[go: up one dir, main page]

JP4654574B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4654574B2
JP4654574B2 JP2003359229A JP2003359229A JP4654574B2 JP 4654574 B2 JP4654574 B2 JP 4654574B2 JP 2003359229 A JP2003359229 A JP 2003359229A JP 2003359229 A JP2003359229 A JP 2003359229A JP 4654574 B2 JP4654574 B2 JP 4654574B2
Authority
JP
Japan
Prior art keywords
region
reference circuit
potential reference
semiconductor device
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003359229A
Other languages
Japanese (ja)
Other versions
JP2005123512A (en
Inventor
雅人 滝
秀樹 戸嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003359229A priority Critical patent/JP4654574B2/en
Priority to EP04773779.6A priority patent/EP1676320B1/en
Priority to CN200480030738A priority patent/CN100587955C/en
Priority to KR1020067009868A priority patent/KR100767075B1/en
Priority to PCT/JP2004/015328 priority patent/WO2005038921A1/en
Priority to US10/576,292 priority patent/US7538407B2/en
Publication of JP2005123512A publication Critical patent/JP2005123512A/en
Application granted granted Critical
Publication of JP4654574B2 publication Critical patent/JP4654574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • H10D30/603Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs  having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • H10D30/655Lateral DMOS [LDMOS] FETs having edge termination structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • H10D30/657Lateral DMOS [LDMOS] FETs having substrates comprising insulating layers, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • H10D62/116Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/118Electrodes comprising insulating layers having particular dielectric or electrostatic properties, e.g. having static charges
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は,低電位基準回路と高電位基準回路とを混載した半導体装置に関する。さらに詳細には,低電位基準回路と高電位基準回路との間の信号伝達を媒介する高耐圧MOSを備えた半導体装置に関するものである。   The present invention relates to a semiconductor device in which a low potential reference circuit and a high potential reference circuit are mixedly mounted. More specifically, the present invention relates to a semiconductor device including a high breakdown voltage MOS that mediates signal transmission between a low potential reference circuit and a high potential reference circuit.

従来から,低電位基準回路と高電位基準回路とを混載した半導体装置がパワーデバイス等に広く利用されている。そのような半導体装置は,概ね図16に示すような構造を有している。すなわち,低電位基準回路領域1と高電位基準回路領域2とを備え,高電位基準回路領域2がリサーフ構造等により形成された高耐圧分離領域3に取り囲まれる構造を有している。また,低電位基準回路領域1と高電位基準回路領域2との間の信号伝達(レベルシフト)のために高耐圧NMOS5や高耐圧PMOS6が設けられている。具体的には,低電位基準回路領域1から高電位基準回路領域2へのレベルシフトには,低電位基準回路領域1内に配置した高耐圧NMOS5が利用されている。一方,高電位基準回路領域2から低電位基準回路領域1へのレベルシフトには,高電位基準回路領域2内に配置した高耐圧PMOS6が利用されている。そして,それぞれのドレイン配線が入力側の領域から高耐圧分離領域3を跨いで出力側の領域に引き出されている。   Conventionally, a semiconductor device in which a low potential reference circuit and a high potential reference circuit are mixedly used is widely used for a power device or the like. Such a semiconductor device generally has a structure as shown in FIG. That is, a low potential reference circuit region 1 and a high potential reference circuit region 2 are provided, and the high potential reference circuit region 2 is surrounded by a high breakdown voltage isolation region 3 formed by a RESURF structure or the like. A high breakdown voltage NMOS 5 and a high breakdown voltage PMOS 6 are provided for signal transmission (level shift) between the low potential reference circuit region 1 and the high potential reference circuit region 2. Specifically, for the level shift from the low potential reference circuit region 1 to the high potential reference circuit region 2, a high breakdown voltage NMOS 5 disposed in the low potential reference circuit region 1 is used. On the other hand, for the level shift from the high potential reference circuit region 2 to the low potential reference circuit region 1, a high breakdown voltage PMOS 6 disposed in the high potential reference circuit region 2 is used. Each drain wiring is drawn from the input side region to the output side region across the high breakdown voltage isolation region 3.

図17は,低電位基準回路領域1から高電位基準回路領域2へのレベルシフトを行う回路の例を示したものである。この回路は,高耐圧NMOS5と,プルアップ抵抗101と,ツェナーダイオード102とを備えている。そして,高耐圧NMOS5のON/OFFに伴って,ドレインに高電位基準回路領域2内の電源電圧に相当する電位差を生じさせる。これにより,低電位基準回路領域1と高電位基準回路領域2との間のレベルシフトを行う。例えば,低電位基準回路領域1内および高電位基準回路領域2内の電源電圧がともに15Vであり,低電位基準回路領域1と高電位基準回路領域2との電位差が1000Vであることとする。この場合,低電位基準回路領域1内で0−15Vでスイングさせた信号は,この回路を介することにより1000−1015Vでスイングする信号に変換される。これにより,低電位基準回路1から送られる信号が高電位基準回路2内で使用可能となる。   FIG. 17 shows an example of a circuit that performs a level shift from the low potential reference circuit region 1 to the high potential reference circuit region 2. This circuit includes a high breakdown voltage NMOS 5, a pull-up resistor 101, and a Zener diode 102. As the high voltage NMOS 5 is turned on / off, a potential difference corresponding to the power supply voltage in the high potential reference circuit region 2 is generated at the drain. Thereby, a level shift between the low potential reference circuit region 1 and the high potential reference circuit region 2 is performed. For example, it is assumed that the power supply voltages in the low potential reference circuit region 1 and the high potential reference circuit region 2 are both 15V, and the potential difference between the low potential reference circuit region 1 and the high potential reference circuit region 2 is 1000V. In this case, a signal swung at 0-15V in the low potential reference circuit region 1 is converted into a signal swinging at 1000-1015V through this circuit. As a result, the signal sent from the low potential reference circuit 1 can be used in the high potential reference circuit 2.

このように低電位基準回路領域1と高電位基準回路領域2との間でレベルシフトを行う半導体装置では,表面上に形成されたメタル配線(ドレイン配線)を介して信号が伝達される。このドレイン配線は,層間絶縁膜を介して低電位基準回路領域1や高耐圧分離領域3等の上を通過することになる。その際,高電位であるドレイン配線と低電位である半導体装置の表面との電位差が大きくなる。そのため,このドレイン配線によって耐圧が低下することが問題となる。通常,この問題を解決するためにドレイン配線と半導体装置の表面との間の層間絶縁層を厚く形成することで対応する。しかしながら,高電位基準回路領域と低電位基準回路領域との電位差が600Vを超えるものでは,厚膜化に伴う配線プロセスの困難化やコストアップ等を招いてしまう。   Thus, in a semiconductor device that performs a level shift between the low potential reference circuit region 1 and the high potential reference circuit region 2, a signal is transmitted through a metal wiring (drain wiring) formed on the surface. The drain wiring passes over the low potential reference circuit region 1 and the high breakdown voltage isolation region 3 through the interlayer insulating film. At that time, the potential difference between the drain wiring having a high potential and the surface of the semiconductor device having a low potential increases. Therefore, there is a problem that the breakdown voltage is lowered by the drain wiring. Usually, in order to solve this problem, a thick interlayer insulating layer is formed between the drain wiring and the surface of the semiconductor device. However, if the potential difference between the high potential reference circuit region and the low potential reference circuit region exceeds 600 V, the wiring process becomes difficult and the cost increases due to the increase in thickness.

前記した問題を解決する技術としては,例えば特許文献1に,高耐圧分離領域とレベルシフト用の高耐圧MOSのドリフト層を一体的に形成し,ドレインを出力側の回路領域内に形成した半導体装置が開示されている。この半導体装置は,ドレイン配線が高耐圧分離領域や低電位基準回路領域上を跨いで配線されることがないため,耐圧の問題を生じさせずにレベルシフトを行うことができるとされている。   As a technique for solving the above problem, for example, in Patent Document 1, a high breakdown voltage isolation region and a high-voltage MOS drift layer for level shift are integrally formed, and a drain is formed in a circuit region on the output side. An apparatus is disclosed. In this semiconductor device, since the drain wiring is not wired across the high breakdown voltage isolation region or the low potential reference circuit region, it is said that level shift can be performed without causing a breakdown voltage problem.

また,この他には,例えば特許文献2に,N型の高耐圧分離領域の一部をP型のスリット領域にて分割し,その部位にレベルシフト用の高耐圧NMOSを形成した半導体装置が開示されている。すなわち,高耐圧NMOSのドレインN型層と高電位基準回路領域内のN型層とをP型のスリット領域を介して対向させている。また,そのスリット領域の上方に高電位のドレイン配線を配している。この半導体装置では,そのスリット領域部分をピンチオフ(両N型層から形成される空乏層の一体化)させる。そして,ピンチオフさせるとP型のスリット領域の表面が両サイドのN型層とほぼ同電位となる。これにより,ドレイン配線の影響を抑制できるとされている。   In addition to this, for example, Patent Document 2 discloses a semiconductor device in which a part of an N-type high withstand voltage isolation region is divided by a P-type slit region and a high-voltage NMOS for level shift is formed at that part. It is disclosed. That is, the drain N-type layer of the high breakdown voltage NMOS and the N-type layer in the high potential reference circuit region are opposed to each other through the P-type slit region. A high potential drain wiring is disposed above the slit region. In this semiconductor device, the slit region is pinched off (integration of a depletion layer formed from both N-type layers). When pinched off, the surface of the P-type slit region has almost the same potential as the N-type layers on both sides. This is supposed to suppress the influence of the drain wiring.

また,この他には,例えば特許文献3に,SOI構造を有する半導体装置であって,半導体装置の主表面から埋め込み絶縁層までに達する絶縁領域を設け,その絶縁領域上にドレイン配線を配設した半導体装置が開示されている。これにより,高電位となるドレイン配線と半導体層との間隔を大きくすることができるため,ドレイン配線の影響を抑制できるとされている。
特開平9−55498号公報 特開平9−283716号公報 特許第3201719号公報
In addition to this, for example, Patent Document 3 discloses a semiconductor device having an SOI structure in which an insulating region extending from the main surface of the semiconductor device to the buried insulating layer is provided, and a drain wiring is provided on the insulating region. A semiconductor device is disclosed. Thus, the distance between the drain wiring and the semiconductor layer that is at a high potential can be increased, so that the influence of the drain wiring can be suppressed.
JP-A-9-55498 JP-A-9-283716 Japanese Patent No. 3201719

これら先行文献に開示された半導体装置では,いずれもレベルシフトを行う際に,ドレイン配線と半導体装置の表面との電位差が大きくならないように工夫されている。しかしながら,これらの半導体装置には,次のような問題があった。   All of the semiconductor devices disclosed in these prior arts are devised so that the potential difference between the drain wiring and the surface of the semiconductor device does not become large when performing level shift. However, these semiconductor devices have the following problems.

すなわち,特許文献1に開示された半導体装置では,高耐圧MOSがNMOSである場合には,その高耐圧NMOSのドレインN型層が高電位基準回路領域のN型層と接するように形成される。そのため,高耐圧NMOSのドレインN型層と高電位基準回路領域のN型層とは電気的に接続している。それ故,高耐圧NMOSのドレインN型層と高電位基準回路領域内のN型層との間の寄生抵抗を大きくする機構が必要である。このことから,特許文献1に開示された半導体装置では,高耐圧分離領域を低電位基準回路領域方向に湾曲させ,その部分に高耐圧NMOSを形成している。すなわち,高耐圧NMOSのドレインN型層と高電位基準回路領域内のN型層との距離を大きくして寄生抵抗を大きくしているのである。しかしながら,湾曲させることでチップ面積の増大を招き,基板全体のコンパクト化を妨げてしまう。また,高耐圧NMOSのドレインN型層と高電位基準回路領域内のN型層とを完全に絶縁することが不可能であるため,リーク電流の発生は不可避である。よって,電力の浪費が生じる。   That is, in the semiconductor device disclosed in Patent Document 1, when the high breakdown voltage MOS is an NMOS, the drain N type layer of the high breakdown voltage NMOS is formed in contact with the N type layer in the high potential reference circuit region. . Therefore, the drain N-type layer of the high breakdown voltage NMOS and the N-type layer of the high potential reference circuit region are electrically connected. Therefore, there is a need for a mechanism that increases the parasitic resistance between the drain N-type layer of the high breakdown voltage NMOS and the N-type layer in the high potential reference circuit region. For this reason, in the semiconductor device disclosed in Patent Document 1, the high breakdown voltage isolation region is curved in the direction of the low potential reference circuit region, and a high breakdown voltage NMOS is formed in that portion. That is, the parasitic resistance is increased by increasing the distance between the drain N-type layer of the high breakdown voltage NMOS and the N-type layer in the high potential reference circuit region. However, the bending causes an increase in the chip area and prevents the entire substrate from being made compact. Further, since it is impossible to completely insulate the drain N-type layer of the high breakdown voltage NMOS and the N-type layer in the high potential reference circuit region, the generation of leakage current is inevitable. Therefore, power is wasted.

また,特許文献2に開示された半導体装置では,高耐圧NMOSのドレインN型層と高電位基準回路領域内のN型層との間が空乏化されるような配置を採用している。しかし,この距離が近すぎると高耐圧NMOSのドレインN型層と高電位基準回路領域内のN型層との間でパンチスルー降伏が発生する。つまり,両者の距離は,耐圧とパンチスルー降伏とのトレードオフを考慮して定める必要がある。このため,要求仕様電圧によってはこのトレードオフ関係を充足できず,使用電圧の制限を受けてしまう。   Further, the semiconductor device disclosed in Patent Document 2 employs an arrangement in which the space between the drain N-type layer of the high breakdown voltage NMOS and the N-type layer in the high potential reference circuit region is depleted. However, if this distance is too close, punch-through breakdown occurs between the drain N-type layer of the high breakdown voltage NMOS and the N-type layer in the high potential reference circuit region. In other words, the distance between the two needs to be determined in consideration of the trade-off between breakdown voltage and punch-through breakdown. For this reason, depending on the required specification voltage, this trade-off relationship cannot be satisfied and the operating voltage is limited.

また,特許文献3に開示された半導体装置では,ドレイン配線の下方に形成される絶縁領域の膜厚を厚くしなければならない。特許文献3では,この絶縁領域をLOCOS法(局所酸化法)によって形成するとしている。しかし,LOCOS法により形成可能な酸化膜の膜厚はおよそ1〜2μmである。そのため,高耐圧系の素子には適用できない。また,LOCOS法の他に,半導体層にトレンチを形成し,そのトレンチ内部を酸化膜や多結晶シリコン層で埋め込む方法も考えられる。しかし,この場合もドレイン配線と半導体層との間の高耐圧化を図るためには,絶縁領域の膜厚を厚くするだけでは不十分であり,絶縁領域の幅をある程度とる必要である。しかるに,2μmを超える幅広いトレンチを形成すると,そのトレンチを酸化膜や多結晶シリコン膜で埋めることは困難であり,実現性が乏しい。また,特許文献3に開示された半導体装置では,素子を構成する半導体層が絶縁領域により分断されるため,絶縁領域との境界部分で電位分布が不均一となり,その部位で電界集中が生じやすい。   In the semiconductor device disclosed in Patent Document 3, the thickness of the insulating region formed below the drain wiring must be increased. In Patent Document 3, this insulating region is formed by a LOCOS method (local oxidation method). However, the thickness of the oxide film that can be formed by the LOCOS method is about 1 to 2 μm. Therefore, it cannot be applied to high breakdown voltage type devices. In addition to the LOCOS method, a method of forming a trench in a semiconductor layer and filling the inside of the trench with an oxide film or a polycrystalline silicon layer is also conceivable. However, in this case as well, in order to increase the breakdown voltage between the drain wiring and the semiconductor layer, it is not sufficient to increase the thickness of the insulating region, and it is necessary to provide a certain width of the insulating region. However, if a wide trench exceeding 2 μm is formed, it is difficult to fill the trench with an oxide film or a polycrystalline silicon film, and the feasibility is poor. Further, in the semiconductor device disclosed in Patent Document 3, since the semiconductor layer constituting the element is divided by the insulating region, the potential distribution becomes non-uniform at the boundary with the insulating region, and electric field concentration tends to occur at that portion. .

本発明は,前記した従来の半導体装置が有する問題点を解決するためになされたものである。すなわちその課題とするところは,低電位基準回路と高電位基準回路とを混載させた半導体装置であって,低電位基準回路と高電位基準回路との間でレベルシフトを行うことができ,コンパクトであるとともに耐圧に優れた半導体装置を提供することにある。   The present invention has been made to solve the problems of the conventional semiconductor device described above. That is, the subject is a semiconductor device in which a low-potential reference circuit and a high-potential reference circuit are mixedly mounted, and can be level-shifted between the low-potential reference circuit and the high-potential reference circuit, and is compact. Another object is to provide a semiconductor device with excellent breakdown voltage.

この課題の解決を目的としてなされた半導体装置は,低電位基準回路と高電位基準回路とを混載させ,両者間で信号の伝達を行う半導体装置にであって,低電位基準回路と高電位基準回路との間の信号の伝達を媒介し,トレンチ状の溝に絶縁物が充填された絶縁隔壁に包囲された中継半導体素子を備え,中継半導体素子が複数設けられ,複数の中継半導体素子と,中継半導体素子を包囲する絶縁隔壁と,を環状に組み合わせてなる領域によって低電位基準回路の領域と高電位基準回路の領域とが区画されており,それらの中継半導体素子の出力配線が前記絶縁隔壁を跨いで出力側の回路領域に配されているものである。この半導体装置でも,中継半導体素子と出力側の回路領域とのパンチスルーおよびリーク電流を回避することができる。また,中継半導体素子にて低電位基準回路と高電位基準回路とが区画されるため,どの部位でもほぼ同一の電位分布となる。よって,電界集中の問題が緩和される。 A semiconductor device designed to solve this problem is a semiconductor device in which a low-potential reference circuit and a high-potential reference circuit are mixedly mounted, and signals are transmitted between them. A relay semiconductor element that mediates transmission of signals to and from the circuit and is surrounded by an insulating partition wall in which an insulator is filled in a trench-like groove, and a plurality of relay semiconductor elements are provided ; The region of the low potential reference circuit and the region of the high potential reference circuit are partitioned by a region formed by annularly combining the insulating partition wall surrounding the relay semiconductor element, and the output wiring of the relay semiconductor element is connected to the insulating partition wall. Are arranged in the circuit area on the output side. Even in this semiconductor device, punch-through and leakage current between the relay semiconductor element and the circuit region on the output side can be avoided. Further, since the low potential reference circuit and the high potential reference circuit are partitioned by the relay semiconductor element, almost the same potential distribution is obtained in any part. Therefore, the problem of electric field concentration is alleviated.

また,本発明の別の半導体装置は,第1導電型の半導体基板と,半導体基板の主表面上に形成され,低電位基準回路領域をなす第2導電型の第1領域と,第1領域と離間して半導体基板上に形成され,高電位基準回路領域をなす第2導電型の第2領域と,第1領域と第2領域との間に位置し,第1領域と第2領域との間の信号の伝達を媒介し,トレンチ状の溝に絶縁物が充填された絶縁隔壁に包囲された複数の中継半導体素子と,中継半導体素子を包囲する絶縁隔壁と,を環状に組み合わせ,表面から見て第1領域または第2領域のうちの一方を取り囲むように形成された第3領域とを備え,第3領域の中継半導体素子の出力配線が,絶縁隔壁を跨いで出力側の回路領域に配されていることを特徴とするものである。 Another semiconductor device of the present invention includes a first conductivity type semiconductor substrate, a second conductivity type first region formed on a main surface of the semiconductor substrate and forming a low potential reference circuit region, and a first region. And a second conductivity type second region which is formed on the semiconductor substrate and forms a high potential reference circuit region, and is located between the first region and the second region, and the first region and the second region, combining mediate the transmission of signals between a plurality of relay semiconductor device insulator in the trench-shaped groove is surrounded filled insulating partition wall, an insulating partition wall that surrounds the relay semiconductor device, the annularly surface And a third region formed so as to surround one of the first region and the second region as viewed from above, and the output wiring of the relay semiconductor element in the third region straddles the insulating partition, and the circuit region on the output side It is characterized by being arranged in.

また,本発明の別の半導体装置は,第1導電型または第2導電型の半導体基板と,半導体基板の主表面上に形成された絶縁膜と,絶縁膜上に形成され,低電位基準回路領域をなす第2導電型の第1領域と,第1領域と離間して絶縁膜上に形成され,高電位基準回路領域をなす第2導電型の第2領域と,第1領域と第2領域との間に位置し,第1領域と第2領域との間の信号の伝達を媒介し,トレンチ状の溝に絶縁物が充填された絶縁隔壁に包囲された複数の中継半導体素子と,中継半導体素子を包囲する絶縁隔壁と,を環状に組み合わせ,表面から見て第1領域または第2領域のうちの一方を取り囲むように形成された第3領域とを備え,第3領域の中継半導体素子の出力配線が,絶縁隔壁を跨いで出力側の回路領域に配されていることを特徴とするものである。
Another semiconductor device according to the present invention includes a semiconductor substrate of the first conductivity type or the second conductivity type, an insulating film formed on the main surface of the semiconductor substrate, a low potential reference circuit formed on the insulating film. A first conductivity type first region forming a region, a second conductivity type second region formed on the insulating film and spaced apart from the first region, forming a high potential reference circuit region, the first region, and the second region A plurality of relay semiconductor elements that are located between the regions, mediate signal transmission between the first region and the second region, and are surrounded by an insulating partition filled with an insulator in a trench-like groove ; And a third region formed so as to surround one of the first region and the second region when viewed from the surface , and an insulating partition wall surrounding the relay semiconductor element. The output wiring of the element is arranged in the circuit area on the output side across the insulating partition. It is an.

本発明の半導体装置は,高耐圧分離領域内に中継半導体素子を設け,中継半導体素子の出力配線が絶縁隔壁を跨ぐように配置している。これにより,高電位である出力配線による影響を回避できる。また,絶縁隔壁により中継半導体素子と他の回路領域とを絶縁している。よって,湾曲部等のリーク電流対策を施さなくてもよい。従って,本発明によれば,低電位基準回路と高電位基準回路とを混載させた半導体装置であって,低電位基準回路と高電位基準回路との間でレベルシフトを行うことができ,コンパクトであるとともに耐圧に優れた半導体装置が実現されている。   In the semiconductor device of the present invention, a relay semiconductor element is provided in the high breakdown voltage isolation region, and the output wiring of the relay semiconductor element is arranged so as to straddle the insulating partition. Thereby, the influence by the output wiring which is a high potential can be avoided. In addition, the relay semiconductor element is insulated from other circuit areas by an insulating partition. Therefore, it is not necessary to take measures against leakage current such as a curved portion. Therefore, according to the present invention, there is provided a semiconductor device in which a low potential reference circuit and a high potential reference circuit are mixedly mounted, and a level shift can be performed between the low potential reference circuit and the high potential reference circuit. In addition, a semiconductor device having an excellent breakdown voltage has been realized.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,本実施の形態は,電気自動車等に車載されるパワーMOSに本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a power MOS mounted on an electric vehicle or the like.

[第1の形態]
第1の形態に係る半導体装置100は,図1の平面図に示す構造を有している。なお,図16で示した従来の半導体装置と同一記号の構成要素は,その構成要素と同一機能を有するものである。半導体装置100は,低電位基準回路領域1と高電位基準回路領域2とを備え,高電位基準回路領域2が高耐圧分離領域3に取り囲まれる構造(リサーフ構造)を構成している。この高耐圧分離領域3により,低電位基準回路領域1と高電位基準回路領域2とが分離されている。さらに,高耐圧分離領域3の外縁にはトレンチ4が形成されている。このトレンチ4の中は,酸化シリコン等の絶縁物で充填されている。そのため,高電位基準回路領域2は低電位基準回路領域1と絶縁されている。また,高耐圧分離領域3は,その一部がトレンチ4にて区画されており,区画された部位に高耐圧NMOS5あるいは高耐圧PMOS6が設けられている。これらのMOSは,低電位基準回路領域1と高電位基準回路領域2との間の信号伝達(レベルシフト)を行うためのものである。具体的には,低電位基準回路領域1から高電位基準回路領域2へのレベルシフトには,ドレイン配線5dを高電位基準回路領域2内に配置した高耐圧NMOS5が利用される。一方,高電位基準回路領域2から低電位基準回路領域1へのレベルシフトには,ドレイン配線6dを低電位基準回路領域1内に配置した高耐圧PMOS6が利用される。
[First embodiment]
The semiconductor device 100 according to the first embodiment has a structure shown in the plan view of FIG. Note that components having the same symbols as those of the conventional semiconductor device shown in FIG. 16 have the same functions as those components. The semiconductor device 100 includes a low potential reference circuit region 1 and a high potential reference circuit region 2, and constitutes a structure (Resurf structure) in which the high potential reference circuit region 2 is surrounded by a high breakdown voltage isolation region 3. By this high breakdown voltage isolation region 3, the low potential reference circuit region 1 and the high potential reference circuit region 2 are separated. Furthermore, a trench 4 is formed at the outer edge of the high breakdown voltage isolation region 3. The trench 4 is filled with an insulator such as silicon oxide. Therefore, the high potential reference circuit region 2 is insulated from the low potential reference circuit region 1. A part of the high breakdown voltage isolation region 3 is partitioned by a trench 4, and a high breakdown voltage NMOS 5 or a high breakdown voltage PMOS 6 is provided in the partitioned part. These MOSs are for performing signal transmission (level shift) between the low potential reference circuit region 1 and the high potential reference circuit region 2. Specifically, for the level shift from the low potential reference circuit region 1 to the high potential reference circuit region 2, a high breakdown voltage NMOS 5 in which the drain wiring 5d is arranged in the high potential reference circuit region 2 is used. On the other hand, for the level shift from the high potential reference circuit region 2 to the low potential reference circuit region 1, a high breakdown voltage PMOS 6 in which the drain wiring 6d is disposed in the low potential reference circuit region 1 is used.

図2は,図1に示した半導体装置100中のA−A部の断面を示す図である。すなわち,高耐圧NMOS5の断面を示す図である。高耐圧NMOS5は,P- 型基板7上に形成されたN型エピタキシャル層(低電位基準N型層81,高電位基準N型層82,NMOS内ドリフト層85)のうち,トレンチ4によって区画された部位に形成されている。高耐圧NMOS5には,ゲートポリシリコン50gと,ゲート酸化膜50xと,ソースN+ 領域50sと,ドレインN+ 領域50dと,ボディP- 領域50bと,ボディコンタクトP+ 領域50bcとが設けられている。さらには,ボディP- 領域50bと同電位(通常は0V)にバイアスされたリサーフP- 領域50rが設けられている。その他,NMOS内ドリフト層85,フィールド酸化膜9,分離用P+ 拡散領域10等が設けられている。また,図1に示したようにゲート配線5g(図2では不図示),ソース配線5s,およびドレイン配線5dの各配線が半導体装置100の表面上に設けられ,これらによってレベルシフトを行うようになっている。なお,各配線5g,5s,5dとN型エピタキシャル層との間には層間絶縁膜11が形成されている。このような構造を有する高耐圧NMOS5では,ゲートポリシリコン50gへの電圧印加によりボディP- 領域50bにチャネル効果を生じさせ,もってソースN+ 領域50sとドレインN+ 領域50dとの間の導通をコントロールしている。 FIG. 2 is a view showing a cross section of the AA portion in the semiconductor device 100 shown in FIG. That is, it is a diagram showing a cross section of the high breakdown voltage NMOS 5. The high breakdown voltage NMOS 5 is defined by the trench 4 among the N type epitaxial layers (low potential reference N type layer 81, high potential reference N type layer 82, and drift layer 85 in NMOS) formed on the P type substrate 7. It is formed at the site. The high breakdown voltage NMOS 5 includes a gate polysilicon 50g, a gate oxide film 50x, a source N + region 50s, a drain N + region 50d, a body P region 50b, and a body contact P + region 50bc. Yes. Furthermore, the body P - (typically 0V) region 50b and the same potential biased resurf P in - area 50r is provided. In addition, an NMOS drift layer 85, a field oxide film 9, an isolation P + diffusion region 10 and the like are provided. Further, as shown in FIG. 1, gate wiring 5g (not shown in FIG. 2), source wiring 5s, and drain wiring 5d are provided on the surface of the semiconductor device 100, and a level shift is performed thereby. It has become. An interlayer insulating film 11 is formed between the wirings 5g, 5s, 5d and the N type epitaxial layer. In the high breakdown voltage NMOS 5 having such a structure, a channel effect is caused in the body P region 50b by applying a voltage to the gate polysilicon 50g, thereby establishing conduction between the source N + region 50s and the drain N + region 50d. Controlling.

図3は,図1に示した半導体装置100中のB−B部の断面を示す図である。すなわち,高耐圧PMOS6の断面を示す図である。高耐圧PMOS6も,P- 型基板7上に配したN型エピタキシャル層(低電位基準N型層81,高電位基準N型層82,PMOS内N型層86)のうち,トレンチ4によって区画された部位に形成される。高耐圧PMOS6には,ゲートポリシリコン60gと,ゲート酸化膜60xと,ソースP+ 領域60sと,ドレインP+ 領域60dと,サブコンタクトN+ 領域60scとが設けられている。さらには,高耐圧NMOS5のリサーフP- 領域50rと同一の拡散層にて形成されたドリフトP- 領域60drが設けられている。その他,高耐圧NMOS5と同様に,フィールド酸化膜9,分離用P+ 拡散領域10等が設けられている。また,図1でも示したようにゲート配線6g(図3では不図示),ソース配線6s,およびドレイン配線6dの各配線によってレベルシフトを行うようになっている。このような構造を有する高耐圧PMOS6では,ゲートポリシリコン60gへの電圧印加によりPMOS内N型層86にチャネル効果を生じさせ,もってソースP+ 領域60sとドレインP+ 領域60dとの間の導通をコントロールしている。 FIG. 3 is a view showing a cross section of the BB portion in the semiconductor device 100 shown in FIG. That is, it shows a cross section of the high voltage PMOS 6. The high breakdown voltage PMOS 6 is also divided by the trench 4 among the N type epitaxial layers (low potential reference N type layer 81, high potential reference N type layer 82, and N type layer 86 in the PMOS) arranged on the P type substrate 7. Formed at the site. The high breakdown voltage PMOS 6 is provided with a gate polysilicon 60g, a gate oxide film 60x, a source P + region 60s, a drain P + region 60d, and a sub-contact N + region 60sc. Further, a drift P region 60dr formed of the same diffusion layer as the RESURF P region 50r of the high breakdown voltage NMOS 5 is provided. In addition, similarly to the high breakdown voltage NMOS 5, a field oxide film 9, an isolation P + diffusion region 10 and the like are provided. Further, as shown in FIG. 1, the level shift is performed by each of the gate wiring 6g (not shown in FIG. 3), the source wiring 6s, and the drain wiring 6d. In the high breakdown voltage PMOS 6 having such a structure, a channel effect is caused in the N-type layer 86 in the PMOS by applying a voltage to the gate polysilicon 60g, and thus conduction between the source P + region 60s and the drain P + region 60d. Is controlling.

図4は,図1に示した半導体装置100中のC−C部の断面を示す図である。すなわち,高耐圧分離領域3の断面を示す図である。高耐圧分離領域3は,図2の高耐圧NMOS5と比較して,高電位基準回路領域2側のトレンチ4と,ゲートポリシリコン50gとが不要な点を除けば,高耐圧NMOS5とほぼ同一の構造を有している。高耐圧分離領域3中のP型拡散領域30b,30bcは,それぞれ高耐圧NMOS5内のボディP- 領域50b,ボディコンタクトP+ 領域50bcに相当する領域である。また,N型拡散領域30scは,それぞれ高耐圧PMOS6内のサブコンタクトN+ 領域30scに相当する領域である。そして,表面の電位分布も高耐圧NMOS5および高耐圧PMOS6とほぼ同一となるように設計されている。 FIG. 4 is a view showing a cross section of the CC section in the semiconductor device 100 shown in FIG. That is, it is a view showing a cross section of the high breakdown voltage isolation region 3. The high breakdown voltage isolation region 3 is substantially the same as the high breakdown voltage NMOS 5 except that the trench 4 on the high potential reference circuit region 2 side and the gate polysilicon 50g are unnecessary compared to the high breakdown voltage NMOS 5 of FIG. It has a structure. The P-type diffusion regions 30b and 30bc in the high breakdown voltage isolation region 3 are regions corresponding to the body P region 50b and the body contact P + region 50bc in the high breakdown voltage NMOS 5, respectively. The N-type diffusion region 30sc is a region corresponding to the sub-contact N + region 30sc in the high voltage PMOS 6 respectively. The surface potential distribution is designed to be substantially the same as that of the high breakdown voltage NMOS 5 and the high breakdown voltage PMOS 6.

図5は,図1に示した半導体装置100中のD−D部の断面を示す図である。すなわち,図2の断面と直交する高耐圧NMOS5の断面を示す図である。高耐圧NMOS5は,トレンチ4にて包囲された状態であり,そのトレンチ4の底部はP- 型基板7に達している。そのため,NMOS内ドリフト層85は,低電位基準N型層81および高電位基準N型層82の他,分離領域N型層83からも電気的に絶縁されている。 FIG. 5 is a view showing a cross section of the DD portion in the semiconductor device 100 shown in FIG. That is, FIG. 3 is a view showing a cross section of the high voltage NMOS 5 orthogonal to the cross section of FIG. The high breakdown voltage NMOS 5 is surrounded by the trench 4, and the bottom of the trench 4 reaches the P type substrate 7. Therefore, the drift layer 85 in NMOS is electrically insulated from the isolation region N-type layer 83 in addition to the low potential reference N-type layer 81 and the high potential reference N-type layer 82.

本形態の半導体装置100の特徴は,高耐圧NMOS5や高耐圧PMOS6について,高耐圧分離領域3をトレンチ4にて区画した領域に配置した点にある。半導体装置100では,高耐圧NMOS5における高電位のドレイン配線5d(高耐圧PMOS6では低電位のドレイン配線6d)が低電位の部位(高耐圧PMOS6では高電位の部位)を跨ぐことがない。従って,耐圧の問題は発生しない。このことは特許文献1等の半導体装置と同様であるが,半導体装置100では高耐圧NMOS5がトレンチ4にて高電位基準回路領域2から完全に分離されている。そのため,ドレインN+ 領域50dと高電位基準N型層82との間にリーク電流やパンチスルー降伏が発生しないのである。従って,特許文献1の半導体装置のような湾曲部を設ける必要がなく,面積ロスが抑制される。また,特許文献2の半導体装置のように耐圧とパンチスルー降伏とのトレードオフを考慮する必要がなく,使用電圧の制限を受けることもない。本形態の半導体装置100では,ドレイン配線5dと基板との間の耐圧は,トレンチ4の深さにより求められる。また,ドレインN+ 領域50dと高電位基準N型層82との間の耐圧は,トレンチ4の幅により求められる。従って,耐圧をトレンチ4のサイズで調整できる。 The feature of the semiconductor device 100 of this embodiment is that the high breakdown voltage NMOS 5 and the high breakdown voltage PMOS 6 are arranged in a region where the high breakdown voltage isolation region 3 is partitioned by the trench 4. In the semiconductor device 100, the high potential drain wiring 5d in the high breakdown voltage NMOS 5 (the low potential drain wiring 6d in the high breakdown voltage PMOS 6) does not straddle the low potential portion (the high potential portion in the high breakdown voltage PMOS 6). Therefore, the problem of withstand voltage does not occur. This is the same as the semiconductor device disclosed in Patent Document 1 or the like, but in the semiconductor device 100, the high voltage NMOS 5 is completely separated from the high potential reference circuit region 2 by the trench 4. Therefore, no leak current or punch-through breakdown occurs between the drain N + region 50d and the high potential reference N-type layer 82. Therefore, it is not necessary to provide a curved portion like the semiconductor device of Patent Document 1, and the area loss is suppressed. Further, unlike the semiconductor device disclosed in Patent Document 2, it is not necessary to consider the trade-off between the breakdown voltage and the punch-through breakdown, and the use voltage is not limited. In the semiconductor device 100 of this embodiment, the breakdown voltage between the drain wiring 5d and the substrate is determined by the depth of the trench 4. Further, the breakdown voltage between the drain N + region 50 d and the high potential reference N-type layer 82 is determined by the width of the trench 4. Therefore, the breakdown voltage can be adjusted by the size of the trench 4.

また,特許文献2の半導体装置における表面に露出させるP型のスリット領域の幅に対して,本形態の半導体装置100におけるトレンチ4の幅は小さい。そのため,特許文献2の半導体装置と比較しても面積ロスは小さい。詳細には,P型のスリット領域の幅2Lは,パンチスルー降伏に対する耐圧を確保するために少なくとも以下の式(1)を満たす必要がある。
2L>√(2εVPT/qNP ) (1)
式(1)中,“ε”はシリコンの誘電率,“VPT”はパンチスルー降伏に対する耐圧,“q”は電子の電荷量,“NP ”はP型基板の濃度をそれぞれ意味している。例えば,パンチスルー耐圧VPT=50V,1000V級の高耐圧半導体装置で一般的に使用される基板濃度NP =1.0×1014cm-3をそれぞれ式(1)に適用すると,2L≒26μmとなる。一方,本形態の半導体装置100では,トレンチ4としてシリコン酸化膜を使用した場合,一般的に3MV/cm以下となる膜厚を選択すればよく,例えば耐圧50Vを得るためにはおよそ170nmあれば足りる。よって,特許文献2の半導体装置と比較して,面積ロスが小さいことがわかる。
Further, the width of the trench 4 in the semiconductor device 100 of this embodiment is smaller than the width of the P-type slit region exposed on the surface of the semiconductor device of Patent Document 2. Therefore, the area loss is small even when compared with the semiconductor device of Patent Document 2. Specifically, the width 2L of the P-type slit region needs to satisfy at least the following formula (1) in order to ensure a withstand voltage against punch-through breakdown.
2L> √ (2εV PT / qN P ) (1)
In equation (1), “ε” means the dielectric constant of silicon, “V PT ” means the withstand voltage against punch-through breakdown, “q” means the amount of charge of electrons, and “N P ” means the concentration of the P-type substrate. Yes. For example, when the substrate concentration N P = 1.0 × 10 14 cm −3 generally used in punch-through breakdown voltage V PT = 50 V and 1000 V class high breakdown voltage semiconductor devices is applied to the equation (1), 2L≈ 26 μm. On the other hand, in the semiconductor device 100 of this embodiment, when a silicon oxide film is used as the trench 4, it is generally necessary to select a film thickness that is 3 MV / cm or less. It ’s enough. Therefore, it can be seen that the area loss is small as compared with the semiconductor device of Patent Document 2.

なお,本形態の半導体装置100ではトレンチ4を形成することから,従来の半導体装置と比較してプロセス工程数の増加に伴うコストアップを招く。しかしながら,半導体装置100に搭載されるバイポーラやCMOS等の回路との分離にトレンチ4を適用することで,チップ面積を大幅に削減することができる。そのため,トータルコストはむしろ低減することができる。特に,この種の高耐圧半導体装置では,高抵抗のP- 型基板7の上に形成されたN型エピタキシャル層にCMOS等の回路を搭載する。そのため,このN型エピタキシャル層の厚みは,CMOS用のP型ウェル領域やバイポーラ用のP型ベース領域とP- 型基板7との間にパンチスルー降伏が発生しないような厚さを確保するように設計される。例えば,35V系の回路を搭載するには,一般的にN型エピタキシャル層の厚さが25μm以上必要である。これに従来のように分離用のP+ 拡散領域を熱拡散により形成した場合,その幅方向の広がりに伴ってその領域の幅は15μm以上必要となる。そのため,P+ 拡散領域にて領域を分割する方式は,本形態のようにトレンチ4にて領域を分離する方式と比較して,面積ロスが大きい。従って,トレンチ4の適用は必ずしもトータルコストの上昇を招くものではない。 In addition, since the trench 4 is formed in the semiconductor device 100 of this embodiment, the cost increases due to an increase in the number of process steps as compared with the conventional semiconductor device. However, the chip area can be greatly reduced by applying the trench 4 to isolation from a circuit such as bipolar or CMOS mounted on the semiconductor device 100. Therefore, the total cost can be reduced rather. In particular, in this type of high voltage semiconductor device, a circuit such as a CMOS is mounted on an N type epitaxial layer formed on a high resistance P type substrate 7. Therefore, the thickness of the N-type epitaxial layer should be ensured so that punch-through breakdown does not occur between the P-type well region for CMOS or the P-type base region for bipolar and the P -type substrate 7. Designed to. For example, to mount a 35V circuit, the thickness of the N-type epitaxial layer generally needs to be 25 μm or more. On the other hand, when the separation P + diffusion region is formed by thermal diffusion as in the prior art, the width of the region is required to be 15 μm or more along with the expansion in the width direction. Therefore, the method of dividing the region in the P + diffusion region has a larger area loss than the method of separating the region in the trench 4 as in the present embodiment. Therefore, the application of the trench 4 does not necessarily increase the total cost.

[第2の形態]
第2の形態に係る半導体装置200は,図6の平面図に示す構造を有している。半導体装置200は,低電位基準回路領域1と高電位基準回路領域2とを備え,第1の形態の半導体装置100と同様に高電位基準回路領域2が高耐圧分離領域3に取り囲まれる構造を構成している。さらには,高耐圧分離領域3の一部にトレンチ41,42が形成されており,高耐圧分離領域3が複数の領域に区画されている。そして,区画された部位に高耐圧NMOS5あるいは高耐圧PMOS6が設けられている。第1の形態の半導体装置100との相違点は,トレンチ41,42がそれぞれ高耐圧NMOS5,高耐圧PMOS6の一部を包囲していないことである。具体的には,ソース配線側にトレンチが形成されていない。また,高耐圧分離領域3の外縁に形成されていたトレンチが存在しない。
[Second form]
The semiconductor device 200 according to the second embodiment has a structure shown in the plan view of FIG. The semiconductor device 200 includes a low potential reference circuit region 1 and a high potential reference circuit region 2, and has a structure in which the high potential reference circuit region 2 is surrounded by the high breakdown voltage isolation region 3 as in the semiconductor device 100 of the first embodiment. It is composed. Furthermore, trenches 41 and 42 are formed in a part of the high breakdown voltage isolation region 3, and the high breakdown voltage isolation region 3 is partitioned into a plurality of regions. A high breakdown voltage NMOS 5 or a high breakdown voltage PMOS 6 is provided in the partitioned part. The difference from the semiconductor device 100 of the first embodiment is that the trenches 41 and 42 do not surround a part of the high voltage NMOS 5 and the high voltage PMOS 6, respectively. Specifically, no trench is formed on the source wiring side. Moreover, there is no trench formed at the outer edge of the high breakdown voltage isolation region 3.

図7は,図6に示した半導体装置200中のE−E部の断面を示す図である。すなわち,高耐圧NMOS5の断面を示す図である。高耐圧NMOS5は,P- 型基板7上に配したN型エピタキシャル層(低電位基準N型層81,高電位基準N型層82,NMOS内ドリフト層85)が形成される。第1の形態の半導体装置100との相違点は,ソース配線5s側にはトレンチ41が存在しないことである。その代わりに,低電位基準N型層81とNMOS内ドリフト層85とを底部がP- 型基板7に達する分離P+ 拡散領域12によりP- 型基板7の電位がとられる。一方,トレンチ41にて,NMOS内ドリフト層85と高電位基準N型層82とを分離している。さらに,トレンチ41中,図6中の左端をソースN+ 領域50sより左側に設けることで,高電位基準領域2と高耐圧NMOS5とが絶縁される。よって,高耐圧NMOS5と高電位基準回路領域2との間にリーク電流やパンチスルー降伏が発生しない。さらに,第1の形態の半導体装置100と比較して,トレンチの総体積が小さい。よって,トレンチの作製における歩留りが良い。 FIG. 7 is a diagram showing a cross section of the EE portion in the semiconductor device 200 shown in FIG. That is, it is a diagram showing a cross section of the high breakdown voltage NMOS 5. In the high breakdown voltage NMOS 5, an N type epitaxial layer (a low potential reference N type layer 81, a high potential reference N type layer 82, a drift layer 85 within NMOS) is formed on the P type substrate 7. The difference from the semiconductor device 100 of the first embodiment is that the trench 41 does not exist on the source wiring 5s side. Instead, the potential of the P -type substrate 7 is taken by the isolation P + diffusion region 12 whose bottom reaches the P -type substrate 7 from the low potential reference N-type layer 81 and the drift layer 85 in NMOS. On the other hand, the trench 41 separates the drift layer 85 in the NMOS and the high potential reference N-type layer 82. Further, by providing the left end in FIG. 6 in the trench 41 on the left side of the source N + region 50s, the high potential reference region 2 and the high breakdown voltage NMOS 5 are insulated. Therefore, no leak current or punch-through breakdown occurs between the high breakdown voltage NMOS 5 and the high potential reference circuit region 2. Furthermore, the total volume of the trench is small as compared with the semiconductor device 100 of the first embodiment. Therefore, the yield in the manufacture of the trench is good.

[第3の形態]
第3の形態に係る半導体装置300は,図8の平面図に示す構造を有している。半導体装置300は,低電位基準回路領域1と高電位基準回路領域2とを備え,第1の形態の半導体装置100と同様に高電位基準回路領域2が高耐圧分離領域3に取り囲まれる構造を構成している。また,高耐圧分離領域3の一部に高耐圧NMOS5が設けられている。また,外壁トレンチ43と内壁トレンチ44とを設けている。本形態の半導体装置300には,第1の形態の半導体装置100と異なり,高耐圧分離領域3内を区画するトレンチが存在しない。そのため,トレンチの近傍に発生し易い結晶欠陥等に伴う耐圧の低下を防止することができる。
[Third embodiment]
The semiconductor device 300 according to the third embodiment has a structure shown in the plan view of FIG. The semiconductor device 300 includes a low potential reference circuit region 1 and a high potential reference circuit region 2, and has a structure in which the high potential reference circuit region 2 is surrounded by the high withstand voltage isolation region 3 as in the semiconductor device 100 of the first embodiment. It is composed. A high breakdown voltage NMOS 5 is provided in a part of the high breakdown voltage isolation region 3. Further, an outer wall trench 43 and an inner wall trench 44 are provided. In the semiconductor device 300 of this embodiment, unlike the semiconductor device 100 of the first embodiment, there is no trench that partitions the high breakdown voltage isolation region 3. Therefore, it is possible to prevent a decrease in breakdown voltage due to crystal defects or the like that are likely to occur in the vicinity of the trench.

なお,前記したトレンチの結晶欠陥等による耐圧の低下防止のみを目的とすると,図9に示す半導体装置310のようにトレンチレスの構造とすることで達成できる。しかしながら,半導体装置310では,高耐圧NMOS5のドレインN+ 領域と高電位基準N型層とが分離されず,それらが電気的に接続されてしまう。また,高耐圧分離領域3に複数の高耐圧NMOS5あるいは高耐圧PMOS6が設けられた場合,それらを分離することができない。この問題を解決するために本形態の半導体装置300では,高電位基準回路領域2を完全に包囲する内壁トレンチ44が設けられている。これにより,高耐圧NMOS5のドレインN+ 領域と高電位基準N型層との間が絶縁される。また,高耐圧分離領域3内の寄生抵抗が内壁トレンチ44沿いに形成される。本形態の半導体装置300では,高耐圧分離領域3中の高電位基準回路領域2側のN+ 領域50dの電位を部位13でとっている。この部位13と高耐圧NMOS5のN+ 領域50d(ドレインN+ 領域)との間の寄生抵抗は,図8中の寄生抵抗経路38と寄生抵抗経路39との合成抵抗となる。すなわち,これらを十分に離隔して配置することで抵抗値を大きくすることができ,リーク電流等の影響を低減することができる。 If the purpose is to prevent the breakdown voltage from being lowered due to the crystal defects or the like of the trench, it can be achieved by using a trenchless structure like the semiconductor device 310 shown in FIG. However, in the semiconductor device 310, the drain N + region of the high breakdown voltage NMOS 5 and the high potential reference N-type layer are not separated and are electrically connected. Further, when a plurality of high breakdown voltage NMOSs 5 or high breakdown voltage PMOSs 6 are provided in the high breakdown voltage isolation region 3, they cannot be separated. In order to solve this problem, the semiconductor device 300 of this embodiment is provided with an inner wall trench 44 that completely surrounds the high potential reference circuit region 2. As a result, the drain N + region of the high breakdown voltage NMOS 5 is insulated from the high potential reference N-type layer. A parasitic resistance in the high breakdown voltage isolation region 3 is formed along the inner wall trench 44. In the semiconductor device 300 of this embodiment, the potential of the N + region 50 d on the high potential reference circuit region 2 side in the high breakdown voltage isolation region 3 is taken at the portion 13. The parasitic resistance between this portion 13 and the N + region 50d (drain N + region) of the high breakdown voltage NMOS 5 is a combined resistance of the parasitic resistance path 38 and the parasitic resistance path 39 in FIG. That is, by disposing them sufficiently apart, the resistance value can be increased, and the influence of leakage current and the like can be reduced.

[第4の形態]
第4の形態に係る半導体装置400は,図10の平面図に示す構造を有している。半導体装置400は,低電位基準回路領域1と高電位基準回路領域2とを備え,高電位基準回路領域2が高耐圧分離領域3に取り囲まれる構造を構成している。この高耐圧分離領域3により,低電位基準回路領域1と高電位基準回路領域2とが分離されている。さらに,高耐圧分離領域3内には高耐圧分離領域3の形状に合わせたループ状のトレンチ群40が形成されている。トレンチ群40の各トレンチの中は絶縁物で充填されている。また,高耐圧分離領域3には,トレンチ4にて区画された部位が設けられており,その区画された部位にレベルシフト用の高耐圧NMOS5あるいは高耐圧PMOS6が設けられている。
[Fourth form]
The semiconductor device 400 according to the fourth embodiment has a structure shown in the plan view of FIG. The semiconductor device 400 includes a low potential reference circuit region 1 and a high potential reference circuit region 2, and has a structure in which the high potential reference circuit region 2 is surrounded by a high breakdown voltage isolation region 3. By this high breakdown voltage isolation region 3, the low potential reference circuit region 1 and the high potential reference circuit region 2 are separated. Furthermore, a loop-shaped trench group 40 is formed in the high breakdown voltage isolation region 3 so as to match the shape of the high breakdown voltage isolation region 3. Each trench of the trench group 40 is filled with an insulator. The high breakdown voltage isolation region 3 is provided with a portion partitioned by the trench 4, and a high voltage NMOS 5 or a high breakdown voltage PMOS 6 for level shift is provided in the partitioned portion.

図11は,図10に示した半導体装置400中のF−F部の断面を示す図である。本形態の半導体装置400には,SOI構造を有しているものであって,P+ 型基板7とエピタキシャル層(低電位基準N型層81,高電位基準N型層82,分離領域N型層83)との間に埋め込み絶縁層75が設けられている。すなわち,埋め込み絶縁層75にてP+ 型基板7とエピタキシャル層とが絶縁されている。なお,埋め込み絶縁層75の下方に位置する基板は,P型でもN型でもよい。また,分離領域N型層83は,底部が絶縁酸化膜7にまで達するトレンチ群40にて複数の領域に区画されている。トレンチ群40にて区画された領域のうち,最も低電位基準回路領域1に近い領域には,高耐圧NMOS5内(図12参照)のボディP- 領域50b,ボディコンタクトP+ 領域50bcにそれぞれ相当するP型拡散領域30b,30bcが設けられている。また,最も高電位基準回路領域2に近い領域には,高耐圧NMOS5内のドレインN+ 領域50dに相当するN型拡散領域30dが設けられている。そして,P型拡散領域30b,30bcがグランドと,N型拡散領域30dが高電位基準回路領域2の電源とそれぞれ電位を等しくしている。さらに,主表面の電位は,トレンチ群40にて生じる寄生的な容量カップリングの効果により低電位基準回路領域1から高電位基準回路領域2に向かって段階的に上昇する。なお,寄生的な容量のカップリング比は,設計段階でトレンチ40群中の各トレンチの幅にて調整可能である。 FIG. 11 is a diagram showing a cross-section of the FF portion in the semiconductor device 400 shown in FIG. The semiconductor device 400 of this embodiment has an SOI structure, and includes a P + type substrate 7 and an epitaxial layer (low potential reference N type layer 81, high potential reference N type layer 82, isolation region N type). A buried insulating layer 75 is provided between the layer 83). That is, the P + type substrate 7 and the epitaxial layer are insulated by the buried insulating layer 75. The substrate located below the buried insulating layer 75 may be P-type or N-type. The isolation region N-type layer 83 is partitioned into a plurality of regions by a trench group 40 whose bottom reaches the insulating oxide film 7. Of the regions partitioned by the trench group 40, regions closest to the low potential reference circuit region 1 correspond to the body P region 50b and the body contact P + region 50bc in the high breakdown voltage NMOS 5 (see FIG. 12), respectively. P-type diffusion regions 30b and 30bc are provided. Further, an N-type diffusion region 30 d corresponding to the drain N + region 50 d in the high breakdown voltage NMOS 5 is provided in the region closest to the high potential reference circuit region 2. The P type diffusion regions 30b and 30bc have the same potential as the ground, and the N type diffusion region 30d has the same potential as the power source of the high potential reference circuit region 2. Further, the potential of the main surface rises stepwise from the low potential reference circuit region 1 toward the high potential reference circuit region 2 due to the effect of parasitic capacitance coupling generated in the trench group 40. The parasitic capacitance coupling ratio can be adjusted by the width of each trench in the trench 40 group at the design stage.

図12は,図10に示した半導体装置400中のG−G部の断面を示す図である。すなわち,高耐圧NMOS5の断面を示す図である。高耐圧NMOS5は,P+ 型基板7上に形成されたN型エピタキシャル層のうち,トレンチ群40およびトレンチ4によって区画された部位に形成されている。高耐圧NMOS5には,ゲートポリシリコン50gと,ゲート酸化膜50xと,ソースN+ 領域50sと,ドレインN+ 領域50dと,ボディP- 領域50bと,ボディコンタクトP+ 領域50bcとが設けられている。さらには,P+ 型基板7上にドリフト層として機能するNMOS内ドリフト層85が設けられている。さらに,このNMOS内ドリフト層85の上方にリサーフP- 領域50rが形成されている。そして,ソース−ドレイン間に高電圧が印加されたときに,分離領域N型層83とリサーフP- 領域50rとのPN接合部から空乏層が形成されることで高耐圧化が図られている。このとき,主表面の電位は,ソース−ドレイン間でほぼ直線的に上昇する。 12 is a diagram showing a cross section of the GG portion in the semiconductor device 400 shown in FIG. That is, it is a diagram showing a cross section of the high breakdown voltage NMOS 5. The high breakdown voltage NMOS 5 is formed in a portion defined by the trench group 40 and the trench 4 in the N type epitaxial layer formed on the P + type substrate 7. The high breakdown voltage NMOS 5 includes a gate polysilicon 50g, a gate oxide film 50x, a source N + region 50s, a drain N + region 50d, a body P region 50b, and a body contact P + region 50bc. Yes. Further, an NMOS drift layer 85 that functions as a drift layer is provided on the P + type substrate 7. Further, a RESURF P region 50 r is formed above the drift layer 85 in the NMOS. When a high voltage is applied between the source and drain, a depletion layer is formed from the PN junction between the isolation region N-type layer 83 and the RESURF P region 50r, thereby increasing the breakdown voltage. . At this time, the potential of the main surface rises almost linearly between the source and drain.

図13は,図10に示した半導体装置400中のH−H部の断面を示す図である。すなわち,高耐圧PMOS6の断面を示す図である。高耐圧PMOS6も,P+ 型基板7上に配したN型エピタキシャル層のうち,トレンチ群40およびトレンチ4によって区画された領域に形成される。高耐圧PMOS6には,ゲートポリシリコン60gと,ゲート酸化膜60xと,ソースP+ 領域60sと,ドレインP+ 領域60dと,サブコンタクトN+ 領域60scとが設けられている。さらには,高耐圧NMOS5のリサーフP- 領域50rと同一の拡散層にて形成されたドリフトP- 領域60drが設けられている。そして,ソース−ドレイン間に高電圧が印加された場合,主表面の電位はソース−ドレイン間でほぼ直線的に上昇する。 FIG. 13 is a view showing a cross section of the HH portion in the semiconductor device 400 shown in FIG. That is, it shows a cross section of the high voltage PMOS 6. The high breakdown voltage PMOS 6 is also formed in a region partitioned by the trench group 40 and the trench 4 in the N type epitaxial layer disposed on the P + type substrate 7. The high breakdown voltage PMOS 6 is provided with a gate polysilicon 60g, a gate oxide film 60x, a source P + region 60s, a drain P + region 60d, and a sub-contact N + region 60sc. Further, a drift P region 60dr formed of the same diffusion layer as the RESURF P region 50r of the high breakdown voltage NMOS 5 is provided. When a high voltage is applied between the source and drain, the potential of the main surface rises almost linearly between the source and drain.

本形態の半導体装置400の特徴は,高耐圧NMOS5や高耐圧PMOS6について,高耐圧分離領域3をトレンチ4にて区画した領域に配置した点に加えて,高耐圧分離領域3内にループ状のトレンチ群40が形成されている点にある。これにより,高耐圧分離領域3,高耐圧NMOS5,高耐圧PMOS6のいずれの部位においても,主表面の電位は低電位基準回路領域1から高電位基準回路領域2に向けて緩やかに上昇する。すなわち,本形態の半導体装置400では,高耐圧分離領域3内のいずれの部位においても近似した電界分布となる。また,第1の形態の半導体装置と同様に高耐圧NMOS5における高電位のドレイン配線5d(高耐圧PMOS6では低電位のドレイン配線6d)が低電位の部位(高耐圧PMOS6では高電位の部位)を跨ぐことがない。従って,従来の半導体装置と比較して,簡易な構造により低耐圧化が抑制されるとともに電界集中が抑制される。 The semiconductor device 400 according to the present embodiment is characterized in that the high breakdown voltage NMOS 5 and the high breakdown voltage PMOS 6 are arranged in a region in which the high breakdown voltage isolation region 3 is partitioned by the trench 4, and a loop shape is formed in the high breakdown voltage isolation region 3. The trench group 40 is formed. Thereby, the potential of the main surface gradually rises from the low potential reference circuit region 1 toward the high potential reference circuit region 2 in any part of the high breakdown voltage isolation region 3, the high breakdown voltage NMOS 5, and the high breakdown voltage PMOS 6. That is, in the semiconductor device 400 of the present embodiment, the electric field distribution approximated at any part in the high breakdown voltage isolation region 3. Similarly to the semiconductor device of the first embodiment, the high potential drain wiring 5d in the high breakdown voltage NMOS 5 (low potential drain wiring 6d in the high breakdown voltage PMOS 6) has a low potential portion (high potential portion in the high breakdown voltage PMOS 6). There is no straddle. Therefore, compared with the conventional semiconductor device, the low breakdown voltage is suppressed and the electric field concentration is suppressed by a simple structure.

[第5の形態]
第5の形態に係る半導体装置500は,図14の平面図に示す構造を有している。すなわち,半導体装置500は,低電位基準回路領域1と高電位基準回路領域2とを備えている。そして,高電位基準回路領域2が複数の高耐圧NMOS5(あるいは高耐圧PMOS6)に囲まれた構造を構成している。各高耐圧NMOS5は,トレンチ4にて囲まれている。
[Fifth embodiment]
A semiconductor device 500 according to the fifth embodiment has a structure shown in the plan view of FIG. That is, the semiconductor device 500 includes a low potential reference circuit region 1 and a high potential reference circuit region 2. The high potential reference circuit region 2 is configured to be surrounded by a plurality of high breakdown voltage NMOSs 5 (or high breakdown voltage PMOSs 6). Each high breakdown voltage NMOS 5 is surrounded by a trench 4.

本形態の半導体装置500は,次の点に特徴を有する。すなわち,低電位基準回路領域1と高電位基準回路領域2との間の分離領域の電位分布が均一となる。第4の形態の半導体装置400(図10参照)においては,高耐圧分離領域3内の電位分布(図11参照)と高耐圧NMOS5内の電位分布(図12参照)とはともに緩やかに上昇しているが,若干の差を生じている。そのため,耐圧の問題が発生することがある。これに対し,本形態の半導体装置500では,不要な高耐圧NMOS5が生じるものの,どの部位においてもほぼ同一の電位分布となるため,耐圧および電界集中の問題が生じない。なお,不要な高耐圧NMOS5が幾つか配置されることがあるが,ゲートをオフさせておくことで不具合は生じない。   The semiconductor device 500 of this embodiment is characterized by the following points. That is, the potential distribution in the separation region between the low potential reference circuit region 1 and the high potential reference circuit region 2 is uniform. In the semiconductor device 400 of the fourth embodiment (see FIG. 10), both the potential distribution in the high breakdown voltage isolation region 3 (see FIG. 11) and the potential distribution in the high breakdown voltage NMOS 5 (see FIG. 12) rise gently. However, there is a slight difference. As a result, the problem of breakdown voltage may occur. On the other hand, in the semiconductor device 500 of this embodiment, although the unnecessary high breakdown voltage NMOS 5 is generated, the potential distribution and the electric field concentration problem do not occur because the potential distribution is almost the same in any part. Although some unnecessary high-breakdown-voltage NMOSs 5 may be arranged, there is no problem if the gate is kept off.

[第6の形態]
第6の形態に係る半導体装置600は,図15の平面図に示す構造を有している。すなわち,半導体装置600は,低電位基準回路領域1と高電位基準回路領域2とを備えている。そして,高電位基準回路領域2がトレンチ4に囲まれた構造を構成している。勿論,トレンチ4の中は絶縁物で充填されている。すなわち,低電位基準回路領域1と高電位基準回路領域2との間の領域を絶縁体で充填している。また,トレンチ4にて区画された部位にレベルシフト用の高耐圧NMOS5や高耐圧PMOS6が設けられている。
[Sixth embodiment]
A semiconductor device 600 according to the sixth embodiment has a structure shown in the plan view of FIG. That is, the semiconductor device 600 includes a low potential reference circuit region 1 and a high potential reference circuit region 2. A high potential reference circuit region 2 is surrounded by a trench 4. Of course, the trench 4 is filled with an insulator. That is, the region between the low potential reference circuit region 1 and the high potential reference circuit region 2 is filled with an insulator. Further, a high-voltage NMOS 5 and a high-voltage PMOS 6 for level shift are provided at the sites partitioned by the trench 4.

本形態の半導体装置600では,トレンチ4部分の電位が低電位基準回路領域1から高電位基準回路領域2に向けて直線的に上昇する。これにより,第の形態と同様にどの部位においてもほぼ同一の電位分布となるため,耐圧の問題が生じない。また,トレンチ4のうち,高耐圧NMOS5や高耐圧PMOS6に近接する部位以外の部位の幅を狭くすることが可能である。そのため,チップ面積の削減を図ることができる。一般的に,高耐圧MOSの近傍は10μm/V程度,例えば耐圧1000Vでは100μm程度が必要であるのに対し,それ以外の部位は3×10-3μm/V程度,すなわち耐圧1000Vでは3μmあれば十分である。 In the semiconductor device 600 of this embodiment, the potential of the trench 4 portion rises linearly from the low potential reference circuit region 1 toward the high potential reference circuit region 2. As a result, similar to the fifth embodiment, the potential distribution is almost the same in any part, so that the problem of withstand voltage does not occur. Further, it is possible to narrow the width of the trench 4 other than the portion adjacent to the high breakdown voltage NMOS 5 and the high breakdown voltage PMOS 6. Therefore, the chip area can be reduced. Generally, the vicinity of the high breakdown voltage MOS is about 10 μm / V, for example, about 100 μm is required at a breakdown voltage of 1000 V, while the other parts are about 3 × 10 −3 μm / V, that is, about 3 μm at a breakdown voltage of 1000 V. It is enough.

以上詳細に説明したように第1の形態の半導体装置100では,低電位基準回路領域1と高電位基準回路領域2との間に高耐圧分離領域3を設けることとしている。さらに,高耐圧分離領域3の外縁に底部がP- 型基板7に達するトレンチ4を形成し,低電位基準回路領域1と高電位基準回路領域2とを完全に分離することとしている。さらに,高耐圧分離領域3がトレンチ4にて区画されており,区画された部位に高耐圧NMOS5あるいは高耐圧PMOS6を設けることとしている。そして,高耐圧NMOS5のドレイン配線5dを,トレンチ4を跨ぐように半導体装置の表面に形成することとしている。これにより,ドレイン配線5dが高耐圧分離領域3を跨ぐことがなく,高電位(高耐圧PMOS6では低電位)であるドレイン配線5dによる影響を受けることがない。また,トレンチ4にて各高耐圧MOSと,低電位基準回路領域1および高電位基準回路領域2とが完全に絶縁されていることから,リーク電流は発生せず,寄生抵抗を大きくするための湾曲部を設ける必要もない。また,半導体装置100では,耐圧をトレンチ4のサイズで調整できることから,要求電圧が異なる場合であっても設計段階で容易に対応することができる。すなわち,設計自由度が高い。従って,低電位基準回路と高電位基準回路とを混載させた半導体装置であって,低電位基準回路と高電位基準回路との間でレベルシフトを行うことができ,コンパクトであるとともに耐圧に優れた半導体装置が実現されている。 As described in detail above, in the semiconductor device 100 of the first embodiment, the high breakdown voltage isolation region 3 is provided between the low potential reference circuit region 1 and the high potential reference circuit region 2. Furthermore, a trench 4 whose bottom reaches the P type substrate 7 is formed at the outer edge of the high breakdown voltage isolation region 3 to completely separate the low potential reference circuit region 1 and the high potential reference circuit region 2. Further, the high breakdown voltage isolation region 3 is partitioned by the trench 4, and the high breakdown voltage NMOS 5 or the high breakdown voltage PMOS 6 is provided in the partitioned part. The drain wiring 5d of the high breakdown voltage NMOS 5 is formed on the surface of the semiconductor device so as to straddle the trench 4. Thus, the drain wiring 5d does not straddle the high breakdown voltage isolation region 3, and is not affected by the drain wiring 5d having a high potential (low potential in the high breakdown voltage PMOS 6). Further, since each high voltage MOS is completely insulated from the low potential reference circuit region 1 and the high potential reference circuit region 2 in the trench 4, no leakage current is generated, and the parasitic resistance is increased. There is no need to provide a curved portion. Further, in the semiconductor device 100, since the withstand voltage can be adjusted by the size of the trench 4, even when the required voltage is different, it can be easily handled at the design stage. That is, the degree of freedom in design is high. Accordingly, a semiconductor device in which a low-potential reference circuit and a high-potential reference circuit are mixedly mounted, can perform level shift between the low-potential reference circuit and the high-potential reference circuit, is compact, and has excellent withstand voltage. A semiconductor device is realized.

また,第2の形態の半導体装置200では,ソース配線側の壁面および高耐圧分離領域3の外壁にトレンチが形成されていない。これにより,歩留りの向上および半導体装置のコンパクト化を図ることができる。また,第3の形態の半導体装置300は,高耐圧分離領域3と高耐圧NMOS5とを区画するトレンチが存在しない。そのため,トレンチの近傍に発生し易い結晶欠陥等に伴う耐圧の低下を防止することができる。   In the semiconductor device 200 of the second embodiment, no trench is formed on the wall surface on the source wiring side and the outer wall of the high breakdown voltage isolation region 3. Thereby, the yield can be improved and the semiconductor device can be made compact. In the semiconductor device 300 of the third embodiment, there is no trench that partitions the high breakdown voltage isolation region 3 and the high breakdown voltage NMOS 5. Therefore, it is possible to prevent a decrease in breakdown voltage due to crystal defects or the like that are likely to occur in the vicinity of the trench.

また,第4の形態の半導体装置400では,高耐圧分離領域3内にループ状のトレンチ4群を形成することとしている。これにより,高耐圧分離領域3内の主表面の電位は,低電位基準回路領域1から高電位基準回路領域2に向けて緩やかに上昇することとなり,電界集中の問題が緩和される。また,第5の形態の半導体装置500では,高電位基準回路領域2を高耐圧MOSにて取り囲むこととしている。これにより,低電位基準回路領域1と高耐圧基準回路領域2との間の領域では,どの部位においてもほぼ同一の電位分布となり,分離領域内での耐圧の問題は発生しない。また,第6の形態の半導体装置600では,低電位基準回路領域1と高電位基準回路領域2との間の領域を絶縁体で充填することとしている。このような形態であっても絶縁体で充填された領域のどの部位においてもほ
ぼ同一の電位分布となり,分離領域内での耐圧の問題は発生しない。
In the semiconductor device 400 of the fourth embodiment, a loop-shaped trench 4 group is formed in the high breakdown voltage isolation region 3. As a result, the potential of the main surface in the high withstand voltage isolation region 3 gradually rises from the low potential reference circuit region 1 toward the high potential reference circuit region 2, thereby mitigating the problem of electric field concentration. In the semiconductor device 500 of the fifth embodiment, the high potential reference circuit region 2 is surrounded by a high voltage MOS. As a result, in the region between the low potential reference circuit region 1 and the high withstand voltage reference circuit region 2, almost the same potential distribution is obtained in any part, and the problem of withstand voltage in the isolation region does not occur. In the semiconductor device 600 of the sixth embodiment, the region between the low potential reference circuit region 1 and the high potential reference circuit region 2 is filled with an insulator. Even in such a form, almost the same potential distribution is obtained in any part of the region filled with the insulator, and the problem of withstand voltage in the isolation region does not occur.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,各半導体領域については,P型とN型とを入れ替えてもよい。また,半導体についても,シリコンに限らず,他の種類の半導体(SiC,GaN,GaAs等)であってもよい。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, for each semiconductor region, P-type and N-type may be interchanged. Also, the semiconductor is not limited to silicon, but may be other types of semiconductors (SiC, GaN, GaAs, etc.).

第1の形態に係る半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on a 1st form. 図1の半導体装置におけるA−A断面の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the AA cross section in the semiconductor device of FIG. 1. 図1の半導体装置におけるB−B断面の構造を示す断面図である。FIG. 2 is a cross-sectional view showing a structure of a BB cross section in the semiconductor device of FIG. 1. 図1の半導体装置におけるC−C断面の構造を示す断面図である。FIG. 2 is a cross-sectional view showing a structure of a CC cross section in the semiconductor device of FIG. 1. 図1の半導体装置におけるD−D断面の構造を示す断面図である。FIG. 2 is a cross-sectional view showing a structure of a DD cross section in the semiconductor device of FIG. 1. 第2の形態に係る半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on a 2nd form. 図6の半導体装置におけるE−E断面の構造を示す断面図である。FIG. 7 is a cross-sectional view showing the structure of the EE cross section in the semiconductor device of FIG. 6. 第3の形態に係る半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on a 3rd form. 第3の形態に係る半導体装置の応用例であるトレンチレスの半導体装置の構造を示す平面図である。It is a top view which shows the structure of the trenchless semiconductor device which is an application example of the semiconductor device which concerns on a 3rd form. 第4の形態に係る半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on a 4th form. 図10の半導体装置におけるF−F断面の構造を示す断面図である。FIG. 11 is a cross-sectional view showing the structure of the FF cross section in the semiconductor device of FIG. 10. 図10の半導体装置におけるG−G断面の構造を示す断面図である。FIG. 11 is a cross-sectional view illustrating a structure of a GG cross section in the semiconductor device of FIG. 10. 図10の半導体装置におけるH−H断面の構造を示す断面図である。FIG. 11 is a cross-sectional view showing a structure of an HH cross section in the semiconductor device of FIG. 10. 第5の形態に係る半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on a 5th form. 第6の形態に係る半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on a 6th form. 従来の形態に係る半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on the conventional form. 従来の形態に係る半導体装置の回路構成を示す図である。It is a figure which shows the circuit structure of the semiconductor device which concerns on the conventional form.

符号の説明Explanation of symbols

1 低電位基準回路領域(低電位基準回路,第1領域)
2 高電位基準回路領域(高電位基準回路,第2領域)
3 高耐圧分離領域(第3領域)
4 トレンチ(絶縁隔壁)
5 高耐圧NMOS(中継半導体素子,第4領域)
6 高耐圧PMOS(中継半導体素子,第4領域)
7 P- 型基板(基板領域,半導体基板)
40 トレンチ群(絶縁隔壁群)
50d ドレインN+ 領域(ドレイン)
50g ゲートポリシリコン(ゲート)
50s ソースN+ 領域(ソース)
75 埋め込み絶縁層(絶縁膜)
100 半導体装置
1 Low-potential reference circuit area (low-potential reference circuit, first area)
2 High potential reference circuit area (high potential reference circuit, second area)
3 High breakdown voltage isolation region (third region)
4 Trench (insulating partition)
5 High voltage NMOS (relay semiconductor device, 4th region)
6 High voltage PMOS (relay semiconductor device, 4th region)
7 P - type substrate (substrate region, semiconductor substrate)
40 trench group (insulating partition wall group)
50d Drain N + region (drain)
50g gate polysilicon (gate)
50s source N + region (source)
75 buried insulating layer (insulating film)
100 Semiconductor device

Claims (5)

低電位基準回路と高電位基準回路とを混載させ,両者間で信号の伝達を行う半導体装置において,
前記低電位基準回路と前記高電位基準回路との間の信号の伝達を媒介し,トレンチ状の溝に絶縁物が充填された絶縁隔壁に包囲された中継半導体素子を備え,
前記中継半導体素子が複数設けられ,複数の前記中継半導体素子と,前記中継半導体素子を包囲する前記絶縁隔壁と,を環状に組み合わせてなる領域によって前記低電位基準回路の領域と前記高電位基準回路の領域とが区画されており,それらの中継半導体素子の出力配線が前記絶縁隔壁を跨いで出力側の回路領域に配されていることを特徴とする半導体装置。
In a semiconductor device in which a low potential reference circuit and a high potential reference circuit are mixedly mounted and signals are transmitted between the two,
Comprising a relay semiconductor element surrounded by an insulating partition wall, in which a signal is transmitted between the low potential reference circuit and the high potential reference circuit, and a trench-like groove is filled with an insulating material;
A region of the low potential reference circuit and the high potential reference circuit are formed by a region in which a plurality of the relay semiconductor devices are provided and the plurality of the relay semiconductor devices and the insulating partition wall surrounding the relay semiconductor device are annularly combined. The semiconductor device is characterized in that the output wiring of the relay semiconductor elements is arranged in the circuit region on the output side across the insulating partition.
請求項1に記載する半導体装置において,
前記低電位基準回路および前記高電位基準回路の下方に位置する基板領域と,
前記低電位基準回路および前記高電位基準回路と前記基板領域との間に位置し,前記低電位基準回路および前記高電位基準回路と前記基板領域とを絶縁する絶縁層を有し,
前記絶縁隔壁は,その底部が前記絶縁層にまで達しているとともに厚さ方向から見て前記中継半導体素子を包囲していることを特徴とする半導体装置。
The semiconductor device according to claim 1,
A substrate region located below the low potential reference circuit and the high potential reference circuit;
An insulating layer that is located between the low potential reference circuit and the high potential reference circuit and the substrate region, and that insulates the low potential reference circuit and the high potential reference circuit from the substrate region;
The insulating partition has a bottom that reaches the insulating layer and surrounds the relay semiconductor element as viewed in the thickness direction.
第1導電型の半導体基板と,
前記半導体基板の主表面上に形成され,低電位基準回路領域をなす第2導電型の第1領域と,
前記第1領域と離間して前記半導体基板上に形成され,高電位基準回路領域をなす第2導電型の第2領域と,
前記第1領域と前記第2領域との間に位置し,前記第1領域と前記第2領域との間の信号の伝達を媒介し,トレンチ状の溝に絶縁物が充填された絶縁隔壁に包囲された複数の中継半導体素子と,前記中継半導体素子を包囲する前記絶縁隔壁と,を環状に組み合わせ,表面から見て前記第1領域または前記第2領域のうちの一方を取り囲むように形成された第3領域とを備え,
前記第3領域の中継半導体素子の出力配線が,前記絶縁隔壁を跨いで出力側の回路領域に配されていることを特徴とする半導体装置。
A first conductivity type semiconductor substrate;
A first region of a second conductivity type formed on a main surface of the semiconductor substrate and forming a low potential reference circuit region;
A second region of a second conductivity type formed on the semiconductor substrate apart from the first region and forming a high potential reference circuit region;
An insulating partition located between the first region and the second region, mediating signal transmission between the first region and the second region, and having a trench-like groove filled with an insulator. a plurality of relay semiconductor device surrounded, the combined insulating partition wall, an annularly formed so as viewed from the surface surrounding the one of the first region or the second region surrounding the relay semiconductor device A third region,
An output wiring of the relay semiconductor element in the third region is arranged in the circuit region on the output side across the insulating partition.
第1導電型または第2導電型の半導体基板と,
前記半導体基板の主表面上に形成された絶縁膜と,
前記絶縁膜上に形成され,低電位基準回路領域をなす第2導電型の第1領域と,
前記第1領域と離間して前記絶縁膜上に形成され,高電位基準回路領域をなす第2導電型の第2領域と,
前記第1領域と前記第2領域との間に位置し,前記第1領域と前記第2領域との間の信号の伝達を媒介し,トレンチ状の溝に絶縁物が充填された絶縁隔壁に包囲された複数の中継半導体素子と,前記中継半導体素子を包囲する前記絶縁隔壁と,を環状に組み合わせ,表面から見て前記第1領域または前記第2領域のうちの一方を取り囲むように形成された第3領域とを備え,
前記第3領域の中継半導体素子の出力配線が,前記絶縁隔壁を跨いで出力側の回路領域に配されていることを特徴とする半導体装置。
A first conductivity type or second conductivity type semiconductor substrate;
An insulating film formed on the main surface of the semiconductor substrate;
A first region of a second conductivity type formed on the insulating film and forming a low potential reference circuit region;
A second region of a second conductivity type formed on the insulating film apart from the first region and forming a high potential reference circuit region;
An insulating partition located between the first region and the second region, mediating signal transmission between the first region and the second region, and having a trench-like groove filled with an insulator. A plurality of surrounding relay semiconductor elements and the insulating partition wall surrounding the relay semiconductor elements are combined in a ring shape , and are formed so as to surround one of the first region and the second region when viewed from the surface. A third region,
An output wiring of the relay semiconductor element in the third region is arranged in the circuit region on the output side across the insulating partition.
請求項3または請求項4に記載する半導体装置において,
前記絶縁隔壁は,その底部が下方に位置する前記半導体基板または前記絶縁膜に達していることを特徴とする半導体装置。
In the semiconductor device according to claim 3 or 4,
The semiconductor device according to claim 1, wherein the insulating partition reaches the semiconductor substrate or the insulating film whose bottom is positioned below.
JP2003359229A 2003-10-20 2003-10-20 Semiconductor device Expired - Fee Related JP4654574B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003359229A JP4654574B2 (en) 2003-10-20 2003-10-20 Semiconductor device
EP04773779.6A EP1676320B1 (en) 2003-10-20 2004-10-08 Semiconductor apparatus
CN200480030738A CN100587955C (en) 2003-10-20 2004-10-08 Semiconductor device
KR1020067009868A KR100767075B1 (en) 2003-10-20 2004-10-08 Semiconductor apparatus
PCT/JP2004/015328 WO2005038921A1 (en) 2003-10-20 2004-10-08 Semiconductor apparatus
US10/576,292 US7538407B2 (en) 2003-10-20 2004-10-08 Semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359229A JP4654574B2 (en) 2003-10-20 2003-10-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005123512A JP2005123512A (en) 2005-05-12
JP4654574B2 true JP4654574B2 (en) 2011-03-23

Family

ID=34463330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359229A Expired - Fee Related JP4654574B2 (en) 2003-10-20 2003-10-20 Semiconductor device

Country Status (6)

Country Link
US (1) US7538407B2 (en)
EP (1) EP1676320B1 (en)
JP (1) JP4654574B2 (en)
KR (1) KR100767075B1 (en)
CN (1) CN100587955C (en)
WO (1) WO2005038921A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863665B2 (en) * 2005-07-15 2012-01-25 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP4832841B2 (en) * 2005-09-22 2011-12-07 三菱電機株式会社 Semiconductor device
JP5069851B2 (en) * 2005-09-26 2012-11-07 株式会社日立製作所 Semiconductor device
JP4935164B2 (en) * 2006-04-14 2012-05-23 株式会社デンソー Semiconductor device
JP5061597B2 (en) * 2006-11-24 2012-10-31 トヨタ自動車株式会社 Semiconductor device
JP5092174B2 (en) * 2007-04-12 2012-12-05 三菱電機株式会社 Semiconductor device
US8097921B2 (en) * 2007-11-09 2012-01-17 Denso Corporation Semiconductor device with high-breakdown-voltage transistor
JP4797203B2 (en) 2008-12-17 2011-10-19 三菱電機株式会社 Semiconductor device
JP5359264B2 (en) * 2008-12-26 2013-12-04 富士電機株式会社 Semiconductor device
JP2012028451A (en) 2010-07-21 2012-02-09 Hitachi Ltd Semiconductor integrated circuit
JP5318927B2 (en) * 2011-09-01 2013-10-16 三菱電機株式会社 Semiconductor device
JP5720792B2 (en) * 2011-09-16 2015-05-20 富士電機株式会社 High voltage semiconductor device
KR20140006156A (en) * 2012-06-26 2014-01-16 페어차일드코리아반도체 주식회사 Power semiconductor device
JP5684327B2 (en) * 2013-06-04 2015-03-11 三菱電機株式会社 Semiconductor device
JP6134219B2 (en) * 2013-07-08 2017-05-24 ルネサスエレクトロニクス株式会社 Semiconductor device
JP6277785B2 (en) * 2014-03-07 2018-02-14 富士電機株式会社 Semiconductor device
JP2015185656A (en) * 2014-03-24 2015-10-22 サンケン電気株式会社 semiconductor device
JP2017045966A (en) 2015-08-28 2017-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device
CN107534017B (en) 2015-11-19 2020-07-14 富士电机株式会社 semiconductor device
CN107431050B (en) * 2016-01-06 2019-12-13 新电元工业株式会社 mounting table for semiconductor device and in-vehicle apparatus
WO2017119083A1 (en) * 2016-01-06 2017-07-13 新電元工業株式会社 Placement base for semiconductor device, and on-vehicle device
JP6690336B2 (en) 2016-03-18 2020-04-28 富士電機株式会社 Semiconductor device
JP6729487B2 (en) * 2017-05-15 2020-07-22 三菱電機株式会社 SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND POWER CONVERSION DEVICE
KR102227666B1 (en) * 2017-05-31 2021-03-12 주식회사 키 파운드리 High Voltage Semiconductor Device
US11069804B2 (en) * 2018-08-31 2021-07-20 Alpha And Omega Semiconductor (Cayman) Ltd. Integration of HVLDMOS with shared isolation region
JP7160167B2 (en) * 2018-12-28 2022-10-25 三菱電機株式会社 semiconductor equipment
JP7001050B2 (en) 2018-12-28 2022-01-19 三菱電機株式会社 Semiconductor device
US11562995B2 (en) 2019-04-11 2023-01-24 Fuji Electric Co., Ltd. Semiconductor integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283716A (en) * 1996-04-15 1997-10-31 Mitsubishi Electric Corp Semiconductor device
JPH11243152A (en) * 1998-02-26 1999-09-07 Fuji Electric Co Ltd High voltage IC
JP2001025235A (en) * 1999-07-07 2001-01-26 Mitsubishi Electric Corp Driving gear and power converter
JP2004349296A (en) * 2003-05-20 2004-12-09 Mitsubishi Electric Corp Semiconductor device, semiconductor device manufacturing method, and semiconductor device manufacturing process evaluation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808116B2 (en) 1995-04-12 2006-08-09 富士電機デバイステクノロジー株式会社 High voltage IC
GB2310019B (en) * 1996-02-09 1998-04-29 B & M Pipeline Services Ltd A liner for a well
US5801418A (en) 1996-02-12 1998-09-01 International Rectifier Corporation High voltage power integrated circuit with level shift operation and without metal crossover
JP3575908B2 (en) * 1996-03-28 2004-10-13 株式会社東芝 Semiconductor device
JP3201719B2 (en) 1996-04-23 2001-08-27 松下電工株式会社 Semiconductor device and manufacturing method thereof
US6150679A (en) * 1998-03-13 2000-11-21 Hewlett Packard Company FIFO architecture with built-in intelligence for use in a graphics memory system for reducing paging overhead
JP4471480B2 (en) * 2000-10-18 2010-06-02 三菱電機株式会社 Semiconductor device
JP4387119B2 (en) 2003-03-27 2009-12-16 三菱電機株式会社 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283716A (en) * 1996-04-15 1997-10-31 Mitsubishi Electric Corp Semiconductor device
JPH11243152A (en) * 1998-02-26 1999-09-07 Fuji Electric Co Ltd High voltage IC
JP2001025235A (en) * 1999-07-07 2001-01-26 Mitsubishi Electric Corp Driving gear and power converter
JP2004349296A (en) * 2003-05-20 2004-12-09 Mitsubishi Electric Corp Semiconductor device, semiconductor device manufacturing method, and semiconductor device manufacturing process evaluation method

Also Published As

Publication number Publication date
EP1676320B1 (en) 2015-01-28
EP1676320A1 (en) 2006-07-05
US20070085595A1 (en) 2007-04-19
US7538407B2 (en) 2009-05-26
JP2005123512A (en) 2005-05-12
KR100767075B1 (en) 2007-10-15
KR20060099528A (en) 2006-09-19
WO2005038921A1 (en) 2005-04-28
CN1871705A (en) 2006-11-29
CN100587955C (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4654574B2 (en) Semiconductor device
US8269305B2 (en) High-voltage semiconductor device
CN106887452B (en) Self-Adjustable Isolation Biasing in Semiconductor Devices
JP4618629B2 (en) Dielectric isolation type semiconductor device
JP5410012B2 (en) Semiconductor device
US9349732B2 (en) High voltage lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) having a deep fully depleted drain drift region
US9728600B2 (en) Partially biased isolation in semiconductor devices
US10262997B2 (en) High-voltage LDMOSFET devices having polysilicon trench-type guard rings
EP3142150B1 (en) Partially biased isolation in semiconductor devices
US10573713B2 (en) High voltage junction terminating structure of high voltage integrated circuit
US20170250252A1 (en) MOSFET Having Source Region Formed in a Double Wells Region
US10431655B2 (en) Transistor structure
US8823095B2 (en) MOS-power transistors with edge termination with small area requirement
US8698194B2 (en) Semiconductor integrated circuit with high withstand voltage element forming trench isolation on substrate
JP3951815B2 (en) Semiconductor device
JP7001050B2 (en) Semiconductor device
JP7160167B2 (en) semiconductor equipment
US9608109B1 (en) N-channel demos device
JP2019134149A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4654574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees