[go: up one dir, main page]

JP4656551B2 - Polyphenylene ether flame retardant resin composition - Google Patents

Polyphenylene ether flame retardant resin composition Download PDF

Info

Publication number
JP4656551B2
JP4656551B2 JP1049098A JP1049098A JP4656551B2 JP 4656551 B2 JP4656551 B2 JP 4656551B2 JP 1049098 A JP1049098 A JP 1049098A JP 1049098 A JP1049098 A JP 1049098A JP 4656551 B2 JP4656551 B2 JP 4656551B2
Authority
JP
Japan
Prior art keywords
polyphenylene ether
weight
parts
flame retardant
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1049098A
Other languages
Japanese (ja)
Other versions
JPH11209600A (en
Inventor
豊 江口
貴章 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP1049098A priority Critical patent/JP4656551B2/en
Publication of JPH11209600A publication Critical patent/JPH11209600A/en
Application granted granted Critical
Publication of JP4656551B2 publication Critical patent/JP4656551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼時の滴下防止性能に優れたポリフェニレンエーテル系難燃樹脂組成物に関する。
【0002】
【従来の技術】
ポリフェニレンエーテル系樹脂は、機械的特性、電気的特性、耐酸、耐アルカリ性、耐熱性等に優れ、しかも吸水性が低く寸法安定性が良いなどの性質を備えており、電気製品、コンピューターやワープロなどのOA機器のハウジング、シャーシ材料などとして幅広く利用されているが、安全上の問題からこれらの材料には高い難燃性が要求されることが多い。
【0003】
ポリフェニレンエーテル系樹脂の難燃性を改良する目的で、トリフェニスフォスフェート、クレジルジフェニルホスフェート等のリン酸エステル化合物を難燃剤として配合することが従来知られている。さらには前記のリン酸エステル化合物配合時の欠点である耐熱性の低下、成形加工時のリン酸エステル化合物の揮発、ブリード等を改良する目的で、分子量の大きい縮合型のリン酸エステル化合物であるレゾルシノール・ビスフェニルホスフェート化合物、ビスフェノールA−ポリフェニルホスフェート化合物等が使われてきている。
【0004】
さらに、近年火災に対する安全性の要求がとみにクローズアップされ、家電製品、OA機器等に対する米国UL(アンダーライターズ・ラボラトリー)垂直法燃焼試験の規制が年とともに厳しくなってきた。また、軽量化、経済性向上のため、製品、部品の肉厚が薄くなってきたことで燃焼時に火種が滴下し、このため他の製品や部品を損傷するといったことが生じるようになり、この火種の落下を防止する技術、いわゆる滴下防止技術の開発が強く望まれている。滴下防止技術として、難燃剤を増量する方法が知られているが、元来高価な難燃剤を大量に使用するのは、経済的でなく、また、有毒ガスの発生や機械的性質の低下を助長するために好ましくない。
【0005】
ポリフェニレンエーテル系樹脂の滴下防止の従来技術として、米国特許4355126号でポリフェニレンエーテルとビニル芳香族樹脂と難燃剤とポリテトラフルオロエチレン(PTFE)を配合する技術が開示されている。さらに、米国特許4716196号ではポリフェニレンエーテルを含むポリスチレン系樹脂と難燃剤と70から700ミクロンの範囲の粒度のPTFEを配合する技術が開示されている。しかし、いずれの技術もPTFEを加えることにより滴下防止性能の発現を試みているが、結晶性を持つPTFEの結晶化度や分子量に対する記述はない。また、PTFEをポリフェニレンエーテル系樹脂の滴下防止剤として添加してもPTFEの種類により十分な滴下防止性能を発現しない場合や、外観が低下する、さらにはPTFEの添加量を増やすことによって流動性が低下するといった問題があった。
【0006】
【発明が解決しようとする課題】
本発明者らは、このような現状に鑑み、ポリフェニレンエーテル系樹脂の燃焼時の滴下防止化に際し、少量のPTFEで十分な滴下防止性能を発現し、外観、流動性とも優れた材料の開発の検討を行ったところ、特定の分子量および特定の結晶化度を併せ持つPTFEを配合することによって上記の問題点が解決することを見いだし、本発明に至った。
【0007】
【課題を解決するための手段】
すなわち本発明のポリフェニレンエーテル系樹脂組成物は、(A)ポリフェニレンエーテル、又はポリフェニレンエーテルとスチレン系樹脂との混合物からなるポリフェニレンエーテル系樹脂100重量部に対し、(B)リン系難燃剤1〜30重量部および、(C)式(1)によって求められる数平均分子量(Mn)が100万以上かつ式(2)によって求められる結晶化度が98.1%以上のポリテトラフルオロエチレン(PTFE)0.05〜0.3重量部を配合してなる難燃性樹脂組成物である。
【0008】
式(1) Mn=2.1×1010△Hc~5.16
(式中、Mnは数平均分子量、△Hcは降温速度10℃/min.でDSC測定を行った時のcal/g単位の結晶加熱を無次元量とした値。)
式(2) C=(1−0.25×AI)×100
(式中、Cは結晶化度(%)、AI=(778cm~1の吸光度)/(2367cm~1の吸光度)。吸光度はIR測定によって得られる値)
本発明において、(A)ポリフェニレンエーテル系樹脂とは、ポリフェニレンエーテルの単独またはスチレン系樹脂との混合物である。
【0009】
ポリフェニレンエーテルとは、下記一般式(1)を繰り返し単位とした単独重合体、あるいは共重合体である。
【0010】
【化1】

Figure 0004656551
【0011】
(式中、R1、R2、R3、R4は炭素1〜4のアルキル基、アリール基、水素等の1価の残基であり、R3、R4は同時に水素ではない。)
ポリフェニレンエーテルの単独重合体の代表例としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2,6−ジフェニル−1,4−フェニレン)エーテル、ポリ(2,3,6−トリメチル−1,4−フェニレン)エーテル等が挙げられる。この内、特に好ましいものは、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルである。
【0012】
ポリフェニレンエーテル共重合体としては、例えば、2,6−ジメチルフェノールと、2,3,6−トリメチルフェノールとの共重合体あるいは2,6−ジフェニルフェノールとの共重合体あるいはo−クレゾールとの共重合体などが挙げられる。
【0013】
さらにポリフェニレンエーテルの重合法により、末端あるいは主鎖中にアミン化合物等が付加したもの、また、スチレンやアクリレート化合物等のビニル化合物により末端変性されたものを含む。
【0014】
本発明で用いられるスチレン系樹脂とは、スチレン系化合物の単独重合体または共重合体、およびそれらのゴム変性重合体である。
【0015】
スチレン系化合物としては、スチレンの他、o−メチルスチレン、p−メチルスチレン、m−メチルスチレン、2,4−ジメチルスチレン、エチルスチレン、などの核アルキル置換スチレン、α−メチルスチレン、α−メチル−p−メチルスチレンなどのα−アルキル置換スチレン等が挙げられる。また、スチレン系化合物と共重合可能な化合物としては、メチルメタクリレート、エチルメタクリレートなどのメタクリル酸エステル類、アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル化合物類、無水マレイン酸等の酸無水物、ブタジエン、イソプレンなどの共役2重結合を有するジエン化合物類さらにこれらの水添物などが挙げられる。これらの重合体の中で特に好ましい重合体は、ポリスチレン、スチレン−アクリロニトリル共重合体、ゴム変性ポリスチレン、ゴム変性スチレン−アクリロニトリル共重合体である。
【0016】
ポリフェニレンエーテル系樹脂のポリフェニレンエーテルとスチレン系樹脂の混合比であるが、ポリフェニレンエーテルを単独で用いることも可能であるが、流動性を考えた場合スチレン系樹脂との混合が好ましい。好ましい混合比としてポリフェニレンエーテル20〜90重量部、スチレン系樹脂10〜80重量部の範囲である。
【0017】
本発明で用いる(B)リン系難燃剤とは、有機リン化合物、赤リン、及び無機系リン酸塩等の当業界で知られたリン含有難燃剤であればいずれも使用できる。その中でもリン酸エステル化合物が好適に用いられる。例えば、下記一般式(2)および(3)、
【0018】
【化2】
Figure 0004656551
【0019】
【化3】
Figure 0004656551
【0020】
(式中、R1、R2、R3、R4、R5、R6、R7は、それぞれ独立にフェニル基または炭素数1から6のアルキル基で1〜3個置換されたアリール基であり、さらにヒドロキシル基で置換された芳香環基でもよい。Xはアリーレン基であり、nは自然数、j、k、l、mはそれぞれ独立して0または1である。)
で表され、その中で、一般式(2)で表される縮合型リン酸エステル化合物がより好ましい。
【0021】
特に好ましいリン酸エステル化合物は、下記一般式(4)で表される化合物である。
【0022】
【化4】
Figure 0004656551
【0023】
(式中、Q1、Q2、Q3、Q4は、炭素数1から6のアルキル基または水素を表し、R1、R2、R3、R4はメチル基、または水素を表す。nは1以上の整数を、n1、n2は0から2の整数を示し、m1、m2、m3、m4は、1から3の整数を示す。)
リン系難燃剤の配合量は、ポリフェニレンエーテル系樹脂100重量部に対して、1〜30重量部の範囲であるが、難燃性能と経済性、耐熱性等の物性を考えた場合、好ましくは5〜20重量部の範囲となる。
【0024】
本発明では、前記(C)として用いられるポリテトラフルオロエチレン(PTFE)に特徴がある。PTFEの製造は、4フッ化エチレンモノマーを原料とし、過酸化物を用いたラジカル重合により乳化重合法、もしくは懸濁重合法により行われる。また、フッ素原子の一部を別の置換基もしくは元素で置き換えた変性タイプも用いられる。この方法によって得られるPTFEは、粉体もしくはディスパージョンの形態を取るが、高度に結晶質であり、容易にフィブリル化するものである。このようにして得られるPTFEを、本発明の樹脂組成物との配合を試みていく上で、PTFEの分子量及び結晶化度の2つの値がある一定以上を取ることが極めて重要である。すなわち、分子量としては、前記式(1)によって求められる数平均分子量が100万以上、好ましくは200万以上となること。さらに、結晶化度としては、前記式(2)によって求められる値が、96%以上、好ましくは97%以上となるPTFEを配合することによって、少量で十分な滴下防止性能を発現し、外観、流動性とも優れた組成物となる。数平均分子量が100万以上でも結晶化度が96%未満のPTFEでは、成形品の外観を悪化させるだけでなく、滴下防止性能も十分でない。また、結晶化度が96%以上でも分子量が100万未満となるPTFEでは、十分な滴下防止性能を発現しない。
【0025】
なお、数平均分子量の定量化のために用いた式(1)は、ジャーナル・オブ・アプライド・ポリマーサイエンス17巻3253項(1973)の3256項に記載されたDSC測定の結晶化熱と数平均分子量の関係式を用いている。
【0026】
また結晶化度の定量化のために用いた式(2)は、日刊工業新聞社発行の「ふっ素樹脂ハンドブック」42〜45項に記載された、IR測定時の下記式(3)で表される吸光度の比(AI)と結晶化度の関係式を用いている。
【0027】
式(3) AI=(778cm~1での吸光度)/(2367cm~1での吸光度)PTFEの配合量は、ポリフェニレンエーテル系樹脂100重量部に対して0.02〜1重量部の範囲である。好ましくは、0.05〜0.5重量部であるが、本発明のPTFEを用いれば0.02部程度の少量の添加でもある程度の滴下防止性能を発現する。むしろ必要以上の添加は、経済的でないのは当然な事、流動性の悪化とともに成形品の外観を悪化させる。特に好ましい添加量は、0.05〜0.3重量部である。
【0028】
本発明の難燃樹脂組成物の製造方法は、一般的に知られている押出機、加熱ロール、ニーダー、バンバリーミキサー等の混練機を用いて溶融混練することにより製造できる。特に好ましいのは押出機による製造である。
【0029】
PTFEは、本発明の範囲であれば、粉体、ディスパージョンいずれのものも用いられる。混練するポリフェニレンエーテル系樹脂とドライブレンドして押出機に供給する方法や、ディスパージョンを押出機途中に設けた供給口から添加する方法等が挙げられる。また、PTFEをポリフェニレンエーテル系樹脂や他の樹脂等でマスターバッチを作成した後添加する方法も考えられる。
【0030】
溶融混練する時の温度としては、混練するポリフェニレンエーテル系樹脂が溶融する温度であれば特に限定されないが、240℃から300℃の温度範囲で混練することが好ましい。
【0031】
また、本発明の難燃性樹脂組成物には他の難燃剤や滴下防止剤、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモベンゼン等のハロゲン系難燃剤、アンモニウムブロマイドなどの含ハロゲン無機化合物、赤リン、ポリリン酸、リン酸アンモニウムなどの有機、あるいは無機のリン化合物、ホスフォノアミド系等の含窒素リン化合物、メラミン系等のトリアジン骨格含有化合物、酸化アンチモン等の無機化合物、金属水酸化物、フェノール樹脂、シリコン樹脂、ガラス繊維、カーボン繊維等を併用してもかまわない。
【0032】
また、本発明の難燃性樹脂組成物には、耐衝撃性向上のために熱可塑性エラストマーを適宜配合することができる。例えば、スチレン−ブタジエンブロック共重合体、ブタジエンの一部または全てが水素添加されたスチレン−ブタジエンブロック共重合体が例示される。
【0033】
さらに、他の特性を付与するため、本発明の効果を損なわない範囲で他の添加剤、例えば可塑剤、離型剤、帯電防止剤、紫外線吸収剤、酸化防止剤、光安定剤、着色剤、無機充填剤等を含有させることができる。
【0034】
【発明の実施の形態】
次に、実施例により本発明を具体的に説明する。以下の実施例は、いずれも例示的なものであって、本発明の内容を限定するものではない。
【0035】
実施例および比較例に使用した各原料は以下のものである。
【0036】
(A)ポリフェニレンエーテル系樹脂
A−1:還元粘度が0.54(30℃、クロロホルム中)であるポリ(2,6−ジメチル−1,4−フェニレン−エーテル
A−2:ゴム変性ポリスチレン(旭化成工業(株)製、商品名、旭化成ポリスチレン494)。
【0037】
A−3:ポリスチレン(旭化成工業(株)製、商品名、旭化成ポリスチレン685)。
【0038】
(B)リン系難燃剤
B−1:ビスフェノールA−ポリフェニルホスフェート(大八化学(株)製、CR−741)
B−2:トリフェニルホスフェート(大八化学(株)製、TPP)
(C)ポリテトラフルオロエチレン
表1に示すポリテトラフルオロエチレンを用いた。なお、数平均分子量算出のためのDSC測定及び結晶化度算出のためのIR測定は下記の方法による。
【0039】
DSC測定:PERKIN−ELMER社製DSC7を用い、PTFEサンプルを約10mgを正確(0.1mg単位)に測り取り、室温より10℃/min.の速度で400℃まで昇温後直ちに10℃/min.の速度で100℃まで降温した。降温時に310℃付近で観測されるピークをオンセット法で処理し、ピーク面積とサンプル量から結晶化熱(cal/g単位)を求めた。
【0040】
IR測定:PTFEサンプルを常温圧縮成形でフィルムを作成し、日本分光社製FT/IR−7000を用い、4000cm~1から400cm~1の範囲でのIR測定を行った。吸収スペクトルから778cm~1と2367cm~1での吸光度を求めた。
【0041】
【表1】
Figure 0004656551
【0042】
燃焼試験及び物性評価は、以下の方法及び条件で行った。
【0043】
(1)難燃試験
UL−94規格に定められた方法に基づき、1/16インチ厚みの試験片について垂直燃焼試験及び5V(垂直)試験を行った。
【0044】
(2)成形流動性
厚み3.2mm、流動方向の長さ217mmの引張試験用ダンベル片を射出成形した際、この成形片を完全充填するのに必要な最低成形圧力(以下、SSPと略す。)を測定し、成形流動性の尺度とした。SSPの値が低いほど成形流動性に優れることを意味する。
【0045】
(3)熱変形温度
ASTM D648に基づき荷重18.6kg/cm2にて測定した。
【0046】
(4)成形片表面状態
射出成形片を目視及び触感により判定した。表面が平滑なものを良、ざらついている状態を不良とした。
【0047】
実施例1〜3、参考例1、比較例1〜4
表2および表3に示す配合組成にしたがって、シリンダー温度300℃に設定した30mm二軸押出機に供給して100rpmで溶融混練後、ストランドを冷却裁断してペレットを得た。このペレットを、シリンダー温度240℃にされた射出成形機により、金型温度60℃で成形して試験片を得た。この試験片を用いて、燃焼試験および物性評価を行い、結果を表2および表3に示した。
【0048】
表2の結果を見ると、本発明範囲のPTFEを用いた実施例1〜はいずれもUL−94垂直燃焼試験において滴下本数が5本中であった。これに対して、数平均分子量は本発明範囲に入るが、結晶化度が入らない比較例1は、5本中5本全部が滴下した。また、結晶化度は本発明範囲に入るが、数平均分子量が入らない比較例2も5本中5本全部が滴下した。
表3の結果を見ると、PTFEの添加量が0.02重量部以上となると、燃焼試験時の滴下防止に効果があることが分かる。添加量が2部となると成形流動性が悪くなるばかりでなく、成形片の表面状態も悪化し好ましい例とはならない。
【0049】
表3の結果を見ると、PTFEの添加量が0.02重量部以上となると、燃焼試験時の滴下防止に効果があることが分かる。添加量が2部となると成形流動性が悪くなるばかりでなく、成形片の表面状態も悪化し好ましい例とはならない。
【0050】
【表2】
Figure 0004656551
【0051】
【表3】
Figure 0004656551
【0052】
【発明の効果】
本発明の樹脂組成物は、燃焼時の滴下防止性能に優れるとともに、成形品の外観、成形流動性に優れた難燃樹脂組成物である。この組成物は、家電部品、OA機器部品等に好適であり、これら産業界に果たす役割は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyphenylene ether-based flame retardant resin composition having excellent anti-dripping performance during combustion.
[0002]
[Prior art]
Polyphenylene ether resins have excellent mechanical properties, electrical properties, acid resistance, alkali resistance, heat resistance, etc., and have properties such as low water absorption and good dimensional stability, such as electrical products, computers and word processors. However, these materials are often required to have high flame retardance for safety reasons.
[0003]
In order to improve the flame retardancy of polyphenylene ether-based resins, it is conventionally known to incorporate phosphate ester compounds such as triphenyl phosphate and cresyl diphenyl phosphate as flame retardants. Furthermore, it is a condensed phosphate ester compound having a large molecular weight for the purpose of improving heat resistance, which is a drawback when the phosphate ester compound is blended, and volatilization and bleeding of the phosphate ester compound during molding. Resorcinol / bisphenyl phosphate compounds, bisphenol A-polyphenyl phosphate compounds, and the like have been used.
[0004]
Furthermore, in recent years, safety requirements for fires have been raised, and regulations on the US UL (Underwriters Laboratory) vertical combustion test for home appliances, OA equipment, etc. have become stricter over the years. In addition, to reduce weight and improve economic efficiency, the thickness of products and parts has become thinner, causing fires to drop during combustion, which can cause damage to other products and parts. There is a strong demand for the development of technology for preventing the fall of fire types, so-called dripping prevention technology. As a dripping prevention technique, a method of increasing the amount of flame retardant is known, but using a large amount of an inherently expensive flame retardant is not economical, and also generates toxic gases and decreases mechanical properties. It is not preferable to promote.
[0005]
As a conventional technique for preventing dripping of a polyphenylene ether resin, US Pat. No. 4,355,126 discloses a technique of blending polyphenylene ether, a vinyl aromatic resin, a flame retardant, and polytetrafluoroethylene (PTFE). Further, US Pat. No. 4,716,196 discloses a technique of blending a polystyrene resin containing polyphenylene ether, a flame retardant, and PTFE having a particle size in the range of 70 to 700 microns. However, each technique attempts to exhibit anti-drip performance by adding PTFE, but there is no description of the crystallinity and molecular weight of PTFE having crystallinity. In addition, even if PTFE is added as a polyphenylene ether-based resin dripping preventive agent, sufficient dripping prevention performance is not exhibited depending on the type of PTFE, the appearance is deteriorated, and the flowability is increased by increasing the addition amount of PTFE. There was a problem of a drop.
[0006]
[Problems to be solved by the invention]
In view of the current situation, the present inventors have developed a material that exhibits sufficient anti-drip performance with a small amount of PTFE, and has excellent appearance and fluidity, when the polyphenylene ether-based resin is prevented from dripping during combustion. As a result of investigation, it was found that the above-mentioned problems can be solved by blending PTFE having a specific molecular weight and a specific crystallinity, and the present invention has been achieved.
[0007]
[Means for Solving the Problems]
That is, the polyphenylene ether resin composition of the present invention comprises (B) phosphorus flame retardants 1 to 30 with respect to 100 parts by weight of (A) polyphenylene ether or polyphenylene ether resin composed of a mixture of polyphenylene ether and styrene resin. Parts by weight and (C) polytetrafluoroethylene (PTFE) having a number average molecular weight (Mn) of 1 million or more determined by formula (1) and a crystallinity of 98.1 % or more determined by formula (2) 0 A flame retardant resin composition containing 0.05 to 0.3 parts by weight.
[0008]
Formula (1) Mn = 2.1 × 10 10 ΔHc˜5.16
(In the formula, Mn is a number average molecular weight, and ΔHc is a value in which the crystal heating in cal / g unit is dimensionless when DSC measurement is performed at a temperature drop rate of 10 ° C./min.)
Formula (2) C = (1-0.25 × AI) × 100
(Wherein, C is crystallinity (%), AI = (absorbance of 778 cm- 1 ) / (absorbance of 2367 cm- 1 ). Absorbance is a value obtained by IR measurement)
In the present invention, the (A) polyphenylene ether resin is a polyphenylene ether alone or a mixture with a styrene resin.
[0009]
The polyphenylene ether is a homopolymer or copolymer having the following general formula (1) as a repeating unit.
[0010]
[Chemical 1]
Figure 0004656551
[0011]
(In the formula, R1, R2, R3, and R4 are monovalent residues such as an alkyl group having 1 to 4 carbon atoms, an aryl group, and hydrogen, and R3 and R4 are not hydrogen at the same time.)
Representative examples of polyphenylene ether homopolymers include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2, Examples include 6-diethyl-1,4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) ether, poly (2,3,6-trimethyl-1,4-phenylene) ether, and the like. Of these, poly (2,6-dimethyl-1,4-phenylene) ether is particularly preferred.
[0012]
Examples of the polyphenylene ether copolymer include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-diphenylphenol, or a copolymer of o-cresol. A polymer etc. are mentioned.
[0013]
Further, those obtained by adding an amine compound or the like to the terminal or main chain by a polymerization method of polyphenylene ether, or those modified with a vinyl compound such as styrene or an acrylate compound are included.
[0014]
The styrene resin used in the present invention is a homopolymer or copolymer of a styrene compound and a rubber-modified polymer thereof.
[0015]
Styrene compounds include, in addition to styrene, o-methyl styrene, p-methyl styrene, m-methyl styrene, 2,4-dimethyl styrene, ethyl styrene, and other nuclear alkyl-substituted styrenes, α-methyl styrene, α-methyl And α-alkyl-substituted styrene such as -p-methylstyrene. Examples of the compound copolymerizable with the styrene compound include methacrylic acid esters such as methyl methacrylate and ethyl methacrylate, unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile, acid anhydrides such as maleic anhydride, butadiene, Examples include diene compounds having a conjugated double bond such as isoprene, and hydrogenated products thereof. Particularly preferred among these polymers are polystyrene, styrene-acrylonitrile copolymers, rubber-modified polystyrene, and rubber-modified styrene-acrylonitrile copolymers.
[0016]
The mixing ratio of the polyphenylene ether and the styrene resin in the polyphenylene ether resin is not limited, but it is possible to use the polyphenylene ether alone, but in consideration of fluidity, the mixing with the styrene resin is preferable. The preferred mixing ratio is 20 to 90 parts by weight of polyphenylene ether and 10 to 80 parts by weight of styrene resin.
[0017]
As the (B) phosphorus-based flame retardant used in the present invention, any phosphorus-containing flame retardant known in the art such as an organic phosphorus compound, red phosphorus, and inorganic phosphate can be used. Among these, phosphate ester compounds are preferably used. For example, the following general formulas (2) and (3),
[0018]
[Chemical 2]
Figure 0004656551
[0019]
[Chemical 3]
Figure 0004656551
[0020]
(In the formula, R 1, R 2, R 3, R 4, R 5, R 6, and R 7 are each independently an aryl group substituted with 1 to 3 phenyl groups or alkyl groups having 1 to 6 carbon atoms; It may be a substituted aromatic ring group, X is an arylene group, n is a natural number, and j, k, l, and m are each independently 0 or 1.)
Among them, the condensed phosphate ester compound represented by the general formula (2) is more preferable.
[0021]
A particularly preferable phosphate compound is a compound represented by the following general formula (4).
[0022]
[Formula 4]
Figure 0004656551
[0023]
(Wherein Q1, Q2, Q3 and Q4 represent an alkyl group having 1 to 6 carbon atoms or hydrogen, R1, R2, R3 and R4 represent a methyl group or hydrogen. N represents an integer of 1 or more. n1 and n2 represent integers from 0 to 2, and m1, m2, m3, and m4 represent integers from 1 to 3.)
The compounding amount of the phosphorus-based flame retardant is in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the polyphenylene ether-based resin. However, when considering physical properties such as flame retardancy and economy, heat resistance, It becomes the range of 5-20 weight part.
[0024]
The present invention is characterized by polytetrafluoroethylene (PTFE) used as the (C). The production of PTFE is performed by an emulsion polymerization method or a suspension polymerization method by radical polymerization using a tetrafluoroethylene monomer as a raw material and using a peroxide. A modified type in which a part of the fluorine atom is replaced with another substituent or element is also used. PTFE obtained by this method takes the form of a powder or dispersion, but is highly crystalline and easily fibrillated. In attempting to blend the PTFE thus obtained with the resin composition of the present invention, it is extremely important that the two values of the molecular weight and crystallinity of PTFE take a certain value or more. That is, as a molecular weight, the number average molecular weight calculated | required by said Formula (1) shall be 1 million or more, Preferably it is 2 million or more. Furthermore, as a degree of crystallinity, by blending PTFE with a value calculated by the above formula (2) of 96% or more, preferably 97% or more, sufficient anti-drip performance is expressed in a small amount, The composition is excellent in fluidity. When the number average molecular weight is 1,000,000 or more, PTFE having a crystallinity of less than 96% not only deteriorates the appearance of the molded product but also has insufficient drip prevention performance. Further, PTFE having a molecular weight of less than 1 million even when the crystallinity is 96% or more does not exhibit sufficient anti-drip performance.
[0025]
The formula (1) used for the quantification of the number average molecular weight is the heat of crystallization and the number average of DSC measurement described in 3256 of Journal of Applied Polymer Science, Vol. 17, Section 3253 (1973). The molecular weight relational expression is used.
[0026]
Further, the formula (2) used for quantification of the crystallinity is expressed by the following formula (3) at the time of IR measurement described in “Fluorine Resin Handbook” 42-45 published by Nikkan Kogyo Shimbun. The relational expression between the absorbance ratio (AI) and crystallinity is used.
[0027]
Equation (3) AI = (absorbance at 778cm ~ 1) / (absorbance at 2367cm ~ 1) The amount of PTFE is in the range of 0.02 to 1 parts by weight per 100 parts by weight of the polyphenylene ether resin . Preferably, the amount is 0.05 to 0.5 parts by weight, but if the PTFE of the present invention is used, a certain amount of anti-drip performance will be exhibited even with a small addition of about 0.02 part. Rather, adding more than necessary naturally is not economical, and deteriorates the appearance of the molded article as well as the fluidity. A particularly preferred addition amount is 0.05 to 0.3 parts by weight.
[0028]
The method for producing the flame retardant resin composition of the present invention can be produced by melt-kneading using a kneader such as a generally known extruder, heating roll, kneader or Banbury mixer. Particularly preferred is the production by an extruder.
[0029]
Any PTFE may be used as long as it falls within the scope of the present invention. Examples thereof include a method of dry blending with a polyphenylene ether resin to be kneaded and supplying it to an extruder, and a method of adding a dispersion from a supply port provided in the middle of the extruder. A method of adding PTFE after making a masterbatch with a polyphenylene ether resin or other resin is also conceivable.
[0030]
The temperature at the time of melt kneading is not particularly limited as long as the polyphenylene ether resin to be kneaded is melted, but it is preferable to knead in a temperature range of 240 ° C to 300 ° C.
[0031]
The flame retardant resin composition of the present invention includes other flame retardants and anti-dripping agents, for example, halogen-containing flame retardants such as decabromodiphenyl ether, tetrabromobisphenol A, and hexabromobenzene, and halogen-containing inorganic substances such as ammonium bromide. Compounds, organic phosphorus such as red phosphorus, polyphosphoric acid and ammonium phosphate, inorganic phosphorus compounds such as phosphonoamides, triazine skeleton containing compounds such as melamines, inorganic compounds such as antimony oxide, metallic water Oxides, phenol resins, silicon resins, glass fibers, carbon fibers, etc. may be used in combination.
[0032]
Moreover, a thermoplastic elastomer can be suitably mix | blended with the flame-retardant resin composition of this invention for impact resistance improvement. Examples thereof include styrene-butadiene block copolymers and styrene-butadiene block copolymers in which part or all of butadiene has been hydrogenated.
[0033]
Furthermore, other additives such as a plasticizer, a release agent, an antistatic agent, an ultraviolet absorber, an antioxidant, a light stabilizer, and a colorant are added within a range that does not impair the effects of the present invention in order to impart other characteristics. Inorganic fillers and the like can be contained.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described specifically by way of examples. The following examples are all illustrative and do not limit the contents of the present invention.
[0035]
The raw materials used in the examples and comparative examples are as follows.
[0036]
(A) Polyphenylene ether resin A-1: Poly (2,6-dimethyl-1,4-phenylene-ether A-2) having a reduced viscosity of 0.54 (30 ° C. in chloroform): Rubber-modified polystyrene (Asahi Kasei) Kogyo Co., Ltd., trade name, Asahi Kasei Polystyrene 494).
[0037]
A-3: Polystyrene (Asahi Kasei Kogyo Co., Ltd., trade name, Asahi Kasei Polystyrene 685).
[0038]
(B) Phosphorus flame retardant B-1: Bisphenol A-polyphenyl phosphate (manufactured by Daihachi Chemical Co., Ltd., CR-741)
B-2: Triphenyl phosphate (manufactured by Daihachi Chemical Co., Ltd., TPP)
(C) Polytetrafluoroethylene Polytetrafluoroethylene shown in Table 1 was used. The DSC measurement for calculating the number average molecular weight and the IR measurement for calculating the crystallinity are performed by the following methods.
[0039]
DSC measurement: Using a DSC7 manufactured by PERKIN-ELMER, approximately 10 mg of PTFE sample was accurately measured (0.1 mg unit), and 10 ° C./min. Immediately after raising the temperature to 400 ° C. at a rate of 10 ° C./min. The temperature was decreased to 100 ° C. at a rate of The peak observed at around 310 ° C. when the temperature was lowered was processed by the onset method, and the heat of crystallization (cal / g unit) was determined from the peak area and the sample amount.
[0040]
IR measurement: to create a film of the PTFE sample at room temperature compression molding, using a JASCO Corp. FT / IR-7000, was IR measurement in the range from 4000cm ~ 1 of 400cm ~ 1. From the absorption spectrum to determine the absorbance at 778cm ~ 1 and 2367cm ~ 1.
[0041]
[Table 1]
Figure 0004656551
[0042]
The combustion test and physical property evaluation were performed by the following methods and conditions.
[0043]
(1) Flame retardance test Based on the method defined in the UL-94 standard, a vertical combustion test and a 5V (vertical) test were performed on a test piece having a thickness of 1/16 inch.
[0044]
(2) Molding fluidity When a tensile test dumbbell piece having a thickness of 3.2 mm and a length in the flow direction of 217 mm is injection-molded, the minimum molding pressure (hereinafter abbreviated as SSP) necessary to completely fill the molded piece. ) Was measured and used as a measure of molding fluidity. The lower the SSP value, the better the molding fluidity.
[0045]
(3) Thermal deformation temperature Measured at a load of 18.6 kg / cm 2 based on ASTM D648.
[0046]
(4) Molded piece surface state The injection molded piece was judged visually and tactilely. A smooth surface was judged good, and a rough surface was judged bad.
[0047]
Examples 1-3, Reference Example 1 , Comparative Examples 1-4
According to the composition shown in Table 2 and Table 3, the mixture was supplied to a 30 mm twin-screw extruder set at a cylinder temperature of 300 ° C., melt-kneaded at 100 rpm, and then the strand was cooled and cut to obtain pellets. The pellets were molded at a mold temperature of 60 ° C. by an injection molding machine having a cylinder temperature of 240 ° C. to obtain test pieces. Using this test piece, a combustion test and physical property evaluation were performed, and the results are shown in Tables 2 and 3.
[0048]
From the results shown in Table 2, in Examples 1 to 3 using PTFE within the scope of the present invention, the number of drops was 0 in 5 in the UL-94 vertical combustion test. On the other hand, in Comparative Example 1 in which the number average molecular weight falls within the scope of the present invention but the crystallinity does not enter, all 5 of 5 drops. Further, in Comparative Example 2 in which the crystallinity falls within the range of the present invention but the number average molecular weight does not enter, all 5 out of 5 were dropped.
When the result of Table 3 is seen, when the addition amount of PTFE will be 0.02 weight part or more, it turns out that it is effective in dripping prevention at the time of a combustion test. When the addition amount is 2 parts, not only the molding fluidity is deteriorated but also the surface condition of the molded piece is deteriorated, which is not a preferable example.
[0049]
When the result of Table 3 is seen, when the addition amount of PTFE will be 0.02 weight part or more, it turns out that it is effective in dripping prevention at the time of a combustion test. When the addition amount is 2 parts, not only the molding fluidity is deteriorated but also the surface condition of the molded piece is deteriorated, which is not a preferable example.
[0050]
[Table 2]
Figure 0004656551
[0051]
[Table 3]
Figure 0004656551
[0052]
【The invention's effect】
The resin composition of the present invention is a flame retardant resin composition having excellent anti-drip performance during combustion and excellent appearance and molding fluidity of a molded product. This composition is suitable for home appliance parts, OA equipment parts, etc., and plays a major role in these industries.

Claims (2)

(A)ポリフェニレンエーテル、又はポリフェニレンエーテルとスチレン系樹脂との混合物からなるポリフェニレンエーテル系樹脂100重量部に対し、(B)リン系難燃剤1〜30重量部および、(C)式(1)によって求められる数平均分子量(Mn)が100万以上かつ式(2)によって求められる結晶化度が98.1%以上のポリテトラフルオロエチレン(PTFE)0.05〜0.3重量部を配合してなる難燃性樹脂組成物。
式(1) Mn=2.1×1010△Hc-5.16
(式中、Mnは数平均分子量、△Hcは降温速度10℃/min.でDSC測定を行った時のcal/g単位の結晶加熱を無次元量とした値。)
式(2) C=(1−0.25×AI)×100
(式中、Cは結晶化度(%)、AI=(778cm-1の吸光度)/(2367cm-1の吸光度)。吸光度はIR測定によって得られる値)
(B) 1 to 30 parts by weight of a phosphorus-based flame retardant and (C) Formula (1) with respect to 100 parts by weight of polyphenylene ether or 100 parts by weight of polyphenylene ether resin composed of a mixture of polyphenylene ether and styrene resin A polytetrafluoroethylene (PTFE) having a number average molecular weight (Mn) of 1 million or more and a crystallinity of 98.1 % or more obtained by the formula (2) is blended in an amount of 0.05 to 0.3 parts by weight. A flame retardant resin composition.
Formula (1) Mn = 2.1 × 10 10 ΔHc −5.16
(In the formula, Mn is a number average molecular weight, and ΔHc is a value in which the crystal heating in cal / g unit is dimensionless when DSC measurement is performed at a temperature drop rate of 10 ° C./min.)
Formula (2) C = (1-0.25 × AI) × 100
(Wherein, C is crystallinity (%), AI = (absorbance at 778 cm −1 ) / (absorbance at 2367 cm −1 ). Absorbance is a value obtained by IR measurement)
ポリフェニレンエーテル系樹脂が、ポリフェニレンエーテル20〜90重量部および、ポリスチレンおよびゴム変性ポリスチレンから選ばれるスチレン系樹脂80〜10重量部からなる混合物である請求項1記載の難燃性樹脂組成物。The flame retardant resin composition according to claim 1, wherein the polyphenylene ether resin is a mixture comprising 20 to 90 parts by weight of polyphenylene ether and 80 to 10 parts by weight of a styrene resin selected from polystyrene and rubber-modified polystyrene.
JP1049098A 1998-01-22 1998-01-22 Polyphenylene ether flame retardant resin composition Expired - Fee Related JP4656551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049098A JP4656551B2 (en) 1998-01-22 1998-01-22 Polyphenylene ether flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049098A JP4656551B2 (en) 1998-01-22 1998-01-22 Polyphenylene ether flame retardant resin composition

Publications (2)

Publication Number Publication Date
JPH11209600A JPH11209600A (en) 1999-08-03
JP4656551B2 true JP4656551B2 (en) 2011-03-23

Family

ID=11751630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049098A Expired - Fee Related JP4656551B2 (en) 1998-01-22 1998-01-22 Polyphenylene ether flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP4656551B2 (en)

Also Published As

Publication number Publication date
JPH11209600A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP1651718B1 (en) Flameproof thermoplastic resin composition
JP2010090392A (en) Flame-retardant styrenic resin composition
US6451889B1 (en) Flameproof thermoplastic resin composition
KR100665802B1 (en) Flame retardant styrene resin composition
JP2007520572A (en) Flame retardant rubber reinforced polystyrene resin composition
JPS619450A (en) Flame-retardant resin composition
JPH068371B2 (en) Flame-retardant resin composition
JP4656551B2 (en) Polyphenylene ether flame retardant resin composition
JPH11323064A (en) Flame-retardant styrene-based resin composition
JPH11199680A (en) Production of flame-retardant resin composition for developing performance for preventing dripping
JPH11209601A (en) Flame-retardant polyphenylene ether resin composition excellent in nondripping performance
KR100467809B1 (en) Non-halogen fire retardant styrene resin composition
WO2005056671A1 (en) Flame-retardant styrene resin composition and molded article obtained therefrom
JPH04370134A (en) Halogen-free flame-retarding resin composition
GB2300860A (en) Flame retardant styrene polymer
KR20000007775A (en) Thermoplastic resin composition having retardency
KR100576326B1 (en) Flame Retardant Thermoplastic Composition
JP2000309700A (en) Production of polyphenylene ether-based resin composition
JP2023139712A (en) Resin composition, molded body, electronic component, and, electronic equipment
JP2944227B2 (en) Flame retardant styrenic resin composition
KR0171250B1 (en) Thermoplastic polycarbonate resin composition having fire retardancy
JPH11181199A (en) Flame-retardant polyphenylene ether resin composition
JP2000154290A (en) Stabilized resin composition
KR100778008B1 (en) Flame retardant styrene resin composition
JPH0812831A (en) Flame-retardant resin housing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees