JP4650395B2 - Fuel injection valve - Google Patents
Fuel injection valve Download PDFInfo
- Publication number
- JP4650395B2 JP4650395B2 JP2006298920A JP2006298920A JP4650395B2 JP 4650395 B2 JP4650395 B2 JP 4650395B2 JP 2006298920 A JP2006298920 A JP 2006298920A JP 2006298920 A JP2006298920 A JP 2006298920A JP 4650395 B2 JP4650395 B2 JP 4650395B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- chamber
- valve
- low
- elastic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims description 208
- 238000002347 injection Methods 0.000 title claims description 47
- 239000007924 injection Substances 0.000 title claims description 47
- 230000006835 compression Effects 0.000 claims description 65
- 238000007906 compression Methods 0.000 claims description 65
- 230000002093 peripheral effect Effects 0.000 claims description 23
- 230000007423 decrease Effects 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 230000004308 accommodation Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 36
- 230000000694 effects Effects 0.000 description 18
- 230000017525 heat dissipation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000002828 fuel tank Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/04—Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/09—Fuel-injection apparatus having means for reducing noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/31—Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
- F02M2200/315—Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/40—Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Description
本発明は、自動車用内燃機関の燃料噴射弁に関し、特に電磁制御弁を用いてノズルニードルを開閉制御する燃料噴射弁に関する。 The present invention relates to a fuel injection valve for an automobile internal combustion engine, and more particularly to a fuel injection valve that controls opening and closing of a nozzle needle using an electromagnetic control valve.
ディーゼルエンジン用のコモンレール式燃料噴射弁として、従来より、コモンレールからの高圧燃料を噴射ノズルのノズル室に供給するとともに、電磁制御弁を用いてノズルニードルの背圧を増減することで、燃料の噴射と停止とを切替えるものがある(例えば、特許文献1等)。電磁制御弁は、ソレノイドと一体の弁体が収容される弁室と、燃料タンクに連通する低圧燃料排出流路またはコモンレールに連通する高圧燃料導入流路との連通と遮断を切替えることで、ノズルニードル背圧室の圧力すなわちノズルニードルの着座と離座とを制御し、燃料噴射を高度に制御可能としている。
一方、ソレノイドを小径化して装置全体を小型にするために、本発明者等により、電磁制御弁により駆動されるもう一つの制御弁を設けてノズルニードル背圧室の圧力を制御する装置が提案されている(特許文献2または特願2006−198007)。この装置では、コモンレールからの高圧燃料が導入される圧力制御室を設け、電磁制御弁が圧力制御室と低圧燃料排出流路の間を開閉すると、もう一つの制御弁の背圧が増減し、ノズルニードル背圧室と低圧燃料排出流路の間を開閉するように構成されている。
電磁制御弁のソレノイドを小径化すると、小径化による磁極面積の低下で吸引力も低下するから、その分、弁体に作用するリフト方向の燃料圧力を小さくする必要がある。この構成では、ノズルニードルの応答性は、もう一つの制御弁にて制御されるノズルニードル背圧室の燃料流出速度に依存するから、電磁制御弁の弁体に作用する燃料圧力を小さくするためにシート径を小さくしても、ノズルニードルの応答性に影響を与えることがないという利点がある。 When the diameter of the solenoid of the electromagnetic control valve is reduced, the attraction force is also reduced due to the reduction in the magnetic pole area due to the reduction in diameter. Therefore, it is necessary to reduce the fuel pressure in the lift direction acting on the valve body. In this configuration, since the responsiveness of the nozzle needle depends on the fuel outflow speed of the nozzle needle back pressure chamber controlled by another control valve, the fuel pressure acting on the valve body of the electromagnetic control valve is reduced. Even if the sheet diameter is reduced, there is an advantage that the response of the nozzle needle is not affected.
ただし、ソレノイドを小さく構成すると、弁体を閉弁方向に付勢するスプリング力が小さく設定されることになる。この場合、電磁制御弁の弁体やアーマチャの作動が、開閉弁に伴う低圧排出流路の圧力変動の影響を受けやすくなり、噴射量バラツキが生じるおそれがある。その対策として、例えば、特許文献2には、アーマチャ室入口に逆止弁を設けて、圧力制御室やノズルニードル背圧室から流出する燃料による圧力変動がアーマチャ室へ伝播することを抑制する構成例が示されている。 However, if the solenoid is made small, the spring force for urging the valve body in the valve closing direction is set small. In this case, the operation of the valve body and armature of the electromagnetic control valve is likely to be affected by the pressure fluctuation of the low pressure discharge flow path associated with the on-off valve, and there is a possibility that the injection amount varies. As a countermeasure, for example, in Patent Document 2, a check valve is provided at the inlet of the armature chamber to suppress the pressure fluctuation due to the fuel flowing out from the pressure control chamber or the nozzle needle back pressure chamber from propagating to the armature chamber. An example is shown.
また、アーマチャ室では、アーマチャの作動に伴い燃料中の空気が脱気し、気泡が発生してアーマチャ室上部に滞留すると、電磁制御弁の挙動が不安定になるおそれがある。このため、特願2006−198007では、低圧系を僅かに昇圧させて(例えば0.2MPa程度)、アーマチャ室内が負圧となって空気が脱気しないようにし、燃料圧力で弁体のバウンス抑制を行っている。 Further, in the armature chamber, when the air in the fuel is degassed with the operation of the armature and bubbles are generated and stay in the upper portion of the armature chamber, the behavior of the electromagnetic control valve may become unstable. For this reason, in Japanese Patent Application No. 2006-198007, the pressure of the low pressure system is slightly increased (for example, about 0.2 MPa) so that the armature chamber has a negative pressure so that the air is not degassed. It is carried out.
ところが、特許文献2の逆止弁は、非常に小型で構成が複雑となり、コスト上昇が避けられない。また、特願2006−198007の構成では、低圧系を昇圧することで気泡の発生は抑制されるが、従来よりもアーマチャの動作が遅れがちとなる。このため、微小噴射量制御のように電磁制御弁を高速で開閉弁することが要求される場合に、制御性が悪化するおそれがある。 However, the check valve of Patent Document 2 is very small and has a complicated configuration, and an increase in cost is inevitable. Further, in the configuration of Japanese Patent Application No. 2006-198007, the generation of bubbles is suppressed by increasing the pressure of the low pressure system, but the armature operation tends to be delayed as compared with the prior art. For this reason, when it is required to open and close the electromagnetic control valve at a high speed as in the fine injection amount control, the controllability may be deteriorated.
本発明はこの実情に鑑みなされたもので、低圧系で発生する圧力変動を抑制して、電磁制御弁の作動を安定化し、かつ高速で開閉弁して応答性を向上させることにより、小型でしかも噴射量制御性に優れた燃料噴射弁を実現することにある。 The present invention has been made in view of this situation, and by suppressing the pressure fluctuation generated in the low-pressure system, stabilizing the operation of the electromagnetic control valve, and improving the responsiveness by opening and closing the valve at high speed, In addition, a fuel injection valve having excellent injection amount controllability is realized.
請求項1記載の発明において、燃料噴射弁は、高圧燃料導入流路から高圧燃料が供給される圧力制御室と、圧力制御室と低圧燃料排出流路との連通および遮断を制御する電磁制御弁と、ノズルニードルが噴孔を開閉して高圧燃料導入流路から供給される高圧燃料を噴射するノズル部とを備えており、電磁制御弁が作動して圧力制御室の圧力を増減させるとノズルニードルが昇降する。
電磁制御弁は、駆動体によって吸引駆動されるアーマチャと、該アーマチャと一体の弁体を有し、弁体が収容される弁室とアーマチャを収容するアーマチャ室は低圧流路によって低圧燃料排出流路に連通される。さらに、アーマチャ室より下流の低圧流路または低圧燃料排出流路の途中には、低圧流路または低圧燃料排出流路を流通する燃料と接触するように配置され燃料圧力により体積を変化させる圧縮弾性体を収容する弾性体収容室が設けられる。
上記弾性体収容室は、上記アーマチャ室の直上位置で上記駆動体の外周側面とボデー部材との間に形成した空間部に上記圧縮弾性体を収容してなり、
上記アーマチャ室の燃料は、上記圧縮弾性体の底面に接して形成される上記低圧流路を経て上記低圧燃料排出経路に排出される。
上記弾性体収容室となる上記空間部を上記駆動体の下端側外周に設け、上記駆動体の上端側外周のボデー部材には、上記駆動体の上端側外周側面に接してこれを熱伝達可能に保持する支持部を設けた。
3. The fuel injection valve according to claim 1, wherein the fuel injection valve is an electromagnetic control valve that controls communication between a pressure control chamber to which high-pressure fuel is supplied from a high-pressure fuel introduction passage, and communication between the pressure control chamber and the low-pressure fuel discharge passage. And a nozzle portion for opening and closing the nozzle hole and injecting high-pressure fuel supplied from the high-pressure fuel introduction flow path, and when the electromagnetic control valve is operated to increase or decrease the pressure in the pressure control chamber, the nozzle The needle moves up and down.
The electromagnetic control valve has an armature that is suction-driven by a drive body, and a valve body that is integral with the armature. The valve chamber in which the valve body is housed and the armature chamber in which the armature is housed have a low-pressure fuel discharge flow. Connected to the road. Further, in the middle of the low-pressure flow path or low-pressure fuel discharge flow path downstream from the armature chamber, it is arranged so as to come into contact with the fuel flowing through the low-pressure flow path or low-pressure fuel discharge flow path, and the compression elasticity that changes the volume by the fuel pressure An elastic body accommodating chamber for accommodating the body is provided.
The elastic body accommodating chamber accommodates the compression elastic body in a space formed between the outer peripheral side surface of the driving body and the body member at a position directly above the armature chamber,
The fuel in the armature chamber is discharged to the low pressure fuel discharge path through the low pressure passage formed in contact with the bottom surface of the compression elastic body.
The space serving as the elastic body accommodation chamber is provided on the outer periphery on the lower end side of the drive body, and the body member on the outer periphery on the upper end side of the drive body can be in contact with the outer peripheral side surface on the upper end side of the drive body to transfer heat. The support part to hold | maintain was provided.
上記構成において、電磁制御弁の弁体が開弁すると、圧力制御室から燃料が流出して低圧燃料排出流路に排出される。この流出燃料により弁室やアーマチャ室の圧力が変動するが、弾性体収容室に収容される圧力弾性体が、燃料に接触してその圧力に応じて体積を変化させる。これにより低圧系における圧力の変動を抑制することができるので、弁体およびアーマチャの挙動が安定する。従って、逆止弁を設けたり、低圧系を昇圧する必要がなく、小型で簡易な構成であり、しかも噴射量制御性に優れた燃料噴射弁を実現することができる。
具体的には、アーマチャ室の直上に弾性体収容室を形成すると、上記アーマチャ室から低圧燃料流路へ排出される燃料と、圧縮弾性体とを接触させて、圧力変動を抑制する効果を得やすい。また、アーマチャ室から上方へ移動する燃料からの脱気ガスを捕集しやすく、駆動体からの伝熱で圧縮弾性体の温度低下を抑制できるので、ガス状態が安定し、圧縮弾性体によるダンパー効果を効率よく発揮できる。
弾性体収容室が駆動体を完全に囲ってしまうと、駆動体からの放熱が不十分となるおそれがある。そこで弾性体収容室を駆動体の下端側外周のみに設け、駆動体の上端側は基体側へ熱伝達可能な支持部に密接されることで、放熱性を高める。このように駆動体に隣接して、軸方向に弾性体収容室と支持部とを適切に配置することで、圧縮弾性体への伝熱と駆動体の放熱とを両立させることができる。
In the above configuration, when the valve body of the electromagnetic control valve is opened, fuel flows out from the pressure control chamber and is discharged to the low pressure fuel discharge passage. Although the pressure in the valve chamber and the armature chamber fluctuates due to the spilled fuel, the pressure elastic body accommodated in the elastic body accommodating chamber contacts the fuel and changes the volume according to the pressure. As a result, pressure fluctuations in the low-pressure system can be suppressed, so that the behavior of the valve body and the armature is stabilized. Therefore, it is not necessary to provide a check valve or increase the pressure of the low pressure system, and it is possible to realize a fuel injection valve having a small and simple structure and excellent in injection amount controllability.
Specifically, when the elastic body accommodating chamber is formed immediately above the armature chamber, the fuel discharged from the armature chamber to the low pressure fuel flow path and the compression elastic body are brought into contact with each other, thereby obtaining an effect of suppressing pressure fluctuation. Cheap. In addition, the degassing gas from the fuel moving upward from the armature chamber can be easily collected, and the temperature drop of the compression elastic body can be suppressed by heat transfer from the drive body, so that the gas state is stable and the damper by the compression elastic body The effect can be exhibited efficiently.
If the elastic body accommodating chamber completely surrounds the drive body, there is a possibility that heat radiation from the drive body will be insufficient. Therefore, the elastic body accommodating chamber is provided only on the outer periphery on the lower end side of the driving body, and the upper end side of the driving body is brought into close contact with a support portion capable of transferring heat to the base side, thereby improving heat dissipation. As described above, by appropriately disposing the elastic body accommodating chamber and the support portion in the axial direction adjacent to the driving body, it is possible to achieve both heat transfer to the compression elastic body and heat radiation of the driving body.
請求項2記載の発明では、上記圧縮弾性体は、燃料成分中から分離されるガス体である。 According to a second aspect of the present invention, the compression elastic body is a gas body separated from the fuel component.
圧力制御室から高圧燃料が流出すると、高圧燃料は急激に圧力低下して燃料成分中に溶け込んでいた空気等がガス化し上方へ移動する。このガスを圧縮弾性体としてアーマチャ室下流に設けた空間部に捕集することで、弾性体収容室を形成することができる。 When the high-pressure fuel flows out from the pressure control chamber, the pressure of the high-pressure fuel is abruptly reduced, and the air or the like dissolved in the fuel component is gasified and moved upward. By collecting this gas as a compression elastic body in a space provided downstream of the armature chamber, an elastic body accommodating chamber can be formed.
請求項3記載の発明では、上記アーマチャ室を上記弁室の直上に配置し、上記弁室の頂面と上記アーマチャ室の底面を連通する低圧流路を設けた。 According to a third aspect of the present invention, the armature chamber is disposed immediately above the valve chamber, and a low-pressure flow path is provided that communicates the top surface of the valve chamber and the bottom surface of the armature chamber.
好適には、アーマチャ室が弁室の直上にあると、弁室で発生した脱気ガスが上方へ移動して、両室を連通する低圧流路からアーマチャ室へ流入しやすくなり、アーマチャ室上方の弾性体収容室に圧縮弾性体となるガス体を効率よく収容することができる。 Preferably, when the armature chamber is directly above the valve chamber, the degassing gas generated in the valve chamber moves upward, and easily flows into the armature chamber from the low-pressure flow path that connects both chambers. The gas body that becomes the compression elastic body can be efficiently stored in the elastic body storage chamber.
請求項4記載の発明では、
高圧燃料導入流路から高圧燃料が供給される圧力制御室と、
上記圧力制御室と低圧燃料排出流路との連通および遮断を制御する電磁制御弁と、
ノズルニードルが噴孔を開閉して上記高圧燃料導入流路から供給される高圧燃料を噴射するノズル部とを備え、
上記電磁制御弁の作動に伴い上記圧力制御室の圧力が増減して上記ノズル部を駆動する燃料噴射弁であって、
上記電磁制御弁は、駆動体によって吸引駆動されるアーマチャと、該アーマチャと一体の弁体を有し、
上記弁体が収容される弁室と上記アーマチャを収容するアーマチャ室を低圧流路にて上記低圧燃料排出流路に連通させるとともに、上記アーマチャ室より下流の上記低圧流路または上記低圧燃料排出流路の途中に、上記低圧流路または上記低圧燃料排出流路を流通する燃料と接触するように配置され燃料圧力により体積を変化させる圧縮弾性体を収容する弾性体収容室を設け、
上記圧縮弾性体は、燃料成分中から分離されるガス体であり、
上記低圧燃料排出流路を上記電磁制御弁の側方に配置して上記アーマチャ室および上記弁室を接続し、上記アーマチャ室の上方位置において、上記低圧燃料排出流路から上方に分岐させて形成した空間部に上記圧縮弾性体を収容して、上記弾性体収容室とした。
In invention of Claim 4 ,
A pressure control chamber to which high-pressure fuel is supplied from the high-pressure fuel introduction channel;
An electromagnetic control valve that controls communication and blocking between the pressure control chamber and the low-pressure fuel discharge passage;
A nozzle needle that opens and closes an injection hole to inject high-pressure fuel supplied from the high-pressure fuel introduction flow path,
A fuel injection valve that drives the nozzle unit by increasing or decreasing the pressure in the pressure control chamber in accordance with the operation of the electromagnetic control valve,
The electromagnetic control valve has an armature that is suction-driven by a driving body, and a valve body that is integral with the armature.
The valve chamber in which the valve body is accommodated and the armature chamber in which the armature is accommodated are communicated with the low pressure fuel discharge flow path through a low pressure flow path, and the low pressure flow path or the low pressure fuel discharge flow downstream from the armature chamber. In the middle of the path, an elastic body accommodating chamber is provided that accommodates a compression elastic body that is disposed so as to be in contact with the fuel that flows through the low-pressure flow path or the low-pressure fuel discharge flow path and changes the volume by the fuel pressure.
The compression elastic body is a gas body separated from the fuel component,
The low-pressure fuel discharge passage is arranged on the side of the electromagnetic control valve to connect the armature chamber and the valve chamber, and is formed by branching upward from the low-pressure fuel discharge passage at a position above the armature chamber. The above-mentioned compression elastic body was accommodated in the space part which was made, and it was set as the above-mentioned elastic body accommodation room.
請求項5記載の発明では、上記圧縮弾性体は、変形自在な収容バッグに充填されたガス体である。 According to a fifth aspect of the present invention, the compression elastic body is a gas body filled in a deformable storage bag.
請求項6記載の発明では、収容バッグを複数に分割して、分割されたバッグのそれぞれに上記圧縮弾性体を充填した。 In the invention according to claim 6 , the storage bag is divided into a plurality of bags, and each of the divided bags is filled with the compression elastic body.
請求項7記載の発明では、上記圧力制御室の圧力により作動する油圧式切替弁と、
高圧燃料導入流路から高圧燃料が供給されて上記ノズルニードルの背圧を発生するノズルニードル背圧室とを設け、
上記電磁制御弁が上記圧力制御室の圧力を増減するのに伴い、上記油圧式切替弁が、上記ノズルニードル背圧室と上記低圧燃料排出流路との連通および遮断を切り替える構成とした。
In the invention of claim 7, a hydraulic switching valve that operates by the pressure of the pressure control chamber;
A nozzle needle back pressure chamber for generating a back pressure of the nozzle needle when high pressure fuel is supplied from the high pressure fuel introduction flow path;
As the electromagnetic control valve increases or decreases the pressure in the pressure control chamber, the hydraulic switching valve is configured to switch communication and blocking between the nozzle needle back pressure chamber and the low pressure fuel discharge passage.
電磁制御弁に加えて、油圧切替弁を設けてノズルニードル背圧室と第1の低圧室の間を開閉する構成とすると、駆動体を小型化することができる。油圧切替弁を開閉する駆動力は油圧によって得られるので、駆動体の駆動力に依存することなく油圧切替弁のリフト量を十分大きく設定することができる。駆動体の駆動力は、スプリング力に抗してアーマチャを吸引し、油圧室と第2の低圧室の間を開閉するための駆動力として足りればよい。従って、小型で噴射性能に優れた燃料噴射弁を実現することができる。 If the hydraulic switching valve is provided in addition to the electromagnetic control valve to open and close between the nozzle needle back pressure chamber and the first low pressure chamber, the driving body can be reduced in size. Since the driving force for opening and closing the hydraulic switching valve is obtained by hydraulic pressure, the lift amount of the hydraulic switching valve can be set sufficiently large without depending on the driving force of the driving body. The driving force of the driving body may be sufficient as the driving force for attracting the armature against the spring force and opening and closing between the hydraulic chamber and the second low-pressure chamber. Therefore, it is possible to realize a fuel injection valve that is small and has excellent injection performance.
(第1実施形態)
以下、本発明を適用した第1実施形態について図 1、2により説明する。図2は、本発明の燃料噴射弁であるインジェクタIの全体構成を示す図で、例えばコモンレール式の燃料噴射システムを備えたディーゼルエンジンに適用される。図略のコモンレールには高圧サプライポンプにて高圧に加圧された燃料が蓄圧され、インジェクタIの高圧燃料導入口611から高圧燃料導入流路61へ供給される。インジェクタIからのリーク燃料は、低圧燃料排出流路62から図略の燃料タンクへ排出される。インジェクタIは、エンジンの各気筒に1対1に対応して設けられ、図略のECUにより運転状態に応じた最適な噴射量、噴射時期となるように駆動が制御されてコモンレールが供給する燃料を噴射する。
(First embodiment)
A first embodiment to which the present invention is applied will be described below with reference to FIGS. FIG. 2 is a diagram showing an overall configuration of an injector I which is a fuel injection valve of the present invention, and is applied to, for example, a diesel engine equipped with a common rail type fuel injection system. A fuel that has been pressurized to a high pressure by a high-pressure supply pump is accumulated in a common rail (not shown), and is supplied from the high-pressure fuel introduction port 611 of the injector I to the high-pressure fuel introduction passage 61. The leaked fuel from the injector I is discharged from the low-pressure fuel discharge passage 62 to a fuel tank (not shown). The injectors I are provided in a one-to-one correspondence with the cylinders of the engine, and the fuel supplied by the common rail is controlled by an unillustrated ECU so that the drive is controlled so as to achieve the optimal injection amount and injection timing. Inject.
図2に示すように、インジェクタIは、棒状の基体Bを構成するボデー部材として、ノズルボデーB1、ディスタンスピースB2、バルブボデーB3、ホルダB4、バルブボデーB6、およびリテーニングナットB5を有している。ノズルボデーB1、ディスタンスピースB2、バルブボデーB3、およびバルブボデーB6を収容するホルダB4は対向端面で当接しリテーニングナットB5により互いに結合している。基体B内部には種々の凹所や孔が形成されて、各部構成部材が収容されるとともに、燃料の流路が形成される。 As shown in FIG. 2, the injector I includes a nozzle body B1, a distance piece B2, a valve body B3, a holder B4, a valve body B6, and a retaining nut B5 as body members constituting the rod-shaped base B. . The holder B4 that accommodates the nozzle body B1, the distance piece B2, the valve body B3, and the valve body B6 is in contact with the opposing end face and is coupled to each other by a retaining nut B5. Various recesses and holes are formed inside the base B, and each component member is accommodated and a fuel flow path is formed.
インジェクタIは、図中の下端部を、対応する気筒の燃焼室内に突出するノズル部1とする。ノズル部1を構成するノズルボデーB1には、基体Bの軸方向に縦孔111が形成され、これにノズルニードル11が収容されている。ノズルニードル11はその上端部で筒状部材112内に摺動自在に保持されている。縦孔111の図中の下端側底部はノズルボデーB1の先端部に達し、該先端部に形成したノズル室13の室壁を貫通して噴孔12が形成してある。縦孔111はノズルニードル11の摺動部よりも下端側で、ディスタンスピースB2、バルブボデーB3、およびホルダB4に形成された高圧燃料導入流路61と連通している。 The injector I has a lower end portion in the figure as a nozzle portion 1 protruding into the combustion chamber of the corresponding cylinder. In the nozzle body B1 constituting the nozzle portion 1, a vertical hole 111 is formed in the axial direction of the base body B, and the nozzle needle 11 is accommodated in this. The nozzle needle 11 is slidably held in the cylindrical member 112 at its upper end. The bottom of the vertical hole 111 in the drawing reaches the tip of the nozzle body B1, and the nozzle hole 12 is formed through the chamber wall of the nozzle chamber 13 formed at the tip. The vertical hole 111 communicates with the high-pressure fuel introduction passage 61 formed in the distance piece B2, the valve body B3, and the holder B4 on the lower end side of the sliding portion of the nozzle needle 11.
高圧燃料導入流路61は、ホルダB4端面に開口する高圧燃料導入口611を介して、コモンレールに連通しており、ノズルニードル11の離座時にはコモンレールから高圧燃料導入流路61に供給される高圧燃料が噴孔12から噴射される。 The high-pressure fuel introduction passage 61 communicates with the common rail via a high-pressure fuel introduction port 611 that opens at the end surface of the holder B4. When the nozzle needle 11 is separated, the high-pressure fuel introduction passage 61 is supplied to the high-pressure fuel introduction passage 61 from the common rail. Fuel is injected from the injection hole 12.
縦孔111の上端部には、ディスタンスピースB2を上壁とするとともにノズルニードル11の上端部を下壁として、ノズルニードル11の背圧を発生させるノズルニードル背圧室5が形成される。また、ノズルニードル11の外周に配設したコイルスプリング14が常時、ノズルニードル11を着座方向に付勢している。また、ノズルニードル11には高圧燃料導入流路61からの燃料の圧力が離座方向に付勢されており、ニードル背圧室5の圧力が所定の開弁開始圧力以下になったときにノズルニードル11が離座して燃料が噴射され、ニードル背圧室5の圧力が所定の閉弁開始圧力以上になったときにノズルニードル11が着座して燃料噴射が停止するようになっている。 A nozzle needle back pressure chamber 5 for generating a back pressure of the nozzle needle 11 is formed at the upper end portion of the vertical hole 111 with the distance piece B2 as an upper wall and the upper end portion of the nozzle needle 11 as a lower wall. Further, a coil spring 14 disposed on the outer periphery of the nozzle needle 11 constantly urges the nozzle needle 11 in the seating direction. Further, the pressure of the fuel from the high-pressure fuel introduction passage 61 is urged to the nozzle needle 11 in the seating direction, and the nozzle when the pressure in the needle back pressure chamber 5 becomes a predetermined valve opening start pressure or less. The needle 11 is separated and fuel is injected, and when the pressure in the needle back pressure chamber 5 becomes equal to or higher than a predetermined valve closing start pressure, the nozzle needle 11 is seated and the fuel injection is stopped.
ノズルニードル背圧室5の圧力の高低の切替えは、背圧制御部2によってなされる。背圧制御部2は、駆動体であるソレノイド31にて駆動される電磁制御弁3と、油圧式切替弁4とを有している。電磁制御弁3は、圧力制御室21と低圧燃料排出流路62との連通および遮断を制御し、圧力制御室21の圧力を増減させて油圧式切替弁4を駆動する。電磁制御弁3のソレノイド31周囲には、本発明の特徴部分である弾性体収容室7が形成される。油圧式切替弁4は3方弁構造で、ノズルニードル背圧室5を高圧燃料導入流路61または低圧燃料排出流路62と選択的に連通させ、ノズルニードル背圧を増減させる。背圧制御部2の詳細構造を、図1に拡大して示す。なお、図1では、背圧制御部2の各部や流路構成を説明しやすくするため図2とは一部異なる断面としてある。 The back pressure control unit 2 switches the pressure of the nozzle needle back pressure chamber 5 between high and low. The back pressure control unit 2 includes an electromagnetic control valve 3 that is driven by a solenoid 31 that is a driving body, and a hydraulic switching valve 4. The electromagnetic control valve 3 controls the communication and blocking between the pressure control chamber 21 and the low-pressure fuel discharge passage 62, and drives the hydraulic switching valve 4 by increasing or decreasing the pressure in the pressure control chamber 21. Around the solenoid 31 of the electromagnetic control valve 3, an elastic body accommodating chamber 7 which is a characteristic part of the present invention is formed. The hydraulic switching valve 4 has a three-way valve structure, and selectively communicates the nozzle needle back pressure chamber 5 with the high pressure fuel introduction passage 61 or the low pressure fuel discharge passage 62 to increase or decrease the nozzle needle back pressure. The detailed structure of the back pressure control unit 2 is shown in an enlarged manner in FIG. In FIG. 1, in order to facilitate explanation of each part of the back pressure control unit 2 and the flow path configuration, the cross section is partially different from that in FIG. 2.
図1において、バルブボデーB3には下端部で拡径する縦孔23がインジェクタIの軸方向に形成され、縦孔23の拡径部により第2バルブ室22が形成される。油圧式切替弁4は、棒状の本体部4b下端寄りにくびれ部を有しており、くびれ部よりも上端側が摺動部となって縦孔23に摺動自在に保持されている。くびれ部よりも下端側は第2バルブ室22内に位置して、大径の弁体部4aとなっている。弁体部4aの上端部および下端部はテーパ状に面取りされており、かつ第2バルブ室22の側壁面との間に環状の間隙が形成される大きさとしてある。 In FIG. 1, the valve body B <b> 3 is formed with a vertical hole 23 that expands at the lower end in the axial direction of the injector I, and a second valve chamber 22 is formed by the expanded diameter portion of the vertical hole 23. The hydraulic switching valve 4 has a constricted portion near the lower end of the rod-like main body 4b, and the upper end side of the constricted portion is a sliding portion and is slidably held in the vertical hole 23. The lower end side of the constricted portion is located in the second valve chamber 22 and is a large-diameter valve body portion 4a. The upper end portion and the lower end portion of the valve body portion 4 a are chamfered in a taper shape, and the size is such that an annular gap is formed between the valve body portion 4 a and the side wall surface of the second valve chamber 22.
バルブボデーB3とニードルボデーB1との間に挟まれ、第2バルブ室22の下壁部を形成するディスタンスピースB2には、インジェクタIの軸方向に貫通する孔が形成されており、第2バルブ室22とニードル背圧室5とを常時、連通する連通路51となっている。連通路51には途中にオリフィス52が形成されている。 The distance piece B2 sandwiched between the valve body B3 and the needle body B1 and forming the lower wall portion of the second valve chamber 22 is formed with a hole penetrating in the axial direction of the injector I. The chamber 22 and the needle back pressure chamber 5 serve as a communication path 51 that always communicates. An orifice 52 is formed in the communication path 51 in the middle.
バルブボデーB3には、高圧燃料導入流路61から分岐して第2バルブ室22に通じる高圧分岐通路63が形成されている。高圧分岐通路63の先端は油圧式切替弁4のくびれ部位置で縦孔23の側壁面に開口しており、くびれ部外周の環状空間を介して、第2バルブ室22と連通している。油圧式切替弁4の弁体部4aが上方変位すると、弁体部4aの上側テーパ部が第2バルブ室22の段面を上側シートとして着座する。この時、第2バルブ室22と高圧分岐通路63との連通が遮断される。 The valve body B3 is formed with a high-pressure branch passage 63 that branches from the high-pressure fuel introduction passage 61 and communicates with the second valve chamber 22. The tip of the high-pressure branch passage 63 opens to the side wall surface of the vertical hole 23 at the position of the constriction portion of the hydraulic switching valve 4 and communicates with the second valve chamber 22 via an annular space on the outer periphery of the constriction portion. When the valve body portion 4a of the hydraulic switching valve 4 is displaced upward, the upper tapered portion of the valve body portion 4a is seated with the step surface of the second valve chamber 22 as the upper seat. At this time, the communication between the second valve chamber 22 and the high-pressure branch passage 63 is blocked.
一方、ディスタンスピースB2には、低圧燃料排出流路62から分岐して第2バルブ室22に通じる低圧分岐通路65が形成されている。低圧分岐通路65は、油圧式切替弁4の弁体部4aの下端面と対向する位置で第2バルブ室22の下壁面に開口しており、この開口端はオリフィスを有する第2排出孔64となっている。弁体部4aが下方変位して第2バルブ室22下壁面の下側シートに着座することにより、第2排出孔64を閉鎖すると、第2バルブ室22と低圧分岐通路65との連通が遮断される。 On the other hand, the distance piece B2 is formed with a low-pressure branch passage 65 that branches from the low-pressure fuel discharge passage 62 and communicates with the second valve chamber 22. The low-pressure branch passage 65 opens in the lower wall surface of the second valve chamber 22 at a position facing the lower end surface of the valve body 4a of the hydraulic switching valve 4, and the opening end has a second discharge hole 64 having an orifice. It has become. When the valve body part 4a is displaced downward and is seated on the lower seat of the lower wall surface of the second valve chamber 22 to close the second discharge hole 64, the communication between the second valve chamber 22 and the low-pressure branch passage 65 is cut off. Is done.
油圧式切替弁4は、その本体部4bよりも上方の縦孔23内に形成される圧力制御室21の圧力の増減により変位する。また、本体部4b内には、上端側が圧力制御室21に開口し下端側がくびれ部下端位置まで達する縦孔41と、該縦孔41をくびれ部外周の環状空間と常時、連通させる横孔42が形成される。この縦孔41と横孔42とにより、圧力制御室21に、高圧燃料導入流路61から高圧分岐通路63を介して高圧燃料が供給され、油圧式切替弁4の背圧を発生するようになっている。また、油圧式切替弁4は、圧力制御室21に収容されるコイルスプリング24のスプリング力により常時、下方に付勢されている。 The hydraulic switching valve 4 is displaced by increasing or decreasing the pressure in the pressure control chamber 21 formed in the vertical hole 23 above the main body portion 4b. Further, in the main body portion 4b, a vertical hole 41 whose upper end opens into the pressure control chamber 21 and whose lower end reaches the lower end position of the constricted portion, and a horizontal hole 42 that constantly communicates the vertical hole 41 with the annular space on the outer periphery of the constricted portion. Is formed. By means of the vertical holes 41 and the horizontal holes 42, high pressure fuel is supplied to the pressure control chamber 21 from the high pressure fuel introduction passage 61 via the high pressure branch passage 63, and the back pressure of the hydraulic switching valve 4 is generated. It has become. The hydraulic switching valve 4 is always urged downward by the spring force of the coil spring 24 accommodated in the pressure control chamber 21.
圧力制御室21は、連通路66を介して弁室である第1バルブ室34に通じている。連通路66は、縦孔23の頂部からバルブボデーB3の上端面に達して第1バルブ室34の下壁面に開口する小孔により構成され、その開口端は、オリフィスを有する第1排出孔67となっている。第1バルブ室34は、バルブボデーB3と、その上方のバルブボデーB6の下端面に形成した凹所により形成される。第1バルブ室34は、バルブボデーB3側の環状凹所に接続する低圧流路81を介して、低圧燃料排出流路62に常時、連通している。 The pressure control chamber 21 communicates with the first valve chamber 34 that is a valve chamber via a communication path 66. The communication path 66 is configured by a small hole that opens from the top of the vertical hole 23 to the upper end surface of the valve body B3 and opens to the lower wall surface of the first valve chamber 34, and the opening end thereof is a first discharge hole 67 having an orifice. It has become. The first valve chamber 34 is formed by a recess formed in the lower end surface of the valve body B3 and the valve body B6 above it. The first valve chamber 34 is always in communication with the low-pressure fuel discharge passage 62 via the low-pressure passage 81 connected to the annular recess on the valve body B3 side.
電磁制御弁3は、ソレノイド31に対向位置するアーマチャ32と、アーマチャ32と一体に変位するバルブニードル36および弁体35を有して、圧力制御室21と第1バルブ室34との連通と遮断を切替える。ソレノイド31は二重筒状のステータの環状空間部にコイルを巻回したもので、コイルに接続されるリード線37(図2参照)を介して通電される。 The electromagnetic control valve 3 includes an armature 32 that is positioned opposite the solenoid 31, a valve needle 36 that is displaced integrally with the armature 32, and a valve body 35, and communication between the pressure control chamber 21 and the first valve chamber 34 is interrupted. Is switched. The solenoid 31 has a coil wound around an annular space of a double cylindrical stator, and is energized via a lead wire 37 (see FIG. 2) connected to the coil.
ソレノイド31の下端に面して設けたアーマチャ室33には、円盤状のアーマチャ32が収容されており、弁部隙間dを介してソレノイド31の磁極面と対向している。ソレノイド31の内周にはコイルスプリング38が収容されて、アーマチャ32と弾接し、アーマチャ32をソレノイド31から離間する方向に付勢している。アーマチャ32の外周部には、複数の貫通孔321が設けられ、アーマチャ32の移動に伴いその上下空間を燃料が流通可能となっている。 A disk-shaped armature 32 is accommodated in an armature chamber 33 provided facing the lower end of the solenoid 31 and is opposed to the magnetic pole surface of the solenoid 31 with a valve gap d. A coil spring 38 is accommodated in the inner periphery of the solenoid 31 and elastically contacts the armature 32 to urge the armature 32 in a direction away from the solenoid 31. A plurality of through holes 321 are provided in the outer peripheral portion of the armature 32 so that fuel can flow through the upper and lower spaces as the armature 32 moves.
バルブボデーB6には、第1バルブ室34の上壁部を貫通して、その直上に位置するアーマチャ室33底面に至る縦孔39が形成されており、この縦孔39にバルブニードル36が摺動自在に保持されている。バルブニードル36は、上端部がアーマチャ室33内に突出して、アーマチャ32の下端面に固定されており、バルブニードル36の下端部は第1バルブ室34内に突出している。 A vertical hole 39 is formed in the valve body B6 so as to penetrate the upper wall portion of the first valve chamber 34 and reach the bottom surface of the armature chamber 33 positioned immediately above the first valve chamber 34. The valve needle 36 is slid into the vertical hole 39. It is held freely. An upper end portion of the valve needle 36 protrudes into the armature chamber 33 and is fixed to a lower end surface of the armature 32, and a lower end portion of the valve needle 36 protrudes into the first valve chamber 34.
第1バルブ室34内に突出するバルブニードル36下端部は、下端面に設けた凹陥部に半球状の弁体35を保持して一体に変位するようになっている。弁体35は、平坦な下端面が第1バルブ室34の下壁面と第1排出孔67の開口位置で対向している。弁体35が下方変位して第1排出孔67外周縁部のシート面に着座すると、第1排出孔67が閉鎖されて、第1バルブ室34と圧力制御室21との連通が遮断される。弁体35が上方変位して第1排出孔67外周縁部のシート面から離座し、第1排出孔67を開放すると、圧力制御室21の燃料が第1バルブ室34から低圧流路81を経て、低圧燃料排出流路62へ流出する。 The lower end portion of the valve needle 36 protruding into the first valve chamber 34 is configured to be displaced integrally while holding a hemispherical valve body 35 in a recessed portion provided on the lower end surface. The flat bottom end surface of the valve body 35 faces the lower wall surface of the first valve chamber 34 at the opening position of the first discharge hole 67. When the valve body 35 is displaced downward and is seated on the seat surface of the outer peripheral edge of the first discharge hole 67, the first discharge hole 67 is closed and the communication between the first valve chamber 34 and the pressure control chamber 21 is blocked. . When the valve body 35 is displaced upward and is separated from the seat surface of the outer peripheral edge portion of the first discharge hole 67 and the first discharge hole 67 is opened, the fuel in the pressure control chamber 21 flows from the first valve chamber 34 to the low pressure flow path 81. And then flows out to the low-pressure fuel discharge passage 62.
バルブボデーB6には、バルブニードル36が摺動する縦孔39の側方に、第1バルブ室34の頂面とアーマチャ室33の底面とを連通する複数の低圧流路82が形成されている。これにより、電磁制御弁3の開弁時に流出する燃料が、第1バルブ室34から低圧流路82を介してアーマチャ室33へも流出可能となる。 The valve body B6 is formed with a plurality of low-pressure channels 82 communicating with the top surface of the first valve chamber 34 and the bottom surface of the armature chamber 33 on the side of the vertical hole 39 through which the valve needle 36 slides. . As a result, the fuel that flows out when the electromagnetic control valve 3 is opened can flow out from the first valve chamber 34 to the armature chamber 33 via the low-pressure channel 82.
また、アーマチャ室33およびソレノイド31の側方には、弾性体収容室7となる空間部71が形成される。空間部71は、ホルダB4の内周面とソレノイド31の下半部外周側面との隙間、およびバルブボデーB6の上端部外周に形成した環状溝との隙間からなる。空間部71は、バルブボデーB6の上端部を切り欠いて形成した低圧流路83によりアーマチャ室33に連通する一方、ソレノイド31の底部側面と対向するホルダB4内周面に開口する低圧流路84により、低圧燃料排出流路62に連通している。これにより、アーマチャ室33は、低圧流路83、空間部71、低圧流路84を介して、低圧燃料排出流路62に常時、連通する。 A space 71 serving as the elastic body accommodating chamber 7 is formed on the side of the armature chamber 33 and the solenoid 31. The space portion 71 includes a clearance between the inner peripheral surface of the holder B4 and the outer peripheral side surface of the lower half portion of the solenoid 31, and a clearance between the annular groove formed on the outer periphery of the upper end portion of the valve body B6. The space 71 communicates with the armature chamber 33 by a low-pressure channel 83 formed by cutting out the upper end of the valve body B6, while the low-pressure channel 84 opens to the inner peripheral surface of the holder B4 facing the bottom side surface of the solenoid 31. Thus, the low pressure fuel discharge passage 62 is communicated. As a result, the armature chamber 33 always communicates with the low-pressure fuel discharge channel 62 via the low-pressure channel 83, the space 71, and the low-pressure channel 84.
低圧流路84より上方の空間部71は、圧縮弾性体Gとして、燃料成分中から分離されるガス体を収容する弾性体収容室7となっている。弾性体収容室7は、ホルダB4の内周面とソレノイド31の外周側面との隙間に形成される上方が閉塞された空間で、上方閉塞部位から低圧流路84形成部位までの容積を、弾性体収容室7の容積と定義する。ガス体は、主に燃料中に混入されている空気成分(窒素、酸素)が脱気したもので、その他、水分、燃料成分といった成分がガス化したものを含む多成分気体塊である。これら成分は、電磁制御弁3の開弁に伴う急激な圧力低下によりガス化して燃料から脱離し、流路を上方へ移動して弾性体収容室7に溜まる。弾性体収容室7へは脱気したガスが常時補充されて圧縮弾性体Gを所定容積に維持し、弾性体収容室7の容積を超える気体成分は、低圧流路84から低圧燃料排出流路62へ排出される。 The space 71 above the low-pressure channel 84 serves as an elastic body accommodating chamber 7 for accommodating a gas body separated from the fuel component as the compression elastic body G. The elastic body accommodating chamber 7 is a space where the upper part formed in the gap between the inner peripheral surface of the holder B4 and the outer peripheral side surface of the solenoid 31 is closed, and the volume from the upper closed part to the low pressure channel 84 forming part is elastic. It is defined as the volume of the body accommodating chamber 7. The gas body is a multi-component gas lump that is mainly degassed of air components (nitrogen, oxygen) mixed in the fuel, and also includes gasified components such as moisture and fuel components. These components are gasified and desorbed from the fuel due to a rapid pressure drop accompanying opening of the electromagnetic control valve 3, move upward in the flow path, and accumulate in the elastic body accommodating chamber 7. The elastic body accommodating chamber 7 is always replenished with degassed gas to maintain the compression elastic body G at a predetermined volume, and gas components exceeding the volume of the elastic body accommodating chamber 7 are discharged from the low pressure channel 84 to the low pressure fuel discharge channel. It is discharged to 62.
弾性体収容室7の圧縮弾性体Gは、低圧流路84より下方の空間部71を流通する燃料と接触し、その圧力に応じて体積を変化させるダンパー効果を有する。この効果を得るためには、弾性体収容室7の容積(圧縮弾性体Gの体積)が大きい方がよく、ソレノイド31外周に設けることで、所望の容積を容易に確保できる。また、ガスが発生するアーマチャ室33の上方位置に近接して設けるので、脱気したガスが溜まりやすい。 The compression elastic body G in the elastic body accommodating chamber 7 is in contact with the fuel flowing through the space 71 below the low pressure channel 84 and has a damper effect that changes the volume according to the pressure. In order to obtain this effect, it is better that the volume of the elastic body accommodating chamber 7 (the volume of the compression elastic body G) is large. Further, since it is provided close to the position above the armature chamber 33 where the gas is generated, the degassed gas tends to accumulate.
また、ソレノイド31の外周に弾性体収容室7を配置することで、ソレノイド31の熱を隣接する弾性体収容室7の圧縮弾性体Gに伝達し、圧縮弾性体Gを高温に保持する効果が得られる。これにより、圧縮弾性体Gの温度低下で体積が減少することが抑制され、安定したガス状態を維持できる。 In addition, by disposing the elastic body accommodating chamber 7 on the outer periphery of the solenoid 31, the heat of the solenoid 31 is transmitted to the compression elastic body G of the adjacent elastic body accommodating chamber 7, and the compression elastic body G is maintained at a high temperature. can get. Thereby, it is suppressed that a volume reduces by the temperature fall of the compression elastic body G, and the stable gas state can be maintained.
この時、弾性体収容室7が、ソレノイド31の外周側面を完全に包囲しないようにして、ソレノイド31から基体Bへの放熱性を確保することが望ましい。本実施形態では、ホルダB4の内周面を、弾性体収容室7の上方において内方に突出させ、ソレノイド31の上端部外周側面に密接してこれを熱伝達可能に保持する支持部B7とする。支持部B7は、ソレノイド31の熱をホルダB4を介して基体B側へ伝達する放熱体として機能し、ソレノイド31が過度に温度上昇するのを抑制する。 At this time, it is desirable to ensure heat dissipation from the solenoid 31 to the base B so that the elastic body accommodating chamber 7 does not completely surround the outer peripheral side surface of the solenoid 31. In this embodiment, the inner peripheral surface of the holder B4 protrudes inward above the elastic body accommodating chamber 7, and is in close contact with the outer peripheral surface of the upper end portion of the solenoid 31 so as to be able to transfer heat and To do. The support part B7 functions as a heat radiator that transmits the heat of the solenoid 31 to the base B side via the holder B4, and suppresses the solenoid 31 from excessively rising in temperature.
このように、ソレノイド31の外周側において、弾性体収容室7と支持部B7とを軸方向にバランスよく配置させることで、ソレノイド31から基体Bへの放熱と、圧縮弾性体Gへの熱伝達の効果を両立させることができる。例えば、ソレノイド31の発熱量は、駆動電流、導線抵抗、駆動時間で決まってくる。その発熱量を表面から放熱するため、その体格に依存する要素が強い。ただし、小型化したソレノイド31においては、表面積が相対的に小さくなるため、好ましくは弾性体の熱伝達よりも、放熱性を優先することが多い。この場合は、弾性体収容室7との接触面積よりも、支持部B7との接触面積が大きい方がより好ましい。 Thus, on the outer peripheral side of the solenoid 31, the elastic body accommodating chamber 7 and the support portion B7 are arranged in a balanced manner in the axial direction, so that heat is dissipated from the solenoid 31 to the base B and heat is transferred to the compression elastic body G. Both effects can be achieved. For example, the amount of heat generated by the solenoid 31 is determined by the drive current, the conductor resistance, and the drive time. In order to dissipate the calorific value from the surface, there are strong factors that depend on its physique. However, in the miniaturized solenoid 31, since the surface area becomes relatively small, the heat dissipation is often given priority over the heat transfer of the elastic body. In this case, it is more preferable that the contact area with the support portion B7 is larger than the contact area with the elastic body accommodating chamber 7.
図3(a)は、図 1、2 に示した第1実施形態のインジェクタIの概略構成を示すブロック図で、圧力制御室21と電磁制御弁3が、オリフィスを有する第1排出孔67を介して連通している。電磁制御弁3は、第1バルブ室34が低圧流路81を介して、アーマチャ室33が低圧流路83を介して、それぞれ低圧燃料排出流路62に接続されており、第1バルブ室34とアーマチャ室33は、複数の低圧流路82により連通している(図1参照)。 FIG. 3A is a block diagram showing a schematic configuration of the injector I of the first embodiment shown in FIGS. 1 and 2. The pressure control chamber 21 and the electromagnetic control valve 3 have a first discharge hole 67 having an orifice. Communicated through. In the electromagnetic control valve 3, the first valve chamber 34 is connected to the low-pressure fuel discharge channel 62 through the low-pressure channel 81, and the armature chamber 33 is connected to the low-pressure fuel discharge channel 62 through the low-pressure channel 83. And the armature chamber 33 communicate with each other through a plurality of low-pressure channels 82 (see FIG. 1).
第1実施形態の弾性体収容室7は、第1バルブ室34の直上に位置するアーマチャ室33下流の、低圧流路83と低圧流路84の間に配置される。弾性体収容室7の圧縮弾性体Gは、低圧流路83から低圧流路84へ向かう燃料Fと接触して圧力変動を吸収する。この構成では、圧力制御室21と第1バルブ室34が連通すると、排出される燃料からの脱気により発生したガス体(圧縮弾性体G)が上方へ移動し、アーマチャ室33の上方に位置する弾性体収容室7に収容される一方、低圧燃料排出流路62への排出経路が2系統あるので、通路面積を確保して燃料を速やかに排出することができ、制御性が向上する。 The elastic body accommodating chamber 7 of the first embodiment is disposed between the low pressure flow path 83 and the low pressure flow path 84 downstream of the armature chamber 33 located immediately above the first valve chamber 34. The compression elastic body G of the elastic body accommodating chamber 7 contacts the fuel F traveling from the low pressure channel 83 to the low pressure channel 84 and absorbs pressure fluctuation. In this configuration, when the pressure control chamber 21 and the first valve chamber 34 communicate with each other, the gas body (compression elastic body G) generated by deaeration from the discharged fuel moves upward and is positioned above the armature chamber 33. Since there are two discharge paths to the low-pressure fuel discharge passage 62 while being accommodated in the elastic body accommodating chamber 7, the passage area can be secured and fuel can be discharged quickly, and controllability is improved.
図3(b)に第2実施形態として示すように、低圧燃料排出流路62への排出経路を1系統とすることもできる。この場合は、第1バルブ室34に続く低圧流路81を省略し、アーマチャ室33側の低圧流路83、84の上方に弾性体収容室7を配置するのがよい。この構成例を図4に示す。図4は、インジェクタIの主要部構成を簡略化して示すもので、全体構成および各部の詳細構造は上記第1実施形態と同様であり、説明を省略する。 As shown in FIG. 3B as the second embodiment, the discharge path to the low-pressure fuel discharge flow path 62 may be a single system. In this case, it is preferable to omit the low-pressure channel 81 following the first valve chamber 34 and to dispose the elastic body accommodating chamber 7 above the low-pressure channels 83 and 84 on the armature chamber 33 side. An example of this configuration is shown in FIG. FIG. 4 shows a simplified configuration of the main part of the injector I. The overall configuration and the detailed structure of each part are the same as those in the first embodiment, and a description thereof will be omitted.
図4において、背圧制御部2を構成する電磁制御弁3は、第1バルブ室34が低圧燃料排出流路62へ直接接続されておらず、複数の低圧流路82により連通するアーマチャ室33を介してのみ、低圧燃料排出流路62と連通している。アーマチャ室33の上方には、ソレノイド31の外周に空間部71が形成されて低圧流路84により低圧燃料排出流路62に接続している。空間部71は、低圧流路84の上側を圧縮弾性体が収容される弾性体収容室7としており、その下側の空間を低圧流路83としている。上記第1実施形態では、低圧流路83、84間に空間部71が配設される構成となっているが、このように低圧流路83と一体になっていてもよい。 In FIG. 4, in the electromagnetic control valve 3 constituting the back pressure control unit 2, the first valve chamber 34 is not directly connected to the low pressure fuel discharge channel 62, and the armature chamber 33 communicates with the plurality of low pressure channels 82. Only through the low pressure fuel discharge passage 62. Above the armature chamber 33, a space portion 71 is formed on the outer periphery of the solenoid 31 and is connected to the low-pressure fuel discharge passage 62 by a low-pressure passage 84. In the space portion 71, the upper side of the low-pressure channel 84 is an elastic body accommodating chamber 7 in which a compression elastic body is accommodated, and the lower space is a low-pressure channel 83. In the first embodiment, the space portion 71 is disposed between the low pressure flow paths 83 and 84, but may be integrated with the low pressure flow path 83 as described above.
次に、本発明のインジェクタIの作動と、弾性体収容室7における圧縮弾性体のダンパー効果について、図1、図4〜図6により詳述する。 Next, the operation of the injector I of the present invention and the damper effect of the compression elastic body in the elastic body accommodating chamber 7 will be described in detail with reference to FIGS. 1 and 4 to 6.
図4において、ソレノイド31に通電すると、ソレノイド31がアーマチャ32を吸引して、バルブニードル36が上方変位する。すると弁体35が、圧力制御室21から第1バルブ室34への第1排出孔67の燃料圧力を受けて開弁し、圧力制御室21の高圧燃料が、第1排出孔67を経て第1バルブ室34に流出する。流出燃料は、第1バルブ室34の頂面に開口する低圧流路82からアーマチャ室33、弾性体収容室7下方の空間部71(低圧流路83)、低圧流路84を経て、低圧燃料排出流路62に排出される。 In FIG. 4, when the solenoid 31 is energized, the solenoid 31 attracts the armature 32 and the valve needle 36 is displaced upward. Then, the valve body 35 is opened by receiving the fuel pressure in the first discharge hole 67 from the pressure control chamber 21 to the first valve chamber 34, and the high-pressure fuel in the pressure control chamber 21 passes through the first discharge hole 67 to the first level. 1 valve chamber 34 flows out. The spilled fuel passes through the armature chamber 33, the space 71 (low pressure channel 83) below the elastic body containing chamber 7, and the low pressure channel 84 from the low pressure channel 82 that opens to the top surface of the first valve chamber 34. It is discharged to the discharge channel 62.
ここで、圧力制御室21に供給されるコモンレールの燃料圧力は、例えば200MPaの高圧となっている。この高圧燃料が急激に第1バルブ室34の低圧燃料(例えば0.1MPa)中に噴出すると、圧力の急激な低下により、減圧沸騰やキャビテーションなどが発生し、燃料中から脱気したガスG0(図中●)が発生する。ガスG0は燃料Fとともに低圧燃料排出流路62へ向かうが、燃料Fに比べて比重が小さいために、鉛直方向上方へ移動しやすく、アーマチャ室33から低圧流路83に至ると、より上方へ移動して行き止まりとなる弾性体収容室7に溜まる。このようにして弾性体収容室7には、圧縮弾性体Gが常に充填され、所定容量を超える場合には、底部の低圧流路84から余剰のガスG1(図中○)が、低圧燃料排出流路62に排出される。 Here, the fuel pressure of the common rail supplied to the pressure control chamber 21 is a high pressure of 200 MPa, for example. When this high-pressure fuel is suddenly ejected into the low-pressure fuel (for example, 0.1 MPa) in the first valve chamber 34, the pressure is rapidly lowered, and thus, reduced-pressure boiling, cavitation, and the like occur, and the gas G0 (degassed from the fuel) ● in the figure occurs. The gas G0 goes to the low-pressure fuel discharge passage 62 together with the fuel F. However, since the specific gravity is smaller than that of the fuel F, the gas G0 tends to move upward in the vertical direction, and further upwards when reaching the low-pressure passage 83 from the armature chamber 33. It collects in the elastic body accommodating chamber 7 which moves and becomes a dead end. In this way, the elastic body accommodating chamber 7 is always filled with the compression elastic body G, and when the predetermined capacity is exceeded, excess gas G1 (◯ in the figure) is discharged from the low pressure flow path 84 at the bottom. It is discharged to the flow path 62.
この時、圧力制御室21の高圧燃料が排出されることにより、油圧式切替弁4の背圧となる圧力制御室21の圧力が低下する。すると、図1における第2バルブ室22において弁体部4aが下側シートから離座するとともに上方変位して上側シートに着座する。この状態では、弁体部4aが第2バルブ室22と高圧燃料導入流路61との間を遮断して、第2バルブ室22への高圧燃料の供給が禁止されるとともに、第2排出孔64が開放されて、ノズルニードル背圧室5の燃料が、オリフィス52、連通路51、第2バルブ室22、低圧分岐通路65を経て、低圧燃料排出流路62へ流出する。これによりノズルニードル背圧室5の圧力が低下し、開弁圧力以下になるとノズルニードル11がリフトして噴孔12から燃料噴射が開始される。 At this time, the high-pressure fuel in the pressure control chamber 21 is discharged, so that the pressure in the pressure control chamber 21 that is the back pressure of the hydraulic switching valve 4 decreases. Then, in the second valve chamber 22 in FIG. 1, the valve body portion 4 a is separated from the lower seat and displaced upward to be seated on the upper seat. In this state, the valve body portion 4a blocks between the second valve chamber 22 and the high-pressure fuel introduction passage 61, prohibiting the supply of high-pressure fuel to the second valve chamber 22, and the second discharge hole 64 is opened, and the fuel in the nozzle needle back pressure chamber 5 flows out to the low pressure fuel discharge passage 62 through the orifice 52, the communication passage 51, the second valve chamber 22, and the low pressure branch passage 65. As a result, the pressure in the nozzle needle back pressure chamber 5 is lowered, and when the pressure becomes equal to or lower than the valve opening pressure, the nozzle needle 11 is lifted and fuel injection is started from the nozzle hole 12.
一方、図5に示すように、ソレノイド31への通電を停止して電磁制御弁3を閉弁すると、アーマチャ32およびバルブニードル36が下方変位し、弁体35が第1排出孔67を閉鎖する(図5左半図)。この時、圧力制御室21と低圧燃料排出流路62の間が遮断されるために、圧力制御室21の燃料圧力が上昇して、図1における油圧式切替弁4が上側シートから離座するとともに下側シートに着座する。この状態では、第2バルブ室22と低圧燃料排出流路62とが遮断されるとともに、高圧燃料導入流路61、高圧分岐通路63、第2バルブ室22、連通路51を経てニードル背圧室5に高圧燃料が供給される。ニードル背圧室5の圧力が上昇し、閉弁圧力以上になると、ノズルニードル11が閉弁して燃料噴射を終了する。 On the other hand, as shown in FIG. 5, when energization to the solenoid 31 is stopped and the electromagnetic control valve 3 is closed, the armature 32 and the valve needle 36 are displaced downward, and the valve body 35 closes the first discharge hole 67. (Figure 5 left half). At this time, since the pressure control chamber 21 and the low-pressure fuel discharge passage 62 are blocked, the fuel pressure in the pressure control chamber 21 rises and the hydraulic switching valve 4 in FIG. 1 is separated from the upper seat. And sit on the lower seat. In this state, the second valve chamber 22 and the low-pressure fuel discharge passage 62 are shut off, and the needle back pressure chamber passes through the high-pressure fuel introduction passage 61, the high-pressure branch passage 63, the second valve chamber 22, and the communication passage 51. 5 is supplied with high-pressure fuel. When the pressure in the needle back pressure chamber 5 increases and becomes equal to or higher than the valve closing pressure, the nozzle needle 11 is closed and the fuel injection is terminated.
上記構成のインジェクタIは、ニードル背圧室5と低圧燃料排出流路62の連通と遮断の切替えを、油圧駆動の油圧式切替弁4にて制御するので、必要な駆動力を電磁制御弁3のソレノイド31の仕様に依存することなく設定することができ、ソレノイド31の体格を小さくすることができる。ただし、この場合、アーマチャ32を弁体35の閉弁方向に付勢するコイルスプリング38のスプリング力も小さく設定され、電磁制御弁3の作動が外力の影響を受けて不安定となりやすい。 The injector I configured as described above controls the communication between the needle back pressure chamber 5 and the low pressure fuel discharge passage 62 and the switching between them by the hydraulic switching valve 4 that is hydraulically driven. The solenoid 31 can be set without depending on the specifications of the solenoid 31, and the size of the solenoid 31 can be reduced. However, in this case, the spring force of the coil spring 38 that biases the armature 32 in the valve closing direction of the valve element 35 is also set small, and the operation of the electromagnetic control valve 3 is likely to become unstable due to the influence of external force.
このため、弾性体収容室7を有しない従来構成では、図11に点線で示すように、ECUからの駆動パルスに対して直線性が得られない。これは、図12に示すように、第1バルブ室34およびアーマチャ室33の圧力変動が大きく影響していると考えられる。例えば、電磁制御弁3の開弁時、第1バルブ室34に高圧燃料が急激に噴出すると、第1バルブ室34およびこれに連通するアーマチャ室33の圧力が瞬間的に上昇し(図12の状態A)、弁体35を持ち上げる力が大きくなる。このため状態Aにある間は、所望のタイミングで電磁制御弁3を閉弁できない。その後、低圧流路83、84を通じて燃料が排出され、各室内の圧力が降下すると(図12の状態B)、所望のタイミングで電磁制御弁3を閉弁できるようになる。 For this reason, in the conventional structure which does not have the elastic body accommodating chamber 7, as shown by a dotted line in FIG. 11, linearity cannot be obtained with respect to the drive pulse from the ECU. As shown in FIG. 12, it is considered that the pressure fluctuations in the first valve chamber 34 and the armature chamber 33 are greatly affected. For example, when the high-pressure fuel is suddenly ejected into the first valve chamber 34 when the electromagnetic control valve 3 is opened, the pressure in the first valve chamber 34 and the armature chamber 33 communicating with the first valve chamber 34 instantaneously increases (see FIG. 12). State A), the force to lift the valve body 35 is increased. For this reason, while in the state A, the electromagnetic control valve 3 cannot be closed at a desired timing. After that, when the fuel is discharged through the low-pressure channels 83 and 84 and the pressure in each chamber drops (state B in FIG. 12), the electromagnetic control valve 3 can be closed at a desired timing.
この状態A、Bによって駆動パルス幅に対する制御弁開弁時間(噴射量)の直線性が悪くなり、噴射量制御性が悪化する。すなわち、図11のように駆動パルス幅が大きい(噴射量が多い)場合には、直線性が得られるが、駆動パルス幅が小さい(噴射量が少ない)と、電磁制御弁3の降下が遅れ、噴射量が目標値より増加してしまう。なお、図12の状態Aにおいて、圧力上昇のピークが2つあるのは、電磁制御弁3の開弁の後、続いて油圧式切替弁4が第2排出孔64を開放し、ノズルニードル背圧室5の燃料が第2バルブ室22を経て流出し、低圧燃料排出流路62の圧力が上昇することによる。この圧力上昇が低圧流路84を介して連通するアーマチャ室33および第1バルブ室34に伝播するために、アーマチャ32に作用する油圧力が変化し、弁体35の閉弁タイミングにバラツキが生じる。 With these states A and B, the linearity of the control valve opening time (injection amount) with respect to the drive pulse width is deteriorated, and the injection amount controllability is deteriorated. That is, when the drive pulse width is large (the injection amount is large) as shown in FIG. 11, linearity is obtained, but when the drive pulse width is small (the injection amount is small), the descending of the electromagnetic control valve 3 is delayed. The injection amount increases from the target value. In the state A of FIG. 12, there are two pressure rise peaks because after the electromagnetic control valve 3 is opened, the hydraulic switching valve 4 opens the second discharge hole 64 and the nozzle needle back. This is because the fuel in the pressure chamber 5 flows out through the second valve chamber 22 and the pressure in the low-pressure fuel discharge passage 62 increases. Since this pressure increase is propagated to the armature chamber 33 and the first valve chamber 34 that communicate with each other via the low-pressure channel 84, the oil pressure acting on the armature 32 changes, and the valve closing timing of the valve body 35 varies. .
これに対し、図5右半部に示すように、弾性体収容室7を設けた本発明構成では、状態Aのような瞬間的な圧力上昇を、燃料Fに接触する圧縮弾性体Gのダンパー効果によって抑制する。すなわち電磁制御弁3の開弁時、第1バルブ室34に高圧燃料が流出すると、燃料Fと圧縮弾性体Gの境界面が上昇し、圧縮弾性体Gが圧縮される。しかし、弾性係数は、水(液体)が2.1GPaレベル、空気(気体)が142kPaレベルと、気体の弾性係数が小さいために、圧力上昇は僅かで収まる(図12の状態C)。つまり、開弁により液体量が増加した分を、柔らかい気体の体積減少で補い、液体の圧力上昇を抑えることができる。よって、図11のように、全領域で駆動パルス幅に対する直線性が得られ、噴射量制御性を改善することができる。 On the other hand, as shown in the right half of FIG. 5, in the configuration of the present invention in which the elastic body accommodating chamber 7 is provided, the instantaneous pressure rise as in the state A is caused by the damper of the compression elastic body G that contacts the fuel F. Suppress by effect. That is, when the high-pressure fuel flows into the first valve chamber 34 when the electromagnetic control valve 3 is opened, the boundary surface between the fuel F and the compression elastic body G rises and the compression elastic body G is compressed. However, since the elastic modulus of water (liquid) is 2.1 GPa level and air (gas) is 142 kPa level, the elastic modulus of gas is small, so the pressure rise is small (state C in FIG. 12). That is, the increase in the liquid amount due to the valve opening can be compensated by the volume reduction of the soft gas, and the increase in the liquid pressure can be suppressed. Therefore, as shown in FIG. 11, linearity with respect to the drive pulse width is obtained in the entire region, and the injection amount controllability can be improved.
図6は、ソレノイド31から圧縮弾性体Gへの伝熱(A)と、ソレノイド31から基体Bを構成するホルダB4への放熱(B)の様子を示す図である。ガス体は一般に温度が低下すると、液化し始める。弾性体収容室7に圧縮弾性体Gを収容した上記構成では、圧縮弾性体Gの体積が減少すると、上述したダンパー効果が低下してしまうおそれがある。そこで、上記第1、2実施形態の構成では、弾性体収容室7をソレノイド31の周方向の側面に隣接して配置している。その結果、ソレノイド31の発熱を圧縮弾性体Gとなるガス体に伝熱(A)させ、ガス体を冷やさずに高い温度に保つことができるので、液化されることを防ぎ、ガス状態を安定化できる。 FIG. 6 is a diagram showing the state of heat transfer (A) from the solenoid 31 to the compression elastic body G and heat dissipation (B) from the solenoid 31 to the holder B4 constituting the base B. The gas body generally begins to liquefy when the temperature drops. In the above configuration in which the compression elastic body G is accommodated in the elastic body accommodating chamber 7, when the volume of the compression elastic body G is reduced, the above-described damper effect may be reduced. Therefore, in the configurations of the first and second embodiments, the elastic body accommodating chamber 7 is disposed adjacent to the circumferential side surface of the solenoid 31. As a result, the heat generated by the solenoid 31 is transferred (A) to the gas body serving as the compression elastic body G, and the gas body can be kept at a high temperature without being cooled, thereby preventing liquefaction and stabilizing the gas state. Can be
ただし、ソレノイド31の周囲を完全に覆うと、放熱不足が生じてソレノイド31が損傷するおそれがある。従って、上記第1、2実施形態のように、ホルダB4から延出する支持部B7をソレノイド31の外周側面に接して配置し、支持部B7を介して放熱(B)させる必要がある。このように、軸方向に適切な割合で弾性体収容室7と支持部B7がソレノイド31外周を囲い、伝熱(A)と放熱(B)とをバランスよく行うことで、ソレノイド31の損傷を防止しながら、ダンパー効果を安定して得ることができる。 However, if the periphery of the solenoid 31 is completely covered, there is a risk that the solenoid 31 will be damaged due to insufficient heat dissipation. Therefore, as in the first and second embodiments, it is necessary to dispose the support portion B7 extending from the holder B4 in contact with the outer peripheral side surface of the solenoid 31, and to dissipate heat (B) through the support portion B7. Thus, the elastic body accommodating chamber 7 and the support portion B7 surround the outer periphery of the solenoid 31 at an appropriate ratio in the axial direction, and the heat transfer (A) and the heat dissipation (B) are performed in a well-balanced manner, thereby damaging the solenoid 31. While preventing, a damper effect can be obtained stably.
図7に本発明の参考例である第3形態として示すように、伝熱(A)と放熱(B)とを行う部位を軸方向に配置する代わりに、周方向に交互に配置することもできる。図7は、インジェクタIの主要部である背圧制御部2の構成を簡略化して示すもので、基本的構造は上記第2実施形態と同様であり、説明を省略する。 As shown in FIG. 7 as a third embodiment , which is a reference example of the present invention, the portions for performing heat transfer (A) and heat dissipation (B) may be alternately arranged in the circumferential direction instead of being arranged in the axial direction. it can. FIG. 7 shows a simplified configuration of the back pressure control unit 2 that is a main part of the injector I. The basic structure is the same as that of the second embodiment, and the description thereof is omitted.
図7において、アーマチャ室33の上方には、ソレノイド31の外周に空間部71が形成されて低圧流路84により低圧燃料排出流路62に接続している。空間部71は、低圧流路84の上側の部分が周方向に6分割されており、圧縮弾性体が収容される弾性体収容室7と、ソレノイド31の発熱をホルダB4側へ伝熱させる機能とソレノイド31の支持機能を備えた放熱体B8とが、交互に配置される。 In FIG. 7, a space 71 is formed on the outer periphery of the solenoid 31 above the armature chamber 33 and is connected to the low-pressure fuel discharge passage 62 by a low-pressure passage 84. The space portion 71 has an upper portion of the low-pressure channel 84 divided into six in the circumferential direction, and a function of transferring heat from the elastic body accommodating chamber 7 in which the compression elastic body is accommodated and the solenoid 31 to the holder B4 side. And a radiator B8 having a function of supporting the solenoid 31 are alternately arranged.
支持部となる放熱体B8は、空間部71幅に相当する所定厚さの円弧状ブロック体で、高熱伝導性を有する金属等からなる。放熱体B8は、円弧状の外周面がホルダB4内周面に固定され、円弧状の内周面がソレノイド31の外周側面に密接してソレノイド31を支持しながら、その熱をホルダB4へ放熱させて熱による損傷を防止している。本実施形態では3つの放熱体B8を、ソレノイド31の外周に等間隔で配置し、それらの間に圧縮弾性体Gが収容される3つの弾性体収容室7を形成している。 The heat radiating body B8 serving as a support portion is an arc-shaped block body having a predetermined thickness corresponding to the width of the space portion 71, and is made of a metal having high thermal conductivity. The radiator B8 has an arc-shaped outer peripheral surface fixed to the inner peripheral surface of the holder B4, and the arc-shaped inner peripheral surface is in close contact with the outer peripheral side surface of the solenoid 31 to support the solenoid 31, while radiating the heat to the holder B4. To prevent damage from heat. In this embodiment, three heat dissipating bodies B8 are arranged at equal intervals on the outer periphery of the solenoid 31, and three elastic body accommodating chambers 7 in which the compression elastic bodies G are accommodated are formed therebetween.
ホルダB4の上端面には、空間部71の上端部外周に続く環状溝72が設けられ、該環状溝72を介して3つの弾性体収容室7が連通している。弾性体収容室7および放熱体B8の下側の空間は、アーマチャ室33に続く低圧流路83となっている。本実施形態の構成によっても、アーマチャ室33および第1バルブ室34で脱気したガス成分を弾性体収容室7に収容し、低圧流路83に接する圧縮弾性体Gの変形によって、アーマチャ室33および第1バルブ室34の圧力変動を抑制する同様のダンパー効果が得られる。また、放熱体B8がソレノイド31の外周に均等配設されるので、ソレノイド31からの放熱が効率よくなされる。 The upper end surface of the holder B4 is provided with an annular groove 72 that continues to the outer periphery of the upper end of the space 71, and the three elastic body accommodation chambers 7 communicate with each other through the annular groove 72. The space below the elastic body accommodating chamber 7 and the heat radiating body B8 is a low-pressure channel 83 that follows the armature chamber 33. Also in the configuration of this embodiment, the gas component deaerated in the armature chamber 33 and the first valve chamber 34 is accommodated in the elastic body accommodating chamber 7, and the armature chamber 33 is deformed by the deformation of the compression elastic body G in contact with the low pressure flow path 83. And the same damper effect which suppresses the pressure fluctuation of the 1st valve chamber 34 is acquired. In addition, since the heat radiating body B8 is evenly arranged on the outer periphery of the solenoid 31, heat dissipation from the solenoid 31 is efficiently performed.
また周方向に配置する場合、ソレノイド31とボデーB4の接触軸方向長さが長くできるため、ボデーB4の内径とソレノイド31の外径との隙間によるソレノイド31の傾斜(かたぎ)が低減でき、弁部隙間dをより安定して製作できる。 Further, when arranged in the circumferential direction, the length in the contact axis direction of the solenoid 31 and the body B4 can be increased, so that the inclination of the solenoid 31 due to the gap between the inner diameter of the body B4 and the outer diameter of the solenoid 31 can be reduced, and the valve The gap d can be manufactured more stably.
ダンパー効果を得るための弾性体収容室7の容積(圧縮弾性体Gの体積)は、高圧燃料の流出量や圧縮弾性体Gの弾性係数にも依存するが、通常、電磁制御弁3の最大流量以上、例えば、約10mm3 以上とするのがよく、できるだけ大きい方が望ましい。図13は、弾性体収容室7の容積と、圧力変動ピーク値の関係を示す図で(電磁制御弁3流量:10mm3 の場合)、弾性体収容室容積が大きくなるほど圧力変動が抑制され、ダンパー効果が大きくなっていることがわかる。好適には、電磁制御弁3の5倍程度ないしそれ以上で圧力変動ピーク値が大きく低下し、10倍を超えると圧力変動ピーク値は収束に向かい、15倍を超えるとほぼ一定値となる。従って好適には、電磁制御弁3の5倍から10倍程度(約50〜100mm3 程度)の範囲とすると、ソレノイド31周囲の流路構成等に影響を与えることなく、弾性体収容室7を設定でき、効率的にダンパー効果が得られる。 The volume of the elastic body accommodating chamber 7 for obtaining the damper effect (the volume of the compression elastic body G) depends on the amount of high-pressure fuel flowing out and the elastic coefficient of the compression elastic body G, but usually the maximum of the electromagnetic control valve 3 It should be higher than the flow rate, for example, about 10 mm 3 or higher, and is preferably as large as possible. FIG. 13 is a diagram showing the relationship between the volume of the elastic body accommodating chamber 7 and the pressure fluctuation peak value (in the case of the electromagnetic control valve 3 flow rate: 10 mm 3 ), and the pressure fluctuation is suppressed as the elastic body accommodating chamber volume increases. It can be seen that the damper effect is increased. Preferably, the pressure fluctuation peak value greatly decreases at about 5 times or more of the electromagnetic control valve 3, and when it exceeds 10 times, the pressure fluctuation peak value tends to converge, and when it exceeds 15 times, it becomes a substantially constant value. Therefore, preferably, when the range is about 5 to 10 times that of the electromagnetic control valve 3 (about 50 to 100 mm 3 ), the elastic body accommodating chamber 7 is not affected without affecting the flow path configuration around the solenoid 31. It can be set and a damper effect can be obtained efficiently.
弾性体収容室7の配置は、圧力変動を抑制するという観点からは、できるだけアーマチャ室33に近い方が好ましい。また、電磁制御弁3からの排出流路は2系統ある方が、排出流路断面積が大きくなるので早期に排出でき、圧力変動を抑えやすい。上記第1実施形態の構成は、これらを両立させる構成であるが、上記図3(a)に示したように、第1バルブ室34側の低圧流路81が弾性体収容室7に接続されない。そこで、図3(c)に第4実施形態として示すように、弾性体収容室7に第1バルブ室34およびアーマチャ室33の両方が接続されるように構成することもできる。この構成例を図8に示す。図8は、インジェクタIの主要部構成を示すもので、全体構成および各部の詳細構造は上記第1実施形態と同様であり、説明を省略する。 The arrangement of the elastic body accommodating chamber 7 is preferably as close to the armature chamber 33 as possible from the viewpoint of suppressing pressure fluctuation. In addition, if there are two discharge flow paths from the electromagnetic control valve 3, the discharge flow passage cross-sectional area becomes larger, so that discharge can be performed earlier and pressure fluctuation can be easily suppressed. Although the structure of the said 1st Embodiment is a structure which makes these compatible, the low pressure flow path 81 by the side of the 1st valve chamber 34 is not connected to the elastic body storage chamber 7, as shown to the said Fig.3 (a). . Therefore, as shown in FIG. 3C as the fourth embodiment, both the first valve chamber 34 and the armature chamber 33 can be connected to the elastic body accommodating chamber 7. An example of this configuration is shown in FIG. FIG. 8 shows the main part configuration of the injector I. The overall configuration and the detailed structure of each part are the same as those in the first embodiment, and the description thereof is omitted.
図8において、背圧制御部2を構成する電磁制御弁3は、第1バルブ室34が低圧流路81により低圧燃料排出流路62へ直接接続される一方、複数の低圧流路82によりアーマチャ室33と連通している。アーマチャ室33の上方には、ソレノイド31が配置されるが、その外周側面はホルダB4内周面に密接支持され、これらの間に空間部は形成されない。アーマチャ室33は側壁に開口する低圧流路83と、これに続く低圧流路84を介して低圧燃料排出流路62に接続される。 In FIG. 8, the electromagnetic control valve 3 constituting the back pressure control unit 2 has a first valve chamber 34 directly connected to the low pressure fuel discharge flow path 62 by a low pressure flow path 81, while an armature by a plurality of low pressure flow paths 82. It communicates with the chamber 33. The solenoid 31 is disposed above the armature chamber 33, but the outer peripheral side thereof is closely supported by the inner peripheral surface of the holder B4, and no space is formed between them. The armature chamber 33 is connected to the low-pressure fuel discharge channel 62 through a low-pressure channel 83 that opens to the side wall, and a low-pressure channel 84 that follows the low-pressure channel 83.
低圧燃料排出流路62は、第1バルブ室34が低圧流路81により低圧燃料排出流路62へ直接接続される一方、複数の低圧流路82によりアーマチャ室33と連通している。低圧燃料排出流路62は、第1バルブ室34およびアーマチャ室33の側方を軸方向に延び、低圧流路82が接続される位置より上方で分岐して、その一方は、管壁に開口する流出孔68を介して燃料タンクへ至る低圧通路へ接続している。分岐路のもう一方は、分岐点からさらに上方へ延び上端がソレノイド31の上方に達する止まり孔73となっており、その内部空間を圧縮弾性体Gが収容される弾性体収容室7’としている。 The low pressure fuel discharge channel 62 is connected to the armature chamber 33 by a plurality of low pressure channels 82 while the first valve chamber 34 is directly connected to the low pressure fuel discharge channel 62 by the low pressure channel 81. The low-pressure fuel discharge flow path 62 extends in the axial direction on the sides of the first valve chamber 34 and the armature chamber 33 and branches above the position where the low-pressure flow path 82 is connected, one of which opens to the tube wall. It is connected to a low-pressure passage that leads to the fuel tank through an outflow hole 68. The other side of the branch path is a stop hole 73 that extends further upward from the branch point and reaches the upper side of the solenoid 31. The inner space of the branch path is an elastic body accommodating chamber 7 ′ in which the compression elastic body G is accommodated. .
圧縮弾性体Gは、上記実施形態と同様、第1バルブ室34に燃料が噴出する際に減圧沸騰やキャビテーションなどにより脱気したガスが溜まったものである。比重の軽いガスは、アーマチャ室33に連通する低圧流路83、84または第1バルブ室34に連通する低圧流路81を介して低圧燃料排出流路62に流出し、さらに上方へ移動して弾性体収容室7’に溜まり気体塊となる。弾性体収容室7’の容積は、止まり孔73の上端から流出孔68までの容積で定義され、所定容量を超える場合には、底部側の流出孔68から低圧燃料排出流路62に排出される。 Similar to the above embodiment, the compression elastic body G is a collection of gas degassed by boiling under reduced pressure or cavitation when fuel is ejected into the first valve chamber 34. The gas having a low specific gravity flows out to the low-pressure fuel discharge passage 62 through the low-pressure passages 83 and 84 communicating with the armature chamber 33 or the low-pressure passage 81 communicating with the first valve chamber 34, and further moves upward. It collects in the elastic body accommodating chamber 7 ′ and becomes a gas mass. The volume of the elastic body accommodating chamber 7 ′ is defined by the volume from the upper end of the blind hole 73 to the outflow hole 68. When the volume exceeds the predetermined capacity, the elastic body accommodating chamber 7 ′ is discharged from the bottom outflow hole 68 to the low pressure fuel discharge passage 62. The
本実施形態においても、弾性体収容室7’に収容される圧縮弾性体Gが、アーマチャ室33下流の低圧燃料排出流路62を流通する燃料と接触しているので、アーマチャ室33および第1バルブ室34における圧力変動を、圧縮弾性体Gの体積変化によって抑制するダンパー効果が得られる。また、第1バルブ室34が低圧燃料排出流路62に直接連通しており、排出流路面積が大きくできる。さらに、弾性体収容室7’がアーマチャ室33上方の低圧燃料排出流路62からさらに上方に形成されるので、発生したガスが弾性体収容室7’に溜まりやすい。 Also in the present embodiment, the compression elastic body G accommodated in the elastic body accommodating chamber 7 ′ is in contact with the fuel flowing through the low-pressure fuel discharge passage 62 downstream of the armature chamber 33, so that the armature chamber 33 and the first The damper effect which suppresses the pressure fluctuation in the valve chamber 34 by the volume change of the compression elastic body G is acquired. Further, the first valve chamber 34 communicates directly with the low-pressure fuel discharge channel 62, and the discharge channel area can be increased. Further, since the elastic body accommodating chamber 7 ′ is formed further upward from the low-pressure fuel discharge channel 62 above the armature chamber 33, the generated gas tends to accumulate in the elastic body accommodating chamber 7 ′.
このように、弾性体収容室7’を低圧燃料排出流路62に形成することもできる。本実施形態の弾性体収容室7’の配置は、弾性体収容室7’がソレノイド31に接触していないので、基体Bが固定されるエンジンヘッド側からの放熱が大きく、弾性体収容室7’内の圧縮弾性体Gを温度低下のおそれが小さい場合や、ソレノイド31の発熱が大きく、ソレノイド31から基体B側のホルダB4への放熱面積を大きく必要がある場合に有効である。 As described above, the elastic body accommodating chamber 7 ′ can be formed in the low-pressure fuel discharge channel 62. Since the elastic body accommodating chamber 7 ′ is not in contact with the solenoid 31, the heat dissipating from the engine head side to which the base B is fixed is large, and the elastic body accommodating chamber 7 ′ of the present embodiment is arranged. This is effective when the temperature of the compression elastic body G is small, or when the heat generation of the solenoid 31 is large and the heat radiation area from the solenoid 31 to the holder B4 on the base B side needs to be large.
図9に本発明の第5実施形態を示す。本実施形態の基本構成は上記第4実施形態と同様であり、説明を省略する。図9は、インジェクタIの主要部である背圧制御部2の構成を示すもので、基本的構造は上記第3実施形態と同様であり、圧縮弾性体Gを変形自在な弾性体収容袋としての弾性体バッグ9に収容した点で異なっている。以下、相違点を中心に説明する。 FIG. 9 shows a fifth embodiment of the present invention. The basic configuration of this embodiment is the same as that of the fourth embodiment, and a description thereof is omitted. FIG. 9 shows the configuration of the back pressure control unit 2 which is the main part of the injector I. The basic structure is the same as that of the third embodiment, and the compression elastic body G is used as a deformable elastic body containing bag. This is different in that it is accommodated in the elastic bag 9. Hereinafter, the difference will be mainly described.
本実施形態においても、低圧燃料排出流路62は、第1バルブ室34およびアーマチャ室33の側方を軸方向に延び、低圧流路82が接続される位置より上方で分岐して流出孔68へ接続している。分岐点の上方には上端がソレノイド31の上方に達する低圧燃料排出流路62より大径の止まり孔73’が形成され、その内部空間を圧縮弾性体Gとなるガス体が収容される弾性体収容室7’としている。背圧制御部2を構成する電磁制御弁3は、第1バルブ室34が低圧流路81により低圧燃料排出流路62へ直接接続される一方、複数の低圧流路82によりアーマチャ室33と連通している。 Also in the present embodiment, the low-pressure fuel discharge flow path 62 extends in the axial direction on the sides of the first valve chamber 34 and the armature chamber 33 and branches above the position where the low-pressure flow path 82 is connected to the outflow hole 68. Connected to. A stop hole 73 ′ having a diameter larger than that of the low-pressure fuel discharge passage 62 whose upper end extends above the solenoid 31 is formed above the branch point, and an elastic body in which a gas body serving as the compression elastic body G is accommodated in the internal space. It is a containment chamber 7 '. In the electromagnetic control valve 3 constituting the back pressure control unit 2, the first valve chamber 34 is directly connected to the low-pressure fuel discharge channel 62 through the low-pressure channel 81, while the armature chamber 33 communicates with the plurality of low-pressure channels 82. is doing.
本実施形態において、圧縮弾性体Gは、耐熱性ビニル等からなる袋状の弾性体バッグ9に充填された状態で、弾性体収容室7’内に収容される。圧縮弾性体Gとなるガス体には、空気を用いることが望ましい。弾性体バッグ9に圧縮弾性体Gを充填、密閉し、僅かな内圧を付加した状態で、低圧燃料排出流路62からこれより大径の止まり孔73’に挿入すると、内圧により弾性体バッグ9が弾性体収容室7’内に拡がり、保持固定される。 In this embodiment, the compression elastic body G is accommodated in the elastic body accommodating chamber 7 ′ in a state of being filled in a bag-like elastic body bag 9 made of heat-resistant vinyl or the like. It is desirable to use air for the gas body to be the compression elastic body G. When the elastic bag 9 is filled and sealed with the compression elastic body G and a slight internal pressure is applied, the elastic bag 9 is inserted into the stop hole 73 ′ having a larger diameter from the low-pressure fuel discharge passage 62 by the internal pressure. Expands into the elastic body accommodating chamber 7 'and is held and fixed.
圧縮弾性体Gを収容する弾性体バッグ9は、その下方の低圧燃料排出流路62を流通する燃料と接触し、燃料圧力に応じて体積が変化することにより、低圧燃料排出流路62の圧力変動を抑制する、同様の効果を有する。また、本実施形態のように弾性体バッグ9を用いる構成では、燃料からの脱気に依存することなく、所定容量の圧縮弾性体Gを弾性体収容室7’内に確保することができるので、安定してダンパー効果を得ることができる。 The elastic bag 9 that houses the compression elastic body G is in contact with the fuel flowing through the low-pressure fuel discharge passage 62 below, and the volume changes according to the fuel pressure, so that the pressure of the low-pressure fuel discharge passage 62 is increased. It has the same effect of suppressing fluctuation. Further, in the configuration using the elastic body bag 9 as in the present embodiment, a predetermined capacity of the compression elastic body G can be secured in the elastic body accommodating chamber 7 ′ without depending on deaeration from the fuel. The damper effect can be obtained stably.
図10に本発明の第6実施形態として示すように、弾性体バッグ9を、複数に分割して各バッグ91にそれぞれ圧縮弾性体Gを充填する構成としてもよい。複数のバッグ91は、互いに接合されて一体となっており、全体として所定容量の圧縮弾性体Gを弾性体バッグ9に収容する。その他の構成は上記第5実施形態と同様である。 As shown in FIG. 10 as a sixth embodiment of the present invention, the elastic bag 9 may be divided into a plurality of pieces and each bag 91 may be filled with a compression elastic body G. The plurality of bags 91 are joined together and integrated, and the compression bag G as a whole is accommodated in the elastic bag 9. Other configurations are the same as those of the fifth embodiment.
本実施形態の構成によれば、弾性体バッグ9が複数に分割されていることで、変形が容易となり、低圧燃料排出流路62への弾性体バッグ9の挿入性が向上する。 According to the configuration of the present embodiment, since the elastic bag 9 is divided into a plurality of parts, the deformation is facilitated, and the insertion property of the elastic bag 9 into the low-pressure fuel discharge passage 62 is improved.
以上のように、本発明によれば、弾性体収容室に収容した圧縮弾性体と、低圧流路または低圧燃料排出流路を流通する燃料とを接触させるので、アーマチャ室および第1バルブ室の圧力変動を抑制し、噴射量制御におけるの直線性を向上させることができる。 As described above, according to the present invention, the compression elastic body housed in the elastic body housing chamber is brought into contact with the fuel flowing through the low pressure flow path or the low pressure fuel discharge flow path, so that the armature chamber and the first valve chamber are Pressure fluctuation can be suppressed and linearity in injection amount control can be improved.
B 基体
B4 ホルダ(ボデー部材)
B7 支持部
B8 放熱体(支持部)
1 ノズル部
11 ノズルニードル
12 噴孔
2 背圧制御部
21 圧力制御室
22 第2バルブ室
23 縦孔
24 コイルスプリング
3 電磁制御弁
31 ソレノイド(駆動体)
32 アーマチャ
33 アーマチャ室
34 第1バルブ室(弁室)
35 弁体
36 バルブニードル
4 油圧式切替弁
4a 弁体部
4b 本体部
5 ノズルニードル背圧室
51 連通路
61 高圧燃料導入流路
62 低圧燃料排出流路
63 高圧分岐通路
64 第2排出孔
65 低圧分岐通路
66 連通路
67 第1排出孔
71 空間部
7、7’ 弾性体収容室
81〜84 低圧流路
9 弾性体バッグ(弾性体収容袋)
G 圧縮弾性体
B Base B4 Holder (Body member)
B7 support part B8 radiator (support part)
DESCRIPTION OF SYMBOLS 1 Nozzle part 11 Nozzle needle 12 Injection hole 2 Back pressure control part 21 Pressure control chamber 22 2nd valve chamber 23 Vertical hole 24 Coil spring 3 Electromagnetic control valve 31 Solenoid (driving body)
32 Armature 33 Armature chamber 34 First valve chamber (valve chamber)
35 Valve body 36 Valve needle 4 Hydraulic switching valve 4a Valve body portion 4b Main body portion 5 Nozzle needle back pressure chamber 51 Communication passage 61 High-pressure fuel introduction passage 62 Low-pressure fuel discharge passage 63 High-pressure branch passage 64 Second discharge hole 65 Low pressure Branch passage 66 Communication passage 67 First discharge hole 71 Space portion 7, 7 'Elastic body accommodating chamber 81-84 Low pressure channel 9 Elastic body bag (elastic body housing bag)
G Compression elastic body
Claims (7)
上記圧力制御室と低圧燃料排出流路との連通および遮断を制御する電磁制御弁と、
ノズルニードルが噴孔を開閉して上記高圧燃料導入流路から供給される高圧燃料を噴射するノズル部とを備え、
上記電磁制御弁の作動に伴い上記圧力制御室の圧力が増減して上記ノズル部を駆動する燃料噴射弁であって、
上記電磁制御弁は、駆動体によって吸引駆動されるアーマチャと、該アーマチャと一体の弁体を有し、
上記弁体が収容される弁室と上記アーマチャを収容するアーマチャ室を低圧流路にて上記低圧燃料排出流路に連通させるとともに、上記アーマチャ室より下流の上記低圧流路または上記低圧燃料排出流路の途中に、上記低圧流路または上記低圧燃料排出流路を流通する燃料と接触するように配置され燃料圧力により体積を変化させる圧縮弾性体を収容する弾性体収容室を設け、
上記弾性体収容室は、上記アーマチャ室の直上位置で上記駆動体の外周側面とボデー部材との間に形成した空間部に上記圧縮弾性体を収容してなり、上記アーマチャ室の燃料は、上記圧縮弾性体の底面に接して形成される上記低圧流路を経て上記低圧燃料排出経路に排出されるとともに、上記弾性体収容室となる上記空間部を上記駆動体の下端側外周に設け、上記駆動体の上端側外周のボデー部材には、上記駆動体の上端側外周側面に接してこれを熱伝達可能に保持する支持部を設けたことを特徴とする燃料噴射弁。 A pressure control chamber to which high-pressure fuel is supplied from the high-pressure fuel introduction channel;
An electromagnetic control valve that controls communication and blocking between the pressure control chamber and the low-pressure fuel discharge passage;
A nozzle needle that opens and closes an injection hole to inject high-pressure fuel supplied from the high-pressure fuel introduction flow path,
A fuel injection valve that drives the nozzle unit by increasing or decreasing the pressure in the pressure control chamber in accordance with the operation of the electromagnetic control valve,
The electromagnetic control valve has an armature that is suction-driven by a driving body, and a valve body that is integral with the armature.
The valve chamber in which the valve body is accommodated and the armature chamber in which the armature is accommodated are communicated with the low pressure fuel discharge flow path through a low pressure flow path, and the low pressure flow path or the low pressure fuel discharge flow downstream from the armature chamber. In the middle of the path, an elastic body accommodating chamber is provided that accommodates a compression elastic body that is disposed so as to be in contact with the fuel that flows through the low-pressure flow path or the low-pressure fuel discharge flow path and changes the volume by the fuel pressure.
The elastic body accommodating chamber accommodates the compression elastic body in a space formed between the outer peripheral side surface of the driving body and the body member at a position directly above the armature chamber, and the fuel in the armature chamber is The space is to be discharged to the low-pressure fuel discharge path through the low-pressure channel formed in contact with the bottom surface of the compression elastic body, and the space serving as the elastic body accommodating chamber is provided on the outer periphery on the lower end side of the drive body, A fuel injection valve characterized in that a support member is provided on a body member on the outer periphery on the upper end side of the drive body so as to be in contact with the outer peripheral side surface of the upper end side of the drive body so as to be able to transfer heat.
上記圧力制御室と低圧燃料排出流路との連通および遮断を制御する電磁制御弁と、
ノズルニードルが噴孔を開閉して上記高圧燃料導入流路から供給される高圧燃料を噴射するノズル部とを備え、
上記電磁制御弁の作動に伴い上記圧力制御室の圧力が増減して上記ノズル部を駆動する燃料噴射弁であって、
上記電磁制御弁は、駆動体によって吸引駆動されるアーマチャと、該アーマチャと一体の弁体を有し、
上記弁体が収容される弁室と上記アーマチャを収容するアーマチャ室を低圧流路にて上記低圧燃料排出流路に連通させるとともに、上記アーマチャ室より下流の上記低圧流路または上記低圧燃料排出流路の途中に、上記低圧流路または上記低圧燃料排出流路を流通する燃料と接触するように配置され燃料圧力により体積を変化させる圧縮弾性体を収容する弾性体収容室を設け、
上記圧縮弾性体は、燃料成分中から分離されるガス体であり、
上記低圧燃料排出流路を上記電磁制御弁の側方に配置して上記アーマチャ室および上記弁室を接続し、上記アーマチャ室の上方位置において、上記低圧燃料排出流路から上方に分岐させて形成した空間部に上記圧縮弾性体を収容して、上記弾性体収容室としたことを特徴とする燃料噴射弁。 A pressure control chamber to which high-pressure fuel is supplied from the high-pressure fuel introduction channel;
An electromagnetic control valve that controls communication and blocking between the pressure control chamber and the low-pressure fuel discharge passage ;
A nozzle needle that opens and closes an injection hole to inject high-pressure fuel supplied from the high-pressure fuel introduction flow path,
A fuel injection valve that drives the nozzle unit by increasing or decreasing the pressure in the pressure control chamber in accordance with the operation of the electromagnetic control valve,
The electromagnetic control valve has an armature that is suction-driven by a driving body, and a valve body that is integral with the armature.
The valve chamber in which the valve body is accommodated and the armature chamber in which the armature is accommodated are communicated with the low pressure fuel discharge channel through a low pressure channel, and the low pressure channel or the low pressure fuel discharge flow downstream from the armature chamber. In the middle of the path, an elastic body accommodating chamber is provided that accommodates a compression elastic body that is disposed so as to be in contact with the fuel that flows through the low-pressure flow path or the low-pressure fuel discharge flow path and changes the volume by the fuel pressure.
The compression elastic body is a gas body separated from the fuel component,
The low-pressure fuel discharge flow path is arranged on the side of the electromagnetic control valve to connect the armature chamber and the valve chamber, and is formed by branching upward from the low-pressure fuel discharge flow path at a position above the armature chamber. A fuel injection valve characterized in that the compression elastic body is accommodated in the space portion to form the elastic body accommodation chamber .
高圧燃料導入流路から高圧燃料が供給されて上記ノズルニードルの背圧を発生するノズルニードル背圧室とを設け、
上記電磁制御弁が上記圧力制御室の圧力を増減するのに伴い、上記油圧式切替弁が、上記ノズルニードル背圧室と上記低圧燃料排出流路との連通および遮断を切り替える構成とした請求項1ないし6のいずれか記載の燃料噴射弁。 A hydraulic switching valve operated by the pressure in the pressure control chamber;
A nozzle needle back pressure chamber for generating a back pressure of the nozzle needle when high pressure fuel is supplied from the high pressure fuel introduction flow path;
The hydraulic switching valve is configured to switch communication and blocking between the nozzle needle back pressure chamber and the low pressure fuel discharge flow path as the electromagnetic control valve increases or decreases the pressure in the pressure control chamber. The fuel injection valve according to any one of 1 to 6 .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006298920A JP4650395B2 (en) | 2006-11-02 | 2006-11-02 | Fuel injection valve |
DE200710000567 DE102007000567A1 (en) | 2006-11-02 | 2007-10-24 | Fuel injecting valve i.e. injector, for diesel engine, has compressed flexible element in contact with fuel, which flows into low pressure passage or fuel discharge passage so that capacity of flexible element is changed by pressure of fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006298920A JP4650395B2 (en) | 2006-11-02 | 2006-11-02 | Fuel injection valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008115738A JP2008115738A (en) | 2008-05-22 |
JP4650395B2 true JP4650395B2 (en) | 2011-03-16 |
Family
ID=39277775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006298920A Expired - Fee Related JP4650395B2 (en) | 2006-11-02 | 2006-11-02 | Fuel injection valve |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4650395B2 (en) |
DE (1) | DE102007000567A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011069292A (en) | 2009-09-25 | 2011-04-07 | Denso Corp | Fuel injection valve |
JP5549293B2 (en) * | 2010-03-15 | 2014-07-16 | 株式会社デンソー | Fuel injection device |
DE102010029123A1 (en) * | 2010-05-19 | 2011-11-24 | Robert Bosch Gmbh | Fuel injector with hydraulic coupler unit |
US9291138B2 (en) | 2011-11-01 | 2016-03-22 | Cummins Inc. | Fuel injector with injection control valve assembly |
KR101784976B1 (en) * | 2016-05-31 | 2017-10-13 | 백차인 | Manufacturing method of control valve for injector |
US11840993B1 (en) * | 2023-02-01 | 2023-12-12 | Caterpillar Inc. | Fuel-actuated fuel injector having cooling fuel circuit and method |
CN116006366B (en) * | 2023-03-24 | 2023-06-09 | 哈尔滨工程大学 | An Electronically Controlled Fuel Injector Based on Adaptive Adjustment of Resistance and Capacitance Parts to Realize Stable Fuel Injection |
CN116085159B (en) * | 2023-03-31 | 2023-07-21 | 哈尔滨工程大学 | A Common Rail Injector Realizing Stable Injection Based on Multi-stage Self-adjusting Pressure Dissipation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08326619A (en) * | 1995-06-02 | 1996-12-10 | Ganser Hydromag Ag | Fuel injection valve for internal combustion engine |
JP2000213434A (en) * | 1999-01-20 | 2000-08-02 | Toyoda Gosei Co Ltd | Fuel pressure regulating device |
JP2002242790A (en) * | 2001-02-19 | 2002-08-28 | Denso Corp | Solenoid valve |
JP2003021025A (en) * | 2001-06-28 | 2003-01-24 | Robert Bosch Gmbh | Magnet valve with buffered integral movable element member |
JP2005076571A (en) * | 2003-09-02 | 2005-03-24 | Nippon Soken Inc | Injector |
-
2006
- 2006-11-02 JP JP2006298920A patent/JP4650395B2/en not_active Expired - Fee Related
-
2007
- 2007-10-24 DE DE200710000567 patent/DE102007000567A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08326619A (en) * | 1995-06-02 | 1996-12-10 | Ganser Hydromag Ag | Fuel injection valve for internal combustion engine |
JP2000213434A (en) * | 1999-01-20 | 2000-08-02 | Toyoda Gosei Co Ltd | Fuel pressure regulating device |
JP2002242790A (en) * | 2001-02-19 | 2002-08-28 | Denso Corp | Solenoid valve |
JP2003021025A (en) * | 2001-06-28 | 2003-01-24 | Robert Bosch Gmbh | Magnet valve with buffered integral movable element member |
JP2005076571A (en) * | 2003-09-02 | 2005-03-24 | Nippon Soken Inc | Injector |
Also Published As
Publication number | Publication date |
---|---|
DE102007000567A1 (en) | 2008-05-15 |
JP2008115738A (en) | 2008-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4650395B2 (en) | Fuel injection valve | |
US6969009B2 (en) | Injector, especially fuel injection valve, with a piezoelectric actor | |
US7458525B2 (en) | Common-rail injector | |
JP4793315B2 (en) | Fuel injection device | |
JP5549293B2 (en) | Fuel injection device | |
JP2007500304A (en) | Fuel injector with direct-control-type injection valve member | |
CN101545431B (en) | Injector | |
JP5585501B2 (en) | Fuel supply device | |
US20070090724A1 (en) | Fuel injection valve | |
JP5699773B2 (en) | Fuel injection device and fuel supply system using the same | |
JP6296948B2 (en) | Fuel injection valve | |
JP2009103080A (en) | Fuel injection valve | |
JP4304895B2 (en) | Hydraulic control valve and fuel injection valve | |
JP4491461B2 (en) | Fluid injection device and automobile | |
JP6376988B2 (en) | Fuel injection valve | |
JP2005140071A (en) | Piezoelectric element driven three-way selector valve and fuel injection valve using the same | |
JP2010156261A (en) | Fuel supply apparatus and high pressure pump | |
JP2005083237A (en) | Injector for internal combustion engine | |
JP4239945B2 (en) | Fuel injection valve | |
JP2010180716A (en) | Fuel injection device | |
JP2006242151A (en) | Fuel injection valve and fuel injection device | |
JP6284860B2 (en) | Fuel injection valve | |
JP2009150358A (en) | Fuel injection valve | |
JP4716142B2 (en) | Fuel injection device | |
JP5196321B2 (en) | Fuel supply device and high-pressure pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |