[go: up one dir, main page]

JP4642579B2 - 地熱採熱システム - Google Patents

地熱採熱システム Download PDF

Info

Publication number
JP4642579B2
JP4642579B2 JP2005203272A JP2005203272A JP4642579B2 JP 4642579 B2 JP4642579 B2 JP 4642579B2 JP 2005203272 A JP2005203272 A JP 2005203272A JP 2005203272 A JP2005203272 A JP 2005203272A JP 4642579 B2 JP4642579 B2 JP 4642579B2
Authority
JP
Japan
Prior art keywords
heat
flow path
pipe
geothermal
collection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005203272A
Other languages
English (en)
Other versions
JP2007024342A (ja
Inventor
正 角田
国男 水谷
哲男 貝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2005203272A priority Critical patent/JP4642579B2/ja
Publication of JP2007024342A publication Critical patent/JP2007024342A/ja
Application granted granted Critical
Publication of JP4642579B2 publication Critical patent/JP4642579B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/40Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)

Description

本発明は地熱採熱システムに関し、特に熱媒体の搬送動力を削減した地熱採熱システムに関するものである。
いわゆる地球環境問題のうち、炭酸ガスの排出量の増加に伴い、急速な気候変動が降雨パターンの変化や海水面の上昇などを招来して、人類社会に大きな影響を与えることが懸念されている。このような懸念を背景に、連続して放出される地熱を再生可能エネルギーとして利用するシステムが、自然エネルギー活用の一形態として近年採用され始めている。
地熱を利用するシステムを例示すると、地盤面下に設置された貯留水槽の側壁から地中に向かって地下帯水層と平行に層内を横方向にボーリングして掘削孔を設け、掘削孔端部に配設された熱媒分水筒に向かって熱媒を流す熱媒供給管と熱媒分水筒から導入した熱媒を流しつつ地下水の熱を採熱する採熱管とを備える多管式地中熱交換器をこの掘削孔に挿入して、熱媒循環ポンプで地中熱交換機内を熱媒循環させて地下水熱を採取し、冷暖房や給湯、融雪、消雪、農業用ビニールハウスなどの熱源として利用するシステムがある(例えば特許文献1参照)。
特開2002−147892号公報(図1、図3等)
上述のような自然エネルギーを利用した地熱利用システムにおいて、さらに消費エネルギーを削減することができればより地球環境保全に資することとなる。例えば、上述のシステムにおいて、地中熱交換器内に熱媒を循環させる熱媒循環ポンプを省略することができればさらなる省エネルギーに資することとなる。
本発明は上述の課題に鑑み、熱媒体の搬送動力を削減した地熱採熱システムを提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明に係る地熱採熱システムは、例えば図1に示すように、地盤面下Gに設けられ、第1の熱媒体M1を収容する地中容器15と;第1の熱媒体M1を流す内部流路11rと、内部流路11rを収容するように配設され、内部流路11rの外側を内部流路11r内の流れ方向とは逆向きに第1の熱媒体M1を流す外部流路12rと、を有する熱交換流路10とを備え;熱交換流路10が、水平に又は地中容器15から見て先下り勾配を有するように地盤面下Gに配設されている。
このように構成すると、外部流路を流れる第1の熱媒体の熱と地中の熱との間で熱交換が行われ、第1の熱媒体の密度が変化することにより第1の熱媒体が対流する。したがって、動力を用いなくても地熱を採熱することができる。
また、請求項2に記載の発明に係る地熱採熱システムは、例えば図2に示すように、請求項1に記載の地熱採熱システムにおいて、熱交換流路10を複数備え;熱交換流路10が、水平投影面上で放射状に配設されている。
このように構成すると、外部流路を流れる第1の熱媒体の熱と地中の熱との間で熱交換が行われる際の伝熱面積が増大し、地熱の採熱量が増加する。
また、請求項に記載の発明に係る地熱採熱システムは、例えば図9に示すように、熱交換流路10(16、17)よりも下部の地下水Wuを流す揚水流路21と;地下水Wuを揚水する揚水ポンプ22と;揚水した地下水Wuを熱交換流路10よりも上部で散水する散水流路25とを備えている。
このように構成すると、熱交換流路まわりの地下水が流動して第1の熱媒体と熱交換を行った地下水が置換され、第1の熱媒体の熱と地中の熱との間で行われる熱交換効率が向上する。
また、請求項に記載の発明に係る地熱採熱システムは、例えば図1に示すように、請求項1又は請求項に記載の地熱採熱システムにおいて、熱交換流路10が、外部流路12rの断面積が内部流路11rの断面積よりも大きくなるように構成されている。
このように構成すると、第1の熱媒体の流速が内部流路内よりも外部流路内の方が遅くなり、外部流路を流れる第1の熱媒体の熱と地中の熱との単位流量当たりの交換熱量を増加させることができる。
また、請求項に記載の発明に係る地熱採熱システムは、例えば図1に示すように、請求項1乃至請求項のいずれか1項に記載の地熱採熱システムにおいて、内部流路11rの一端11aが、地中容器15内の第1の熱媒体M1の深さの1/2より深い位置で開放され;外部流路12rの一端12aが、内部流路11rの一端11aが開放される位置よりも上方で開放されて構成されている。
このように構成すると、地中容器内で温度成層が形成され、2次側での熱の利用がしやすくなる。ここで、2次側で利用される熱は、温熱又は冷熱である。
また、請求項に記載の発明に係る地熱採熱システムは、例えば図3及び図4に示すように、請求項1乃至請求項のいずれか1項に記載の地熱採熱システムにおいて、内部流路11rの一端11a又は外部流路12の一端12aが、第1の熱媒体M1を搬送する搬送機器31、32に接続されている。
このように構成すると、地中との熱交換が行われて間もない第1の熱媒体を2次側で利用することができ、熱損失が少なくなる。
また、請求項に記載の発明に係る地熱採熱システムは、例えば図5に示すように、請求項1乃至請求項のいずれか1項に記載の地熱採熱システムにおいて、内部流路11rの一端11a及び外部流路12の一端12aが、ヒートポンプチラー34に接続されて構成されている。
このように構成すると、採熱した地熱を動力を用いずにヒートポンプチラーに供給して冷水又は温水を製造することが可能になる。
また、請求項8に記載の発明に係る地熱採熱システムは、例えば図6に示すように、請求項1乃至請求項のいずれか1項に記載の地熱採熱システムにおいて、第1の熱媒体M1とは別の第2の熱媒体M2に対し加熱及び冷却の少なくとも一方を行う熱源機器35と;地中容器15の内部に設置された熱源機器35の屋外機36と;屋外機36の上部の地中容器15の内部に設置され、内部流路11rの一端11aが吐出側に接続された送風機38とを備え;外部流路12rの一端12aが、屋外機36に形成された空気導入口36aの高さ以下の地中容器15内で開放されている。
このように構成すると、地中の熱と熱交換した第1の熱媒体を屋外機に供給することができ、熱源機器の効率を向上させることができる。
また、請求項9に記載の発明に係る地熱採熱システムは、例えば図7に示すように、請求項1又は請求項に記載の地熱採熱システムにおいて、熱交換流路10に代えて、一部分が地中容器15の内部に配設されたヒートパイプ16を備えている。
このように構成すると、動力を用いなくても地熱を採熱することができる。特にヒートパイプ内に二相の作動媒体を封入した場合は、潜熱を利用することが可能となり、交換熱量が増大する。
また、請求項10に記載の発明に係る地熱採熱システムは、例えば図8に示すように、請求項9に記載の地熱採熱システムにおいて、前記ヒートパイプが、外部通路19と外部通路19に収容された内部通路18とを有し、内部通路18の一端18aと外部通路19の一端19aとが地中容器15の内部で接続され、外部通路19の他端19bが閉塞され、内部通路18の他端18bが外部通路19の内部で開放されることにより循環流路を形成するように構成されている。
このように構成すると、循環流路を形成するので、密度が異なる作動媒体が混合することがなく、混合損失が生じないため、効率よく地熱を採熱することができる。特に作動媒体を二相とした場合は、作動媒体の蒸発量が多くなれば循環力が増大して採熱効率が向上する。
本発明に係る地熱採熱システムによれば、第1の熱媒体を流す内部流路と、内部流路の外側を内部流路内の流れ方向とは逆向きに第1の熱媒体を流す外部流路とを有する熱交換流路が、水平に又は地中容器から見て先下り勾配を有するように地盤面下に配設されているので、外部流路を流れる第1の熱媒体の熱と地中の熱との間で熱交換が行われ、第1の熱媒体の密度が変化することにより第1の熱媒体が対流する。したがって、動力を用いなくても地熱を採熱することができる。
以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。
図1を参照して本発明の第1の実施の形態に係る地熱採熱システムの構成を説明する。図1は、本発明の第1の実施の形態に係る地熱採熱システム1を説明する系統図である。地熱採熱システム1は、地中容器としての採熱水槽15と、熱交換流路としての採熱管10と、搬送機器としての熱利用ポンプ31と、熱利用機器33とを備えている。
採熱水槽15は、第1の熱媒体としての水M1を貯留する水槽である。ここで、単に「水」というときは、熱の利用形態を考慮しない液体の水を意味し、熱の利用形態を考慮するときは冷水又は温水と表現することとする。採熱水槽15は、典型的にはコンクリート製の円筒形状の部材を積層して形成されている。採熱水槽15は、地盤面GLより下の地中Gに埋設されている。また、採熱水槽15は、その下部(典型的には2m程度)が帯水層Gbに埋設されていることが好ましい。「帯水層」とは、地層を構成する粒子の間隙が大きく、地下水によって飽和されている透水層である。地中Gの帯水層Gbを把握するには、例えば、地熱採熱システム1を利用する建物の基礎杭を打設する際に調査をする地盤のデータを利用してもよい。採熱水槽15は、採熱管10の敷設を考慮すると、直径3m以上の大きさを有することが好ましい。なお、採熱水槽15は、コンクリート製以外の、鋼板製、FRP製等であってもよい。
採熱管10は、水M1と地中Gとの間で熱交換を行わせる管である。採熱管10は、内部流路11rを形成する内管11と、内管11の外側に形成される外部流路12rの外延をなす外管12とを有している。内管11は、典型的には、施工性の観点から、架橋ポリエチレン管やポリブデン管等の可とう性が大きい合成樹脂管が用いられるが、硬質塩化ビニル管や鋼管類、又は断面が円筒形以外の角パイプ等を用いてもよい。外管12は、典型的にはポリエチレンコルゲート管が用いられるが、架橋ポリエチレン管やポリブデン管、硬質塩化ビニル管、鋼管等であってもよく、形状も断面円形以外のものであってもよい。しかしながら、ポリエチレンコルゲート管が、耐食性に優れ、安価であるので好ましい。採熱管10は、内管11が外管12に収容されるように配置されて形成されている。また、内管11と外管12とは、スペーサ(不図示)等を用いて、同軸に配置されるのが好ましい。スペーサは、外部流路12r内の水M1の流れを妨げないように、できる限り抵抗の少ないものを用いるのがよい。簡易的にスペーサを得るには、反発力の大きい合成樹脂製の結束バンドを利用して、複数の結束バンドを余剰部分が四方八方の半径方向に延びるように内管11に結び、余剰部分を所定の長さに切断することにより構成してもよい。
採熱管10を構成する内管11及び外管12の大きさは、内部流路11rの断面積よりも外部流路12rの断面積の方が大きくなるように決定するとよい。内部流路11rの断面積よりも外部流路12rの断面積の方が大きいと、内部流路11rの流速よりも外部流路12rの流速の方が遅くなるため、外部流路12rを流れる水M1は、内部流路11rを流れる水M1との交換熱量よりも地中Gとの交換熱量の方が多くなるからである。採熱管10の長さは、設置する敷地面積にもよるが、25〜30m程度とするとよい。短すぎると採熱量が少なくなり、長くなると施工コストが増加する。
採熱管10は、地中Gの帯水層Gbに埋設されている。採熱管10は、地下水槽15から水平に延びるように、又は地中容器15から見て先下り勾配をもって延びるように埋設されている。水平又は下り勾配をもって埋設されることにより、水M1が、密度が変化しても採熱管10の末端部分に滞留しないように構成されている。地下水槽15の下部が帯水層Gbに埋設されているときは、採熱管10は、帯水層Gb部分にある地下水槽15の壁面から水平に又は末端が帯水層Gbから外れないように下り勾配をもって敷設される。地下水槽15の下部が帯水層Gbまで到達していないときは、採熱管10は、帯水層Gbに埋設される部分が多くなるように下り勾配をもって敷設される。下り勾配の好ましい角度は水平に対して10°〜40°、より好ましくは15°〜30°である。また、採熱管10を水平に敷設するか下り勾配をもって敷設するかは、帯水層Gb内を流れる地下水の流速を考慮して決定するとよい。地下水の流速が遅い場合、採熱管10内の水M1と熱交換し対流によって上方(地下水の温度が上昇した場合)又は下方(地下水の温度が低下した場合)に移動した地下水の影響を回避するため、水平に敷設するとよい。他方、地下水の流速が速い場合、採熱管10内の水M1と熱交換した地下水が水平方向に移動することによって末端部分の交換熱量が減少するという事態を回避するため、下り勾配をもって敷設するとよい。
採熱管10は、以下のようにして帯水層Gbに敷設される。採熱水槽15の内部から、ボーリングマシンにより水平に又は下り勾配をもって、帯水層Gbに向けて外管12の外径よりもやや大きい径でボーリングする。ボーリングは、1m程度のケーシングを追加しながら採熱管10の長さ分だけ行う。採熱管10の長さ分ボーリングしたら、採熱管10の外管12を、末端を塞いだ上で掘削孔に挿入する。外管12の挿入が完了したらケーシングを抜き、帯水層Gbに残った外管12に、スペーサ(不図示)等を用いて極力同軸になるように末端が開放された内管11を挿入する。以上のように敷設された採熱管10は、内管11の内部と外管12の内部とが末端部分で連通しており、内管11の内部を流れる水M1の方向と、内管11の外側部分の外管12の内部を流れる水M1の方向とが逆になるように構成されている。
地熱採熱システム1では、採熱管10の外管12が、採熱水槽15内で鉛直上方に延び、採熱水槽15の内部に貯留された水M1の水面近くの水面下で端部12aが開放されている。他方、内管11は、採熱水槽15内部の下方で、外管12の側部を貫通して末端11aが開放されている。内管11の末端11aは、採熱水槽15内の水M1の深さの1/2よりも深い位置、好ましくは1/5よりも深い位置、より好ましくは1/7より深い位置で開放されている。他方、外管12の末端12aは、採熱水槽15内の水M1の深さの1/2よりも浅い位置、好ましくは4/5よりも浅い位置、より好ましくは6/7より浅い位置で開放されている。なお、上記深さの割合は、採熱水槽15の底部から見たものである。外管12の内管11が貫通する部分は目張りされており、採熱水槽15下部の水M1がそのまま外管12の内部に入り込まないように構成されている。また、採熱管10が貫通する部分の採熱水槽15の壁にはプレート15Aが貼り付けられており、採熱水槽15内の水M1が地中Gに流出しないように構成されている。
採熱管10は、採熱水槽15を中心として水平投影面上に放射状に複数敷設されている。
図2に、本実施の形態における採熱管10の敷設状態が示されている。本実施の形態では、採熱管10が20本敷設されているが、これより少なくてもよく、逆に多くして30本、あるいはそれ以上敷設してもよい。つまり、意図する冷熱又は温熱量を地中Gから採熱できるように決定すればよい。複数の採熱管10は、採熱水槽15を中心に等しい角度の間隔をもって放射状に敷設されている。複数の採熱管10は、交互に異なる下り勾配をもって敷設されていてもよい。本実施の形態では、水平に対し15°の下り勾配をもつ採熱管10と、30°の下り勾配をもつ採熱管10とを交互に敷設している。このようにすると、一つの採熱管10と熱交換を行った帯水層Gb内の地下水が、隣接する採熱管10に影響を及ぼさず、交換熱量を減少させることを回避することができる。また、放射状に敷設した複数の採熱管10を、上下方向に2段、あるいはそれ以上の複数段敷設して採熱量を増やしてもよい。
再び図1に戻って、地熱採熱システム1の説明を続ける。採熱水槽15の内部には、その上方に上部ヘッダ41が、下方に下部ヘッダ42が、それぞれ配設されている。典型的には、上部ヘッダ41は外管12の開放端12aと同程度の高さに配設されており、下部ヘッダ42は内管11の開放端11aと同程度の高さに配設されている。各ヘッダ41、42には水M1が流出入する出入孔が形成されている。また、地盤面GLの上には採熱水槽15内の水M1を、熱の利用場所に搬送する熱利用ポンプ31が配設されている。また、熱の利用場所には、水冷ヒートポンプチラー等の熱源機器、エアハンドリングユニットやファンコイルユニット等の熱交換機器などの熱利用機器33が設置されている。
熱利用ポンプ31の吐出側と熱利用機器33とは配管51で接続されている。熱利用ポンプ31の吸い込み側は、配管53a及び配管53bからなる配管53を介して下部ヘッダ42と接続されている。配管53aには開閉バルブ43が配設されている。配管53aと配管53bとの接続部からは、配管54が分岐して上部ヘッダ41に接続されている。配管54には開閉バルブ44が配設されている。熱利用機器33は、配管55a及び配管55bからなる配管55を介して下部ヘッダ42と接続されている。配管55aには開閉バルブ45が配設されている。配管55aと配管55bとの接続部からは、配管56が分岐して上部ヘッダ41に接続されている。配管56には開閉バルブ46が配設されている。
引き続き図1を参照して、地熱採熱システム1の作用を説明する。地熱採熱システム1は、以下に説明するように、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。採熱水槽15には、その深さの3/4程度まで水M1が貯水されている。帯水層Gbの温度は、年間を通じて約15℃程度で安定している。以下、採熱した地熱を建物の冷暖房に利用するものとして、暖房時と冷房時とに分け、それぞれについて典型的な運転状況を説明する。
まず暖房時について説明する。暖房時は開閉バルブ43、46が閉状態、開閉バルブ44、45が開状態となっている。採熱水槽15内は温度成層が形成されており、例えば、上部に約13℃の温かい温水M1が、下部に約7℃の冷たい温水M1が貯留されている。採熱水槽15及び採熱管10内の温水M1の温度は、およそ7℃〜13℃の範囲内にある。この温度は地中Gの温度(約15℃)よりも低い。採熱管10の外管12内の温水M1は、帯水層Gbから受熱して温度が上昇する。温度が上昇した温水は密度が小さくなって上昇するから、外管12内の温水M1は採熱水槽15に向かって移動する。このように、外管12内の温水M1の密度に局所的な差が生じると、いわゆるサーモサイホン現象により対流が生じる。採熱水槽15に向かって外管12の内部を移動する温水M1は、移動過程においても帯水層Gbから受熱して温度が上昇し、さらに密度が減少する。帯水層Gbから受熱して温度が上昇した温水M1は、採熱水槽15内の端部12aから流出し、採熱水槽15の上部に貯留される。他方、外管12内の温水M1が採熱水槽15に向かって移動するのに伴い、内管11内の温水M1が外管12に連通する端部11bの方向に引き寄せられる。内管11を流れる温水は、採熱水槽15内の内管11の端部11aから導入される。
このように、採熱水槽15の下部の約7℃の温水が端部11aから内管11に流入し、内部流路11r内を流れて端部11bで連通する外管12に移り、外管12内を流れつつ帯水層Gbから受熱して、採熱水槽15の上部に約13℃の温水として流出する。このとき、内部流路11rを流れる温水M1の流速の方が外部流路12rを流れる温水M1の流速よりも速い。したがって、内部流路11rを流れる温水M1と外部流路12rを流れる温水M1との間であまり熱交換が行われず、端部11aで約7℃であった温水M1は、端部11bでは約8℃となる。他方、端部11bで約8℃であった温水M1は、外部流路12r内を比較的ゆっくり流れ、帯水層Gbとの間で十分熱交換が行われて約13℃の温水M1となって採熱水槽15の上部に流出する。この間、温水M1は局所的な密度差によって対流するので、地熱を採熱するための動力を必要としない。
採熱水槽15の上部の温かい温水M1は、熱利用ポンプ31が起動されることにより上部ヘッダ41の出入孔から吸い込まれ、配管54、53b、51を流れて熱利用機器機33に流入し、ここで暖房に利用され温度が低下して冷たい温水M1となる。温度が低下した冷たい温水M1は、配管55b、55aを流れて下部ヘッダ42に至り、出入孔から採熱水槽15の下部に流出される。採熱水槽15の下部の冷たい温水M1は再び端部11aから採熱管10に導入され、地熱を採熱した後に採熱水槽15に流出される。このように、循環する温水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。
次に冷房時について説明する。冷房時は開閉バルブ43、46が開状態、開閉バルブ44、45が閉状態となっている。採熱水槽15内は温度成層が形成されており、例えば、上部に約25℃の温かい冷水M1が、下部に約21℃の冷たい冷水M1が貯留されている。採熱水槽15及び採熱管10内の冷水M1の温度は、後述する熱ロスを考慮すると、およそ20℃〜25℃の範囲内にあることとなる。この温度は地中Gの温度(約15℃)よりも高い。採熱管10の外部流路12r内の冷水M1は、帯水層Gbへ放熱して温度が低下する。なお、以降、「冷水M1の熱を帯水層Gbへ放熱する」ような現象を「冷水M1が帯水層Gbから冷熱を受熱する」と表現する場合もある。温度が低下した冷水M1は4℃(密度が最も小さい温度)まで低下することがなく、密度が減少していって採熱水槽15から離れる方向(端部11bの方向)へ移動する。この冷水M1の移動に伴い、内管11内の冷水M1は採熱水槽15内に押し遣られる。また、外管12内の冷水M1が移動するのに伴い、採熱水槽15の上部の冷水M1が端部12aから外部流路12rに流入する。以上から分かるように、採熱管10の内部流路11rと外部流路12rとの水M1の流れる方向は、暖房時と冷房時とでは逆になる。
このように、採熱水槽15の上部の約25℃の冷水が端部12aから外部流路12rに流入し、外部流路12r内を流れつつ帯水層Gbから冷熱を受熱して端部11bで連通する内部流路11rに移り、内部流路11r内を採熱水槽15に向かって流れ、採熱水槽15の下部に約21℃の冷水として流出する。このとき、内部流路11rを流れる冷水M1の流速の方が外部流路12rを流れる冷水M1の流速よりも速い。したがって、内部流路11rを流れる冷水M1と外部流路12rを流れる冷水M1との間であまり熱交換が行われず、端部11bで約20℃であった冷水M1は、端部11aでは約21℃となる程度しか温度が上昇しない。他方、採熱水槽15の上部で約25℃であった冷水M1は、外部流路12r内を比較的ゆっくり流れ、帯水層Gbとの間で十分熱交換が行われて約20℃の冷水M1となって端部11bに至る。なお、内部流路11rを流れる冷水M1が、端部11bから採熱水槽15に達するまでに温度が20℃から21℃に上昇して冷熱量をロスすることになるが、温度が上昇することにより冷水M1の密度小さくなって対流が生じるという利点が生じる。このように、冷水M1は局所的な密度差によって対流するので、地熱を採熱するための動力を必要としない。
採熱水槽15の下部の冷たい冷水M1は、熱利用ポンプ31が起動されることにより下部ヘッダ42の出入孔から吸い込まれ、配管53a、53b、51を流れて熱利用機器機33に流入し、ここで冷房に利用され温度が上昇して温かい冷水M1となる。温度が上昇した温かい冷水M1は、配管55b、56を流れて上部ヘッダ41に至り、出入孔から採熱水槽15の上部に流出される。採熱水槽15の上部の温かい冷水M1は再び端部12aから採熱管10に導入され、地熱(冷熱)を採熱した後に採熱水槽15に流出される。このように、循環する冷水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。
次に図3を参照して、本発明の第2の実施の形態に係る地熱採熱システムを説明する。図3は、本発明の第2の実施の形態に係る地熱採熱システム2を説明する系統図である。地熱採熱システム2の、地熱採熱システム1との相違点は、配管53a、54、55a、56及び開閉バルブ43〜46並びに上部ヘッダ41を備えておらず、採熱管10の外管12が採熱水槽15の上部の水面下で開放されずに採熱水槽15の下部の壁際で開放されており、内管11が採熱水槽15内で開放されずに配管53bに接続されている点である。その他の構成は、地熱採熱システム1の構成と同様である。
地熱採熱システム2では、冷房時及び暖房時共に、第1の熱媒体としての水M1の流れ方向は同じである。地熱採熱システム2では、熱利用ポンプ31が起動すると、採熱管10の内部流路11r内の水M1が熱利用ポンプ31によって吸い上げられる。これに伴い採熱水槽15の下部の壁際に設けられた外管12の端部12aから採熱水槽15内の水M1が外部流路12rへ流入する。外部流路12rに流入した水M1は内管11の端部11bの方向に流れながら、帯水層Gbから冷熱又は温熱を受熱する。受熱した水M1は、内部流路11rに流入して内部流路11r内を流れ、配管53bを経由して熱利用ポンプ31により配管51内を圧送され、熱利用機器33に至る。熱利用機器33にて帯水層Gbから採取した熱を利用し、冷熱又は温熱が奪われた水M1は配管55bを流れて下部ヘッダ42に至り、出入孔から採熱水槽15に流出される。採熱水槽15へ流出された水M1は、再び採熱管10の外部流路12rへ流入し、以後同様に採熱サイクルを循環する。このように、地熱採熱システム2は、採熱水槽15内の水M1を熱利用機器33に送水する熱利用ポンプ31が、採熱管10内に水M1を流すポンプを兼ねるからポンプを削減することができ、これに伴ってエネルギーロスを減少することができ、搬送動力を削減することができる。
次に図4を参照して、本発明の第3の実施の形態に係る地熱採熱システムを説明する。図4は、本発明の第3の実施の形態に係る地熱採熱システム3を説明する系統図である。地熱採熱システム3では、第1の熱媒体として空気M1を用いている。採熱水槽15及び採熱管10の構成は、地熱採熱システム1における採熱水槽及び採熱管の構成と同様である。地熱採熱システム3は、地熱を採熱した空気M1を熱利用機器33へと送気する熱利用ファン32を採熱水槽15内に備えている。熱利用ファン32の吸込側は採熱管10の外管と接続されている。採熱管10の内管11は端部11aが採熱水槽15内で開放されている。熱利用ファン32の吐出側は、ダクト59を介して熱利用機器33と接続されている。地熱採熱システム3における熱利用機器33として、空冷ヒートポンプパッケージ型空調機や空気熱源ヒートポンプチラーが用いられる。また、採熱水槽15は外気導入ダクト60を介して地盤面GL上の大気と連通しており、採熱水槽15内に外気を導入することができるように構成されている。
地熱採熱システム3は、熱利用ファン32が起動すると、採熱管10の外部流路12r内の空気M1が熱利用ファン32に吸い込まれる。これに伴い内部流路11r内の空気M1が外部流路12rと連通している端部11bに引き寄せられ、さらに内部流路11rには外気導入ダクト60を通じて採熱水槽15内に取り入れられた外気が端部11aから導入される。熱利用ファン32に吸い込まれた地熱を採熱した空気M1は、ダクト59を流れて熱利用機器33へと送気され、熱が利用された後に大気に放出される。地熱採熱システム3は、採熱管10内に空気M1を流すファンを削減することができ、これに伴ってエネルギーロスを減少することができ、搬送動力を削減することができる。なお、地熱採熱システム3は、熱利用機器33を設けずに、地熱を採熱した空気M1を熱利用ファン32で直接熱の利用場所へと搬送し、例えば空調の換気や農業用ビニールハウス等の熱源として単独で利用してもよい。
次に図5を参照して、本発明の第4の実施の形態に係る地熱採熱システムを説明する。図5は、本発明の第4の実施の形態に係る地熱採熱システム4を説明する系統図である。地熱採熱システム4では、第1の熱媒体として水M1を用いている。地熱採熱システム4における採熱水槽15及び採熱管10の構成は、地熱採熱システム1における採熱水槽及び採熱管の構成と同様である。地熱採熱システム4では、地盤面GLの上に水熱源のヒートポンプチラー34が設置されている。採熱管10の内管11及び外管12は、採熱水槽15内で複数の同種の管と連合した後、それぞれヒートポンプチラー34に接続されている。地熱採熱システム4では水M1が直接採熱水槽15に貯められていないが、水M1を流す採熱管10が採熱水槽15に収容されているので、採熱水槽15は水M1を収容していることとなる。ヒートポンプチラー34の2次側には、第2の熱媒体としての冷媒ガスM2が流れる循環流路52が配設されており、循環流路52には熱利用ポンプ31及び熱利用機器33がこの順番で配設されている。
地熱採熱システム4では、水M1が、採熱管10とヒートポンプチラー34との間をサーモサイホンによる対流で循環する。冬季は採熱管10の外部流路12r内の温水M1が帯水層Gbと熱交換して温度が上昇し、密度が減少して上方へと移動していく。地熱を採熱して上昇した温水M1はヒートポンプチラー34に導入され、冷媒ガスM2に熱を与えた後導出される。ヒートポンプチラー34で熱を与え温度が低下して導出された温水M1は、採熱管10の内部流路11rに導入され、内部流路11r内の温水M1を押し出すようにして循環させる。ヒートポンプチラー34で温水M1から受熱した冷媒ガスM2は熱利用機器33に導入され、ここで熱が利用される。他方、夏季は採熱管10の外部流路12r内の冷水M1が帯水層Gbと熱交換して温度が低下し、密度が増加して下方へと移動していく。冷熱を受熱して下方に移動した冷水M1は、内部流路11r内の冷水M1を押し出すように流れて循環し、ヒートポンプチラー34に導入され、冷媒ガスM2に冷熱を与えた後導出される。ヒートポンプチラー34で冷熱を与え温度が上昇して導出された冷水M1は、採熱管10の外部流路12rの冷水M1が密度差により下方に移動するのに伴って下方に引き寄せられ、再び外部流路12r内に導入されて帯水層Gbから冷熱を受熱する。ヒートポンプチラー34で冷水M1から冷熱を受熱した冷媒ガスM2は熱利用機器33に導入され、ここで冷熱が利用される。地熱採熱システム4は、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。
次に図6を参照して、本発明の第5の実施の形態に係る地熱採熱システムを説明する。図6は、本発明の第5の実施の形態に係る地熱採熱システム5を説明する系統図である。地熱採熱システム5では、第1の熱媒体として空気M1を用いている。採熱水槽15及び採熱管10の構成は、地熱採熱システム1における採熱水槽及び採熱管の構成と同様である。地熱採熱システム5は、地盤面GLの上に熱源機器としての空気熱源のヒートポンプチラー35が設置され、採熱水槽15内にヒートポンプチラー35の屋外機36が配置されている。また、採熱水槽15内の屋外機36の上部には送風機38が設けられている。送風機38の吐出側は採熱管10の内管11に接続されている。外管12の端部12aは、採熱水槽15内に設置された屋外機36の空気導入口36aの近傍で開放されている。ヒートポンプチラー35の2次側には、第2の熱媒体としての冷媒ガスM2が流れる循環流路52が配設されており、循環流路52には熱利用ポンプ31及び熱利用機器33がこの順番で配設されている。
地熱採熱システム5は、送風機38が起動すると、採熱管10の内部流路11r内の空気M1が端部11bに向かって移動し、端部11bで折り返して外部流路12r内に流入する。外部流路12rを流れる空気M1は、帯水層Gbの熱と熱交換して冷熱又は温熱を受熱して採熱水槽15の下部に吹き出される。地熱を採熱した空気M1は空気導入口36aから屋外機36に導入され、屋外機36の熱源としてヒートポンプチラー35を運転するのに利用される。屋外機36で熱交換した空気M1は屋外機36の頂部から排出され、その上部に配設された送風機38に吸い込まれて、再び内部流路11rに向けて吐出される。運転されたヒートポンプチラー35は、冷水又は温水を造り、これを熱利用ポンプ31で循環流路52内を循環させて、冷水又は温水が保有する冷熱又は温熱が熱利用機器33で利用される。地熱採熱システム5は、屋外機36に地熱を採熱した空気M1を供給することにより空気熱源のヒートポンプチラー35の効率を向上させることができる。
次に図7を参照して、本発明の第6の実施の形態に係る地熱採熱システムを説明する。図7は、本発明の第6の実施の形態に係る地熱採熱システム6を説明する系統図である。地熱採熱システム6は、地熱採熱システム1における採熱管10に代えてヒートパイプ16を設けている。また、地熱採熱システム6では、地熱採熱システム1で備えていた開閉バルブ43〜46、及び配管53a、55a、56を備えていない。これらの相違以外は、地熱採熱システム1と同様に構成されている。ヒートパイプ16は、いわゆる密閉形サーモサイホンであり、内部には作動媒体Mwが封入されている。作動媒体Mwは、典型的には水等の単相の液体が用いられる。また、作動媒体Mwとして、例えば水とエタノールを混合した二成分混合の二相の流体を用いてもよい。作動媒体Mwを、単相の液体とすると構成が単純になり、二相の流体とすると蒸発潜熱の利用が可能となって地熱の採熱量を増加することができる。ヒートパイプ16は、帯水層Gbに埋設された部分から採熱水槽15の下部の壁を貫通し、採熱水槽15の内部で上方に延びている。その上方に延びている部分には、熱交換を促進するためのフィン16fが設けられている。
上記のように構成された地熱採熱システム6は、専ら暖房に用いられる。地熱採熱システム6の運転状況は以下のようになる。帯水層Gbに埋設された部分のヒートパイプ16内の作動媒体Mwは、帯水層Gbから受熱して温度が上昇し、密度が小さくなる。密度が小さくなった作動媒体Mwは、ヒートパイプ16内を上昇し、相対的に密度が大きくなった作動媒体Mwが下降してくる。このようにしてヒートパイプ16内に自然対流現象が発生する。密度が小さくなってヒートパイプ16内を上昇した作動媒体Mwは、採熱水槽15内で第1の熱媒体としての温水M1との間で熱交換を行う。採熱水槽15下部の約7℃の温水M1は、作動媒体Mwから受熱して密度が小さくなり、採熱水槽15の上部へと移動していく。採熱水槽15上部の温水M1は、約13℃となっている。
採熱水槽15の上部の温かい温水M1は、熱利用ポンプ31が起動されることにより上部ヘッダ41の出入孔から吸い込まれ、配管53b、51を流れて熱利用機器機33に流入し、ここで暖房に利用され温度が低下して冷たい温水M1となる。温度が低下した冷たい温水M1は、配管55bを流れて下部ヘッダ42に至り、出入孔から採熱水槽15の下部に流出される。採熱水槽15の下部の冷たい温水M1は再びヒートパイプ16内の作動媒体Mwとの間で熱交換を行い、密度が小さくなって採熱水槽15の上部へと移動していく。このように、循環する温水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。以上のように、地熱採熱システム6は、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。
次に図8を参照して、本発明の第7の実施の形態に係る地熱採熱システムを説明する。図8は、本発明の第7の実施の形態に係る地熱採熱システム7を説明する系統図である。地熱採熱システム7は、地熱採熱システム1における採熱管10を、帯水層Gbに埋設された部分が二重管で形成されて採熱水槽15内の部分がループ状に形成されたヒートパイプ17に置換したものであり、作動媒体Mwのヒートパイプ17内での循環を可能にして冷暖房のいずれにも利用できるように構成したものである。作動媒体Mwは、典型的には水等の単相の液体が用いられる。また、暖房時においては、作動媒体Mwとして、例えば水とエタノールを混合した二成分混合の二相の流体を用いてもよい。作動媒体Mwを、単相の液体とすると構成が単純になり、二相の流体とすると蒸発潜熱の利用が可能となって地熱の採熱量を増やすことができる。ただし、作動媒体を二相の流体とした場合、上述した地熱採熱システム7の構成では、作動媒体Mwを帯水層Gb内で蒸発させ、採熱水槽15内で凝縮させる必要があるため、冷熱を採熱する冷房に利用することはできない。ヒートパイプ17の帯水層Gbに埋設された部分は、地熱採熱システム1で用いられる採熱管10と同様の構成を有している。すなわち、ヒートパイプ17は、採熱管10の内部流路11rに相当する、内管11で形成された内部通路18と、外部流路12rに相当する、内管11の外側に形成された外部通路19とを有し、内部通路18の端部18bがヒートパイプ17の帯水層Gb側の末端付近で開放されている。また、外部通路19の末端19bは閉塞されている。他方、内部通路18及び外部通路19は、採熱水槽15内で、共に上方へ延びており、内部通路18の端部18aと外部通路19の端部19aとは接続管20を介して接続されている。接続管20には、熱交換を促進するためのフィン20fが設けられている。また、採熱水槽15内の内部通路18の上方へと角度を変える部分には、液溜部18dが形成されている。地熱採熱システム7は、上記の相違以外は、地熱採熱システム1と同様に構成されている。
上記のように構成された地熱採熱システム7について、まず暖房時の運転状況を説明する。暖房時は開閉バルブ43、46が閉状態、開閉バルブ44、45が開状態となっている。ヒートパイプ17の外部通路19内の作動媒体Mwは、帯水層Gbから受熱して温度が上昇し、密度が小さくなる。密度が小さくなった作動媒体Mwは、外部通路19内を上昇し、これに伴って相対的に密度が大きくなった作動媒体Mwが接続管20及び連通している内部通路18を下降する。このようにしてヒートパイプ17内に自然対流現象が発生し、作動媒体Mwが外部通路19、接続管20、内部通路18内を循環する。密度が小さくなって接続管20内に移動した作動媒体Mwは、採熱水槽15内で第1の熱媒体としての温水M1との間で熱交換を行う。採熱水槽15下部の約7℃の温水M1は、作動媒体Mwから受熱して密度が小さくなり、採熱水槽15の上部へと移動していく。採熱水槽15上部の温水M1は、約13℃となっている。
採熱水槽15の上部の温かい温水M1は、熱利用ポンプ31が起動されることにより上部ヘッダ41の出入孔から吸い込まれ、配管54、53b、51を流れて熱利用機器機33に流入し、ここで暖房に利用され温度が低下して冷たい温水M1となる。温度が低下した冷たい温水M1は、配管55b、55aを流れて下部ヘッダ42に至り、出入孔から採熱水槽15の下部に流出される。採熱水槽15の下部の冷たい温水M1は再びヒートパイプ17の接続管20内の作動媒体Mwとの間で熱交換を行い、密度が小さくなって採熱水槽15の上部へと移動していく。このように、循環する温水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。
次に冷房時の運転状況について説明する。冷房時は開閉バルブ43、46が開状態、開閉バルブ44、45が閉状態となっている。ヒートパイプ17の外部通路19内の作動媒体Mwは、帯水層Gbから冷熱を受熱して温度が低下し、密度が大きくなる。密度が大きくなった作動媒体Mwは、外部通路19内を下降し、これに伴って内部通路18内の作動媒体Mwを上方へ押し遣ると共に、相対的に密度が小さくなった作動媒体Mwが内部通路18内を接続管20の方に向かって上昇する。このようにしてヒートパイプ17内に自然対流現象が発生し、作動媒体Mwが外部通路19、内部通路18、接続管20内を循環する。密度が小さくなって接続管20内に移動した作動媒体Mwは、採熱水槽15内で第1の熱媒体としての冷水M1との間で熱交換を行う。採熱水槽15内は、冷水M1が作動媒体Mwとの間で熱交換を行うことにより、下部に約20℃の冷水が、上部に約25℃の冷水が貯留されている。
採熱水槽15の下部の冷たい冷水M1は、熱利用ポンプ31が起動されることにより下部ヘッダ42の出入孔から吸い込まれ、配管53a、53b、51を流れて熱利用機器機33に流入し、ここで冷房に利用され温度が上昇して温かい冷水M1となる。温度が上昇した温かい冷水M1は、配管55b、56を流れて上部ヘッダ41に至り、出入孔から採熱水槽15の上部に流出される。採熱水槽15内は、下部から冷たい冷水M1が熱利用機器33に送水され、上部に温かい冷水M1が還されるので、上部から下部への冷水M1の移動が生じる。この移動により、ヒートパイプ17の接続管20付近に温度が高い冷水M1が流れ込む。接続管20付近に流れ込んだ温度の高い冷水M1は、作動媒体Mwとの間で熱交換が行われて冷却され、冷たい冷水M1となって熱利用機器33に送水される。このように、循環する冷水M1を媒体として地熱が利用される。また、温度計(不図示)等で熱の利用状況を監視して、採熱水槽15に利用可能な熱がなくなったら蓄熱されるまで熱利用ポンプ31を停止する。
以上のように、地熱採熱システム7は、いわゆるサーモサイホンを応用することにより採熱管10内に水M1を循環させるポンプを不要として搬送動力を削減したシステムである。
次に図9を参照して、地熱採熱システム1〜7に付加して採熱効率を向上させる地熱採熱システムの変形例(採熱効率向上システム9)について説明する。図9は地熱採熱システム1〜7の採熱効率を向上させるシステム9の系統図である。採熱効率向上システム9は、既述の地熱採熱システム1〜7において、揚水ポンプ22と、揚水流路としての揚水管21と、散水流路としての散水管25とが付加されている。
揚水ポンプ22は、採熱水槽15の底部のほぼ中心から鉛直下方に掘削された揚水井戸62の底部に配設されている。揚水井戸62は、採熱水槽15の底部から約7m以内の深さであり、揚水ポンプ22が帯水層Gb内に配設されるように形成されている。揚水ポンプ22は、採熱水槽15の下部に存在する地下水Wuを揚水することができるように構成されている。
揚水管21は、一端が揚水ポンプ22に接続され、他端が採熱水槽15内まで到達するように、揚水井戸62の内部に配設されている。揚水管21には、典型的には硬質塩化ビニル管が用いられるが、外部が被覆やコーティングされた鋼管等、地中埋設に適した材料を用いてもよい。
散水管25は、揚水ポンプ22で汲み上げた地下水Wuを地中Gに散水するための管である。散水管25は、採熱管10やヒートパイプ16、17よりも上部に、採熱管10やヒートパイプ16、17とほぼ同様の長さで、同様に放射状(図2参照)に配設されている。散水管25は、採熱管10等と同様の手順で地中に埋設される。散水管25は、典型的には硬質塩化ビニル管であり、一端が分岐管23を介して揚水管21に接続されており、他端が閉塞されている。散水管25には、外部が被覆やコーティングされた鋼管等、地中埋設に適した材料を用いてもよい。散水管25には、揚水ポンプ22で汲み上げた地下水Wuを地中に向けて散水する多数の散水孔が側面に形成されている。
次に、採熱効率向上システム9の作用を説明する。揚水ポンプ22を起動すると、採熱水槽15の下部の地下水Wuが揚水ポンプ22によって揚水される。揚水された地下水Wuは、揚水管21を流れて分岐管23に到達し、分岐管23で複数の散水管25に分配される。散水管25内の地下水Wuは、揚水ポンプ22によって加圧されており、末端に向かって流れると共に、多数の散水孔から帯水層Gbへと散水される。帯水層Gbに散水された地下水Wuは、採熱管10(ヒートパイプ16、17)の周辺を通過して帯水層Gb内を流れ、一部は再び揚水ポンプ22に吸い込まれて揚水される。採熱管10(ヒートパイプ16、17)の周辺を地下水Wuが流れることにより、第1の熱媒体M1や作動媒体Mwと熱交換した、採熱管10(ヒートパイプ16、17)周辺の地下水Wuは、定常水温(約15℃)の地下水Wuと置換されるため、採熱管10(ヒートパイプ16、17)周辺の帯水層Wbが熱飽和することがなく、帯水層Wbと第1の熱媒体M1や作動媒体Mwとの熱交換が促進され、地熱採熱システム1〜7の採熱効率が向上する。また、揚水ポンプ22で汲み上げた地下水Wu自体を利用するのではなく、地下水Wuを循環させて地下水Wuの熱だけを利用するので、地盤沈下等の不具合が生じることがない。
以上の説明では、採熱管10やヒートパイプ16、17を直接帯水層Gbに埋設することとして説明したが、地下水Wuを流通し砕石を通さない程度の多数の小孔が形成された保護管を、採熱管10やヒートパイプ16、17を覆うようにして設け、これらを外傷から保護するようにしてもよい。
本発明の第1の実施の形態に係る地熱採熱システムの系統図である。 採熱管の敷設状態を示す平面図である。 本発明の第2の実施の形態に係る地熱採熱システムの系統図である。 本発明の第3の実施の形態に係る地熱採熱システムの系統図である。 本発明の第4の実施の形態に係る地熱採熱システムの系統図である。 本発明の第5の実施の形態に係る地熱採熱システムの系統図である。 本発明の第6の実施の形態に係る地熱採熱システムの系統図である。 本発明の第7の実施の形態に係る地熱採熱システムの系統図である。 地熱採熱システムの採熱効率を向上させるシステムの系統図である。
符号の説明
1〜7 地熱採熱システム
10 採熱管(熱交換流路)
11a 内部流路の一端
11r 内部流路
12a 外部流路の一端
12r 外部流路
15 採熱水槽(地中容器)
16 ヒートパイプ
18 内部通路
18a 内部通路の一端
19 外部通路
19a 外部通路の一端
21 揚水流路
22 揚水ポンプ
25 散水流路
31 ポンプ(搬送機器)
32 ファン(搬送機器)
35 熱源機器
36 屋外機
36a 空気導入口
38 送風機
G 地盤面下
M1 第1の熱媒体
Wu 地下水

Claims (10)

  1. 地盤面下に設けられ、第1の熱媒体を収容する地中容器と;
    前記第1の熱媒体を流す内部流路と、
    該内部流路を収容するように配設され、前記内部流路の外側を前記内部流路内の流れ方向とは逆向きに前記第1の熱媒体を流す外部流路と、を有する熱交換流路とを備え;
    前記熱交換流路が、水平に又は前記地中容器から見て先下り勾配を有するように前記地盤面下に配設され;
    さらに、前記熱交換流路よりも下部の地下水を流す揚水流路と;
    前記地下水を揚水する揚水ポンプと;
    前記揚水した地下水を前記熱交換流路よりも上部で散水する散水流路とを備えた;
    地熱採熱システム。
  2. 前記熱交換流路を複数備え;
    前記熱交換流路が、水平投影面上で放射状に配設された;
    請求項1に記載の地熱採熱システム。
  3. 前記熱交換流路が、前記外部流路の断面積が前記内部流路の断面積よりも大きくなるように構成された;
    請求項1又は請求項に記載の地熱採熱システム。
  4. 前記内部流路の一端が、前記地中容器内の前記第1の熱媒体の深さの1/2より深い位置で開放され;
    前記外部流路の一端が、前記内部流路の一端が開放される位置よりも上方で開放されて構成された;
    請求項1乃至請求項のいずれか1項に記載の地熱採熱システム。
  5. 前記内部流路の一端又は前記外部流路の一端が、前記第1の熱媒体を搬送する搬送機器に接続された;
    請求項1乃至請求項のいずれか1項に記載の地熱採熱システム。
  6. 前記内部流路の一端及び前記外部流路の一端が、ヒートポンプチラーに接続されて構成された;
    請求項1乃至請求項のいずれか1項に記載の地熱採熱システム。
  7. 地盤面下に設けられ、第1の熱媒体を収容する地中容器と;
    前記第1の熱媒体を流す内部流路と、
    該内部流路を収容するように配設され、前記内部流路の外側を前記内部流路内の流れ方向とは逆向きに前記第1の熱媒体を流す外部流路と、を有する熱交換流路とを備え;
    前記熱交換流路が、水平に又は前記地中容器から見て先下り勾配を有するように前記地盤面下に配設され;
    さらに、前記第1の熱媒体とは別の第2の熱媒体に対し加熱及び冷却の少なくとも一方を行う熱源機器と;
    前記地中容器の内部に設置された前記熱源機器の屋外機と;
    前記屋外機の上部の前記地中容器の内部に設置され、前記内部流路の一端が吐出側に接続された送風機とを備え;
    前記外部流路の一端が、前記屋外機に形成された空気導入口の高さ以下の前記地中容器内で開放された;
    熱採熱システム。
  8. 前記第1の熱媒体とは別の第2の熱媒体に対し加熱及び冷却の少なくとも一方を行う熱源機器と;
    前記地中容器の内部に設置された前記熱源機器の屋外機と;
    前記屋外機の上部の前記地中容器の内部に設置され、前記内部流路の一端が吐出側に接続された送風機とを備え;
    前記外部流路の一端が、前記屋外機に形成された空気導入口の高さ以下の前記地中容器内で開放された;
    請求項1乃至請求項のいずれか1項に記載の地熱採熱システム。
  9. 前記熱交換流路に代えて、一部分が前記地中容器の内部に配設されたヒートパイプを備えた;
    請求項1又は請求項に記載の地熱採熱システム。
  10. 前記ヒートパイプが、外部通路と該外部通路に収容された内部通路とを有し、前記内部通路の一端と前記外部通路の一端とが前記地中容器の内部で接続され、前記外部通路の他端が閉塞され、前記内部通路の他端が前記外部通路の内部で開放されることにより循環流路を形成するように構成された;
    請求項9に記載の地熱採熱システム。
JP2005203272A 2005-07-12 2005-07-12 地熱採熱システム Expired - Fee Related JP4642579B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203272A JP4642579B2 (ja) 2005-07-12 2005-07-12 地熱採熱システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203272A JP4642579B2 (ja) 2005-07-12 2005-07-12 地熱採熱システム

Publications (2)

Publication Number Publication Date
JP2007024342A JP2007024342A (ja) 2007-02-01
JP4642579B2 true JP4642579B2 (ja) 2011-03-02

Family

ID=37785342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203272A Expired - Fee Related JP4642579B2 (ja) 2005-07-12 2005-07-12 地熱採熱システム

Country Status (1)

Country Link
JP (1) JP4642579B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803227B1 (ko) * 2017-04-05 2017-12-28 주식회사 지지케이 강변지하수를 이용한 대용량 지중열교환장치
KR102093411B1 (ko) * 2019-03-26 2020-03-25 주식회사 지앤지테크놀러지 방사상 집수정을 이용한 대규모 스마트 팜 및 건축물의 지열 시스템

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190792A (ja) * 2007-02-05 2008-08-21 Hiroshi Koyama 圧縮式ヒートポンプ
JP2008292107A (ja) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The 熱交換器、熱交換システム及び熱交換システムの施工方法
JP2009014260A (ja) * 2007-07-04 2009-01-22 Eco Power:Kk 地中熱採熱タンク
GB2450755B (en) 2007-07-06 2012-02-29 Greenfield Energy Ltd Geothermal energy system and method of operation
GB2450754B8 (en) 2007-07-06 2013-02-06 Greenfield Energy Ltd Geothermal energy system and method of operation
JP5124235B2 (ja) * 2007-10-30 2013-01-23 株式会社エコ・パワー 地中熱採熱システム
JP4609953B2 (ja) * 2008-01-09 2011-01-12 亘 安達 地中開羽型熱交換杭と井戸兼用型熱交換システム及び土壌改良剤注入杭
GB2461029B (en) 2008-06-16 2011-10-26 Greenfield Energy Ltd Thermal energy system and method of operation
JP5471074B2 (ja) * 2009-06-26 2014-04-16 株式会社大林組 地中熱交換器
JP5305456B2 (ja) * 2009-08-18 2013-10-02 株式会社技研 地熱と地下水熱とを利用した循環型融雪システム
PL2374942T3 (pl) * 2010-04-01 2015-06-30 SPS Energy GmbH Urządzenie i sposób pozyskiwania ciepła z otoczenia
JP2012057836A (ja) * 2010-09-07 2012-03-22 Daikin Industries Ltd 地中熱交換器、及びそれを利用したヒートポンプ
GB2488797A (en) 2011-03-08 2012-09-12 Greenfield Master Ipco Ltd Thermal Energy System and Method of Operation
RU2483255C1 (ru) * 2011-10-20 2013-05-27 Открытое акционерное общество "Научно-производственный центр по сверхглубокому бурению и комплексному изучению недр Земли" (ОАО "НПЦ "Недра") Способ посезонного использования низкопотенциального тепла приповерхностного грунта и скважинные теплообменники для осуществления вариантов способа
JP5145465B1 (ja) * 2011-11-28 2013-02-20 ジオシステム株式会社 地中熱交換システム
JP5067956B1 (ja) * 2012-02-28 2012-11-07 秀之 黒臼 熱交換システム
RU2499197C1 (ru) * 2012-06-05 2013-11-20 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Способ использования теплоаккумуляционных свойств грунта
WO2015129041A1 (ja) * 2014-02-28 2015-09-03 中国電力株式会社 発電設備の熱交換構造
JP7161189B2 (ja) * 2018-11-22 2022-10-26 株式会社リビエラ 貯水利用設備
JP2020084544A (ja) * 2018-11-22 2020-06-04 株式会社リビエラ 貯水利用設備
JP7295714B2 (ja) * 2019-06-13 2023-06-21 株式会社東芝 熱交換器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134264A (en) * 1979-03-30 1980-10-18 Schmidt Paul Heat pump facility
JPS60113458U (ja) * 1984-01-09 1985-07-31 サンデン株式会社 地中熱交換用熱交換装置
JPS6155668U (ja) * 1984-09-18 1986-04-14

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134264A (en) * 1979-03-30 1980-10-18 Schmidt Paul Heat pump facility
JPS60113458U (ja) * 1984-01-09 1985-07-31 サンデン株式会社 地中熱交換用熱交換装置
JPS6155668U (ja) * 1984-09-18 1986-04-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803227B1 (ko) * 2017-04-05 2017-12-28 주식회사 지지케이 강변지하수를 이용한 대용량 지중열교환장치
KR102093411B1 (ko) * 2019-03-26 2020-03-25 주식회사 지앤지테크놀러지 방사상 집수정을 이용한 대규모 스마트 팜 및 건축물의 지열 시스템

Also Published As

Publication number Publication date
JP2007024342A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4642579B2 (ja) 地熱採熱システム
CN102099577B (zh) 热能系统和操作方法
US8820394B2 (en) Convection enhanced closed loop geothermal heat pump well
US7363769B2 (en) Electromagnetic signal transmission/reception tower and accompanying base station employing system of coaxial-flow heat exchanging structures installed in well bores to thermally control the environment housing electronic equipment within the base station
US7617697B2 (en) In-ground geothermal heat pump system
EP2116784B1 (en) Energy storage and temperature change type air conditioning method with underground reservoir and water source heat pump, and the dedicated device thereof
US20120211210A1 (en) Coaxial-flow heat transfer structure
US20090025902A1 (en) Probe For Collecting Thermal Energy From The Ground For A Heat Pump, And A Collection Network Equipped With Such Probes
JP2010038507A (ja) 地下蓄熱利用のヒートポンプ
US20080128108A1 (en) Convective earrh coil
JP4764796B2 (ja) 地熱採熱冷暖房システム
JP2003262430A (ja) 地中熱利用のヒートポンプ
JP2012057836A (ja) 地中熱交換器、及びそれを利用したヒートポンプ
JP2005069538A (ja) 熱交換用埋設管
JP2014185822A (ja) 地中熱利用熱交換器及びそれを用いたヒートポンプシステム
JP7359361B2 (ja) ヒートポンプ装置
JP4632905B2 (ja) 地中熱利用空調システム
JP2014040989A (ja) 地熱利用システム
JP6674335B2 (ja) 地中熱利用ヒートパイプ式空調装置およびその構成用ユニットならびに空調方法
JP7557872B2 (ja) 地中熱利用装置及び該地中熱利用装置の使用方法
KR20190032907A (ko) 파일 및 슬래브 복합형 지중 열교환 장치
KR101097910B1 (ko) 적층수평형 구조의 지열교환기
JP5028638B1 (ja) 地熱利用構造および地熱熱交換器埋設構造
KR102269496B1 (ko) 수직밀폐형과 수평형이 혼합된 지열 히트펌프 시스템
KR20170087704A (ko) 지중열교환식 냉온풍공급장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees