[go: up one dir, main page]

JP4637523B2 - Photoelectric conversion device and photovoltaic device using the same - Google Patents

Photoelectric conversion device and photovoltaic device using the same Download PDF

Info

Publication number
JP4637523B2
JP4637523B2 JP2004212816A JP2004212816A JP4637523B2 JP 4637523 B2 JP4637523 B2 JP 4637523B2 JP 2004212816 A JP2004212816 A JP 2004212816A JP 2004212816 A JP2004212816 A JP 2004212816A JP 4637523 B2 JP4637523 B2 JP 4637523B2
Authority
JP
Japan
Prior art keywords
dye
photoelectric conversion
film
solar cell
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004212816A
Other languages
Japanese (ja)
Other versions
JP2006032260A (en
Inventor
浩司 瀬川
城太郎 中崎
永 樋口
久 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004212816A priority Critical patent/JP4637523B2/en
Publication of JP2006032260A publication Critical patent/JP2006032260A/en
Application granted granted Critical
Publication of JP4637523B2 publication Critical patent/JP4637523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、高い光電変換効率が期待できる新規な材料を用いた太陽電池や受光素子等の光電変換装置およびそれを用いた光発電装置に関する。   The present invention relates to a photoelectric conversion device such as a solar cell or a light receiving element using a novel material that can be expected to have high photoelectric conversion efficiency, and a photovoltaic device using the photoelectric conversion device.

光電変換装置のひとつである色素増感型太陽電池は、高温処理や真空装置を必要としないことから低コスト化に有利であると考えられ、近年急速に研究開発が進められている。この色素増感型太陽電池は、例えば、導電性ガラス基板上に粒径20nm程度の微粒子を焼結して得られる多孔質酸化チタン層を設け、この多孔質酸化チタン層の粒子表面に色素を単分子吸着させた電極を光作用極として用い、白金をスパッタした導電性ガラス対極との間に、ヨウ素/ヨウ化物レドックス対を含む電解質溶液を満たし、この電解質溶液を封止した構造を有する。このような多孔質化により光作用極の表面積を1000倍以上に高めて、吸着色素による光吸収を効率よく行ない光発電することができる。   A dye-sensitized solar cell, which is one of photoelectric conversion devices, is considered advantageous for cost reduction because it does not require high-temperature treatment or a vacuum device, and has recently been researched and developed rapidly. In this dye-sensitized solar cell, for example, a porous titanium oxide layer obtained by sintering fine particles having a particle diameter of about 20 nm is provided on a conductive glass substrate, and the dye is applied to the particle surface of the porous titanium oxide layer. A single molecule adsorbed electrode is used as a photoworking electrode, and a conductive glass counter electrode sputtered with platinum is filled with an electrolyte solution containing an iodine / iodide redox pair, and the electrolyte solution is sealed. By making such a porous structure, the surface area of the light working electrode can be increased by 1000 times or more, and light absorption by the adsorbing dye can be efficiently performed to generate photovoltaic power.

しかし、高変換効率を与える金属錯体色素とりわけルテニウム錯体色素は、短波長光感
度を有する色素であり、このような色素を多孔質半導体層に担持した単独の光電変換装置では変換効率が不十分であった。このため、長波長光感度を高めたブラックダイなどの新しいルテニウム錯体色素が開発され、光吸収波長域が長波長領域に拡大されたが期待されたほどの変換効率の向上に至っていない。
However, metal complex dyes that give high conversion efficiency, especially ruthenium complex dyes, are dyes having short wavelength photosensitivity, and conversion efficiency is insufficient with a single photoelectric conversion device in which such a dye is supported on a porous semiconductor layer. there were. For this reason, new ruthenium complex dyes such as black dyes with improved long wavelength photosensitivity have been developed, and the light absorption wavelength range has been expanded to the long wavelength range, but the conversion efficiency has not been improved as expected.

また、金属フリー、特にルテニウムの無い有機色素が種々開発されているが、ルテニウム錯体色素を超えるものは見出されておらず、精力的に研究開発が行なわれている。有機色素では、色素に長波長感度を持たせるために、色素分子の共役長を大きくするなどの手法が研究開発されている。このように、変換効率に限っても市場投入に至るには厳しい状況であり、更なる光電変換効率の向上が必要とされている。   In addition, various organic dyes that are metal-free, particularly ruthenium-free, have been developed. However, nothing more than ruthenium complex dyes has been found, and research and development has been conducted energetically. In organic dyes, techniques such as increasing the conjugate length of dye molecules have been researched and developed in order to give the dye long wavelength sensitivity. Thus, even if it is limited to the conversion efficiency, it is a severe situation to reach the market, and further improvement of the photoelectric conversion efficiency is required.

次に、色素が単独でない従来の光電変換装置、および色素を担持した多孔質半導体層が単独でない光電変換装置の例について説明する。   Next, an example of a conventional photoelectric conversion device in which the dye is not single and a photoelectric conversion device in which the porous semiconductor layer carrying the dye is not single will be described.

特許文献1には、少なくとも2種の異なった色素からなる色素層を用いて、光吸収波長領域を有効に利用した太陽電池が開示されている。具体的には、このような太陽電池は、所定の極性に帯電した第1の色素を含む溶液に多孔性半導体層を接触させて、前記第1の色素を吸着させる工程と、前記第1の色素とは逆極性に帯電した第2の色素を含む溶液に第2の色素を接触させて、第1の色素に第2の色素を吸着させる工程により形成される。   Patent Document 1 discloses a solar cell that effectively uses a light absorption wavelength region by using a dye layer composed of at least two different dyes. Specifically, such a solar cell includes a step of bringing a porous semiconductor layer into contact with a solution containing a first dye charged to a predetermined polarity to adsorb the first dye, It is formed by bringing the second dye into contact with a solution containing the second dye charged to a polarity opposite to that of the dye and causing the first dye to adsorb the second dye.

また、特許文献2には、2種の異なった色素がそれぞれ異なった入射波長に対入射光量子収率の最大値を示す色素であり、広範囲の波長の光を利用し、高い変換効率を有する光電変換装置が開示されている。   Patent Document 2 discloses that two types of different dyes each exhibit a maximum value of the incident light quantum yield at different incident wavelengths, and use a light having a wide range of wavelengths and have high conversion efficiency. A conversion device is disclosed.

また、特許文献3には、異なる吸収波長を有する色素を担持した複数の半導体層を有する太陽電池(光電変換素子)が開示されている。この太陽電池の作製を行なう場合、酸化物半導体粒子に色素を吸着させ、乾燥させた後、アルコールに溶解したバインダーと混合しペースト化したものを使用して成膜・乾燥させる工程を繰り返すことにより、それぞれの色素を吸着させた酸化物半導体層を形成させている。   Patent Document 3 discloses a solar cell (photoelectric conversion element) having a plurality of semiconductor layers carrying dyes having different absorption wavelengths. In the production of this solar cell, by repeating the steps of adsorbing the pigment on the oxide semiconductor particles, drying, and then forming and drying using a paste mixed with a binder dissolved in alcohol The oxide semiconductor layer in which each dye is adsorbed is formed.

また、特許文献4に開示されている色素増感型太陽電池によれば、増感色素として異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素を吸着した多孔性半導体層を備え、2つの発色系を有することにより、従来の太陽電池に比べて、光吸収波長領域が広く、光吸収量が多く、光電変換効率の高い太陽電池を提供することができるとしている。具体的には、透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔性半導体層とキャリア輸送層とを有する色素増感型太陽電池の作製方法において、(1)多孔性半導体層を形成した基板を最大感度波長領域が短い第1色素を溶解した溶液に浸漬して、第1色素を多孔性半導体層に吸着させるか、あるいは透明導電膜を形成した基板を多孔性半導体層となる半導体材料と第1色素との混合溶液に浸漬し、電気化学反応により第1色素が吸着された多孔性半導体層を透明導電膜上に形成し、次いで、第1色素が吸着された多孔性半導体層を最大感度波長領域が長い第2色素を溶解した溶液に浸漬し、第1色素(カルボキシル基を有する)と第2色素(水酸基を有する)とを化学反応(化学吸着結合)させて、複合体色素を形成することを特徴とするものがある。また、(2)最大感度波長領域が短い第1色素と最大感度波長領域が長い第2色素とを化学反応(化学吸着結合)させて、複合体色素を調製し、次いで、多孔性半導体層を形成した基板を複合体色素を溶解した溶液に浸漬して、複合体色素を多孔性半導体層に吸着させることを特徴とするものが提案されている。   In addition, according to the dye-sensitized solar cell disclosed in Patent Document 4, the porosity is obtained by adsorbing a complex dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed to each other as the sensitizing dye. By providing a semiconductor layer and having two coloring systems, it is possible to provide a solar cell with a wide light absorption wavelength range, a large amount of light absorption, and a high photoelectric conversion efficiency as compared with a conventional solar cell. . Specifically, a method for producing a dye-sensitized solar cell having a porous semiconductor layer on which a dye is adsorbed and a carrier transport layer between a transparent conductive film formed on the surface of the transparent substrate and a conductive substrate In (1), the substrate on which the porous semiconductor layer is formed is dipped in a solution in which the first dye having a shortest maximum sensitivity wavelength region is dissolved to adsorb the first dye to the porous semiconductor layer, or a transparent conductive film is formed. The formed substrate is immersed in a mixed solution of a semiconductor material to be a porous semiconductor layer and a first dye, and a porous semiconductor layer in which the first dye is adsorbed by an electrochemical reaction is formed on the transparent conductive film, and then The porous semiconductor layer on which the first dye is adsorbed is immersed in a solution in which the second dye having a long maximum sensitivity wavelength region is dissolved, and the first dye (having a carboxyl group) and the second dye (having a hydroxyl group) are chemically treated. Reaction (chemisorption bonding) There is one and forming a body pigment. In addition, (2) the first dye having a short maximum sensitivity wavelength region and the second dye having a long maximum sensitivity wavelength region are chemically reacted (chemisorption bonding) to prepare a composite dye, and then the porous semiconductor layer is formed. There has been proposed a substrate characterized in that the formed substrate is immersed in a solution in which a complex dye is dissolved, and the complex dye is adsorbed on a porous semiconductor layer.

特許文献5に開示された複合型太陽電池によれば、太陽光に面した側に色素増感型太陽電池を配し、この色素増感型太陽電池の後側にバルク型結晶系シリコン太陽電池を配して
、複合型太陽電池を形成している。これによれば、太陽光に面した側にルテニウム錯体を用いた色素増感型太陽電池を配して、波長300nm〜600nmの光による発電を行なわせる。一方、色素増感型太陽電池の裏面側にバルク型結晶系シリコン太陽電池を配して、色素増感型太陽電池を透過した光のうち波長400nm〜1100nmで発電を行なわせるように構
成されている。
According to the composite solar cell disclosed in Patent Document 5, a dye-sensitized solar cell is disposed on the side facing the sunlight, and a bulk-type crystalline silicon solar cell is disposed behind the dye-sensitized solar cell. To form a composite solar cell. According to this, a dye-sensitized solar cell using a ruthenium complex is disposed on the side facing the sunlight, and power is generated by light having a wavelength of 300 nm to 600 nm. On the other hand, a bulk crystalline silicon solar cell is arranged on the back side of the dye-sensitized solar cell, and is configured to generate power at a wavelength of 400 nm to 1100 nm among the light transmitted through the dye-sensitized solar cell. Yes.

一般に、バルク型結晶系シリコン太陽電池は、耐候性に優れ20年以上の耐久性を有することからバルク型結晶系シリコン太陽電池単独で急速に市場を拡大している。このバルク型結晶系シリコン太陽電池は、通常、高純度の単一材料からなる厚さ250μm程度のシリ
コン半導体基板にpn半導体接合を形成して光電変換を行なわせている。太陽光や可視光は広い波長スペクトルを有するが、半導体のバンドギャップによって光エネルギーの吸収と発電には波長制限があるので、単一の無機材料からなる光電変換装置では光電変換効率に限界が生じる。
In general, bulk-type crystalline silicon solar cells have excellent weather resistance and have a durability of 20 years or more, so the bulk-type crystalline silicon solar cells alone are rapidly expanding the market. In this bulk-type crystalline silicon solar cell, a pn semiconductor junction is usually formed on a silicon semiconductor substrate made of a single material of high purity and having a thickness of about 250 μm to perform photoelectric conversion. Although sunlight and visible light have a wide wavelength spectrum, there is a limit on the wavelength of absorption and power generation of light energy due to the band gap of the semiconductor, so there is a limit in photoelectric conversion efficiency in a photoelectric conversion device made of a single inorganic material .

また、厚いシリコン半導体基板は高価な高純度のシリコン材料を多く必要とするので、太陽電池の一般家庭への普及には、高価なシリコン材料が少ない低コストの太陽電池の出現が切望されている。ここで、薄膜アモルファスシリコン系太陽電池は、薄いシリコン膜(通常、厚さ0.3μm程度)であり低コスト生産が可能であるが、単独では変換効率が低
く市場拡大に至っていない。
In addition, since a thick silicon semiconductor substrate requires a large amount of expensive high-purity silicon material, for the popularization of solar cells to general households, the appearance of low-cost solar cells with few expensive silicon materials is eagerly desired. . Here, the thin-film amorphous silicon solar cell is a thin silicon film (usually about 0.3 μm in thickness) and can be produced at low cost, but the conversion efficiency alone is low and the market has not been expanded.

また、アモルファスシリコン系光電変換装置と微結晶シリコン系光電変換装置とを薄膜で積層した構成の積層型薄膜シリコン系太陽電池が注目されている。同じシリコンでもアモルファスと微結晶では異なるバンドギャップを持つので、これら2つの光電変換装置を積層することで、より広く太陽光スペクトルをカバーして変換効率を上げることが期待でき、積極的な開発とともに量産され始めている。   In addition, a stacked thin film silicon solar cell having a structure in which an amorphous silicon photoelectric conversion device and a microcrystalline silicon photoelectric conversion device are stacked with a thin film has attracted attention. Even with the same silicon, amorphous and microcrystals have different band gaps. By stacking these two photoelectric conversion devices, we can expect to broaden the sunlight spectrum and increase conversion efficiency. Mass production has begun.

このような積層型薄膜シリコン系太陽電池では、アモルファスシリコン光電変換装置の膜厚は0.2μm程度で薄いが、微結晶シリコン光電変換装置の膜厚は2μm程度あり厚い
。したがって、微結晶シリコン光電変換装置の製造コストが薄膜アモルファスシリコン系太陽電池より一桁高いので、設備コストがかかり低コスト化できず市場拡大に至っていない。
特開2000−195569号公報 特開2000−268892号公報 特開2000−243466号公報 特開2002−343455号公報 特開2002−231324号公報
In such a stacked thin film silicon solar cell, the amorphous silicon photoelectric conversion device has a thin film thickness of about 0.2 μm, but the microcrystalline silicon photoelectric conversion device has a large film thickness of about 2 μm. Therefore, since the manufacturing cost of the microcrystalline silicon photoelectric conversion device is one digit higher than that of the thin film amorphous silicon solar cell, the equipment cost is increased and the cost cannot be reduced and the market has not been expanded.
JP 2000-195569 A JP 2000-268892 A JP 2000-243466 A JP 2002-343455 A JP 2002-231324 A

上述したように、色素増感型太陽電池は、高温処理や真空装置を必要としないことから最も低コストで製造が可能な太陽電池と考えられている。しかしながら、変換効率が低く、バルク型結晶系シリコン太陽電池や積層型薄膜シリコン系太陽電池に及ばない。この変換効率向上が第1の課題である。また、長波長光感度を高めたブラックダイなどの新しいルテニウム錯体色素が開発されたが期待されたほどの変換効率の向上に至っていない。さらに、金属フリー、特にルテニウムの無い有機色素がいろいろと開発されているが、ルテニウム錯体色素を超えるものは見出されておらず、様々な研究開発が盛んに行なわれている。例えば、色素に長波長感度を持たせるために、色素分子の共役長を大きくするなどの手法が行なわれているが、色素分子自身も大きくなり、高分子量化するため、溶媒への溶解が困難となり、多孔質の酸化物半導体への吸着が困難となる。   As described above, the dye-sensitized solar cell is considered as a solar cell that can be manufactured at the lowest cost because it does not require high-temperature treatment or a vacuum apparatus. However, the conversion efficiency is low and it does not reach the bulk type crystalline silicon solar cell and the laminated thin film silicon solar cell. This conversion efficiency improvement is the first problem. In addition, new ruthenium complex dyes such as black dyes with improved long wavelength photosensitivity have been developed, but the conversion efficiency has not been improved as expected. Furthermore, various organic dyes that are free of metal, particularly ruthenium-free dyes, have been developed. However, nothing more than ruthenium complex dyes has been found, and various research and development have been actively conducted. For example, techniques such as increasing the conjugate length of dye molecules have been used in order to give the dye long wavelength sensitivity, but the dye molecules themselves become larger and have a higher molecular weight, making it difficult to dissolve in solvents. Thus, adsorption to the porous oxide semiconductor becomes difficult.

特許文献1および特許文献2に開示された技術によれば、少なくとも2種の異なった色素からなる色素層を用いて、光吸収波長領域を有効に利用できるとされている。具体的には、所定の極性に帯電した第1の色素を含む溶液に多孔性半導体層を接触させて、前記第1の色素を吸着させる工程と、前記第1の色素とは逆極性に帯電した第2の色素を含む溶液に第1の色素を接触させて、第1の色素に第2の色素を吸着させる工程により形成される。このように2種以上の異なった色素からなる色素層を用いた太陽電池では、2種の色素間の工程中の相互作用によって様々な支障がでて光電変換効率が不安定となり、多孔性半導体層への担持工程が増える問題がある。また、2種以上の異なった色素を同時に吸着させる場合、各色素の吸着速度が異なるために、所定量の色素を吸着させることが困難である。   According to the techniques disclosed in Patent Document 1 and Patent Document 2, it is said that the light absorption wavelength region can be effectively used by using a dye layer composed of at least two different dyes. Specifically, the porous semiconductor layer is brought into contact with a solution containing a first dye charged to a predetermined polarity to adsorb the first dye, and the first dye is charged with a reverse polarity. The first dye is brought into contact with the solution containing the second dye and the second dye is adsorbed to the first dye. Thus, in a solar cell using a dye layer composed of two or more different dyes, various troubles occur due to in-process interaction between the two kinds of dyes, resulting in unstable photoelectric conversion efficiency, and the porous semiconductor. There is a problem that the number of steps for supporting the layer increases. Further, when two or more different dyes are adsorbed simultaneously, it is difficult to adsorb a predetermined amount of dye because the adsorption speed of each dye is different.

また、特許文献3においては、異なる吸収波長を有する色素を担持した複数の半導体層を有する太陽電池(光電変換素子)が提案されている。この太陽電池の作製を行なう場合、酸化物半導体粒子に色素を吸着させ、乾燥させた後、アルコールに溶解したバインダーと混合しペースト化したものを使用して成膜・乾燥させる工程を繰り返すことにより、それぞれの色素を吸着させた酸化物半導体層を形成させている。このような作製方法では、焼結工程が行なえないため、酸化物半導体粒子間の接触が悪く、抵抗が大きくなり高性能な太陽電池の作製は不可能である。   Patent Document 3 proposes a solar cell (photoelectric conversion element) having a plurality of semiconductor layers carrying dyes having different absorption wavelengths. In the production of this solar cell, by repeating the steps of adsorbing the pigment on the oxide semiconductor particles, drying, and then forming and drying using a paste mixed with a binder dissolved in alcohol The oxide semiconductor layer in which each dye is adsorbed is formed. In such a manufacturing method, since a sintering process cannot be performed, contact between oxide semiconductor particles is poor, resistance is increased, and a high-performance solar cell cannot be manufactured.

また、特許文献4に開示された色素増感型太陽電池では、増感色素として、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素を吸着した多孔性半導体層を備え、2つの発色系を有するので、従来の太陽電池に比べて、光吸収波長領域が広く、光吸収量が多く、光電変換効率の高い太陽電池を提供することができるとしている。しかしながら、2種以上の色素を順次担持する第1の作製方法では、2種の色素間の相互作用によって様々な支障がでて光電変換効率が不安定であり、多孔性半導体層への担持工程が増える問題がある。また、予め2種以上の色素を化学反応(化学吸着結合)させて、複合体色素を調製し、担持するという、第2の作製方法では複合体色素が溶液中で3分子以上に化学反応(化学吸着結合)して複合体色素の分子が大きくなり、多孔性半導体層中に色素が浸透しない問題がある。   Moreover, in the dye-sensitized solar cell disclosed in Patent Document 4, as a sensitizing dye, a porous semiconductor layer in which a composite dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed to each other is adsorbed And having two color developing systems, it is said that a solar cell having a wide light absorption wavelength region, a large amount of light absorption, and high photoelectric conversion efficiency can be provided as compared with a conventional solar cell. However, in the first production method in which two or more dyes are sequentially supported, the photoelectric conversion efficiency is unstable due to various troubles due to the interaction between the two kinds of dyes, and the supporting process to the porous semiconductor layer There is a problem that increases. In addition, in the second production method in which two or more kinds of dyes are chemically reacted (chemisorption bonding) in advance to prepare and carry a complex dye, the complex dye is chemically reacted to three or more molecules in a solution ( There is a problem that the molecule of the complex dye becomes large due to chemical adsorption bonding, and the dye does not penetrate into the porous semiconductor layer.

また、色素増感型太陽電池には耐久性の課題があり、特に屋外用途ではこの耐久性の課題解決が重要である。色素増感型太陽電池では色素を二酸化チタンなどに担持しており、紫外線や短波長光によって色素の光劣化が生じることが懸念されている。強い照度の太陽光下では、光入射側に紫外線吸収フィルムなどを挿入して、色素の光劣化を抑制することが考えられているが、この手法で光劣化が完全に抑制できるかどうかは疑問であり、紫外線吸収フィルムなどの挿入は可視光の吸収も生じてしまい光電変換効率の低下を招く。   Further, the dye-sensitized solar cell has a problem of durability, and it is important to solve the problem of durability particularly in outdoor use. In dye-sensitized solar cells, a dye is supported on titanium dioxide or the like, and there is a concern that the dye may be deteriorated by ultraviolet rays or short-wavelength light. Under strong sunlight, it is considered to suppress the photodegradation of the dye by inserting an ultraviolet absorbing film on the light incident side, but it is doubtful whether this method can completely suppress the photodegradation. In addition, insertion of an ultraviolet absorbing film or the like also causes visible light absorption, leading to a decrease in photoelectric conversion efficiency.

特許文献5に開示された複合型太陽電池によれば、太陽光に面した側に色素増感型太陽電池を配し、この色素増感型太陽電池の後側にバルク型結晶系シリコン太陽電池を配して、複合型太陽電池を形成している。これでは、変換効率はバルク型結晶系シリコン太陽電池に勝るものができても、低コスト化や耐久性の課題解決にはならない。   According to the composite solar cell disclosed in Patent Document 5, a dye-sensitized solar cell is disposed on the side facing the sunlight, and a bulk-type crystalline silicon solar cell is disposed behind the dye-sensitized solar cell. To form a composite solar cell. In this case, even if the conversion efficiency is superior to that of the bulk crystalline silicon solar cell, it does not solve the problem of cost reduction and durability.

薄膜アモルファスシリコン系太陽電池は、薄いシリコン膜(通常、厚さ0.3μm程度)
であり低コスト生産が可能であるが、単独では変換効率が低いく市場拡大に至っていない。
Thin-film amorphous silicon solar cells are thin silicon films (usually about 0.3 μm thick)
Therefore, low-cost production is possible, but the conversion efficiency alone is low and the market has not been expanded.

また、アモルファスシリコン系光電変換装置と微結晶シリコン系光電変換装置とを薄膜で積層した構成の積層型薄膜シリコン系太陽電池は、2つの光電変換装置を積層することで、より広く太陽光スペクトルをカバーして変換効率を上げているが低コスト化ができていない。   In addition, a stacked thin film silicon solar cell having a configuration in which an amorphous silicon photoelectric conversion device and a microcrystalline silicon photoelectric conversion device are stacked in a thin film has a wider solar spectrum by stacking two photoelectric conversion devices. The conversion efficiency is improved by covering, but the cost is not reduced.

さらに、色素増感型太陽電池では紫外線や短波長光によって色素の光劣化が生じることが懸念されている。特に太陽光の熱によって色素の光劣化は加速される。現在、最初に室内用途での実用化が検討されているが、これでは真の太陽電池といえない。紫外線吸収フィルムなどの挿入は可視光の吸収も生じ光電変換効率の低下となるので積極的には使えない。このように、従来の色素増感型太陽電池では色素の光劣化や熱劣化の不安がまだ解消されておらず、耐候性に問題がある。   Furthermore, in dye-sensitized solar cells, there is a concern that photodegradation of the dye may occur due to ultraviolet light or short wavelength light. Particularly, the photodegradation of the pigment is accelerated by the heat of sunlight. At present, practical application for indoor use is first considered, but this is not a true solar cell. Insertion of an ultraviolet absorbing film or the like also absorbs visible light and lowers the photoelectric conversion efficiency, so it cannot be used actively. As described above, the conventional dye-sensitized solar cell has a problem in weather resistance because anxiety about light deterioration and heat deterioration of the dye has not been solved yet.

本発明は斯かる事情に鑑みてなされ、その目的は、変換効率を高めることであり、また低コスト化と耐久性が可能な光電変換装置およびそれを用いた光発電装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to increase the conversion efficiency, and to provide a photoelectric conversion device capable of reducing cost and durability, and a photovoltaic device using the photoelectric conversion device. .

上記目的を達成するために、本発明の光電変換装置は、1)ポルフィリン骨格を有する色素の単量体と会合体とを混合あるいは積層して光電変換材料として用いたことを特徴とする。 In order to achieve the above object, the photoelectric conversion device of the present invention is characterized in that 1) a dye monomer having a porphyrin skeleton and an aggregate are mixed or laminated and used as a photoelectric conversion material.

また、2)導電性支持体上に、ポルフィリン骨格を有し光電変換を行なう色素の単量体と会合体とを、混合して吸着あるいは積層させた金属酸化物半導体を、電解質中に存在する状態で配設したことを特徴とする構造を採用してもよい。 2) A metal oxide semiconductor in which a monomer and an aggregate of a dye having a porphyrin skeleton and performing photoelectric conversion are adsorbed or stacked on a conductive support is present in the electrolyte. You may employ | adopt the structure characterized by arrange | positioning in the state.

さらに、本発明の光発電装置は、上記1)または上記2)の光電変換装置を発電手段として用い、この発電手段の発電電力を負荷へ供給するように成したことを特徴とする。   Furthermore, the photovoltaic device of the present invention is characterized in that the photoelectric conversion device of 1) or 2) above is used as a power generation means, and the generated power of this power generation means is supplied to a load.

本発明の光電変換装置は、ポルフィリン骨格を有する色素の単量体と会合体とを混合あるいは積層して光電変換材料として用いたので、複数の分子の遷移双極子相互作用により共役長が広がり安定化し、従来見出せなかった入射太陽光の長波長側(450nm以上)に
高感度で広幅感度なものが得られ、変換効率と耐久性を向上させることができる。また、入射光の短波長側にも高感度を有するので長波長側との重畳作用によって、より高効率で耐久性のある太陽電池やセンサ等の光電変換装置を提供することができる。さらに、このようなポルフィリン骨格を有する色素の会合体は、単量体に酸を作用させるだけの簡単な工程で作製が可能である。これにより、本発明の光電変換装置単体、または短波長側に高感度を有する色素増感型太陽電池もしくは薄膜太陽電池を組合せることで、より高効率で製造が簡便容易な太陽電池やセンサ等の光電変換装置を提供することができる。
Since the photoelectric conversion device of the present invention is used as a photoelectric conversion material by mixing or laminating a monomer of a dye having a porphyrin skeleton and an aggregate, the conjugate length is widened and stabilized by the transition dipole interaction of a plurality of molecules. As a result, high sensitivity and wide sensitivity can be obtained on the long wavelength side (450 nm or more) of incident sunlight, which could not be found conventionally, and conversion efficiency and durability can be improved. Further, it is possible to provide a photoelectric conversion apparatus in a short because even with a high sensitivity to a wavelength side by superposition effect of the long-wavelength side, such as a solar cell or a sensor that is durable good Ri efficiency of the incident light. Furthermore, such an aggregate of a dye having a porphyrin skeleton can be prepared by a simple process in which an acid is allowed to act on a monomer. Thereby, the photoelectric conversion device of the present invention alone, or a combination of a dye-sensitized solar cell or a thin-film solar cell having high sensitivity on the short wavelength side, a solar cell, a sensor, or the like that is easier to manufacture with higher efficiency A photoelectric conversion device can be provided.

また、導電性支持体上に、ポルフィリン骨格を有し光電変換を行なう色素の単量体と会合体とを、混合して吸着あるいは積層させた金属酸化物半導体を、電解質中に存在する状態で配設したので、上述した理由により、本発明の光電変換装置単体、または短波長側に高感度を有する色素増感型太陽電池もしくは薄膜太陽電池を組合せることで、より高効率で耐久性のある色素増感型太陽電池等の光電変換装置を容易に提供することができる。 In addition, a metal oxide semiconductor in which a monomer and an aggregate of a pigment having a porphyrin skeleton and photoelectric conversion are mixed and adsorbed or stacked on a conductive support is present in an electrolyte. For the reasons described above, the photoelectric conversion device alone of the present invention, or a dye-sensitized solar cell or a thin-film solar cell having high sensitivity on the short wavelength side, is combined for higher efficiency and durability. A photoelectric conversion device such as a certain dye-sensitized solar cell can be easily provided.

さらに、本発明の光発電装置は、上記1)または上記2)の光電変換装置を発電手段として用い、この発電手段の発電電力を負荷へ供給するように成したことを特徴とするので、高効率で耐久性のある光発電装置を提供することができる。   Furthermore, the photovoltaic device of the present invention is characterized in that the photoelectric conversion device of 1) or 2) above is used as a power generation means, and the generated power of this power generation means is supplied to a load. An efficient and durable photovoltaic device can be provided.

以下、本発明の実施形態について図面を参照しつつ詳細に説明する。なお、図面において同一部材には同一符号を付すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same members are denoted by the same reference numerals.

色素増感型太陽電池の基本構造をなす参考としての光電変換装置を模式的に説明する断面図を図1に、参考としての積層型の光電変換装置を模式的に説明する断面図を図2にそれぞれ示す。図中の矢印Lは光の入射する様子(方向)を示す。 FIG. 1 is a cross-sectional view schematically illustrating a photoelectric conversion device as a reference constituting the basic structure of a dye-sensitized solar cell, and FIG. 2 is a cross-sectional view schematically illustrating a stacked photoelectric conversion device as a reference . Respectively. An arrow L in the figure indicates a state (direction) of incident light.

図1に示す光電変換装置は、導電性支持体である導電性基板11上に、ポルフィリン骨格を有し光電変換を行なう色素の会合体(以下、色素会合体)13を吸着させた金属酸化物半導体からなる一導電型輸送体である電子輸送体(金属酸化物半導体)12を、他方導電型輸送体である電解質中に存在する状態で配設したことを特徴とするものである。この構造は、色素会合体13の増感作用により光電変換を行なう色素増感型光電変換体をなしており、この色素増感型光電変換体は、導電性基板11上に形成され色素会合体13を担持した多孔質の電子輸送体12、この電子輸送体12を埋めるように形成した逆多孔質の逆導電型輸送体である電解質14、白金やカーボンを担持させた透明導電層17および透光性被覆体18からなる。   The photoelectric conversion device shown in FIG. 1 is a metal oxide in which a dye aggregate (hereinafter referred to as dye aggregate) 13 having a porphyrin skeleton is adsorbed on a conductive substrate 11 which is a conductive support. An electron transporter (metal oxide semiconductor) 12 that is a one-conductivity type transporter made of a semiconductor is disposed in a state of being present in an electrolyte that is the other conductivity-type transporter. This structure forms a dye-sensitized photoelectric converter that performs photoelectric conversion by the sensitizing action of the dye aggregate 13, and this dye-sensitized photoelectric converter is formed on the conductive substrate 11 and is dye-aggregated. Porous electron transporter 12 carrying 13, electrolyte 14 which is a reverse porous reverse conductivity type transporter formed so as to fill this electron transporter 12, transparent conductive layer 17 carrying platinum or carbon, and transparent It consists of a light coating 18.

図2の光電変換装置は、一主面側から光を入射させる導電性基板11の一主面上に、色素会合体13を有しこの色素会合体13の増感作用により光電変換を行なう色素増感型光電変換体と、薄膜形成法により作製し、光電変換を行なう無機半導体層を有し光を透過させる薄膜光電変換体とを積層してなる積層型光電変換装置を構成したものであり、色素増感型光電変換体が薄膜光電変換体より長波長側にピーク感度を有し、薄膜光電変換体を透過した光を吸収する。   The photoelectric conversion device of FIG. 2 has a dye aggregate 13 on one main surface of a conductive substrate 11 on which light is incident from one main surface side, and a dye that performs photoelectric conversion by the sensitizing action of the dye aggregate 13. A laminated photoelectric conversion device comprising a sensitized photoelectric conversion body and a thin film photoelectric conversion body manufactured by a thin film formation method and having an inorganic semiconductor layer for photoelectric conversion and transmitting light. The dye-sensitized photoelectric converter has a peak sensitivity on the longer wavelength side than the thin film photoelectric converter and absorbs light transmitted through the thin film photoelectric converter.

薄膜光電変換体は、第1の透明導電層15上に、薄膜光電変換層16、第2の透明導電層17および透光性被覆体18が順次積層された構成を有する。なお、薄膜光電変換層16としては、シリコン系の薄膜pin接合層でもよく、CIGS(CuInGaSe)などの化合物半導体系の薄膜接合層でもよい。また、これらの接合層はpin接合型,pn接合型,ショットキー接合型,ヘテロ接合型など内部電界を生じるものがよい。シリコン系としては、アモルファスシリコン系,ナノサイズ結晶を含むアモルファスシリコン系,微結晶シリコン系などがよく、特に短波長感度を有するアモルファスシリコン系や光劣化が抑制されるナノサイズ結晶を含むアモルファスシリコン系がよい。ここで、アモルファスシリコン系とは、アモルファスシリコンカーバイト,アモルファスシリコンナイトライドなどの合金系を含む。   The thin film photoelectric converter has a configuration in which a thin film photoelectric conversion layer 16, a second transparent conductive layer 17, and a translucent covering 18 are sequentially laminated on a first transparent conductive layer 15. The thin film photoelectric conversion layer 16 may be a silicon thin film pin junction layer or a compound semiconductor thin film junction layer such as CIGS (CuInGaSe). These junction layers are preferably those that generate an internal electric field, such as a pin junction type, a pn junction type, a Schottky junction type, and a hetero junction type. As silicon-based materials, amorphous silicon-based materials, amorphous silicon-based materials including nano-sized crystals, microcrystalline silicon-based materials, etc. are particularly suitable. Is good. Here, the amorphous silicon system includes alloy systems such as amorphous silicon carbide and amorphous silicon nitride.

薄膜光電変換体からの第1の出力と、色素増感型光電変換体からの第2の出力とは、それぞれ独立して出力しても、接続して出力してもよい。本発明のように、積層型光電変換装置の場合、第1の出力の電流と第2の出力の電流とが同じになるように両光電変換装置の性能を合わせてやれば、第1の透明電極層から外部に出力を取り出す必要がなく集積化などの電極配線構造がシンプルになって具合がよい。両光電流を合わせるにはそれぞれの膜厚や感度などを調整すればよい。   The first output from the thin film photoelectric converter and the second output from the dye-sensitized photoelectric converter may be output independently or connected to each other. In the case of a stacked photoelectric conversion device as in the present invention, if the performance of both photoelectric conversion devices is matched so that the current of the first output and the current of the second output are the same, the first transparent There is no need to extract the output from the electrode layer to the outside, and the electrode wiring structure such as integration is simple and good. In order to match both photocurrents, the film thickness, sensitivity, etc., may be adjusted.

本発明の光電変換装置の一実施形態は、図3に示すように、色素として色素会合体13だけでなく単量体(フリーベースやプロトン化モノマー)の色素(色素単量体)19を適当な比率で混合させた構成を有するものである。ここで、色素会合体13と色素単量体19との比率は酸の処理時間、温度、濃度等によって混合比を適当に制御できる。この光電変換装置によれば、色素単量体19と色素会合体13とを混合していることから、吸収波長を広くすることができ、変換効率や耐久性の向上を図ることができる。 In one embodiment of the photoelectric conversion device of the present invention, as shown in FIG. 3, not only the dye aggregate 13 but also a dye (free base or protonated monomer) dye (dye monomer) 19 is suitable as the dye. and it has a structure obtained by mixing at a ratio. Here, the ratio of the dye aggregate 13 to the dye monomer 19 can be appropriately controlled by the acid treatment time, temperature, concentration and the like. According to this photoelectric conversion device, since the dye monomer 19 and the dye aggregate 13 are mixed, the absorption wavelength can be widened, and conversion efficiency and durability can be improved.

また、本発明の光電変換装置の他の実施形態としては、図4に示すように、導電性基板11を間に挟んで色素単量体19を有する光電変換体2aと色素会合体13を設けた光電変換体2bとを積層させた構造とすることも可能である。この積層型光電変換装置によっても、導電性基板の両側に色素単量体19と色素会合体13とを設けたことから光吸収波長を広くす
ることができ、変換効率の向上と耐久性を図ることができる。
As another embodiment of the photoelectric conversion device of the present invention, as shown in FIG. 4, a photoelectric conversion body 2a having a dye monomer 19 and a dye aggregate 13 are provided with a conductive substrate 11 interposed therebetween. It is also possible to have a structure in which the photoelectric converter 2b is laminated. Also in this stacked photoelectric conversion device, since the dye monomer 19 and the dye aggregate 13 are provided on both sides of the conductive substrate, the light absorption wavelength can be widened, and the conversion efficiency is improved and the durability is improved. be able to.

次に、上述した光電変換装置を構成する各要素について詳細に説明する。   Next, each element which comprises the photoelectric conversion apparatus mentioned above is demonstrated in detail.

<導電性基板>
導電性基板11としては、薄い金属シートが単独でよく、チタン,ステンレス,アルミニウム,銀,銅,ニッケルなどがよい。またカーボンや金属の微粒子や微細線を含浸した樹脂、導電性有機樹脂などがよい。また金属薄膜のチタン,ステンレス,アルミニウム,銀,銅,ニッケルなど、透明導電膜のITO,SnO:F,ZnO:Alなど、積層体のTi/ITO/Tiなどの導電膜11b付きの絶縁基板11aなどがよい。絶縁基板11aの材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネートなどの樹脂材料や青板ガラス,ソーダガラス,硼珪酸ガラス,セラミックスなどの無機質材料,導電性有機樹脂材料,有機無機ハイブリッド材料などがよい。
<Conductive substrate>
The conductive substrate 11 may have a thin metal sheet alone, titanium, stainless steel, aluminum, silver, copper, a good and nickel. Further, a resin impregnated with carbon or metal fine particles or fine lines, a conductive organic resin, or the like is preferable. Also, an insulating substrate with a conductive film 11b such as Ti / ITO / Ti in a laminated body, such as ITO, SnO 2 : F, ZnO: Al as a transparent conductive film, such as titanium, stainless steel, aluminum, silver, copper, or nickel as a metal thin film 11a is good. As a material of the insulating substrate 11a, resin materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, inorganic materials such as blue plate glass, soda glass, borosilicate glass, ceramics, and conductive organic resin materials Organic-inorganic hybrid materials are good.

導電性基板11に光反射性を持たせると、透過光を反射させて再利用することができる。金属基板の場合、銀やアルミニウムなどがよい。また、導電膜11bの場合、銀,密着層付きTi/Ag/Tiなどの積層膜などがよく、真空蒸着法,イオンプレーティング法,スパッタリング法,電解析出法などで形成するのがよい。導電性基板の厚みは0.01mm〜5mm、好ましくは0.02mm〜3.0mmがよい。導電膜の厚みは0.001μm〜10μm、好ましくは0.05μm〜2.0μmがよい。また、導電性基板11が透光性の場合(SnO:F膜付
き青板ガラスなど)、基板裏面に光反射性のアルミニウムや銀などのシートや膜などを用いて光反射性を施しても構わない。
If the conductive substrate 11 has light reflectivity, the transmitted light can be reflected and reused. In the case of a metal substrate, silver or aluminum is preferable. Further, in the case of the conductive film 11b, a laminated film of silver, Ti / Ag / Ti with an adhesion layer, or the like is preferable, and it is preferably formed by a vacuum deposition method, an ion plating method, a sputtering method, an electrolytic deposition method, or the like. The thickness of the conductive substrate is 0.01 mm to 5 mm, preferably 0.02 mm to 3.0 mm. The thickness of the conductive film is 0.001 μm to 10 μm, preferably 0.05 μm to 2.0 μm. Further, when the conductive substrate 11 is translucent (eg, SnO 2 : blue plate glass with F film), the back surface of the substrate may be light-reflected using a sheet or film of light-reflective aluminum or silver. I do not care.

また、図1〜図の場合には、導電性基板11に透光性を持たせれば、光入射を電子輸送体12側からとすることもできる。この場合、絶縁基板11aの材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネートなどの樹脂シートや白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックスなどの無機質シート,有機無機ハイブリッドシートなどがよい。また同様に透明な導電膜11bとして、低温成長のスパッタ法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)などがよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)、などがよく、これらを積層して用いてもよい。また熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)などを用いてもよい。他に、不純物ドープの酸化インジウム膜(In膜)などが使える。他の製膜法として、真空蒸着法、イオンプレーティング法、ディップコート法、ゾル・ゲル法、等がある。これらの膜成長によって入射光の波長オーダーの表面凹凸を形成すると光閉じ込め効果があってなおよい。また、第1の透明導電層として、真空蒸着法やスパッタ法などで形成したAu,Pd,Alなどの薄い金属膜でもよい。 In the case of FIGS. 1 to 4 , if the conductive substrate 11 has translucency, light can be incident from the electron transporter 12 side. In this case, as the material of the insulating substrate 11a, resin sheets such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc., white sheets, soda glass, soda glass, borosilicate glass, ceramics and other inorganic sheets, organic inorganic Hybrid seats are good. Similarly, the transparent conductive film 11b is preferably a tin-doped indium oxide film (ITO film) or an impurity-doped indium oxide film (In 2 O 3 film) produced by a low temperature growth sputtering method or a low temperature spray pyrolysis method. In addition, an impurity-doped zinc oxide film (ZnO film) manufactured by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide film (In 2 O 3 film) or the like can be used. As other film forming methods, there are a vacuum deposition method, an ion plating method, a dip coating method, a sol-gel method, and the like. The formation of surface irregularities in the order of the wavelength of incident light by the growth of these films is still preferable because of the light confinement effect. The first transparent conductive layer may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method.

また、導電性基板11の光入射側の表面は両面が平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面の方が光閉じ込め効果があってなおよい。   Further, the surface on the light incident side of the conductive substrate 11 may be flat on both sides, but the surface having irregularities in the order of the wavelength of incident light may have a light confinement effect.

<電子輸送体>
一導電型輸送体である電子輸送体12としては、多孔質の二酸化チタンなどの電子輸送体(n型金属酸化物半導体)が特に好ましい。図1〜図4の光電変換装置の場合は、導電性基板11上にこの多孔質の電子輸送体12を形成する。
<Electron transporter>
As the electron transporter 12 which is one conductivity type transporter, an electron transporter (n-type metal oxide semiconductor) such as porous titanium dioxide is particularly preferable. In the case of the photoelectric conversion device of FIGS . 1 to 4, the porous electron transporter 12 is formed on the conductive substrate 11.

電子輸送体12は、n型金属酸化物半導体が好適であり、粒状体または線状体(針状体,チューブ状体,柱状体など)の複数が集合してなるものが最適である。   The electron transporter 12 is preferably an n-type metal oxide semiconductor, and is most preferably an aggregate of a plurality of granular bodies or linear bodies (needle bodies, tube bodies, columnar bodies, etc.).

電子輸送体12を多孔質体等とすることにより、この接合面積が拡がり、色素を担持する表面積が増えて、光電変換効率を高めることができる。   By making the electron transporter 12 a porous body or the like, the bonding area is expanded, the surface area for supporting the dye is increased, and the photoelectric conversion efficiency can be increased.

また、電子輸送体12を多孔質体等とすることにより、色素増感型光電変換体の表面が凹凸形状となり、薄膜光電変換体や色素増感型光電変換体に光閉じ込め効果をもたらして、光電変換効率をより高めることができる。   In addition, by making the electron transporter 12 a porous body or the like, the surface of the dye-sensitized photoelectric conversion body becomes uneven, bringing a light confinement effect to the thin film photoelectric conversion body or the dye-sensitized photoelectric conversion body, Photoelectric conversion efficiency can be further increased.

金属酸化物半導体の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料や組成としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V)などの金属元素の少なくとも1種以上からなる酸化物半導体がよく、また窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)などの非金属元素の1種以上を含有させてもよい。いずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2eV〜5eVの範囲にあり、且つ電子エネルギー準位において金属酸化物半導体の伝導帯が色素の伝導帯より低いn型半導体がよい。 As the material and composition of the metal oxide semiconductor, titanium oxide (TiO 2 ) is optimal, and as other material and composition, titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), Indium (In), Yttrium (Y), Lanthanum (La), Zirconium (Zr), Tantalum (Ta), Hafnium (Hf), Strontium (Sr), Barium (Ba), Calcium (Ca), Vanadium (V), etc. Non-metals such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), and phosphorus (P) are preferable. One or more elements may be contained. In any case, an n-type semiconductor whose electron energy band gap is in a range of 2 eV to 5 eV larger than the energy of visible light and whose conduction band of the metal oxide semiconductor is lower than the conduction band of the dye in the electron energy level is preferable.

この金属酸化物半導体は空孔率が20%〜80%、より好適には40%〜60%の多孔質体状がよい。この理由は、この程度の空孔率の多孔質化により光作用極の表面積を1000倍以上に高めることができて、光吸収と発電と電子伝導を効率よく行なうことができるからである。多孔質体の形状は、その表面積が大きくなり且つ電気抵抗が小さい形状がよく、通常は、微細粒子もしくは微細線状からなるのがよく、その平均粒径もしくは平均線径は5nm〜500nmとするのがよく、より好適には10nm〜200nmとする。ここで、平均線径は5nm〜500nmにおける下限値は、これ以下になると材料の微細化ができず、上限値は、
これ以上になると接合面積が小さくなり光電流が著しく小さくなるからである。
This metal oxide semiconductor is preferably a porous body having a porosity of 20% to 80%, more preferably 40% to 60%. This is because the surface area of the light working electrode can be increased 1000 times or more by making the porosity of this degree of porosity, and light absorption, power generation and electron conduction can be performed efficiently. The shape of the porous body is preferably a shape having a large surface area and a small electric resistance, and is usually preferably composed of fine particles or fine lines, and has an average particle diameter or average wire diameter of 5 nm to 500 nm. More preferably, the thickness is 10 nm to 200 nm. Here, when the average wire diameter is lower than 5 nm to 500 nm, the material cannot be miniaturized, and the upper limit is
This is because if it exceeds this range, the junction area is reduced and the photocurrent is significantly reduced.

また、金属酸化物半導体の膜厚は0.1μm〜50μmがよく、より好適には1μm〜20μ
mとする。ここで、0.1μm〜50μmにおける下限値は、これより膜厚が小さくなると光
電変換作用が著しく小さくなって実使用できず、上限値は、これ以上膜厚が厚くなると光が透過しなくなって光が入射しなくなるからである。
The film thickness of the metal oxide semiconductor is preferably 0.1 μm to 50 μm, more preferably 1 μm to 20 μm.
m. Here, the lower limit value between 0.1 μm and 50 μm cannot be used practically because the photoelectric conversion effect becomes extremely small when the film thickness is smaller than this, and the upper limit value is that light cannot be transmitted when the film thickness becomes thicker than this. This is because no longer enters.

チタン酸化物半導体の製造方法は、まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストをドクターブレード法で透光性導電膜が形成されている面上に、一定の速度で塗布し、大気中において300℃〜600℃、好適には400℃〜500℃で、10分〜60分、好適には20分〜40分処理することにより、多孔質体の金属酸化物半導体を作製する。この手法は簡便であり、図1のように、耐熱性の導電性基板上に予め形成できる場合に有効である。 The titanium oxide semiconductor is manufactured by first adding acetylacetone to TiO 2 anatase powder and then kneading with deionized water to produce a titanium oxide paste stabilized with a surfactant. The prepared paste is applied at a constant speed onto the surface on which the translucent conductive film is formed by the doctor blade method, and is 300 to 600 ° C., preferably 400 to 500 ° C. in the atmosphere for 10 minutes. A porous metal oxide semiconductor is produced by treatment for ˜60 minutes, preferably 20 minutes to 40 minutes. This method is simple and effective when it can be formed in advance on a heat-resistant conductive substrate as shown in FIG.

このような金属酸化物半導体の低温成長法として、電析法,泳動電着法,水熱合成法などがよく、後処理としてマイクロ波処理,CVD/UV処理などがよい。金属酸化物半導
体の材料としては、電析法による多孔質ZnO,泳動電着法による多孔質TiOなどがよい。
As a low-temperature growth method of such a metal oxide semiconductor, an electrodeposition method, an electrophoretic electrodeposition method, a hydrothermal synthesis method, or the like is preferable, and microwave processing, CVD / UV processing, or the like is preferable as post-processing. As a material for the metal oxide semiconductor, porous ZnO by electrodeposition, porous TiO 2 by electrophoretic deposition, or the like is preferable.

<色素>
色素としては、会合体の形成が容易なポルフィリン骨格を有するものとする。また、効率よく太陽光吸収させるため、多孔質体の金属酸化物半導体に色素を吸着させるため、色素に少なくとも1ヶ以上のカルボキシル基、スルホニル基、ヒドロキサム酸基、アルコキ
シ基、アリール基、ホスホリル基を置換基として有することが有効である。図5にフェニルポルフィリンに置換基がついている様子を示す。例えばポルフィリン骨格についている置換基R1〜R4の全てをカルボシキル基としてもよいし、置換基R1〜R4のうち3以下をカルボシキル基とし、残りを水素としてもよい。ここで、置換基は色素自身を金属酸化物半導体に強固に化学吸着することができ、励起状態の色素から金属酸化物半導体へ容易に電荷移動できるものであればよい。
<Dye>
The dye has a porphyrin skeleton that facilitates the formation of aggregates. In addition, in order to efficiently absorb sunlight, a dye is adsorbed on a porous metal oxide semiconductor, so that the dye has at least one carboxyl group, sulfonyl group, hydroxamic acid group, alkoxy group, aryl group, phosphoryl group. It is effective to have as a substituent. FIG. 5 shows a state in which phenylporphyrin has a substituent. For example, all of the substituents R1 to R4 attached to the porphyrin skeleton may be a carboxy group, or 3 or less of the substituents R1 to R4 may be a carboxy group, and the rest may be hydrogen. Here, the substituent may be any as long as it can strongly chemisorb the dye itself to the metal oxide semiconductor and can easily transfer charges from the excited dye to the metal oxide semiconductor.

多孔質体の金属酸化物半導体に色素を吸着させる方法としては、金属酸化物半導体を形成した基板を、色素を溶解した溶液に浸漬する方法が挙げられる。多孔質体の金属酸化物半導体を形成した基体を、色素を溶解した溶液に浸漬する際、溶液および雰囲気の温度は特に限定されるものではなく、例えば、大気圧下、室温が挙げられ、浸漬時間は色素,溶媒の種類,溶液の濃度、温度等により適宜調整することができる。これにより色素を多孔質体の金属酸化物半導体に吸着させることができる。   Examples of a method for adsorbing a dye on a porous metal oxide semiconductor include a method in which a substrate on which a metal oxide semiconductor is formed is immersed in a solution in which the dye is dissolved. When the substrate on which the porous metal oxide semiconductor is formed is immersed in the solution in which the dye is dissolved, the temperature of the solution and the atmosphere is not particularly limited, and examples include immersion under atmospheric pressure and room temperature. The time can be appropriately adjusted depending on the type of the dye, the solvent, the concentration of the solution, the temperature, and the like. Thereby, a pigment | dye can be made to adsorb | suck to a porous metal oxide semiconductor.

色素を溶解させるために用いる溶媒は、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。   Examples of the solvent used for dissolving the dye include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like.

また、溶液中の色素濃度は5×10−5〜2×10−3mol/l程度が好ましい。 Further, the dye concentration in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l.

色素会合体13は、色素の吸着濃度を高濃度にすることや酸により色素をプロトン化することにより形成することができる。硝酸、硫酸、塩酸、酢酸等の酸により色素をプロトン化して色素会合体13を形成する場合、色素を多孔質の一導電型輸送体に吸着させた後、酸処理を行ない、色素会合体13を形成する方法と酸により色素の会合体を溶液中もしくは溶液表面で形成させた後、色素会合体13を多孔質の一導電型輸送体に吸着させる方法がある。   The dye aggregate 13 can be formed by increasing the dye adsorption concentration or protonating the dye with an acid. When the dye is protonated with an acid such as nitric acid, sulfuric acid, hydrochloric acid or acetic acid to form the dye aggregate 13, the dye is adsorbed on a porous one-conductivity transporter, and then acid-treated, and the dye aggregate 13 And a method of adsorbing the dye aggregate 13 to a porous one-conductivity transporter after forming a dye aggregate in a solution or on the surface of the solution with an acid.

色素単量体19と色素会合体13は、上述したように、混合あるいは積層することにより、各々の光吸収波長幅が合わさって太陽光の幅広い波長と重なり大きくでき、光電変換効率を向上させることができる。 By mixing or laminating the dye monomer 19 and the dye aggregate 13 as described above, the respective light absorption wavelength widths can be combined to increase the overlap with a wide range of wavelengths of sunlight, improving the photoelectric conversion efficiency. Can be made.

<電解質>
逆多孔質で他方導電型輸送体である電解質14としては、ゲル電解質などの正孔輸送体(p型半導体、液体電解質、固体電解質、電解塩など)が特によい。ここで、逆多孔質体とは前記多孔質を埋めるように形成することであり、電解液が最もよいキャリア移動を示すが液漏れなどの問題があるのでゲル化や固体化が好まれる。
<Electrolyte>
The electrolyte 14 which is a reverse porous and other conductive type transporter is particularly preferably a hole transporter such as a gel electrolyte (p-type semiconductor, liquid electrolyte, solid electrolyte, electrolytic salt, etc.). Here, the reverse porous body is formed so as to fill the porous body, and the electrolyte solution exhibits the best carrier movement, but gelation and solidification are preferred because of problems such as liquid leakage.

電解質の材料としては、透明導電性酸化物,電解質溶液,ゲル電解質や固体電解質などの電解質、有機正孔輸送剤、極薄膜金属などが挙げられる。透明導電性酸化物としては、一価の銅を含む化合物半導体やGaP,NiO,CoO,FeO,Bi,MoO,Crなどがよく、中でも一価の銅を含む半導体がよい。好適な化合物半導体としては、CuI,CuInSe,CuO,CuSCN,CuS,CuInS,CuAlSeなどがよく、この中ではCuIおよびCuSCNがよく、CuIが製造しやすく最も望ましい。 Examples of the electrolyte material include transparent conductive oxides, electrolyte solutions, electrolytes such as gel electrolytes and solid electrolytes, organic hole transport agents, and ultrathin metal films. As the transparent conductive oxide, a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3, and the like are preferable. Among them, a semiconductor containing monovalent copper is preferable. Good. Suitable compound semiconductors include CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , and CuAlSe 2. Among these, CuI and CuSCN are preferred, and CuI is most preferable because it is easy to manufacture.

電解質溶液としては第4級アンモニウム塩やLi塩などを用いる。電解質溶液の組成としては例えば、炭酸エチレン、アセトニトリル、またはメトキシプロピオニトリルなどに、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素などを混合し調製したものを用いることができる。   As the electrolyte solution, a quaternary ammonium salt or a Li salt is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing ethylene carbonate, acetonitrile, methoxypropionitrile, or the like with tetrapropylammonium iodide, lithium iodide, iodine, or the like can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルに分けられる。化学ゲルは架橋反応などにより化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル、エチレンカーボネート、プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミドなどのホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合、低粘度の前駆体を酸化物半導体層に含有させ、加熱,紫外線照射,電子線照射などの手段で二次元,三次元の架橋反応をおこさせることによってゲル化または固体化できる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by chemical bonding by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to physical interaction. The gel electrolyte is a gel that is polymerized by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, or polyacrylamide into acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof. An electrolyte is preferred. When using a gel electrolyte or solid electrolyte, a low-viscosity precursor is included in the oxide semiconductor layer, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド、ポリエチレンオキサイドもしくはポリエチレンなどの高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩などの塩をもつ固体電解質が好ましい。ヨウ化物の溶融塩としてはイミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩などのヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide or polyethylene having a salt such as a sulfonimidazolium salt, a tetracyanoquinodimethane salt or a dicyanoquinodiimine salt is preferable. As the molten salt of iodide, iodides such as imidazolium salt, quaternary ammonium salt, isoxazolidinium salt, isothiazolidinium salt, pyrazolidium salt, pyrrolidinium salt, pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

有機正孔輸送剤として機能する電解質としては、トリフェニルジアミン(TPD1,TPD2,TPD3)やOMeTADなどが挙げられる。   Examples of the electrolyte functioning as an organic hole transport agent include triphenyldiamine (TPD1, TPD2, TPD3), OMeTAD, and the like.

<第1の透明導電層>
第1の透明導電層15としては、低温成長のスパッタ法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)などがよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)、などがよく、これらを積層して用いてもよい。また熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)などを用いてもよい。他に、不純物ドープの酸化インジウム膜(In膜)などが使える。他の製膜法として、真空蒸着法、イオンプレーティング法、ディップコート法、ゾル・ゲル法、等がある。これらの膜成長によって入射光の波長オーダーの表面凹凸を形成すると光閉じ込め効果があってなおよい。また、第1の透明導電層として、真空蒸着法やスパッタ法などで形成したAu,Pd,Alなどの薄い金属膜でもよい。
<First transparent conductive layer>
The first transparent conductive layer 15 is preferably a tin-doped indium oxide film (ITO film) or an impurity-doped indium oxide film (In 2 O 3 film) produced by a low temperature growth sputtering method or a low temperature spray pyrolysis method. In addition, an impurity-doped zinc oxide film (ZnO film) manufactured by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide film (In 2 O 3 film) or the like can be used. As other film forming methods, there are a vacuum deposition method, an ion plating method, a dip coating method, a sol-gel method, and the like. The formation of surface irregularities in the order of the wavelength of incident light by the growth of these films is still preferable because of the light confinement effect. The first transparent conductive layer may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method.

<薄膜光電変換層>
薄膜光電変換層16としては、プラズマCVD法によって連続堆積したpin接合の水素化アモルファスシリコン系半導体膜がよい。第1の透光性導電膜側にp型半導体膜を設けたpin接合としたが、逆接合のnip接合でも構わない。ここで、一導電型シリコン系半導体層16aと逆導電型シリコン系半導体層16cとはそれぞれp型半導体とn型半導体もしくはn型半導体とp型半導体からなるものを意味する。また実質的に真性であるシリコン系半導体層16bはi型半導体を意味する。
<Thin film photoelectric conversion layer>
The thin film photoelectric conversion layer 16 is preferably a pin junction hydrogenated amorphous silicon semiconductor film continuously deposited by plasma CVD. Although the pin junction is provided with the p-type semiconductor film on the first translucent conductive film side, it may be a reverse junction nip junction. Here, the one-conductivity-type silicon-based semiconductor layer 16a and the reverse-conductivity-type silicon-based semiconductor layer 16c mean a p-type semiconductor and an n-type semiconductor, or an n-type semiconductor and a p-type semiconductor, respectively. The silicon-based semiconductor layer 16b that is substantially intrinsic means an i-type semiconductor.

ここで、i型半導体膜が非晶質であれば、p型半導体膜とn型半導体膜は少なくともいずれかが微結晶を有するもの、または水素化アモルファスシリコン合金系の膜でも構わな
い。例えば、光入射側のp膜は水素化アモルファスシリコンカーバイドが透光性を高めて光の侵入ロスが少なくより好ましい。他の堆積法として触媒CVD法などで堆積してもよい。プラズマCVD法と触媒CVD法を組み合わせると光劣化が抑制できて信頼性が高まる。これらのシリコン系半導体層16a,16b,16cは、化学気相成長法によりそれぞれの製膜条件で連続堆積できるので具合がよい。
Here, as long as the i-type semiconductor film is amorphous, at least one of the p-type semiconductor film and the n-type semiconductor film may have microcrystals, or a hydrogenated amorphous silicon alloy film. For example, hydrogenated amorphous silicon carbide is more preferable for the p-film on the light incident side because it increases translucency and reduces light penetration loss. Other deposition methods such as catalytic CVD may be used. When plasma CVD and catalytic CVD are combined, photodegradation can be suppressed and reliability can be improved. These silicon-based semiconductor layers 16a, 16b, and 16c are good because they can be continuously deposited under the respective film-forming conditions by chemical vapor deposition.

より詳しく説明すると、例えば、p型a−Si:H膜の場合、原料ガスとしてSiH、Hガス、B(Hで500ppmに希釈したもの)を用い、これらのガスの流量
をそれぞれ最適化し、膜厚は50Å〜200Åの範囲がよく、好適には80Å〜120Åがよく、薄いと内部電界が形成できず厚いと光量損失が増える。続いてi型a−Si:Hの原料ガスとしてSiH、Hガスを用い、これらのガスの流量を最適化し、膜厚は500Å〜5000
Å(0.05μm〜0.5μm)の範囲がよく、好適には1500Å〜2500Å(0.15μm〜0.25μm
)、なぜなら薄いと充分な光電流が得られず、厚いと後の色素増感型光電変換装置に光を透過できないからである。続いてn型a−Si:H膜の場合、原料ガスとしてSiH、Hガス、PH(Hで1000ppmに希釈したもの)を用い、これらのガスの流量をそれぞれ最適化し、膜厚は50Å〜200Åの範囲がよく、好適には80Å〜120Åがよく、薄いと内部電界が形成できず厚いと光量損失が増える。基板温度は、pin膜の何れも150℃〜300℃の範囲がよく、好適には180℃〜240℃がよく、低くても高くてもよい光半導体が得られない。
More specifically, for example, in the case of a p-type a-Si: H film, SiH 4 , H 2 gas, and B 2 H 6 (diluted to 500 ppm with H 2 ) are used as source gases, and the flow rates of these gases The film thickness is in the range of 50 mm to 200 mm, preferably 80 mm to 120 mm. If it is thin, an internal electric field cannot be formed, and if it is thick, the light loss increases. Subsequently, SiH 4 and H 2 gases are used as the i-type a-Si: H source gas, the flow rates of these gases are optimized, and the film thickness is 500 to 5000 mm.
The range of Å (0.05 μm to 0.5 μm) is good, preferably 1500 Å to 2500 Å (0.15 μm to 0.25 μm)
) Because, if it is thin, sufficient photocurrent cannot be obtained, and if it is thick, light cannot be transmitted to the subsequent dye-sensitized photoelectric conversion device. Subsequently, in the case of an n-type a-Si: H film, SiH 4 , H 2 gas, and PH 3 (diluted to 1000 ppm with H 2 ) are used as source gases, and the flow rates of these gases are optimized, respectively. Is preferably in the range of 50 mm to 200 mm, preferably 80 mm to 120 mm. If it is thin, an internal electric field cannot be formed, and if it is thick, light loss increases. The substrate temperature is in the range of 150 ° C. to 300 ° C. for any pin film, preferably 180 ° C. to 240 ° C., and an optical semiconductor that may be low or high cannot be obtained.

<第2の透明導電層>
第2の透明導電層17としては、第1の透明導電層15と同様に、低温成長のスパッタ法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)などがよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)、などがよく、これらを積層して用いてもよい。また熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)などを用いてもよい。他に、不純物ドープの酸化インジウム膜(In膜)などが使える。他の製膜法として、真空蒸着法,イオンプレーティング法,ディップコート法,ゾル・ゲル法などがある。これらの膜成長によって入射光の波長オーダーの表面凹凸を形成すると光閉じ込め効果があってなおよい。また、第2の透明導電層として、真空蒸着法やスパッタ法などで形成したAu,Pd,Alなどの薄い金属膜でもよい。
<Second transparent conductive layer>
As the second transparent conductive layer 17, as with the first transparent conductive layer 15, a tin-doped indium oxide film (ITO film) or impurity-doped indium oxide film produced by a low temperature growth sputtering method or a low temperature spray pyrolysis method. (In 2 O 3 film) is preferable. In addition, an impurity-doped zinc oxide film (ZnO film) manufactured by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide film (In 2 O 3 film) or the like can be used. Other film forming methods include a vacuum deposition method, an ion plating method, a dip coating method, and a sol-gel method. The formation of surface irregularities in the order of the wavelength of incident light by the growth of these films is still preferable because of the light confinement effect. The second transparent conductive layer may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method.

<透光性被覆体>
透光性被覆体18としては、フッ素樹脂,シリコンポリエステル樹脂,高耐候性ポリエステル樹脂,ポリ塩化ビニル樹脂などや金属屋根に利用される塗布樹脂などが耐候性に優れ特によい。この透光性被覆体の厚みは0.1μm〜6mm、好ましくは1μm〜4mmがよ
い。また、防眩性,遮熱性,耐熱性,低汚染性,抗菌性,防かび性,意匠性,高加工性,耐疵付き・耐摩耗性,滑雪性,帯電防止性,遠赤外線放射性,耐酸性,耐食性,環境対応性,などを透光性被覆体に付与することにより、信頼性や商品性をより高めることができる。
<Translucent covering>
As the translucent covering 18, a fluorine resin, a silicon polyester resin, a high weather resistance polyester resin, a polyvinyl chloride resin, a coating resin used for a metal roof, etc. are particularly excellent in weather resistance. The translucent covering has a thickness of 0.1 μm to 6 mm, preferably 1 μm to 4 mm. In addition, antiglare, heat shield, heat resistance, low contamination, antibacterial, antifungal, design, high workability, scratch resistance / wear resistance, snow sliding, antistatic, far infrared radiation, acid resistance Reliability and merchantability can be further improved by providing the translucent covering with properties, corrosion resistance, environmental compatibility, and the like.

また、図2の光電変換装置の場合には、透光性被覆体18として、充分な機械的強度の厚みがあり支持体として使用できれば、予め薄膜光電変換体を形成しても構わない。この場合、透光性被覆体の厚みは0.1mm〜0.6mm、好ましくは1mm〜4mmがよく、前記材料の他に、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネートなどの樹脂シートや白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックスなどの無機質シート,有機無機ハイブリッドシートなどがよい。 In the case of the photoelectric conversion device of FIG. 2, a thin film photoelectric converter may be formed in advance as long as the translucent covering 18 has a sufficient mechanical strength and can be used as a support. In this case, the thickness of the translucent covering is 0.1 mm to 0.6 mm, preferably 1 mm to 4 mm. Besides the above materials, resins such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc. Sheets, white plate glass, soda glass, borosilicate glass, inorganic sheets such as ceramics, and organic-inorganic hybrid sheets are preferable.

また、透光性被覆体18の光入射側の表面は両面が平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面の方が光閉じ込め効果があってなおよい。   Further, the light incident side surface of the translucent covering 18 may be flat on both sides, but the surface having irregularities in the order of the wavelength of incident light may have a light confinement effect.

<下地層>
下地層は図示していないが、図1〜図の光電変換装置では、導電性基板11と多孔質の一導電型輸送体12との間に、多孔質の一導電型輸送体の薄い緻密層を挿入すると、逆電流が流れなくなるのでよい。
<Underlayer>
Although the underlayer is not shown, in the photoelectric conversion device of FIGS. 1 to 4 , the thin dense single-conductive transporter between the conductive substrate 11 and the single-conductive transporter 12 is porous. When the layer is inserted, no reverse current flows.

<触媒層>
触媒層は図示していないが、図1〜図の構成では、第1の透明導電層15と逆多孔質で逆導電型輸送体14との間に、白金あるいはカーボンなどの極薄膜を挿入すると、正孔の移動がよくなるので具合がよい。
<Catalyst layer>
Although the catalyst layer is not shown, in the configurations of FIGS. 1 to 4 , an ultrathin film such as platinum or carbon is inserted between the first transparent conductive layer 15 and the reverse porous and reverse conductivity type transporter 14. Then, since the movement of holes is improved, the condition is good.

かくして、本発明の光電変換装置によれば、ポルフィリン骨格を有する色素の単量体と会合体とを混合あるいは積層して光電変換材料として用いることにより、長波長感度を有し、光吸収波長幅を広げることができ、光電変換効率の向上ができる。 Thus, according to the photoelectric conversion device of the present invention, by mixing or laminating a dye monomer having a porphyrin skeleton and an aggregate and using it as a photoelectric conversion material, it has long wavelength sensitivity and has a light absorption wavelength width. And the photoelectric conversion efficiency can be improved.

また、このような本発明の光電変換装置を、図2の積層型光電変換装置に適用した場合には、主面側から光を入射させる導電性基板の主面上に、色素を有し該色素の増感作用により光電変換を行なう色素増感型光電変換体と、光電変換を行なう半導体層を有する薄膜光電変換体とが、この順で積層され、該薄膜光電変換体で短波長光がよく光電変換され、薄膜光電変換体を透過した光を吸収し色素の増感作用により光電変換を行なう該色素増感型光電変換体が吸収するので、両光電変換体の変換効率を合わせた変換効率が得られる。 Further, when such a photoelectric conversion device of the present invention is applied to the stacked photoelectric conversion device of FIG. 2 , the pigment has a dye on the main surface of the conductive substrate on which light is incident from the main surface side. A dye-sensitized photoelectric converter that performs photoelectric conversion by a sensitizing action of a dye and a thin-film photoelectric converter having a semiconductor layer that performs photoelectric conversion are stacked in this order, and short-wavelength light is emitted from the thin-film photoelectric converter. The dye-sensitized photoelectric converter that absorbs light that has been well photoelectrically converted and that has passed through the thin-film photoelectric converter and performs photoelectric conversion by the sensitizing action of the dye absorbs, so conversion that combines the conversion efficiency of both photoelectric converters Efficiency is obtained.

また、薄膜光電変換体も色素増感型光電変換体もそれぞれが低温プロセスで作製できるので、積層構成をとっても従来の太陽電池より簡便容易にかつ低コストで製造可能である。さらに、光の入射側に薄膜光電変換体を配し、その後側に色素増感型光電変換体を配したことにより、後側の色素増感型光電変換体が太陽光などの強い光を直接受けることがない。しかも、光入射側の薄膜光電変換体ではよりよく短波長光を吸収し長波長光をほとんど透過する。よって、後側に配置された色素増感型光電変換体は、太陽光などの強い光を直接受けることがなく、紫外線が無く短波長光が激減するので色素の光劣化が大幅に軽減し解消できる。また強い光を直接受けることがなく、背面側の導電性基板の他の主面側(基板裏面)より容易に色素増感型光電変換体を冷却することにより温度上昇が抑制できて、色素の熱劣化を抑制できる。   In addition, since each of the thin-film photoelectric conversion body and the dye-sensitized photoelectric conversion body can be produced by a low-temperature process, it can be easily and easily manufactured at a lower cost than a conventional solar cell even if it has a laminated structure. Furthermore, a thin-film photoelectric converter is arranged on the light incident side, and a dye-sensitized photoelectric converter is arranged on the rear side, so that the rear dye-sensitized photoelectric converter directly emits strong light such as sunlight. I will not receive it. Moreover, the thin film photoelectric conversion body on the light incident side better absorbs short wavelength light and almost transmits long wavelength light. Therefore, the dye-sensitized photoelectric converter placed on the rear side does not directly receive strong light such as sunlight, and since there is no ultraviolet light and the short wavelength light is drastically reduced, the light deterioration of the dye is greatly reduced and eliminated. it can. In addition, it does not receive strong light directly, and the temperature increase can be suppressed by cooling the dye-sensitized photoelectric conversion body easily from the other main surface side (back surface of the substrate) of the conductive substrate on the back side. Thermal degradation can be suppressed.

以上のように、本発明の光電変換装置として、導電性支持体上に、ポルフィリン骨格を有し光電変換を行なう色素の単量体と会合体とを、混合して吸着あるいは積層させた金属酸化物半導体を、電解質中に存在する状態で配設した例について説明したが、これに限定されない。例えば、基板上に透明導電層、ポルフィリン骨格を有する色素の単量体と会合体とを含む層、および金属等からなる導電層を順次積層したショットキー接合型の薄膜太陽電池とすることもできる。 As described above, as a photoelectric conversion device of the present invention, a metal oxide having a porphyrin skeleton having a porphyrin skeleton and an associated substance mixed and adsorbed or laminated on a conductive support is mixed. Although the example which arrange | positioned the physical semiconductor in the state which exists in electrolyte was demonstrated, it is not limited to this. For example, a Schottky junction thin film solar cell in which a transparent conductive layer, a layer containing a dye monomer having a porphyrin skeleton and an aggregate , and a conductive layer made of metal or the like are sequentially stacked on a substrate can be provided. .

また、基板上に金属等の導電層、ポルフィリン骨格を有する色素の単量体と会合体とを含む層、無機または有機半導体層および透明導電層を順次積層した薄膜太陽電池とすることも可能であり、ポルフィリン骨格を有する色素の単量体と会合体とを光電変換材料として用いたものであれば本発明の光電変換装置として実施することが可能である。 It is also possible to form a thin-film solar cell in which a conductive layer such as a metal, a layer containing a dye monomer having a porphyrin skeleton and an aggregate , an inorganic or organic semiconductor layer, and a transparent conductive layer are sequentially laminated on a substrate. If the monomer and the aggregate of the dye having a porphyrin skeleton are used as the photoelectric conversion material, it can be implemented as the photoelectric conversion device of the present invention.

また、本発明の光電変換装置は太陽電池に限定されるものではなく、光電変換機能を有するものであればよく、各種受光素子や光センサ等にも適用可能である。   Moreover, the photoelectric conversion apparatus of this invention is not limited to a solar cell, What is necessary is just to have a photoelectric conversion function, and it can apply also to various light receiving elements, an optical sensor, etc.

上述した光電変換装置を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成した光発電装置とすることができる。   The photoelectric conversion device described above can be used as a power generation unit, and a photovoltaic power generation device configured to supply the generated power from the power generation unit to a load can be obtained.

すなわち、上述した光電変換装置を1以上(複数であれば、直列,並列または直並列に)接続したものを発電手段として用い、この発電手段から直接直流負荷へ発電電力を供給するようにしてもよい。また、上述した光発電手段をインバータなどの電力変換手段を介して発電電力を適当な交流電力に変換した後で、この発電電力を商用電源系統や各種の電気機器などの交流負荷に供給することが可能な発電装置としてもよい。さらに、このような発電装置を日当たりのよい建物に設置するなどして、各種態様の太陽光発電システム等の光発電装置として利用することも可能であり、これにより、高効率で耐久性のある光発電装置を提供することができる。   That is, one or more of the above-described photoelectric conversion devices (in the case of a plurality, in series, parallel, or series-parallel) are used as power generation means, and the generated power may be supplied directly from this power generation means to the DC load. Good. In addition, after converting the above-described photovoltaic power generation means to appropriate AC power via power conversion means such as an inverter, this generated power is supplied to an AC load such as a commercial power supply system or various electric devices. It is good also as a power generator which can be. Furthermore, it is possible to use such a power generation device as a photovoltaic power generation device such as a solar power generation system of various aspects by installing it in a building with a good sunlight, and this makes it highly efficient and durable. A photovoltaic device can be provided.

以下、本発明をより具体化した実施例について説明する。   Examples of the present invention will be described below.

まず導電性基板として、フッ素ドープ酸化スズの透明導電膜付ガラス基板を用い、その上に多孔質の二酸化チタンを形成した。電子輸送体である二酸化チタンの製造方法は、まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。作製したペーストをドクターブレード法でチタニウム基板上に、一定の速度で塗布し、大気中において450℃
で30分間焼成した。
First, a fluorine-doped tin oxide glass substrate with a transparent conductive film was used as a conductive substrate, and porous titanium dioxide was formed thereon. In the production method of titanium dioxide, which is an electron transporter, first, acetylacetone was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste was applied at a constant speed onto a titanium substrate by the doctor blade method, and 450 ° C in the air.
Baked for 30 minutes.

色素としては、テトラカルボキシフェニルポルフィリンを用い、色素を溶解させるために用いる溶媒としては、エタノールを用い、多孔質の二酸化チタン層を形成した導電性支持体を、色素を溶解した溶液(0.3mモル/l)に12時間浸漬して色素単量体を多孔質の
二酸化チタン層に担持した。
Tetracarboxyphenylporphyrin is used as the dye, ethanol is used as the solvent used to dissolve the dye, and a conductive support in which a porous titanium dioxide layer is formed is dissolved in a solution (0.3 mmol) of the dye. / L) for 12 hours to support the dye monomer on the porous titanium dioxide layer.

その後、上記基板をエタノールにて洗浄、乾燥させた。   Thereafter, the substrate was washed with ethanol and dried.

この色素単量体が吸着した多孔質の二酸化チタン層を設けた導電性基体の吸収スペクトルを図6に示す。図示していないが、450nm付近に色素単量体のS遷移にあたるSoret−bandによる吸収と500〜700nm付近にS遷移にあたるQ−bandによる吸収見られた。 FIG. 6 shows an absorption spectrum of a conductive substrate provided with a porous titanium dioxide layer adsorbed with this dye monomer. Although not shown, it was observed absorption by Q-band 'corresponding to S 1 transitions to the absorption and near 500~700nm by Soret-band' corresponding to S 2 transition of the dye monomer around 450nm.

そして、酸処理として、0.1モル/lの硝酸水溶液に色素吸着させた基板を12時間浸漬
した後、乾燥させることにより、色素会合体(J会合体)を多孔質の二酸化チタン層に形成させた。
Then, as an acid treatment, a dye-adsorbed substrate in a 0.1 mol / l nitric acid aqueous solution was immersed for 12 hours and then dried to form a dye aggregate (J aggregate) on the porous titanium dioxide layer. .

また、色素会合体が吸着した多孔質の二酸化チタン層を設けた導電性基体の吸収スペクトルを図6に示す。なお、吸収スペクトルの測定は日本分光株式会社製のV−570の吸光
度測定装置を用い、分析条件はスペクトルバンド幅2.0nm,波長走査速度400nm/分で測定を行なった。その結果、520nm以下に色素の会合体のS遷移にあたるSoret−bandによる吸収と600〜800nm付近にS遷移にあたるQ−bandによる吸収が見られ、500n
m以上の長波長感度が向上していることがわかった。
Further, FIG. 6 shows an absorption spectrum of a conductive substrate provided with a porous titanium dioxide layer on which a dye aggregate is adsorbed. The absorption spectrum was measured using a V-570 absorbance measuring apparatus manufactured by JASCO Corporation, and the analysis conditions were a spectral bandwidth of 2.0 nm and a wavelength scanning speed of 400 nm / min. As a result, less absorption by Q-band 'corresponding to S 1 transitions observed at about the absorption and 600~800nm by Soret-band' corresponding to S 2 transitions aggregate of dye 520 nm, 500n
It was found that the long wavelength sensitivity of m or more was improved.

図7に色素単量体と色素会合体を積層した場合の吸収スペクトルを示す。図7から明らかなように、長波長側(400〜550nmおよび600〜800nm)に吸収感度が良好となることがわかった。   FIG. 7 shows an absorption spectrum when the dye monomer and the dye aggregate are laminated. As is clear from FIG. 7, it was found that the absorption sensitivity is good on the long wavelength side (400 to 550 nm and 600 to 800 nm).

正孔輸送層(電解質)として、0.1モル/lのLiI、0.05モル/lのIをプロピル
カーボネートに入れ電解質が溶解するまで攪拌して溶液を調製した。
As a hole-transporting layer (electrolyte), LiI of 0.1 mol / l, the solution was prepared by stirring until dissolution is electrolyte put I 2 propyl carbonate 0.05 mol / l.

対極として、Ptを膜厚50nmスパッタ蒸着させたフッ素ドープ酸化スズの透明導電膜
付ガラス基板を用いた。
As the counter electrode, a glass substrate with a transparent conductive film of fluorine-doped tin oxide in which Pt was deposited by sputtering to a thickness of 50 nm was used.

上記色素の会合体を吸着させた基板と対極基板をハイミラン等の熱可塑性樹脂をスペーサとして用いて対向させ、開口部より電解液を注入し、熱可塑性樹脂あるいは反応性樹脂を用いて封止し、光電変換装置のセルを形成した。   The substrate on which the aggregate of the dye is adsorbed and the counter electrode substrate are made to face each other using a thermoplastic resin such as high-milan as a spacer, an electrolytic solution is injected from the opening, and sealed with a thermoplastic resin or a reactive resin. A cell of a photoelectric conversion device was formed.

また、こうして得られた光電変換装置の分光感度は、色素の単量体よりも色素の会合体の方が、700〜800nmの分光感度が大きく、長波長側における変換効率が向上できた。   The spectral sensitivity of the photoelectric conversion device thus obtained was higher in the spectral association of 700 to 800 nm in the dye aggregate than in the dye monomer, and the conversion efficiency on the long wavelength side could be improved.

以上のように、この実施例においても本発明の光電変換装置が簡便容易に作製でき、しかも高い光電変換効率を実現することができた。   As described above, also in this example, the photoelectric conversion device of the present invention can be easily and easily manufactured, and high photoelectric conversion efficiency can be realized.

参考としての光電変換装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the photoelectric conversion apparatus as a reference . 参考としての光電変換装置の他の例を模式的に示す断面図である。It is sectional drawing which shows typically the other example of the photoelectric conversion apparatus as a reference . 本発明の光電変換装置の他の例を模式的に示す断面図である。It is sectional drawing which shows the other example of the photoelectric conversion apparatus of this invention typically. 本発明の光電変換装置の他の例を模式的に示す断面図である。It is sectional drawing which shows the other example of the photoelectric conversion apparatus of this invention typically. ポルフィリン骨格を説明する分子式である。It is a molecular formula explaining a porphyrin skeleton. 吸収スペクトルを説明する特性図である。It is a characteristic view explaining an absorption spectrum. 吸収スペクトルを説明する特性図である。It is a characteristic view explaining an absorption spectrum.

1:光電変換装置
11:導電性基板(導電性支持体)
12:電子輸送体(金属酸化物半導体)
13:色素
14:電解質
15:第1の透明導電層
16:非単結晶光電変換層
17:第2の透明導電層
18:透光性被覆体
1: Photoelectric conversion device
11: Conductive substrate (conductive support)
12: Electron transporter (metal oxide semiconductor)
13: Dye
14: Electrolyte
15: First transparent conductive layer
16: Non-single crystal photoelectric conversion layer
17: Second transparent conductive layer
18: Translucent coating

Claims (3)

ポルフィリン骨格を有する色素の単量体と会合体とを混合あるいは積層して光電変換材料として用いたことを特徴とする光電変換装置。 A photoelectric conversion device comprising a pigment monomer having a porphyrin skeleton and an aggregate mixed or laminated and used as a photoelectric conversion material. 導電性支持体上に、ポルフィリン骨格を有し光電変換を行なう色素の単量体と会合体とを、混合して吸着あるいは積層させた金属酸化物半導体を、電解質中に存在する状態で配設したことを特徴とする光電変換装置。 A metal oxide semiconductor in which a monomer and an aggregate of a dye having a porphyrin skeleton and photoelectric conversion are mixed and adsorbed or laminated on a conductive support is disposed in an electrolyte. A photoelectric conversion device characterized by that. 請求項1または請求項2記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする光発電装置。 A photovoltaic device comprising the photoelectric conversion device according to claim 1 or 2 as a power generation means, and the power generated by the power generation means is supplied to a load.
JP2004212816A 2004-07-21 2004-07-21 Photoelectric conversion device and photovoltaic device using the same Expired - Fee Related JP4637523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212816A JP4637523B2 (en) 2004-07-21 2004-07-21 Photoelectric conversion device and photovoltaic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212816A JP4637523B2 (en) 2004-07-21 2004-07-21 Photoelectric conversion device and photovoltaic device using the same

Publications (2)

Publication Number Publication Date
JP2006032260A JP2006032260A (en) 2006-02-02
JP4637523B2 true JP4637523B2 (en) 2011-02-23

Family

ID=35898328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212816A Expired - Fee Related JP4637523B2 (en) 2004-07-21 2004-07-21 Photoelectric conversion device and photovoltaic device using the same

Country Status (1)

Country Link
JP (1) JP4637523B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813819B2 (en) * 2005-04-26 2011-11-09 日本特殊陶業株式会社 Dye-sensitized solar cell with capacitor
JP2007287997A (en) * 2006-04-18 2007-11-01 Fujikura Ltd Solar cell module
JP6101625B2 (en) 2011-03-07 2017-03-22 国立大学法人 東京大学 Dye for photoelectric conversion element, photoelectric conversion film, electrode and solar cell using the same
JP2015060820A (en) * 2013-09-20 2015-03-30 積水化学工業株式会社 Dye-sensitized solar cell and method of manufacturing the same
JP6337561B2 (en) 2014-03-27 2018-06-06 株式会社リコー Perovskite solar cell
US10727001B2 (en) 2014-04-16 2020-07-28 Ricoh Company, Ltd. Photoelectric conversion element
JP6447754B2 (en) 2016-01-25 2019-01-09 株式会社リコー Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
US10930443B2 (en) 2016-12-07 2021-02-23 Ricoh Company, Ltd. Photoelectric conversion element
EP3769327A1 (en) 2018-03-19 2021-01-27 Ricoh Company, Ltd. Photoelectric conversion device, process cartridge, and image forming apparatus
KR102636393B1 (en) 2019-07-16 2024-02-13 가부시키가이샤 리코 Solar modules, electronics, and power modules
EP4034945B1 (en) 2019-09-26 2023-07-19 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP7508782B2 (en) 2020-01-20 2024-07-02 株式会社リコー Electronic device and its manufacturing method, image forming method, and image forming apparatus
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
EP3872861B1 (en) 2020-02-27 2023-06-28 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
KR20220153635A (en) 2020-03-16 2022-11-18 가부시키가이샤 리코 Photoelectric conversion elements, photoelectric conversion modules, electronic devices and power modules
JP2022144443A (en) 2021-03-19 2022-10-03 株式会社リコー Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
JP2023019661A (en) 2021-07-29 2023-02-09 株式会社リコー Photoelectric conversion element, photoelectric conversion module, and electronic device
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
CN116096111A (en) 2021-10-29 2023-05-09 株式会社理光 Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310722A (en) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp Dye-sensitized solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310722A (en) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp Dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2006032260A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
US20160343517A1 (en) Dye-sensitized solar cell and method for manufacturing thereof
WO2005112184A1 (en) Photoelectric converter and transparent conductive substrate used therein
JP5159877B2 (en) Photoelectric conversion device and photovoltaic power generation device
WO2005112183A1 (en) Photoelectric conversion element and semiconductor electrode
WO2010029961A1 (en) Photoelectric converter
JP2002222971A (en) Photoelectric converter
JP2004241378A (en) Dye sensitized solar cell
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2006324090A (en) Photoelectric conversion module and photovoltaic device using the same
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP5153215B2 (en) Photoelectric conversion device
JP2005191137A (en) Stacked photoelectric conversion device
JP2009009936A (en) Photoelectric conversion device
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2005064493A (en) Photoelectric conversion device and photovoltaic device using the same
JP4637473B2 (en) Stacked photoelectric conversion device
CN102013324A (en) Dye-sensitized solar cells and manufacturing method thereof
JP2008277422A (en) Stacked photoelectric conversion device
JP4578090B2 (en) Stacked photoelectric conversion device
JP2008244258A (en) Photoelectric conversion device and photovoltaic power generation device
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4637543B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP6773859B1 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees