[go: up one dir, main page]

JP4644816B2 - Ground penetrating radar apparatus and image signal processing method - Google Patents

Ground penetrating radar apparatus and image signal processing method Download PDF

Info

Publication number
JP4644816B2
JP4644816B2 JP2006111436A JP2006111436A JP4644816B2 JP 4644816 B2 JP4644816 B2 JP 4644816B2 JP 2006111436 A JP2006111436 A JP 2006111436A JP 2006111436 A JP2006111436 A JP 2006111436A JP 4644816 B2 JP4644816 B2 JP 4644816B2
Authority
JP
Japan
Prior art keywords
image
dimensional
moving average
ground
ground surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006111436A
Other languages
Japanese (ja)
Other versions
JP2007285781A (en
Inventor
源之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006111436A priority Critical patent/JP4644816B2/en
Publication of JP2007285781A publication Critical patent/JP2007285781A/en
Application granted granted Critical
Publication of JP4644816B2 publication Critical patent/JP4644816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/12Means for clearing land minefields; Systems specially adapted for detection of landmines
    • F41H11/13Systems specially adapted for detection of landmines
    • F41H11/136Magnetic, electromagnetic, acoustic or radiation systems, e.g. ground penetrating radars or metal-detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、地中内の埋設物を3次元の立体画像として可視化する地中レーダ装置及び画像信号処理方法に関する。   The present invention relates to an underground radar apparatus and an image signal processing method for visualizing a buried object in the ground as a three-dimensional stereoscopic image.

特開平09−033194号公報JP 09-033194 A 特開2004−198195号公報JP 2004-198195 A

従来から、対戦車地雷や対人地雷に代表される地雷は、世界中の紛争地域で使用され、現在においても、無数の地雷が埋設されたままとなっており、紛争後におけるこれらの除去には困難を極めている。   Traditionally, landmines represented by anti-tank landmines and antipersonnel landmines have been used in conflict areas around the world, and even today, countless landmines remain buried, It is extremely difficult.

紛争後の地雷除去、所謂、人道的地雷除去においては、地雷原となっている土地での生活を前提としていることから、その地雷原に埋設された地雷のすべてを除去しなければならないが、これらの地雷によっては、その探知及び除去が困難となっているのが実情である。   In the post-conflict mine removal, so-called humanitarian mine removal, life on the land that is the minefield is assumed, so all the landmines buried in the minefield must be removed. The actual situation is that these mines are difficult to detect and remove.

即ち、地雷の種類として、例えば、地雷探知器の磁場に反応して起爆するものや数回の圧力付加によって起爆する種類のもの等があり、また、金属・非金属によって構成されているもの等がある。   In other words, the types of landmines include, for example, those that detonate in response to the magnetic field of a landmine detector, those that detonate by applying pressure several times, and those that are composed of metal or nonmetal. There is.

これにより、磁場に反応して起爆してしまう地雷の場合、金属探知器を近付けただけで起爆する可能性がある。また、数回の圧力付加によって起爆する地雷の場合、地雷処理車が通過したときには起爆せず、これに続いて通過する地雷処理車以外の車両等が通過したときに起爆してしまう可能性がある。   As a result, in the case of landmines that detonate in response to a magnetic field, there is a possibility of detonation just by bringing a metal detector closer. In addition, in the case of a mine that detonates by applying pressure several times, there is a possibility that it will not detonate when a mine-treated vehicle passes, and it may detonate when a vehicle other than a mine-treated vehicle that passes subsequently passes. is there.

しかも、地中内には、既に起爆してしまった地雷の破片や、土中の水分等の反射体、或いは、金属成分を多く含む土質といったように、レーダの種類等によっては誤認識してしまう虞が多分にあった。   Moreover, depending on the type of radar, it may be misrecognized in the underground, such as mine fragments that have already detonated, reflectors such as moisture in the soil, or soil that contains a large amount of metal components. There was a possibility that it would end up.

一方、このような地雷を探知する装置として、特許文献1に開示のような金属探知機を利用した装置や、特許文献2に開示のように、電磁波を地中に伝播させ、その地中からの反射波をセンサにより検出すると共に、その検出結果に基づいて画像化する装置が知られている。   On the other hand, as an apparatus for detecting such landmines, an apparatus using a metal detector as disclosed in Patent Document 1 or an electromagnetic wave propagated into the ground as disclosed in Patent Document 2, and from the ground There is known an apparatus that detects a reflected wave of the image with a sensor and forms an image based on the detection result.

ところで、上記の如く構成された地中レーダ装置及び画像信号処理方法にあっては、上述した地雷の種類や構成材料等の様々な要因から、特許文献1に開示のような金属探知機では、その誤認識のほうが多く、撤去作業に時間を要するうえ、埋設位置(深さを含む)の詳細な位置を特定するには熟練を要するといった問題も生じていた。   By the way, in the underground radar apparatus and the image signal processing method configured as described above, due to various factors such as the type of mine and the constituent material described above, in the metal detector disclosed in Patent Document 1, There are many misrecognitions, and it takes time for the removal work, and there is a problem that skill is required to specify the detailed position of the buried position (including the depth).

また、特許文献2に開示の装置の場合、埋設物の3次元位置が視覚的に判り易いように、地中の状態を水平断面視及び垂直断面視で表現しているが、埋設物自体を3次元の立体画像として表示するものではないため、埋設物の形状を容易に把握することが困難で、地雷であるか否かの特定が困難であるという問題が生じていた。   In addition, in the case of the device disclosed in Patent Document 2, the underground state is represented by a horizontal sectional view and a vertical sectional view so that the three-dimensional position of the buried object can be easily understood visually. Since it is not displayed as a three-dimensional stereoscopic image, it is difficult to easily grasp the shape of the buried object, and it is difficult to specify whether it is a landmine.

さらに、このような3次元の画像化を可能とする場合、一般的な画像解析の手法を適用した場合、埋設物の有無を特定するには信頼性が低いという問題が生じていた。   Further, when such three-dimensional imaging is possible, when a general image analysis technique is applied, there is a problem that reliability is low in order to specify the presence or absence of an embedded object.

尚、埋設物の一つとして、地雷等の特殊で且つある程度の形状が予め特定できる埋設物の場合、予めパターン化された3次元の立体画像と検出された3次元の物体画像パターンとを比較することで地雷であるか否かを特定するパターンマッチング方式なども考えられているが、これらのパターンマッチング化は、例えば、上述した金属成分等を含む土中では、地雷の周囲や地雷に付着した金属成分を含む土までも埋設物として認識してパターン化してしまい、両者間でマッチングしない虞があるなど、信頼性が低いという問題が生じていた。   In addition, as one of the buried objects, in the case of a buried object that can be specified in advance and has a special shape such as a landmine, the pre-patterned three-dimensional stereoscopic image is compared with the detected three-dimensional object image pattern. Pattern matching methods that identify whether or not a land mine has been considered are also considered, but these pattern matching methods, for example, in the soil containing metal components described above, adhere to the surroundings of land mines and land mines. Even the soil containing the metal component is recognized as a buried object and patterned, and there is a possibility that the two are not matched, resulting in a problem of low reliability.

一方、地中レーダ(Ground penetrating Radar:GPR)は、アンテナから電波を地中に放射し、地中の埋設物や地層境界面などから反射を受けた電波を受信することによって地中を可視化する装置である。   On the other hand, a ground penetrating radar (GPR) radiates a radio wave from an antenna into the ground, and visualizes the ground by receiving a radio wave reflected from a buried object in the ground or a layer boundary surface. Device.

この地中レーダによって受信したGPRデータは、地表面を基準とするX方向とY方向の水平面内の2次元行列と、地表面から地中に向かうZ方向(深さ方向)とを含む3次元行列で構成されており、このGPRデータに基づいて、図1に示すように、3次元の立体画像を算出することができる。   The GPR data received by the ground penetrating radar is a three-dimensional data including a two-dimensional matrix in a horizontal plane in the X and Y directions with reference to the ground surface, and a Z direction (depth direction) from the ground surface toward the ground. As shown in FIG. 1, a three-dimensional stereoscopic image can be calculated based on the GPR data.

尚、図1においては、地中の埋設物としての地雷Jの存在並びに位置を明確に確認することができるが、多くの場合、地中に含まれる砂礫等の不均質によって不要反射となるクラッタCが発生し、単純な3次元画像では、地雷JとクラッタCとの区別をするのは困難である。   In addition, in FIG. 1, although the presence and position of the land mine J as an underground buried object can be confirmed clearly, in many cases, clutter that becomes unnecessary reflection due to inhomogeneity of gravel and the like contained in the ground C is generated, and it is difficult to distinguish landmine J and clutter C from a simple three-dimensional image.

ところで、上述したGPRデータとしての各深度毎の水平画像用データには、確実に反射体の情報が含まれていることから、地雷の位置を明確に判断することは可能である。しかしながら、これが3次元の膨大なGPRデータとなると、クラッタCを排除しながら対象物を見いだすことは非常に難しい。   By the way, since the horizontal image data for each depth as the GPR data described above surely includes the information of the reflector, it is possible to clearly determine the position of the landmine. However, when this becomes a large amount of three-dimensional GPR data, it is very difficult to find the object while eliminating the clutter C.

そこで、このような3次元GPRデータ中に含まれる埋設物からの反射波を効率的に検知し、埋設物の位置を正確且つ簡素に検出することができれば、地雷除去作業現場での迅速な作業並びに装置の小型化を実現することができる。   Therefore, if the reflected wave from the embedded object contained in such 3D GPR data can be detected efficiently and the position of the embedded object can be detected accurately and simply, the work at the mine removal work site can be done quickly. In addition, downsizing of the apparatus can be realized.

本発明は、上記問題を解決するため、地中内に埋設された物体の検知精度を向上し得て、信頼性を向上させることができる地中レーダ装置及び画像信号処理方法を提供することを目的とする。   In order to solve the above problems, the present invention provides a ground penetrating radar apparatus and an image signal processing method capable of improving the detection accuracy of an object embedded in the ground and improving the reliability. Objective.

その目的を達成するため、本発明の画像信号処理方法は、地表面を基準とする水平面内方向とこの地表面から地中に向かう深さ方向とで3次元の行列データの各要素の数値を取得する3次元データ取得ステップと、地表面を基準とする水平面内の移動平均を求める移動平均算出ステップと、前記3次元データ取得ステップと前記移動平均算出ステップとに基づいて3次元画像を作成する画像化ステップと、隣り合った画像の相互相関からそのピーク鋭度を求めるピーク鋭度算出ステップと、そのピーク鋭度が最大の条件から埋設物の有無を特定する埋設物特定ステップとを備えていることを特徴とする。   In order to achieve the object, the image signal processing method of the present invention calculates numerical values of each element of the three-dimensional matrix data in the horizontal plane direction with respect to the ground surface and the depth direction from the ground surface to the ground. A three-dimensional image is created based on a three-dimensional data acquisition step to be acquired, a moving average calculation step for obtaining a moving average in a horizontal plane with reference to the ground surface, and the three-dimensional data acquisition step and the moving average calculation step. An imaging step, a peak sharpness calculating step for obtaining the peak sharpness from the cross-correlation of adjacent images, and a buried object identifying step for identifying the presence or absence of the buried object from a condition with the maximum peak sharpness. It is characterized by being.

即ち、本発明の画像信号処理方法によれば、1次元或いは2次元の走査線に沿って取得された2次元(1次元位置−深度)或いは3次元(2次元位置−深度)のデータ空間において、特定の深度方向に隣接する範囲における空間相関係数を計算し、空間相関係数が大きい領域では地中レーダデータが連続したパターンを有することから、目標物からの反射波を捉えて目標物の位置を検知すると共に、その目標物からの反射波の連続性から目標物(埋設物)の検知率を高めることができる。   That is, according to the image signal processing method of the present invention, in a two-dimensional (one-dimensional position-depth) or three-dimensional (two-dimensional position-depth) data space acquired along a one-dimensional or two-dimensional scanning line. The spatial correlation coefficient in a range adjacent to a specific depth direction is calculated, and since the ground radar data has a continuous pattern in the area where the spatial correlation coefficient is large, the reflected wave from the target is captured and the target is detected. The detection rate of the target (embedded object) can be increased from the continuity of the reflected wave from the target.

本発明の地中レーダ装置及び画像信号処理方法によれば、埋設物の有無に関する信頼性を向上させることができる。   According to the underground radar apparatus and the image signal processing method of the present invention, it is possible to improve the reliability related to the presence or absence of an embedded object.

次に、本発明の地中レーダ装置及び画像信号処理方法に係る実施の形態を図面に基づいて説明する。   Next, an embodiment according to the underground radar apparatus and the image signal processing method of the present invention will be described with reference to the drawings.

尚、本発明の地中レーダ装置は、GPRレーダとこのGPRレーダを搭載した地雷除去車両等の作業車と、GPRレーダからの検知信号(GPRデータ)を処理するために作業車に搭載された演算部としてのパーソナルコンピュータとを備えている。尚、このパーソナルコンピュータは作業車に搭載された無線通信装置を介して遠隔地でGPRレーダからの検知信号(GPRデータ)を受信・処理するようにしても良い。   The underground radar apparatus of the present invention is mounted on a work vehicle such as a GPR radar, a work vehicle such as a demining vehicle equipped with the GPR radar, and a detection signal (GPR data) from the GPR radar. And a personal computer as a calculation unit. The personal computer may receive and process a detection signal (GPR data) from the GPR radar at a remote location via a wireless communication device mounted on the work vehicle.

以下、本発明における地中レーダ装置のパーソナルコンピュータ上での処理方法を説明する。   Hereinafter, the processing method on the personal computer of the underground radar apparatus in the present invention will be described.

(地雷画像抽出アルゴリズム)
〔2次元画像化〕
GPR測定データは、X方向,Y方向,Z方向の3次元行列で構成されている。その行列のX方向とY方向とで構成する平面を画像化することで、Z方向(深さ方向)における水平面画像が得られる。地雷などの埋設物画像は、深度方向に連続して現れ、いったん消えてもまた色が反転して現れる。これは地雷からの反射波の値が正から負に移り変わることに起因する。これに対し、クラッタの場合は、細かく不規則に変化する。
(Mineland image extraction algorithm)
[Two-dimensional imaging]
The GPR measurement data is composed of a three-dimensional matrix in the X direction, the Y direction, and the Z direction. A horizontal plane image in the Z direction (depth direction) is obtained by imaging the plane formed by the X direction and the Y direction of the matrix. Buried images such as landmines appear continuously in the depth direction, and even if they disappear once, the colors appear again. This is because the value of the reflected wave from the landmine changes from positive to negative. On the other hand, in the case of clutter, it changes minutely and irregularly.

地雷が存在するX−Y座標点の値の、深さZにおけるGPR波形変化を図2に示す。図2において、深さ0.2m付近の2本の二点鎖線で挟まれている部分が地雷からの反射波の値である。   FIG. 2 shows the change in GPR waveform at the depth Z of the value of the XY coordinate point where the land mine exists. In FIG. 2, the portion sandwiched between two two-dot chain lines near a depth of 0.2 m is the value of the reflected wave from the landmine.

〔移動平均画像〕
図3(A),(B)は、深度を変えた場合の任意の深度毎のGPR水平面画像の例を示し、図3(A)は地雷の場合、図3(B)はクラッタの場合を示す。尚、実際の画像ではそのパワーが強いほど赤くなるサーモセンサーのようなカラー処理された画像となっている。
[Moving average image]
3A and 3B show examples of GPR horizontal plane images at arbitrary depths when the depth is changed. FIG. 3A shows a case of a landmine, and FIG. 3B shows a case of clutter. Show. An actual image is a color-processed image such as a thermosensor that becomes red as the power increases.

図3(A)に示すように、地雷からの反射は、値の大きさは深度に対して連続的に変化するのに対し、図3(B)に示すように、クラッタからの反射は不規則に変化する。波形のパワーの移動平均をとることで地雷からの反射波は安定した変化となり、クラッタとの識別が容易になる。今、図4に示すように、水平画像の深さ方向に対する深度変化の平均幅をW、ずらし幅をDzとしてX−Y平面の移動平均を計算する。例として、図5において、W=50(4cm),Dz=25(2cm)としたときに得られる画像の一部を示す。また、この図5(C)に示した画像は地雷画像である。   As shown in FIG. 3 (A), the magnitude of the reflection from landmines varies continuously with depth, whereas the reflection from clutter is not as shown in FIG. 3 (B). Change to rules. By taking a moving average of the power of the waveform, the reflected wave from the landmine becomes a stable change, making it easy to distinguish from the clutter. Now, as shown in FIG. 4, the moving average of the XY plane is calculated by setting the average width of the depth change in the depth direction of the horizontal image as W and the shift width as Dz. As an example, FIG. 5 shows a part of an image obtained when W = 50 (4 cm) and Dz = 25 (2 cm). The image shown in FIG. 5C is a landmine image.

図5(C)において、地雷は移動平均をとることによってクラッタと明確に区別されていることが分かる。また、連続して現れていることが確認できる。また、図5(C)より、地雷画像において最大値をとる座標点が地雷位置であることが分かる。これらの特徴から、移動平均画像において隣り合った画像同士の類似度が高ければ、それらが地雷画像であると特定することができる。さらに、その最大値をとる座標点が地雷位置である。   In FIG. 5C, it can be seen that landmines are clearly distinguished from clutter by taking a moving average. Moreover, it can confirm that it has appeared continuously. Further, it can be seen from FIG. 5C that the coordinate point having the maximum value in the mine image is the mine position. From these features, if the similarity between adjacent images in the moving average image is high, it can be specified that they are landmine images. Furthermore, the coordinate point taking the maximum value is the landmine position.

〔空間相関法を用いた類似度の評価〕
画像同士の類似度を評価するために空間的な相互相関関数を利用する。まずGPR信号を数1とする。
[Evaluation of similarity using spatial correlation method]
A spatial cross-correlation function is used to evaluate the similarity between images. First, the GPR signal is represented by Equation 1.

Figure 0004644816
この数1のそれぞれを、2次元フーリエ変換することにより、数2に示すように、フーリエスペクトルが得られる。
Figure 0004644816
By performing two-dimensional Fourier transform on each of the equations 1, a Fourier spectrum is obtained as shown in equation 2.

Figure 0004644816
この数2より、数3に示すクロス・パワースペクトルを求めることができる。
Figure 0004644816
From this equation 2, the cross power spectrum shown in equation 3 can be obtained.

Figure 0004644816
さらに、この数3を逆フーリエ変換することにより、数4に示す相互相関関数を得ることができる。
Figure 0004644816
Furthermore, the cross correlation function shown in Formula 4 can be obtained by performing inverse Fourier transform on Formula 3.

Figure 0004644816
Figure 0004644816

隣り合う移動平均画像の相互相関を求めた例を図6及び図7に示す。図6(A),(B)に示したクラッタ同士に基づく相互相関画像(図6(C))は中心になだらかなピークを持つが、図7(A),(B)に示した地雷画像同士に基づく相互相関画像(図7(C))は中心に鋭いピークを持つことがわかる。つまり2つの画像の類似度が高いほど、この相互相関画像のピークは鋭くなる。   Examples of obtaining cross-correlation between adjacent moving average images are shown in FIGS. The cross-correlation image based on the clutters shown in FIGS. 6A and 6B (FIG. 6C) has a gentle peak at the center, but the mine images shown in FIGS. 7A and 7B. It can be seen that the cross-correlation image based on each other (FIG. 7C) has a sharp peak at the center. That is, the higher the similarity between two images, the sharper the peak of this cross-correlation image.

こうした類似度を定量化するために、図8,図7(C)に示すように、X,Y方向についてピークの半値幅δx,δyを求め、そのピークの鋭度=δx・δyとして評価する。その値の深度毎の変化をグラフ化した例を図9に示す。   In order to quantify such similarity, as shown in FIG. 8 and FIG. 7C, peak half-value widths δx and δy are obtained in the X and Y directions, and the sharpness of the peaks = δx · δy is evaluated. . An example in which the change of the value for each depth is graphed is shown in FIG.

この図9において、ピーク鋭度は深さ0.2m付近で最小値をとっている。このピーク鋭度が小さい場合、連続する反射波の連続性が強い、つまり反射体が存在する可能性が高い。この相関が得られた移動平均画像が地雷画像であり、その画像の最大値をとる座標が地雷位置である。   In FIG. 9, the peak sharpness has a minimum value near a depth of 0.2 m. When this peak sharpness is small, the continuity of continuous reflected waves is strong, that is, there is a high possibility that a reflector exists. The moving average image from which this correlation is obtained is the mine image, and the coordinate at which the maximum value of the image is taken is the mine position.

〔地雷位置特定のアルゴリズムの構築〕
地雷位置を特定するアルゴリズムをまとめると、3次元行列データの各要素のパワーをとる・X−Y平面の移動平均を求めてそれぞれを画像化する・隣り合った画像の相互相関を求めてそのピーク鋭度を求める・ピーク鋭度が最大の条件から地雷画像を特定する・地雷画像において最大値をとる点を求める・地雷座標を特定する。
[Construction of mine location identification algorithm]
Summarizing the algorithm for identifying landmine positions, take the power of each element of the three-dimensional matrix data ・ Calculate the moving average of the XY plane and image each of them ・ Calculate the cross-correlation of adjacent images and peak Find the sharpness ・ Identify the mine image from the condition with the maximum peak sharpness ・ Find the point that takes the maximum value in the mine image ・ Identify the mine coordinates

〔適用例〕
ここに示したアルゴリズムにおいて、平均をとる幅Wと、それをずらす幅Dzの選択は非常に重要である。地雷画像の特徴を抽出するためには、適切な平均幅Wとずらし幅Dzを設定しなければならない。次に発明したアルゴリズムを適用した具体例を挙げる。
[Application example]
In the algorithm shown here, the selection of the width W for averaging and the width Dz for shifting it is very important. In order to extract the characteristics of the landmine image, an appropriate average width W and shift width Dz must be set. Next, specific examples to which the invented algorithm is applied will be given.

ここで扱うGPRデータは、乾いた地質において測定されたものである。また、ターゲットはTYPE72型模擬地雷(直径7.6cm、厚さ4cm)である。図10,図11に示すように、地雷位置を特定することができる。この際、平均幅W=30(2.4cm),ずらし幅Dz=15(1.2cm)である。   The GPR data handled here is measured in dry geology. The target is a TYPE72 type simulated landmine (diameter 7.6 cm, thickness 4 cm). As shown in FIGS. 10 and 11, the landmine position can be specified. At this time, the average width W = 30 (2.4 cm) and the shift width Dz = 15 (1.2 cm).

ところで、以上の説明では埋設物検知として地雷検知を例として使用したが、特に地雷に限定されるものではない。また、地雷のように小さく形が定常ではなく、土壌の地下水分布のような非定常形状の場合についてもGPR信号の深度方向への連続性がある場合、例えば、地中石油系汚染物質を対象とするなど、異常(異形)物体の検知も可能である。   In the above description, landmine detection is used as an example of buried object detection. However, the present invention is not limited to landmines. Also, if the GPR signal has continuity in the depth direction even in the case of a non-stationary shape such as the groundwater distribution of soil, such as a landmine, the shape is not steady, but for example, underground petroleum pollutants are targeted. It is also possible to detect abnormal (atypical) objects such as.

本発明の一実施形態を示し、3次元立体画像の模式図である。1 is a schematic diagram of a three-dimensional stereoscopic image according to an embodiment of the present invention. 本発明の一実施形態を示し、地雷位置のX−Y座標点の値の変化のグラフ図である。It is a graph of the change of the value of the XY coordinate point of the landmine position which shows one Embodiment of this invention. 本発明の一実施形態を示し、(A)は地雷の場合の水平面画像の深さによる変化の説明図、(B)はクラッタの場合の水平面画像の深さによる変化の説明図である。1A and 1B show an embodiment of the present invention, in which FIG. 4A is an explanatory diagram of changes due to the depth of a horizontal plane image in the case of landmines, and FIG. 4B is an explanatory diagram of changes due to the depth of a horizontal plane image in the case of clutter. 本発明の一実施形態を示し、深さ方向における移動平均の概念の説明図である。It is explanatory drawing of the concept of the moving average in the depth direction which shows one Embodiment of this invention. 本発明の一実施形態を示し、(A)〜(E)は移動平均画像の説明図である。One Embodiment of this invention is shown, (A)-(E) is explanatory drawing of a moving average image. 本発明の一実施形態を示し、(A)はクラッタの場合の移動平均画像の相互相関の一方となる画像の説明図、(B)はクラッタの場合の移動平均画像の相互相関の他方となる画像の説明図、(C)はクラッタの場合の相互相関像の説明図である。1A and 1B show an embodiment of the present invention, in which FIG. 1A is an explanatory diagram of an image that is one of cross-correlations of moving average images in the case of clutter, and FIG. Explanatory drawing of an image, (C) is explanatory drawing of the cross correlation image in the case of a clutter. 本発明の一実施形態を示し、(A)は地雷の場合の移動平均画像の相互相関の一方となる画像の説明図、(B)は地雷の場合の移動平均画像の相互相関の他方となる画像の説明図、(C)は地雷の場合の相互相関像の説明図である。1A and 1B show an embodiment of the present invention, in which FIG. 1A is an explanatory diagram of an image that is one of cross-correlations of a moving average image in the case of landmines, and FIG. Explanatory drawing of an image, (C) is explanatory drawing of the cross correlation image in the case of a landmine. 本発明の一実施形態を示し、ピーク断面のグラフ図である。It is a graph of a peak section showing an embodiment of the present invention. 本発明の一実施形態を示し、ピーク鋭度−深さの関係のグラフ図である。It is a graph of the peak sharpness-depth relationship showing an embodiment of the present invention. 本発明の一実施形態を示し、地雷特定の説明図である。1 is an explanatory diagram of landmine identification according to an embodiment of the present invention. 本発明の一実施形態を示し、地雷特定のためのピーク鋭度−深さの関係のグラフ図である。It is a graph of the peak sharpness-depth relationship for showing landmine identification according to an embodiment of the present invention.

Claims (3)

地表面に向かってレーダ波を照射すると共に地中内で反射した反射波を受信するGPRレーダと、該GPRレーダで受信した反射波に基づいて任意の深度毎の水平画像データを求めると共にその求めた水平画像データの相互関係からピーク鋭度を求める演算部とを備えていることを特徴とする地中レーダ装置。   A GPR radar that radiates a radar wave toward the ground surface and receives a reflected wave reflected in the ground, and obtains and calculates horizontal image data for each arbitrary depth based on the reflected wave received by the GPR radar. A ground penetrating radar apparatus comprising: an arithmetic unit that obtains peak sharpness from the mutual relationship of horizontal image data. 地表面を基準とする水平面内方向とこの地表面から地中に向かう深さ方向とで3次元の行列データの各要素の数値を取得する3次元データ取得ステップと、地表面を基準とする水平面内の移動平均を求める移動平均算出ステップと、前記3次元データ取得ステップと前記移動平均算出ステップとに基づいて3次元画像を作成する画像化ステップと、隣り合った画像の相互相関からそのピーク鋭度を求めるピーク鋭度算出ステップと、そのピーク鋭度が最大の条件から埋設物の有無を特定する埋設物特定ステップとを備えていることを特徴とする画像信号処理方法。   A three-dimensional data acquisition step for acquiring numerical values of each element of the three-dimensional matrix data in a horizontal plane direction with respect to the ground surface and a depth direction from the ground surface into the ground, and a horizontal plane with reference to the ground surface A moving average calculation step for obtaining a moving average of the image, an imaging step for creating a three-dimensional image based on the three-dimensional data acquisition step and the moving average calculation step, and a peak sharpness based on a cross-correlation between adjacent images. An image signal processing method comprising: a peak sharpness calculating step for obtaining a degree; and a buried object specifying step for specifying presence / absence of a buried object from a condition with the maximum peak sharpness. 地表面を基準とする水平面内方向とこの地表面から地中に向かう深さ方向とで3次元の行列データの各要素の数値を取得する3次元データ取得ステップと、地表面を基準とする水平面内の移動平均を求める移動平均算出ステップと、前記3次元データ取得ステップと前記移動平均算出ステップとに基づいて3次元画像を作成する画像化ステップと、隣り合った画像の相互相関からそのピーク鋭度を求めるピーク鋭度算出ステップと、そのピーク鋭度が最大の条件から埋設物の有無を特定する埋設物特定ステップと、その埋設物画像の最大値をとる点に基づいて埋設物座標を特定する埋設物座標特定ステップとを備えていることを特徴とする画像信号処理方法。

A three-dimensional data acquisition step for acquiring numerical values of each element of the three-dimensional matrix data in a horizontal plane direction with respect to the ground surface and a depth direction from the ground surface into the ground, and a horizontal plane with reference to the ground surface A moving average calculation step for obtaining a moving average of the image, an imaging step for creating a three-dimensional image based on the three-dimensional data acquisition step and the moving average calculation step, and a peak sharpness based on a cross-correlation between adjacent images. The peak sharpness calculation step to determine the degree, the buried object identification step that identifies the presence or absence of the buried object from the condition where the peak sharpness is the maximum, and the buried object coordinates are identified based on the point at which the maximum value of the buried object image is taken An image signal processing method comprising: an embedded object coordinate specifying step.

JP2006111436A 2006-04-14 2006-04-14 Ground penetrating radar apparatus and image signal processing method Active JP4644816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111436A JP4644816B2 (en) 2006-04-14 2006-04-14 Ground penetrating radar apparatus and image signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111436A JP4644816B2 (en) 2006-04-14 2006-04-14 Ground penetrating radar apparatus and image signal processing method

Publications (2)

Publication Number Publication Date
JP2007285781A JP2007285781A (en) 2007-11-01
JP4644816B2 true JP4644816B2 (en) 2011-03-09

Family

ID=38757704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111436A Active JP4644816B2 (en) 2006-04-14 2006-04-14 Ground penetrating radar apparatus and image signal processing method

Country Status (1)

Country Link
JP (1) JP4644816B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527617B (en) * 2016-02-06 2017-11-07 哈尔滨工业大学 A kind of Coherent Noise in GPR Record background removal approach based on robust principal component analysis
CN113985487B (en) * 2021-08-20 2024-10-18 深圳安德空间技术有限公司 Three-dimensional rendering method and system for underground buried object based on three-dimensional ground penetrating radar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305278A (en) * 1987-06-08 1988-12-13 Mitsubishi Electric Corp System for searching underground buried object
JPH05232220A (en) * 1992-02-20 1993-09-07 Osaka Gas Co Ltd Method and apparatus for measurement of specific permittivity and probing apparatus of buried object
JP2002214334A (en) * 2001-01-23 2002-07-31 Mitsubishi Heavy Ind Ltd Target detection apparatus
JP2003172777A (en) * 2001-12-10 2003-06-20 Mitsubishi Electric Corp Target detection system and target detection method
JP2003329765A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Apparatus and method for analyzing pulse reception
JP2004279239A (en) * 2003-03-17 2004-10-07 Japan Science & Technology Agency Display defect detection method and display defect inspection device for liquid crystal panel
WO2005101313A1 (en) * 2004-04-13 2005-10-27 Nikon Corporation Template matching device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222287A (en) * 1987-03-11 1988-09-16 Mitsubishi Electric Corp Underground buried object examination system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305278A (en) * 1987-06-08 1988-12-13 Mitsubishi Electric Corp System for searching underground buried object
JPH05232220A (en) * 1992-02-20 1993-09-07 Osaka Gas Co Ltd Method and apparatus for measurement of specific permittivity and probing apparatus of buried object
JP2002214334A (en) * 2001-01-23 2002-07-31 Mitsubishi Heavy Ind Ltd Target detection apparatus
JP2003172777A (en) * 2001-12-10 2003-06-20 Mitsubishi Electric Corp Target detection system and target detection method
JP2003329765A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Apparatus and method for analyzing pulse reception
JP2004279239A (en) * 2003-03-17 2004-10-07 Japan Science & Technology Agency Display defect detection method and display defect inspection device for liquid crystal panel
WO2005101313A1 (en) * 2004-04-13 2005-10-27 Nikon Corporation Template matching device

Also Published As

Publication number Publication date
JP2007285781A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
Torrione et al. Performance of an adaptive feature-based processor for a wideband ground penetrating radar system
Bruschini et al. Ground penetrating radar and imaging metal detector for antipersonnel mine detection
WO2007046782A1 (en) Syntactic target classifier
JP4644816B2 (en) Ground penetrating radar apparatus and image signal processing method
Feng et al. Imaging algorithm of a hand-held GPR MD sensor system (ALIS)
WO2014116180A1 (en) 4d uwb radar inspection method and system
Núñez-Nieto et al. Signal-to-noise ratio dependence on ground penetrating radar antenna frequency in the field of landmine and UXO detection
KR101362451B1 (en) Method and device for determining a kind of land mind based on various characteristics
US20150369910A1 (en) Electromagnetic pulse device
Lombardi et al. Bistatic radar signature of buried landmines
Madavha et al. Functional design and performance evaluation of a metal handheld detector for land mines detection
Chlaib et al. Application of the ground penetrating radar to detect weapons caches and unexploded ordnance: laboratory experiments
Yu et al. Automatic subsurface unexploded ordnance detection using a wideband full-polarization ground penetrating radar and entropy-based polarimetric signatures
Podd et al. GPR combined with a positioning system to detect anti-personnel landmines
JP2004069388A (en) Shallow underground anomaly detection device and detection method
Schartel et al. Tripwire detection in sar images using a modified radon transform
Long et al. Image processing of ground penetrating radar data for landmine detection
Counts et al. Investigation of the detection of shallow tunnels using electromagnetic and seismic waves
Shamatava et al. Potential benefits of combining EMI and GPR for enhanced UXO discrimination at highly contaminated sites
Balsi et al. GPR measurements and FDTD simulations for landmine detection
Gurpreet Multi algorithm based landmine detection using ground penetration radar
Sato et al. Development of dual sensors and deployment in mine affected countries
Sato et al. Handheld GPR and MD sensor for landmine detection
Morgenthaler et al. Fast GPR underground shape anomaly detection using the Semi-Analytic Mode Matching (SAMM) algorithm
Tesfamariam et al. Application of advanced background subtraction techniques for the detection of buried plastic landmines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150