JP4644344B2 - Breathable sheet and heating element structure using the same - Google Patents
Breathable sheet and heating element structure using the same Download PDFInfo
- Publication number
- JP4644344B2 JP4644344B2 JP2000304263A JP2000304263A JP4644344B2 JP 4644344 B2 JP4644344 B2 JP 4644344B2 JP 2000304263 A JP2000304263 A JP 2000304263A JP 2000304263 A JP2000304263 A JP 2000304263A JP 4644344 B2 JP4644344 B2 JP 4644344B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- heating element
- breathable
- heat
- soluble polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、通気性シート及び発熱体構造物に係り、特に、発熱体構造物その他、種々の用途に適用される通気性シートであって、温度により通気度が変化する通気性シートに関する。
【0002】
【従来の技術】
本発明にかかる従来技術は、発熱体構造物及びその通気性フィルムを例としてあげ、以下に説明する。
近年、肩こり、神経痛、筋肉痛等の治療あるいは薬剤の経皮吸収促進に、種々の発熱体構造物が広く用いられている。このような発熱体構造物は、図8に示すように、空気と接触して発熱する発熱剤を所定の通気量を有する通気性フィルムと非通気性フィルムとで挟み、さらにその外側に補強用の不織布で覆った構成とするのが一般的である。なお、周辺はヒートシール等の方法で封止される。また、これを皮膚等に貼り付けて使用する場合には、非通気性フィルム側に粘着剤層等が形成される。
【0003】
このような発熱体構造物は、その用途に応じて、所望の発熱特性(温度、時間等)が得られるように設計され、全体の構成及び個々の材質、厚さ、分量等が決められる。ここで、通気性フィルムは、発熱剤に供給する空気流量を制御し、発熱剤と空気との発熱反応を制御するために用いられる部材で、その通気量が大きすぎると、反応が急激に進み発熱温度が高くなりすぎてやけどの原因となり、逆に、通気量が小さいと、十分な発熱は生ぜず温熱効果は得られなくなる。この理由から、現在の発熱体構造物には、多くの場合、通気量制御性の高い多孔質フィルムが用いられている。また、多孔質フィルムを所定の通気量に設定することにより、発熱温度が発熱期間中変化せず、一定に保つことが可能な発熱体構造物も開示されている(特公平6−26555号公報)。このように、通気性フィルムは発熱特性に大きく影響し、発熱体構造物を設計する上で、最も重要な構成部材である。
この多孔質フィルムは、例えば、特開昭54−43982号公報に記載されているように、所定の粒径の充填材をフィルム材料の樹脂に混合し、これを延伸して、場合によってはその後フィルム内の充填材を溶解除去して作製される。この際、多孔質フィルムの通気量は、充填材の粒径、添加量や延伸方法及び延伸率等によって定められる。
【0004】
【発明が解決しようとする課題】
しかしながら、多孔質フィルムは、通気量の制御性が高いとはいえ、その通気度にかなりのバラツキがあるのが現状である。例えば、90cm幅のシートロールの場合、通気度3000秒/100cc(ガーレ法による測定)の多孔質フィルムであっても、2000秒/100ccから7000秒/100ccまで分布するのが一般的に許容されており、時には17500秒/100ccまで分布するものもある。従って、発熱温度の設計値に対応する通気性フィルムを選んだとしても、このバラツキによって発熱温度が設計値以上に高くなる場合があり、低温やけど等の問題を起こすことにもなる。そこで、現実には、安全性を重視する観点から、通気度バラツキの上限側(高通気度)を基準に設計したり、又は連続して使用する時間の制限等、使用条件に制限を加えて安全性を保っている。その結果、低温やけどの問題等は回避できるものの、温熱効果が十分に得られにくいという問題がある。一方、多孔質フィルムの通気度のバラツキ自体を抑えようとすると、フィルム製造コストが大きく跳ね上がり、実用的な発熱体構造物の生産は不可能という問題がある。
【0005】
また、温熱治療の分野においては、さらに進んだ温熱治療を行うために、連続して使用できる発熱体構造物、特に就寝時にも使用できる発熱体構造物が求められているが、現状の発熱体構造物では、このような要望に応えることは困難である。それは、発熱体構造物を、寝具と身体の間にはさまれた状況で使用すると、熱の逃げ場がなくなって蓄熱が起こるにもかかわらず、発熱反応が同じ速度で継続されるため、発熱温度が設計値を大きく越えて、低温やけどを起こす危険性が高くなるからである。
【0006】
かかる現状において、本発明は、発熱体構造物の通気性シートであって、通気度にバラツキがある多孔質フィルムを用いた場合であっても、発熱温度が所定の温度以上に上昇することを抑える通気性シートを提供することを目的とする。また、発熱期間中、発熱温度の変動を小さくすることが可能な通気性シートを提供することを目的とする。さらには、多孔質フィルムを用いることなしに、安価な通気性基材を用いても、以上の効果を発揮しうる通気性シートを提供することを目的とする。
また、本発明の目的は、蓄熱が起きるような使用状況であっても、それに起因する発熱温度の上昇を抑え、しかも高い温熱効果を奏する発熱体構造物を提供することにある。
さらに、本発明は、使用中の温度上昇に伴って通気度が低下する通気性シートを提供することを目的とし、発熱体構造物以外の用途(例えば、野菜等の鮮度保持フィルム、紙おむつ等)においても、それらの特性、使用性等を改善する通気性シートを提供することを目的とする。
【0007】
【課題を解決するための手段】
従来の問題点を解決し、上記目的を達成すべく完成した本発明の通気性シートは、通気性基材の表面に水溶性高分子を含む層を形成してなることを特徴とする。また、本発明の通気性シートは、2枚の通気性基材の間に水溶性高分子を介在させたことを特徴とする。
かかる構成とすることにより、水分が水溶性高分子の層に供給されるのであればどのような系であっても、温度が上昇すると水溶性高分子がこの水分に溶解しはじめて、その溶液が通気性基材の通気孔を塞いで通気度を低下させることになる。即ち、温度により通気度を低下させることが可能となる。
本発明の発熱体構造物は、上記本発明の通気性シートを用いたことを特徴とする。通気性シートの一部に水溶性高分子を設けることにより、通気性基材の通気量が、部分的又は全体として、所望の発熱温度に相当する通気量よりも大きい場合であっても、発熱剤部で蒸発しシート内で凝縮した水と水溶性高分子との作用により、通気性シートの通気量を上記通気量以下に減少させることができ、発熱体の発熱温度が所望の温度以上に上昇することを防止することが可能となる。さらには、発熱期間中、発熱温度の変動が小さく、安定した発熱特性を得ることができる。
【0008】
【発明の実施の形態】
本発明の通気性シート及び発熱体構造物その他の応用について、その実施の形態を以下に詳細に説明する。
(通気性シート)
本発明の通気性シートは、図1(a)に示したように、2枚の通気性基材と、その間に形成された水溶性高分子とから構成される。あるいは、図1(b)に示すように、通気性基材の表面に水溶性高分子の層を形成したものである。
ここで、通気性基材とは、気体を透過させるものであれば材質及び形態に特に制限はなく、例えば、種々の合成樹脂の多孔質フィルム、有孔フィルム、不織布等を用いることができる。また、図1(a)の場合、2枚の通気性基材は別個のものを用いても、同じものを用いても良い。
水溶性高分子とは、水に溶解する高分子であり、水に対して種々の溶解度を有する高分子が、発熱体の設計発熱温度等に対応して適宜選択される。具体的には、ポリビニールアルコール(PVA)、ポリエチレングリコール(PEG)、ポリエチレンオキサイド、ヒドロキシプロピルメチルセルロース、ゼラチン等が好適に用いられ、PVAの場合、重合度が200〜3000程度のもの、PEGの場合、分子量が4000〜10000のものが好ましい。これらの水溶性高分子は、同じ分子量の単体であっても、種々の分子量の混合体であってもよく、さらには、水溶性高分子以外の物質との混合物であっても良く、上記設計発熱温度に応じて選択される。例えば、感温性ゲル(サーモゲル)を水溶性高分子に混合させてもよい。
【0009】
図1(a)に示す通気性シートは、2枚の通気性基材の間に水溶性高分子からなる不織布、織布、多孔質フィルム、有孔性フィルム、粉体(粒体)等を挟み、接着剤やヒートシール等公知の方法で、2枚の基材を固定して作製する。あるいは、水溶性高分子自体を熱溶融させ接着固定させても良い。
また、従来の不織布と多孔質フィルムとからなる通気性シートの生産方法を応用することができる。例えば、水溶性高分子が熱溶融性である場合、水溶性高分子とSIS(スチレンイソプレン共重合体)のような熱溶融性樹脂等とを所定の割合に混合、溶融させ、メルトブロー方式又はパターン塗工により、通気性基材を貼り合わせて作製することができる。この場合は、混合比、塗工厚によってはシ−トの通気を遮断してしまう場合があるので、材料及びその混合比の適正化とともに、パターン塗工方法を用いるのが好ましい。
また、水溶性高分子の水溶液にアクリル樹脂等を分散させたエマルジョンの塗工液を用いて通気性基材を貼り合わせ、その後乾燥させて作製することもできる。この場合は、乾燥後は被覆層に通気性があるため全面に塗布しても、特に問題はない。逆に、アクリル樹脂やウレタン樹脂を有機溶剤に溶かした溶液に水溶性高分子を分散させ、この塗工液で通気性基材を貼り合わせてもよい。
【0010】
図1(b)に示す構成の通気性シートは、通気性基材の表面に、図1(a)の場合と同様に、水溶性高分子を溶融させて塗工する方法、水溶液として塗工する方法、溶剤に分散させて塗工する方法等を用いることができる。いずれの場合も、水溶性高分子単体で用いても良いし、上記したようにSISやアクリル樹脂等の混合物であっても良い。また、粉体、フィルム、不織布等を適当な接着剤等で固定しても良い。
【0011】
(発熱体構造物)
本発明の発熱体構造物は、本発明の通気性シートを用いたものであれば、従来の発熱体シート、使い捨てカイロ等の発熱体構造物に用いられるどのような構成の発熱体であっても良い。例えば、図1(c)に示すように、本発明の通気性シートと非通気性シートとの周辺を貼り合わせ、袋材とし、この中に発熱剤を封入し、非通気製シート側に粘着剤を形成し、皮膚や、衣類等に貼り付けて使用するものが挙げられる。通気性シートおよび非通気性シートの表面はさらに不織布で覆うような構成であっても良い。なお、図1(b)の構成の通気性シートを用いる場合は、水溶性高分子の層を発熱剤側に配置する。
本発明で用いられる発熱剤としては、使い捨てカイロ、発熱シート等の発熱体構造物の用途に用いられる発熱剤であり、水分を含有するものであればどのような発熱剤を用いても良い。例えば、鉄粉等の金属粉と水との必須成分の他、活性炭や塩化ナトリウムの発熱助剤等を配合したものが好適に用いられる。
【00012】
発熱体構造物は、前述したように、少なくとも通気性基材と水溶性高分子とで構成した通気性シートを用いることにより、通気量が所望の発熱温度に適した値より大きい通気性基材を用いた場合であっても、発熱温度を所定の温度以上に上昇させないように制御することができる。また、用いる水溶性高分子の溶解度が大きくなるほど、発熱温度は低くなる傾向があることから、適正な高分子を選択することにより発熱温度を所望の値に調節することが可能となる。
従って、通気量のバラツキがあっても、水溶性高分子を適正に選択することにより、同じ発熱温度を得ることができ、より安全で、かつ生じた熱を温熱治療により効果的に活用できる発熱体構造物を提供することが可能となる。さらには、蓄熱による低温やけどの問題から使用が制限されていた就寝時でも使用可能な発熱体構造物を実現することが可能となる。
【0013】
さらに、本発明の発熱体構造物は、発熱温度の時間変動が小さく、長時間にわたり発熱温度を一定に保つことができる。これは、従来温度を一定に維持するためには、ガーレ換算値で15000秒/100cc 程度の低い通気量の多孔質フィルムを用いる必要があったが、本発明により、安価な通気量の大きい多孔質フィルム及びその他の通気性基材を用いることができ、発熱体構造物の大幅なコストダウンを図ることができる。
【0014】
以上のように、本発明の通気性シ−トを用いることにより、発熱温度の上昇を抑えることができる理由及び一定した発熱温度が得られる理由については、現在のところ明らかではなく、今後の検討課題であるが、本発明者は次のように考えている。
発熱体は、発熱剤と通気性シ−トを通って外部から供給される酸素との反応により発熱する。従って、単位時間あたりの発熱量(即ち、反応速度)は、酸素の供給速度、即ち通気性シートの通気度により定まり、通気量が大きいほど発熱量が大きくなり、その結果最高温度も上昇する。一方、発熱により、発熱剤に含まれる水は蒸発し、通気性シート周辺において凝縮と再蒸発を繰り返して外部に放出されると考えられる。ここで、本発明の発熱体では、水蒸気が外部に放出される経路に水溶性の高分子が設けられているため、水蒸気が凝縮すると、この凝縮水に高分子が溶解して再蒸発しにくくするととともに、この粘性の高い溶液が通気性シートの通気孔を塞ぎ、通気度を減少させるものと考えられる。そして、高分子の溶解度が大きいほど発熱温度が低くなるのは、高分子の凝縮水への溶解がより迅速に(低温で)起こり、短時間で上記現象が起こるためと考えられる。
一方、温度が一定に保たれるのは、その温度で通気量が一定に保たれているためと考えられることから、例えば、通気孔を塞ぐ上記溶液が圧力調整バルブのような役割を果たしていると考えることができる。即ち、通常、発熱体内部は負圧状態にあり、溶液は表面張力でこの圧力差に抗して通気孔を塞いでいる。しかし、酸素が消費されて負圧の程度が大きくなると、溶液が内部に引き入れられて通気孔が開いて酸素が導入され、圧力差が小さくなると再び溶液が通気孔を塞ぐというメカニズムである。
【0015】
(その他の応用)
以上は、発熱体構造物及びそれに用いる通気性シートについて述べてきたが、本発明の通気性シートは、水分が供給される系であれば、これに限らず種々の用途に応用することができる。即ち、所定温度で水溶性高分子が水に溶け始め、溶けた溶液が通気性シートの通気孔を塞ぐことを利用した種々の用途に適用される。
【0016】
一例として、野菜等の保存に用いる鮮度保持フィルムへの応用について説明する。
野菜等は、鮮度保持フィルム(通気性フィルム)で作られた袋に入れられ、5〜10℃程度の温度で貯蔵される。このような低温環境で貯蔵することにより野菜の呼吸活動が抑えられ、鮮度をより長く保つことができる。しかし、運搬や販売の際には、温度が上昇するため、野菜の呼吸量及び水分の蒸発量は増加し、鮮度は急激に低下してしまう。
一方、本発明の通気性シートを用いて野菜収納袋を作製した場合は、温度が上昇しても、野菜鮮度の低下を抑制することができる。これは、収納袋の材料として、通気性基材の表面もしくは2枚の通気性基材の間に水溶性高分子の層を設けた本発明の通気性シートを用いるため、周辺温度が上昇すると、水溶性高分子が野菜等から蒸発してシート表面に凝縮した水に溶解し始め、その溶液が通気孔を塞いで通気度を低下させる結果、野菜等の過度の呼吸及び水分の蒸散が抑えられるためと考えられる。
この場合の水溶性高分子としては、発熱体構造物の場合とは異なり、低温で溶解する高分子が用いられる。例えば、温熱治療等に用いられる発熱体構造物の場合には、30℃程度で水に溶解し始める水溶性高分子が好適に用いられるが、野菜等の鮮度維持フィルムとしては、5〜10℃程度以上で溶解し始める水溶性高分子が好適に用いられる。
【0017】
本発明の通気性シートは、使い捨ての紙おむつにも好適に適用できる。紙おむつは、多量の水を吸収可能な吸水性ポリマーと通気性シートとからなり、排泄後も肌が濡れることはなく、また、通気性もあることから、排泄前後のいずれもむれや濡れによる不快感がなく、しかも後の処理が容易であることから、従来の布製おむつは完全に紙おしめに置き換えられつつある。その一方で、排泄前後の使用感に変化がないことから、乳幼児のおしめからパンツへの移行の遅れ及びその訓練が容易でないという問題点も指摘されている。
本発明の通気性シートを用いることにより、乳幼児に排泄の意識、自立心を持たせるのに役立つ紙おむつを提供することができる。即ち、排泄後も水分は吸水性ポリマーに吸収されるため、後の処理は容易であるが、ある程度の違和感、むれの不快感が起こり、乳幼児にその違いを自覚させることができ、パンツへの移行を早めることができる。この場合は、排泄による水分が通気性シートの水溶性高分子を溶解させて通気孔を塞ぎ、それにより水蒸気の通気量を低下させるため、むれ等の不快感が残るためと考えられる。
【0018】
【実施例】
以下に実施例をあげて本発明の通気性シート及び発熱体をより詳細に説明する。
(実施例1)
図2(a)に示す構成の発熱体シートを以下の手順に従って作製した。
まず、ポリプロピレン不織布(出光石油化学製EW2070)、ポリエチレン多孔質フィルム(トクヤマ製PL30;JIS P8117に基づく通気度3000秒/100cc)、ポリビニルアルコール(PVA)不織布(クラレ製クラロンK−II WN5)、及びポリエステル不織布でラミネートしたポリエチレン非通気フィルム(旭化成製E01040)をいずれも90mmx70mmの大きさに切断し、図に示す順に重ね合わせ、3辺の周辺を3mm幅で熱融着した。
【0019】
次に、鉄粉(パウダーテック製NRD−3K)58.65%(重量%、以下同じ)、吸水性高分子(三洋化成製ST−571)3.45%、NaCl3.45%、活性炭(キャスラー工業製FY−1)5.86%及び水28.59%からなる混合粉体15gを多孔質フィルムとポリエチレン非通気フィルムの間に入れ、3mm幅で熱融着して、本実施例の発熱体シートを作製した。
一方、比較のため、PVA不織布を除いた以外は本実施例と同様にして発熱体を作製した(比較例1)。
なお、本実施例で用いたPVA不織布の通気度は、一応の目安としてガーレ法で測定したところ1秒/100cc以下であり、通気性シート全体の通気度に影響しないことを確認した。
【0020】
発熱体シート裏面(非通気フィルム側)の中央に熱電対(RKC製ST−50)を取り付け、これを厚さ1cmのポリウレタン板上に置き、発熱温度の変化を測定した。結果を図3に示す。
図3から明らかなように、比較例1の発熱体は79℃まで温度が上昇するのに対し、本実施例の発熱体は、最高温度が70℃に抑えられ、しかもその温度が長時間安定して維持されることが分かった。
このように比較例1と実施例1は、初期状態の通気度は同じであるにもかかわらず、水溶性高分子を介在させることにより、発熱の最高温度が抑えられることが分かった。
なお、発熱が終了し、冷却した後、発熱体を分解し、通気性シートを観察したところ、水溶性高分子不織布は溶解しており、2枚の多孔質フィルムは接着されていることが分かった。
【0021】
(実施例2、3)
実施例1のPVA不織布の代わりにPVA粒子を用いた以外は実施例1と同様にして発熱体シートを作製した。
ここで、PVA粒子としては、重合度500のPVA(クラレ製クラレポバールPVA−205)及び重合度1700のPVA(クラレポバールPVA−217)を用い、それぞれ6gを多孔質フィルム間に詰めて、2種類の発熱体シートを作製した(実施例2及び3)。なお、粒子の粒径はいずれも16メッシュ以下である。
実施例1と同様にして測定した発熱特性を図3に示す。実施例2,3の発熱体の最高温度は、それぞれ66℃及び74℃となり、実施例1の場合と同様に、通気性基材の通気度に相当する発熱温度よりも、大幅に低い温度に抑えられるとともに、長時間安定な発熱が得られることが分かる。
【0022】
また、重合度が小さいPVA粒子を用いた発熱体(実施例2)の方が、重合度の大きい場合(実施例3)に比べて、発熱最高温度は低くなることが分かった。これは、重合度、即ち分子量の小さい方が水に対する溶解度が大きく、より低い温度で溶解し、多孔質フィルムの通気孔を塞いで適正な通気量にしたためと考えられる。このことは、水に対する溶解度の異なる種々の水溶性高分子を選択すれば、発熱体の最高温度を制御することが可能なことを示している。
冷却後、いずれの発熱体も、粒子が溶解して透明な皮膜状となり、外気側の多孔質フィルムに部分的に接合しているのが観察された。
【0023】
(実施例4)
実施例2のPVA粒子の代わりに、粒子径180μm以下のポリエチレングリコール(PEG)粒子(三洋化成製PEG−6000P)を用いて、実施例2と同様の発熱体を作製し、発熱特性を測定した。この結果も図3に示す。本実施例では、最高温度が55℃に抑えられ、しかも12時間にわたり、温度は一定の値に維持された。
【0024】
(実施例5)
PVA不織布の代わりに、PVAフィルムを用いた以外は、実施例1と同様にして発熱体シートを作製し、その発熱特性を測定した。
ここで、PVAフィルムは、次のようにして作製した。まず、PVA粒子(PVA−205)3gを温水に溶解させ、これを140mmx100mmの容器に移し、水分を蒸発させて作製した。得られたフィルムは、厚さ170μm、3.1gであり、これに1mm径の穿孔を5mmピッチので千鳥状(1cm2内に8個)に形成した。このように作製したPVAフィルムの通気度は、1秒/100cc以下で、通気性シート全体の通気度には影響しないものであった。
発熱特性は、図4に示したとおりであるが、水溶性高分子はフィルムであっても、最高温度を制御することが可能であることが分かる。
【0025】
(実施例6)
本実施例では、図2(b)に示す構成の通気性シートを用い発熱体を作製した。通気性シートは、ポリプロピレン不織布(出光石油化学製EW2070)、水溶性高分子フィルム及び多孔質フィルム(PL30)から構成される。ここで、水溶性高分子フィルムは、PVA粒子(PVA−205)3gとPEG粒子(PEG−6000P)0.5gとを用い、実施例5と同様にしてフィルムを作製し、同様の穿孔を形成したものである。測定した発熱特性を図4に示す。本実施例の発熱体の最高温度は64℃に制限され、多孔質フィルム1枚の系でも、最高温度を制御することが可能であることが分かる。
【0026】
(実施例7−9)
多孔質フィルムとして、通気度800sec/100ccのフィルム(トクヤマ製PN30)を用いた以外は、実施例1、2、4及び比較例1と同様にして、それぞれ実施例7、8、9及び比較例2の発熱体を作製し、それぞれの発熱特性を測定した。結果を図5に示す。
図から明らかなように、通気度が極めて高い多孔質フィルムを用いた場合であっても、最高温度を下げる効果は確認され、種々の形態、溶解度の水溶性高分子を用いることにより、最高温度が制御されるとともに、種々の発熱特性が得られることが分かる。
なお、図には示していないが、実施例9の発熱体は、40℃の温度で22時間、発熱を保持した。
【0027】
(実施例10)
本実施例では、図2(c)に示すように、多孔質フィルムを用いずに、不織布のみを通気性基材として用い、通気性シートを構成し、発熱体を作製した。
即ち、本実施例の通気性シートは、2枚のポリプロピレン不織布(EW2070)の間に、水溶性高分子粒子を介在させたものである。水溶性高分子としては、PVA粒子(PVA−205)3gとPEG粒子(PEG−6000P)3gとの混合粒子を用いた。また、比較のため、水溶性高分子粒子を除いた以外は本実施例と同様にして発熱体を作製した(比較例3)。なお、不織布の通気度測定をガーレ法により試みたが、通気度は大きすぎて測定できなかった。
作製した発熱体の発熱特性を図6に示す。図から明らかなように、従来の発熱体では不可欠な多孔質フィルムを用いなくても、発熱温度の上昇を抑えることができ、しかも安定した温度を長時間維持できることから、本発明の通気性シート及び発熱体構造物の構成が、発熱特性の制御に極めて優れていることが分かる。
冷却後、発熱体を破いて観察したところ、粒子は溶解し一体化して光沢のある板状となり、不織布に接合していることが分かった。
【0028】
(実施例11)
レーヨン不織布(シンワ社製7140)の表面に加熱溶融した水溶性ホットメルト接着剤(日本エヌエヌシー社製9190−149C)を15g/m2となるようにスプレー塗工し、その上にポリエチレン多孔質フィルム(PL30)を重ねて、通気性フィルムを作製した(実施例11)。一方、比較のため、上記水溶性ホットメルト接着剤の代わりに非水溶性のポリオレフィン系ホットメルト接着剤(日本エヌエヌシー社製ME−6)を用い、これを15g/m2、スプレー塗工し、同様にして通気性シートを作製した(比較例4)。
このようにして作製した通気性シートの通気度は、いずれもほぼ9000秒/100ccであった。
これらの通気性シートとポリエステル不織布でラミネートしたポリエチレン非通気フィルム(旭化成製E01040)とを用い、実施例1と同様にして発熱体シートを作製して発熱特性を測定した。結果を図7に示す。
図7から明らかなように、熱溶融型の水溶性高分子を用いた場合も、上記実施例と同様に、優れた発熱特性を示すことが分かる。
【0029】
以上の実施例では、図2に示す構成の発熱体構造物について述べてきたが、本発明はどのような構成の構造物ものでもよい。また、非通気性フィルム側の不織布を省いても、粘着剤層を形成してもよいことは言うまでもない。
【0030】
【発明の効果】
本発明により、通気度にバラツキがある多孔質フィルムや、通気度が大きくそのままでは実用に供せない通気基材を用いた場合であっても、水溶性高分子を配することにより、発熱温度を所定の温度以下に制御するとともに、その温度を発熱期間中一定に保つことが可能となる。その結果、従来困難といわれた就寝時にも使用可能な発熱構造物が実現されるとともに、温熱治療を一層効果的に行うことが可能となる。さらには、安価な通気性基材を用いることができることから、発熱体構造物のコストダウンに大きく貢献する。
さらに、本発明の通気性フィルムにより、周辺温度が上昇しても、野菜等の鮮度保持能力の低下を抑制する鮮度保持フィルムを実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の通気性シート及び発熱体構造物の一構成例を示す模式図である。
【図2】 実施例の発熱体構造物の構成を示す模式図である。
【図3】発熱体構成物の発熱特性を示すグラフである。
【図4】発熱体構成物の発熱特性を示すグラフである。
【図5】発熱体構成物の発熱特性を示すグラフである。
【図6】発熱体構成物の発熱特性を示すグラフである。
【図7】発熱体構成物の発熱特性を示すグラフである。
【図8】 従来の発熱体構造物の一構成例を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a breathable sheet and a heating element structure, and more particularly to a breathable sheet that is applied to various uses such as a heating element structure and has a permeability that varies with temperature.
[0002]
[Prior art]
The prior art according to the present invention will be described below by taking a heating element structure and a breathable film thereof as examples.
In recent years, various heating element structures have been widely used for the treatment of stiff shoulders, neuralgia, myalgia, etc. or the promotion of percutaneous absorption of drugs. As shown in FIG. 8, such a heating element structure is sandwiched between a breathable film having a predetermined ventilation amount and a non-breathable film that generates heat upon contact with air, and is further reinforced on the outside thereof. Generally, it is configured to be covered with a non-woven fabric. The periphery is sealed by a method such as heat sealing. Moreover, when using this by affixing on skin etc., an adhesive layer etc. are formed in the non-breathable film side.
[0003]
Such a heating element structure is designed so as to obtain desired heat generation characteristics (temperature, time, etc.) according to its application, and the overall configuration and individual materials, thickness, quantity, etc. are determined. Here, the breathable film is a member used to control the flow rate of air supplied to the heat generating agent and to control the exothermic reaction between the heat generating agent and the air. The heat generation temperature becomes too high, resulting in burns. Conversely, if the air flow rate is small, sufficient heat generation will not occur and the thermal effect cannot be obtained. For this reason, porous films with high air flow rate controllability are often used in current heating element structures. Further, there is also disclosed a heating element structure in which the heat generation temperature does not change during the heat generation period and can be kept constant by setting the porous film to a predetermined air flow rate (Japanese Patent Publication No. 6-26555). ). As described above, the air permeable film greatly affects the heat generation characteristics, and is the most important component in designing the heating element structure.
For example, as described in JP-A No. 54-43982, this porous film is prepared by mixing a filler having a predetermined particle diameter with a resin of a film material, and stretching it. It is produced by dissolving and removing the filler in the film. At this time, the air permeability of the porous film is determined by the particle size of the filler, the added amount, the stretching method, the stretching ratio, and the like.
[0004]
[Problems to be solved by the invention]
However, even though the porous film has a high controllability of the air flow rate, there is a considerable variation in the air permeability. For example, in the case of a sheet roll having a width of 90 cm, even a porous film having an air permeability of 3000 seconds / 100 cc (measured by the Gurley method) is generally allowed to be distributed from 2000 seconds / 100 cc to 7000 seconds / 100 cc. Sometimes distributed up to 17500 seconds / 100 cc. Therefore, even if a breathable film corresponding to the design value of the heat generation temperature is selected, this variation may cause the heat generation temperature to be higher than the design value, causing problems such as low temperature burns. Therefore, in actuality, from the viewpoint of emphasizing safety, design is made based on the upper limit side (high air permeability) of the air permeability variation, or restrictions are imposed on the use conditions such as restriction of continuous use time. It is safe. As a result, the problem of low-temperature burns can be avoided, but there is a problem that it is difficult to obtain a sufficient thermal effect. On the other hand, if it is attempted to suppress the variation in the air permeability of the porous film itself, there is a problem that the film manufacturing cost greatly increases, and it is impossible to produce a practical heating element structure.
[0005]
In addition, in the field of thermotherapy, there is a need for a heating element structure that can be used continuously, particularly a heating element structure that can be used at bedtime, in order to perform further advanced thermotherapy. In a structure, it is difficult to meet such a demand. When the heating element structure is used between the bedding and the body, the exothermic reaction continues at the same rate even though there is no heat escape and heat storage occurs. This is because there is a high risk of low temperature burns that greatly exceeds the design value.
[0006]
Under such circumstances, the present invention is a breathable sheet of a heating element structure, and even when a porous film having a variation in air permeability is used, the heat generation temperature rises above a predetermined temperature. It aims at providing the breathable sheet which suppresses. It is another object of the present invention to provide a breathable sheet that can reduce fluctuations in heat generation temperature during the heat generation period. Furthermore, it aims at providing the air permeable sheet which can exhibit the above effect, even if it uses an inexpensive air permeable base material, without using a porous film.
It is another object of the present invention to provide a heating element structure that suppresses an increase in heat generation temperature caused by the heat use even in a usage situation where heat storage occurs, and exhibits a high heat effect.
Furthermore, an object of the present invention is to provide a breathable sheet whose air permeability decreases with an increase in temperature during use, and uses other than heating element structures (for example, freshness-keeping films such as vegetables, paper diapers, etc.) The purpose of the present invention is to provide a breathable sheet that improves the characteristics, usability, and the like.
[0007]
[Means for Solving the Problems]
The breathable sheet of the present invention completed to solve the conventional problems and achieve the above object is characterized in that a layer containing a water-soluble polymer is formed on the surface of the breathable substrate. The breathable sheet of the present invention is characterized in that a water-soluble polymer is interposed between two breathable substrates.
By adopting such a configuration, as long as water is supplied to the water-soluble polymer layer, the water-soluble polymer begins to dissolve in the water as the temperature rises, and the solution The air permeability is lowered by closing the air holes of the air permeable substrate. That is, the air permeability can be lowered depending on the temperature.
The heating element structure of the present invention is characterized by using the air-permeable sheet of the present invention. By providing a water-soluble polymer in a part of the breathable sheet, even if the ventilation rate of the breathable substrate is partially or as a whole larger than the ventilation rate corresponding to the desired heating temperature, it generates heat. Due to the action of the water evaporated in the agent part and condensed in the sheet and the water-soluble polymer, the air flow rate of the air permeable sheet can be reduced below the above air flow rate, and the heat generation temperature of the heating element exceeds the desired temperature. It is possible to prevent the rise. Furthermore, during the heat generation period, the heat generation temperature varies little and stable heat generation characteristics can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the breathable sheet, the heating element structure and other applications of the present invention will be described in detail below.
(Breathable sheet)
As shown in FIG. 1A, the breathable sheet of the present invention is composed of two breathable substrates and a water-soluble polymer formed therebetween. Alternatively, as shown in FIG. 1B, a water-soluble polymer layer is formed on the surface of the breathable substrate.
Here, the breathable substrate is not particularly limited as long as it allows gas to permeate, and for example, various synthetic resin porous films, perforated films, nonwoven fabrics, and the like can be used. In the case of FIG. 1A, the two breathable substrates may be used separately or the same.
The water-soluble polymer is a polymer that dissolves in water, and polymers having various solubility in water are appropriately selected according to the design heat generation temperature of the heating element. Specifically, polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyethylene oxide, hydroxypropylmethylcellulose, gelatin and the like are suitably used. In the case of PVA, those having a polymerization degree of about 200 to 3000, in the case of PEG The molecular weight is preferably 4000 to 10,000. These water-soluble polymers may be simple substances having the same molecular weight, may be a mixture of various molecular weights, and may be a mixture with a substance other than the water-soluble polymer. It is selected according to the heat generation temperature. For example, a temperature-sensitive gel (thermogel) may be mixed with a water-soluble polymer.
[0009]
The breathable sheet shown in FIG. 1 (a) includes a nonwoven fabric, a woven fabric, a porous film, a porous film, a powder (particles) and the like made of a water-soluble polymer between two breathable substrates. Two substrates are fixed and produced by a known method such as sandwiching, adhesive, heat sealing, or the like. Alternatively, the water-soluble polymer itself may be heat-melted and bonded and fixed.
Moreover, the production method of the breathable sheet which consists of the conventional nonwoven fabric and a porous film is applicable. For example, when the water-soluble polymer is heat-meltable, a water-soluble polymer and a heat-meltable resin such as SIS (styrene isoprene copolymer) are mixed and melted at a predetermined ratio to obtain a melt blow method or pattern. By coating, a breathable substrate can be bonded together. In this case, depending on the mixing ratio and coating thickness, there is a case where the ventilation of the sheet may be blocked. Therefore, it is preferable to use the pattern coating method together with optimization of the material and the mixing ratio.
Alternatively, a breathable substrate can be bonded using an emulsion coating liquid in which an acrylic resin or the like is dispersed in an aqueous solution of a water-soluble polymer and then dried. In this case, there is no particular problem even if the coating layer is applied to the entire surface after drying because the coating layer has air permeability. Conversely, the water-soluble polymer may be dispersed in a solution obtained by dissolving an acrylic resin or a urethane resin in an organic solvent, and the breathable substrate may be bonded with this coating solution.
[0010]
The breathable sheet having the structure shown in FIG. 1 (b) is coated as a water solution on the surface of the breathable substrate by melting a water-soluble polymer and coating the same as in FIG. 1 (a). And a method of coating by dispersing in a solvent can be used. In either case, the water-soluble polymer alone may be used, or a mixture of SIS, acrylic resin, or the like as described above. Further, powder, film, nonwoven fabric, etc. may be fixed with an appropriate adhesive or the like.
[0011]
(Heating element structure)
The heating element structure of the present invention is a heating element having any configuration used for a heating element structure such as a conventional heating element sheet or a disposable body warmer as long as the breathable sheet of the present invention is used. Also good. For example, as shown in FIG. 1 (c), the periphery of the breathable sheet and the non-breathable sheet of the present invention are bonded together to form a bag material, and a heat generating agent is enclosed therein, and the non-breathable sheet side is adhered. An agent is formed and used by being attached to the skin or clothing. The breathable sheet and the non-breathable sheet may be further covered with a nonwoven fabric. In addition, when using the air permeable sheet of the structure of FIG.1 (b), the layer of water-soluble polymer is arrange | positioned at the heat generating agent side.
As a heat generating agent used by this invention, it is a heat generating agent used for the use of heating element structures, such as a disposable body warmer and a heat generating sheet, and what kind of heat generating agent may be used if it contains a water | moisture content. For example, in addition to the essential components of metal powder such as iron powder and water, a mixture of activated carbon or sodium chloride heat generation aid is preferably used.
[00012]
As described above, the heating element structure uses a breathable sheet composed of at least a breathable substrate and a water-soluble polymer, so that the breathable substrate has a larger ventilation amount than a value suitable for a desired heat generation temperature. Even in the case where is used, the heat generation temperature can be controlled so as not to rise above a predetermined temperature. Moreover, since the exothermic temperature tends to decrease as the solubility of the water-soluble polymer used increases, the exothermic temperature can be adjusted to a desired value by selecting an appropriate polymer.
Therefore, even if there is variation in the air flow rate, it is possible to obtain the same exothermic temperature by appropriately selecting a water-soluble polymer, and it is safer, and the exotherm that can effectively use the generated heat by thermal treatment A body structure can be provided. Furthermore, it is possible to realize a heating element structure that can be used even at bedtime, where use has been restricted due to the problem of low-temperature burns due to heat storage.
[0013]
Furthermore, the heating element structure of the present invention has a small variation in the heat generation temperature with time, and can keep the heat generation temperature constant for a long time. Conventionally, in order to maintain the temperature constant, it was necessary to use a porous film having a low air flow rate of about 15000 seconds / 100 cc in terms of Gurley value. A quality film and other breathable base materials can be used, and the cost of the heating element structure can be greatly reduced.
[0014]
As described above, the reason why an increase in the heat generation temperature can be suppressed and the reason why a constant heat generation temperature can be obtained by using the breathable sheet of the present invention is not clear at present, and further investigation will be conducted. Although it is a problem, the present inventor considers as follows.
The heating element generates heat by a reaction between the exothermic agent and oxygen supplied from the outside through the breathable sheet. Therefore, the calorific value per unit time (that is, the reaction rate) is determined by the oxygen supply rate, that is, the air permeability of the breathable sheet. The larger the aeration amount, the larger the calorific value, and the higher the maximum temperature. On the other hand, it is considered that water contained in the heat generating agent evaporates due to heat generation, and is repeatedly condensed and re-evaporated around the breathable sheet and released to the outside. Here, in the heating element of the present invention, since a water-soluble polymer is provided in a path through which water vapor is released to the outside, when the water vapor is condensed, the polymer dissolves in the condensed water and is difficult to re-evaporate. At the same time, it is considered that this highly viscous solution closes the air holes of the air permeable sheet and reduces the air permeability. The reason why the exothermic temperature decreases as the solubility of the polymer increases is considered to be because dissolution of the polymer in condensed water occurs more rapidly (at a low temperature) and the above phenomenon occurs in a short time.
On the other hand, it is considered that the temperature is kept constant because the amount of ventilation is kept constant at that temperature. For example, the solution that closes the ventilation hole plays a role like a pressure regulating valve. Can be considered. That is, normally, the inside of the heating element is in a negative pressure state, and the solution blocks the vent hole against this pressure difference by surface tension. However, the mechanism is such that when oxygen is consumed and the degree of negative pressure increases, the solution is drawn into the interior and vents open to introduce oxygen, and when the pressure difference decreases, the solution again closes the vents.
[0015]
(Other applications)
The heating element structure and the breathable sheet used therefor have been described above. However, the breathable sheet of the present invention can be applied to various applications as long as it is a system to which moisture is supplied. . That is, the present invention is applied to various uses utilizing the fact that the water-soluble polymer starts to dissolve in water at a predetermined temperature and the dissolved solution closes the vent hole of the breathable sheet.
[0016]
As an example, application to a freshness-keeping film used for storage of vegetables and the like will be described.
Vegetables and the like are put in a bag made of a freshness-keeping film (breathable film) and stored at a temperature of about 5 to 10 ° C. By storing in such a low temperature environment, the respiratory activity of vegetables can be suppressed and the freshness can be kept longer. However, since the temperature rises during transportation and sales, the amount of vegetable respiration and the amount of water evaporation increase, and the freshness rapidly decreases.
On the other hand, when a vegetable storage bag is produced using the air-permeable sheet of the present invention, a decrease in vegetable freshness can be suppressed even if the temperature rises. This is because the breathable sheet of the present invention in which the water-soluble polymer layer is provided between the surface of the breathable substrate or the two breathable substrates as the material for the storage bag, the ambient temperature rises. The water-soluble polymer begins to dissolve in the water evaporated from the vegetables and condensed on the sheet surface, and the solution closes the vents and lowers the air permeability. As a result, excessive breathing and moisture transpiration of the vegetables are suppressed. It is thought that it is.
As the water-soluble polymer in this case, unlike the heating element structure, a polymer that dissolves at a low temperature is used. For example, in the case of a heating element structure used for thermotherapy or the like, a water-soluble polymer that starts to dissolve in water at about 30 ° C. is preferably used, but as a freshness maintenance film for vegetables and the like, 5 to 10 ° C. A water-soluble polymer that starts to dissolve at a degree or more is preferably used.
[0017]
The breathable sheet of the present invention can also be suitably applied to disposable paper diapers. A disposable diaper consists of a water-absorbing polymer capable of absorbing a large amount of water and a breathable sheet, so that the skin does not get wet after excretion and is breathable. The conventional cloth diaper is being completely replaced with a paper diaper because it is not pleasant and can be easily processed later. On the other hand, since there is no change in the feeling of use before and after excretion, the problem of delaying the transition from baby diapers to pants and the difficulty of training is pointed out.
By using the breathable sheet of the present invention, it is possible to provide a disposable diaper that is useful for giving infants a sense of excretion and self-reliance. That is, since water is absorbed by the water-absorbing polymer even after excretion, the subsequent processing is easy, but some discomfort and sensation of discomfort occur, which can make the infant aware of the difference, and You can speed up the transition. In this case, it is considered that the moisture due to excretion dissolves the water-soluble polymer of the breathable sheet and closes the vent hole, thereby reducing the amount of water vapor permeated, leaving uncomfortable feelings such as peeling.
[0018]
【Example】
The breathable sheet and heating element of the present invention will be described in more detail with reference to the following examples.
Example 1
A heating element sheet having the configuration shown in FIG. 2A was produced according to the following procedure.
First, a polypropylene non-woven fabric (EW2070 manufactured by Idemitsu Petrochemical Co., Ltd.), a polyethylene porous film (PL30 manufactured by Tokuyama; air permeability of 3000 seconds / 100 cc based on JIS P8117), a polyvinyl alcohol (PVA) non-woven fabric (Kuraray K-II WN5 manufactured by Kuraray), and Polyethylene non-breathable films (E01040 manufactured by Asahi Kasei Co., Ltd.) laminated with a polyester nonwoven fabric were all cut into a size of 90 mm × 70 mm, overlapped in the order shown in the figure, and the periphery of the three sides was heat-sealed with a width of 3 mm.
[0019]
Next, iron powder (NRD-3K made by Powder Tech) 58.65% (weight%, the same applies hereinafter), water-absorbing polymer (ST-571 made by Sanyo Chemical Co., Ltd.) 3.45%, NaCl 3.45%, activated carbon (Castler) Industrial FY-1) 15 g of mixed powder consisting of 5.86% and water 28.59% was put between a porous film and a polyethylene non-ventilated film and heat-sealed with a width of 3 mm to generate heat in this example. A body sheet was prepared.
On the other hand, for comparison, a heating element was produced in the same manner as in this example except that the PVA nonwoven fabric was removed (Comparative Example 1).
In addition, when the air permeability of the PVA nonwoven fabric used in this example was measured by the Gurley method as a temporary guide, it was 1 second / 100 cc or less, and it was confirmed that the air permeability of the entire air permeable sheet was not affected.
[0020]
A thermocouple (ST-50 made by RKC) was attached to the center of the back surface of the heating element sheet (non-ventilated film side), and this was placed on a polyurethane plate having a thickness of 1 cm, and the change in heat generation temperature was measured. The results are shown in FIG.
As is clear from FIG. 3, the temperature of the heating element of Comparative Example 1 rises to 79 ° C., whereas the heating element of this example has a maximum temperature of 70 ° C., and the temperature is stable for a long time. It was found that it was maintained.
As described above, it was found that, although Comparative Example 1 and Example 1 have the same initial air permeability, the maximum temperature of heat generation can be suppressed by interposing the water-soluble polymer.
After the heat generation was finished and cooled, the heating element was disassembled and the breathable sheet was observed. As a result, it was found that the water-soluble polymer nonwoven fabric was dissolved and the two porous films were bonded. It was.
[0021]
(Examples 2 and 3)
A heating element sheet was produced in the same manner as in Example 1 except that PVA particles were used in place of the PVA nonwoven fabric of Example 1.
Here, as PVA particles, PVA having a polymerization degree of 500 (Kuraray Kuraray Poval PVA-205) and PVA having a polymerization degree of 1700 (Kurarepoval PVA-217) were used, and 6 g each was packed between porous films. Various types of heating element sheets were prepared (Examples 2 and 3). In addition, the particle size of each particle is 16 mesh or less.
The heat generation characteristics measured in the same manner as in Example 1 are shown in FIG. The maximum temperatures of the heating elements of Examples 2 and 3 were 66 ° C. and 74 ° C., respectively, and the temperature was significantly lower than the heating temperature corresponding to the air permeability of the breathable substrate as in Example 1. It can be seen that long-term stable heat generation can be obtained.
[0022]
Moreover, it turned out that the exothermic body (Example 2) using the PVA particle | grains with small polymerization degree becomes low compared with the case (Example 3) with a large polymerization degree. This is presumably because the lower the degree of polymerization, that is, the molecular weight, the greater the solubility in water, the solution was dissolved at a lower temperature, and the pores of the porous film were blocked to obtain an appropriate amount of ventilation. This indicates that the maximum temperature of the heating element can be controlled by selecting various water-soluble polymers having different solubility in water.
After cooling, it was observed that in each heating element, the particles were dissolved to form a transparent film and were partially bonded to the porous film on the outside air side.
[0023]
Example 4
A heating element similar to that of Example 2 was prepared using polyethylene glycol (PEG) particles (PEG-6000P manufactured by Sanyo Chemical Industries) having a particle diameter of 180 μm or less instead of the PVA particles of Example 2, and the heat generation characteristics were measured. . This result is also shown in FIG. In this example, the maximum temperature was suppressed to 55 ° C., and the temperature was maintained at a constant value for 12 hours.
[0024]
(Example 5)
A heating element sheet was prepared in the same manner as in Example 1 except that a PVA film was used instead of the PVA nonwoven fabric, and the heat generation characteristics thereof were measured.
Here, the PVA film was produced as follows. First, 3 g of PVA particles (PVA-205) were dissolved in warm water, transferred to a 140 mm × 100 mm container, and water was evaporated. The obtained film had a thickness of 170 μm and 3.1 g, and 1 mm diameter holes were formed in a staggered pattern (8 pieces in 1 cm 2 ) at a pitch of 5 mm. The air permeability of the PVA film thus produced was 1 second / 100 cc or less and did not affect the air permeability of the entire air permeable sheet.
Although the heat generation characteristics are as shown in FIG. 4, it can be seen that even if the water-soluble polymer is a film, the maximum temperature can be controlled.
[0025]
(Example 6)
In this example, a heating element was produced using a breathable sheet having the configuration shown in FIG. The breathable sheet is composed of a polypropylene nonwoven fabric (EW 2070 manufactured by Idemitsu Petrochemical), a water-soluble polymer film, and a porous film (PL30). Here, as the water-soluble polymer film, 3 g of PVA particles (PVA-205) and 0.5 g of PEG particles (PEG-6000P) were used to produce a film in the same manner as in Example 5 to form the same perforations. It is a thing. The measured heat generation characteristics are shown in FIG. It can be seen that the maximum temperature of the heating element of this example is limited to 64 ° C., and it is possible to control the maximum temperature even in a single porous film system.
[0026]
(Example 7-9)
Examples 7, 8, 9 and Comparative Examples were the same as Examples 1, 2, 4 and Comparative Example 1 except that a porous film having a permeability of 800 sec / 100 cc (PN30 made by Tokuyama) was used as the porous film. Two heating elements were prepared and their heat generation characteristics were measured. The results are shown in FIG.
As is clear from the figure, even when using a porous film with extremely high air permeability, the effect of lowering the maximum temperature was confirmed, and by using water-soluble polymers of various forms and solubility, the maximum temperature It is understood that various heat generation characteristics can be obtained as well as being controlled.
Although not shown in the figure, the heating element of Example 9 maintained heat generation at a temperature of 40 ° C. for 22 hours.
[0027]
(Example 10)
In this example, as shown in FIG. 2 (c), without using a porous film, only a nonwoven fabric was used as a breathable base material to constitute a breathable sheet, and a heating element was produced.
That is, the breathable sheet of this example is one in which water-soluble polymer particles are interposed between two polypropylene nonwoven fabrics (EW2070). As the water-soluble polymer, mixed particles of 3 g of PVA particles (PVA-205) and 3 g of PEG particles (PEG-6000P) were used. For comparison, a heating element was produced in the same manner as in this example except that the water-soluble polymer particles were removed (Comparative Example 3). In addition, although the air permeability measurement of the nonwoven fabric was tried by the Gurley method, the air permeability was too high to be measured.
FIG. 6 shows the heat generation characteristics of the manufactured heat generator. As is clear from the figure, the breathable sheet of the present invention can suppress an increase in heat generation temperature and can maintain a stable temperature for a long time without using a porous film that is indispensable for conventional heating elements. It can be seen that the structure of the heating element structure is extremely excellent in controlling the heat generation characteristics.
After cooling, the heating element was broken and observed, and it was found that the particles were melted and integrated into a glossy plate shape and bonded to the nonwoven fabric.
[0028]
(Example 11)
A water-soluble hot-melt adhesive (9190-149C, manufactured by Nippon NC) was spray-coated on the surface of a rayon nonwoven fabric (7140, manufactured by Shinwa Co., Ltd.) at 15 g / m 2, and a polyethylene porous film was formed thereon. (PL30) was stacked to produce a breathable film (Example 11). On the other hand, for comparison, instead of the water-soluble hot melt adhesive, a water-insoluble polyolefin-based hot melt adhesive (ME-6 manufactured by Nippon NC) was used, and this was spray-coated at 15 g / m 2 . A breathable sheet was produced in the same manner (Comparative Example 4).
The air permeability of the breathable sheet thus produced was almost 9000 seconds / 100 cc.
Using these breathable sheets and a polyethylene non-breathable film (E01040 manufactured by Asahi Kasei) laminated with a polyester nonwoven fabric, a heating element sheet was produced in the same manner as in Example 1, and the heat generation characteristics were measured. The results are shown in FIG.
As can be seen from FIG. 7, even when a hot-melt type water-soluble polymer is used, as in the above example, excellent heat generation characteristics are exhibited.
[0029]
In the above embodiment, the heating element structure having the configuration shown in FIG. 2 has been described, but the present invention may have any structure. Further, it goes without saying that the pressure-sensitive adhesive layer may be formed even if the non-breathable film-side nonwoven fabric is omitted.
[0030]
【The invention's effect】
According to the present invention, even when a porous film having a variation in air permeability or a ventilation substrate having a large air permeability that cannot be put to practical use as it is, an exothermic temperature can be obtained by arranging a water-soluble polymer. Can be controlled below a predetermined temperature, and the temperature can be kept constant during the heat generation period. As a result, it is possible to realize a heat generating structure that can be used at bedtime, which has been said to be difficult in the past, and to more effectively perform the thermal treatment. Furthermore, since an inexpensive air-permeable base material can be used, it greatly contributes to the cost reduction of the heating element structure.
Furthermore, the breathable film of the present invention makes it possible to realize a freshness-holding film that suppresses a decrease in freshness-holding ability of vegetables and the like even when the ambient temperature rises.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a structural example of a breathable sheet and a heating element structure according to the present invention.
FIG. 2 is a schematic view showing a configuration of a heating element structure of an example.
FIG. 3 is a graph showing the heat generation characteristics of the heating element structure.
FIG. 4 is a graph showing the heat generation characteristics of the heating element structure.
FIG. 5 is a graph showing the heat generation characteristics of the heating element structure.
FIG. 6 is a graph showing the heat generation characteristics of the heating element structure.
FIG. 7 is a graph showing the heat generation characteristics of the heating element structure.
FIG. 8 is a schematic view showing a configuration example of a conventional heating element structure.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000304263A JP4644344B2 (en) | 1999-10-04 | 2000-10-04 | Breathable sheet and heating element structure using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28222399 | 1999-10-04 | ||
JP11-282223 | 1999-10-04 | ||
JP2000304263A JP4644344B2 (en) | 1999-10-04 | 2000-10-04 | Breathable sheet and heating element structure using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010244694A Division JP2011045743A (en) | 1999-10-04 | 2010-10-29 | Air permeable sheet and heating-element structure using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001170099A JP2001170099A (en) | 2001-06-26 |
JP4644344B2 true JP4644344B2 (en) | 2011-03-02 |
Family
ID=26554520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000304263A Expired - Lifetime JP4644344B2 (en) | 1999-10-04 | 2000-10-04 | Breathable sheet and heating element structure using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4644344B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6838930B2 (en) * | 2016-10-25 | 2021-03-03 | 株式会社ニトムズ | Bag body components, bag body, and disposable body warmers |
CN111684040B (en) | 2018-02-05 | 2022-03-18 | 菲利克株式会社 | Temperature control agent, and heat-generating composition and heat-generating material using same |
JP7684120B2 (en) * | 2021-07-09 | 2025-05-27 | 花王株式会社 | Manufacturing method of heating element and manufacturing method of heating tool |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63178141A (en) * | 1987-01-19 | 1988-07-22 | Mitsubishi Kasei Vinyl Co | Method for manufacturing water permeable film |
JP2826667B2 (en) * | 1989-09-13 | 1998-11-18 | フェリック株式会社 | Sweat-absorbing thermal structure |
JP3209591B2 (en) * | 1992-10-28 | 2001-09-17 | 東洋インキ製造株式会社 | Water disintegrable nonwoven laminate |
JP3633100B2 (en) * | 1996-04-11 | 2005-03-30 | 株式会社元知研究所 | Manufacturing method of foot heating element and foot heating element |
JP4076606B2 (en) * | 1997-09-18 | 2008-04-16 | フェリック株式会社 | Fever bag |
-
2000
- 2000-10-04 JP JP2000304263A patent/JP4644344B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001170099A (en) | 2001-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1611400B1 (en) | Self-contained personal warming apparatus | |
US20080087271A1 (en) | Heating body | |
TWI713546B (en) | Heating appliance and manufacturing method thereof | |
US20080234789A1 (en) | Thermal Device | |
JP7229049B2 (en) | heating tool | |
JPWO2006006652A1 (en) | Heating element | |
KR102456209B1 (en) | hot air balloon | |
KR20190017904A (en) | Steam Heaters and Their Use | |
JP4644344B2 (en) | Breathable sheet and heating element structure using the same | |
JP2002253593A (en) | Heating element and its producing method | |
JP2011045743A (en) | Air permeable sheet and heating-element structure using the same | |
JP2009148551A (en) | Fever bag for infusion | |
JP2000288008A (en) | Disposable body warmer | |
JPH0511985B2 (en) | ||
JP2017170114A (en) | Heating equipment | |
JP2007186626A (en) | Moldable surplus water-containing exothermic composition, exothermic element and method for producing the same | |
JP2004180959A (en) | Fragrance | |
JPH02274248A (en) | heat generating body | |
WO2019172105A1 (en) | Heating appliance | |
JP2008114053A (en) | Heating element and manufacturing method thereof | |
JPS6325486Y2 (en) | ||
JP2009084299A (en) | Excess water containing formable exothermic composition and exothermic body | |
JPS64898Y2 (en) | ||
JP3796664B2 (en) | Disposable body warmer | |
JP3852713B2 (en) | Hot miso compress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070912 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070921 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4644344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |