus
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
US6117001A (en) Electrolytic in-process dressing method, electrolytic in-process dressing apparatus and grindstone
JP4104199B2 (en) Molded mirror grinding machine
JP4658578B2 (en) Nozzle ELID grinding method and apparatus
CA2299638C (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
JP2838314B2 (en) Electrolytic interval dressing grinding method
JP3530562B2 (en) Lens grinding method
JPH05277938A (en) Mounting type discharge truing and its device
CN110573301A (en) method for treating workpiece and grinding and etching machine
KR100561771B1 (en) Plasma discharge truing device and microfabrication method using the device
Ren et al. Electrolytic In-process dressing (ELID) and super-precision grinding for the ring raceway of ball bearings
JP5356723B2 (en) Grinding wheel dressing equipment
JP5122856B2 (en) Discharge truing electrode, discharge truing device and grinding device
HK1027939A (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
KR980008457A (en) Electrolytic dressing grinding method and grinding apparatus
JPH1158229A (en) Truing or dressing method and apparatus for grinding tool
JPH04315573A (en) Grinding device
JPH01121170A (en) Electro-hydraulic former for blade edge
JPH07205025A (en) Grinding method and device for electrolytic inprocess dressing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term