JP4634596B2 - Dissolved ozone concentration measuring device - Google Patents
Dissolved ozone concentration measuring device Download PDFInfo
- Publication number
- JP4634596B2 JP4634596B2 JP2000337362A JP2000337362A JP4634596B2 JP 4634596 B2 JP4634596 B2 JP 4634596B2 JP 2000337362 A JP2000337362 A JP 2000337362A JP 2000337362 A JP2000337362 A JP 2000337362A JP 4634596 B2 JP4634596 B2 JP 4634596B2
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- sample solution
- ultraviolet
- sample
- ozone concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims description 137
- 238000002211 ultraviolet spectrum Methods 0.000 claims description 67
- 239000000523 sample Substances 0.000 claims description 54
- 239000012488 sample solution Substances 0.000 claims description 49
- 238000002835 absorbance Methods 0.000 claims description 35
- 239000012496 blank sample Substances 0.000 claims description 23
- 238000001228 spectrum Methods 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 14
- 230000002452 interceptive effect Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000013074 reference sample Substances 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000005416 organic matter Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000011481 absorbance measurement Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、溶存オゾン濃度測定装置に関するものであって、とくにオゾン処理が行われる高度浄水処理システム等において、オゾンを含む試料液中の溶存オゾン濃度と有機物濃度とを高精度で連続的に測定することができる溶存オゾン濃度測定装置に関するものである。
【0002】
【従来の技術】
オゾンは極めて強い酸化力ないしは殺菌力をもち、かつ容易に生成することができるので、例えば、河川等から取水した原水の浄化等に広く利用されている。しかしながら、溶存オゾン量は、水中へのオゾンガス供給量(ないしはオゾンガス発生量)や水温によって大きく変化する。また、水中のオゾンは化学的に不安定な状態にあり、容易に分解する。このため、原水の浄化等にオゾンを使用する場合は、溶存オゾン濃度を常時測定ないしは監視することが必要である。
【0003】
水中のオゾン濃度は、例えば紫外線吸光分析等により測定される。かかる紫外線吸光分析では、まずオゾンを含む試料液の紫外線吸光度が測定される。そして、オゾン濃度とオゾンの吸収帯における紫外線吸光度との間にはほぼ比例関係があることを利用して、試料液の紫外線吸光度からオゾン濃度が算出される。
【0004】
ところで、紫外線吸光分析によりオゾン濃度を測定する場合、その吸収帯がオゾンの吸収帯と近似する成分(妨害成分)が試料液に含まれていると、測定された紫外線吸光度は、オゾンに起因する吸収分と妨害成分に起因する吸収分とを含んだものとなる。このため、実際に測定された紫外線吸光度から上記比例関係を用いてオゾン濃度を正確に算出することは不可能となる。
【0005】
具体的には、オゾンの最大吸収帯はおおむね250〜260nmの波長域内に存在するが、有機物の最大吸収帯もおおむね250〜260nmの波長域内に存在する。したがって、オゾン濃度を測定すべき試料液中に有機物が含まれていると、測定された紫外線吸光度は、溶存オゾンに起因する吸収分に、有機物に起因する吸収分が加わったものとなり、オゾン濃度の測定値は真の値よりも高くなり、正確なオゾン濃度を得ることができない。
【0006】
そこで、例えば、特開平8−136526号公報には、吸光度測定部を2つ設け、一方の吸光度測定部ではオゾン及び有機物を含む試料液の紫外線吸光度を測定し、他方の吸光度測定部では該試料液からオゾンを除去したもの(ブランク試料液)の紫外線吸光度を測定し、両紫外線吸光度の差分値からオゾン濃度を算出するようにした、すなわちブランク校正を行うようにした溶存オゾン濃度測定装置が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、例えば、特開平8−136526号公報に開示されている従来の溶存オゾン濃度測定装置では、試料液ないしはブランク試料液を収容するセル、光検出器等からなる吸光度測定部を2つ設けなければならないので、その構造が複雑化ないしは大型化するといった問題がある。また、両吸光度測定部間でのセルないしは検出器の特性の個体差に起因して測定誤差が生じるおそれがあるといった問題もある。さらに、試料液のオゾン濃度を測定するたびに、ブランク試料液を調製してその紫外線吸光度を測定し、ブランク校正を行わなければならないので、毎回のオゾン濃度の測定に長時間を要するといった問題がある。
【0008】
なお、特開平7−12720号公報には、吸光度測定部を1つだけ設け、この吸光度測定部への試料液供給系統を切り替えることにより、試料液とブランク試料液とを測定するようにした溶存オゾン濃度測定装置が開示されている。しかしながら、この溶存オゾン濃度測定装置でも、試料液のオゾン濃度を測定するたびに、ブランク試料液を調製してブランク校正を行わなければならないので、毎回のオゾン濃度の測定にはやはり長時間を要するといった問題がある。
【0009】
本発明は上記従来の問題を解決するためになされたものであって、オゾンと妨害成分とを含む試料液中のオゾン濃度さらには妨害成分濃度を迅速かつ正確に測定することができる簡素な構造の溶存オゾン濃度測定装置を提供することを解決すべき課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するためになされた本発明にかかる溶存オゾン濃度測定装置は、(i)オゾンと、オゾンの濃度測定を妨害する妨害成分とが溶解している試料液中のオゾン濃度及び妨害成分濃度(あるいは、いずれか一方)を測定する溶存オゾン濃度測定装置であって、試料中の妨害成分は、その種類、組成又は性状が経時的に変化するとともに、その紫外線最大吸収帯がオゾンの紫外線最大吸収帯と近似するものであり、該溶存オゾン濃度測定装置に、(ii)任意の試料液について、紫外線吸光度と紫外線の波長λとの関係(相関関係、対応関係)を示す紫外線スペクトルを測定することができる光学分析手段(例えば、紫外線吸光度測定装置)と、(iii)オゾン濃度が一定値Coでありかつ妨害成分を含まない基準試料液の紫外線スペクトルω(λ)と、妨害成分濃度が一定値Cdでありかつオゾンを含まない基準試料液の紫外線スペクトルδ(λ)とを記録(あるいは、保持、設定)している基準スペクトル記録手段と、(iv)光学分析手段によって測定された任意の試料液の紫外線スペクトルμ(λ)と、(p・ω(λ)+q・δ(λ))とが最もよく近似(あるいは、一致、符合)する数値p、qを演算した上で、p・Coを該試料液のオゾン濃度とし、q・Cdを該試料液の妨害成分濃度とする濃度演算手段と、(v)試料液の紫外線スペクトルの測定頻度より少ない頻度で、試料液からオゾンが除去されたブランク試料液の紫外線スペクトルν(λ)と、q’・δ(λ)とが最もよく近似する数値q’を演算した上で、ν(λ)/q’を新たに紫外線スペクトルδ(λ)とする妨害成分基準スペクトル更新手段とが設けられていることを特徴とするものである。
【0011】
ここで、数値p、qの演算は、例えば、最小2乗法を用いて行われる。すなわち、複数の波長点におけるμ(λ)の値と(p・ω(λ)+q・δ(λ))の値との各偏差の2乗値の総和が最小となるような数値p、qが演算される。
妨害成分としては、典型的には有機物があげられる。
【0012】
この溶存オゾン濃度測定装置によれば、試料液の紫外線スペクトルを1回測定するだけで、オゾン濃度と、有機物等の妨害成分の濃度とを正確に演算(測定)することができる。なお、オゾン濃度のみを必要とする場合は、妨害成分の影響を受けずに溶存オゾン濃度を正確に測定することができる。また、妨害成分濃度のみを必要とする場合は、溶存オゾンの影響を受けずに妨害成分濃度を正確に測定することができる。
【0013】
また、この溶存オゾン濃度測定装置では、紫外線吸光度測定装置等の光学分析手段は1つ設けるだけでよいので、その構造が簡素化されるとともに、誤差要因が低減され、その測定精度が高められる。また、ブランク校正は、試料液の紫外線スペクトルを測定するたびに行う必要はなく、適宜、例えば1日数回程度行うだけでよい。このため、オゾン濃度と妨害成分濃度とを測定するのに必要な時間が大幅に短縮される。
【0014】
さらに、この溶存オゾン濃度測定装置においては、試料液からオゾンが除去されたブランク試料液の紫外線スペクトルν(λ)と、q’・δ(λ)とが最もよく近似(あるいは、一致、符合)する数値q’を演算した上で、ν(λ)/q’を新たに紫外線スペクトルδ(λ)とする(つまり、紫外線スペクトルδ(λ)を更新する、すなわちブランク校正を行う)妨害成分基準スペクトル更新手段が設けられているので、妨害成分が有機物である場合は、有機物ないしは試料液の種類、組成、性質等の変化に応じて、紫外線スペクトルδ(λ)が最適なものに更新される。つまり、ブランク校正を容易に行うことができる。
【0015】
また、妨害成分基準スペクトル更新手段は、試料液からオゾンが除去されたブランク試料液の紫外線スペクトルν(λ)の所定波長λ0に対応する数値ν(λ0)と、紫外線スペクトルδ(λ)の上記所定波長λ0に対応する数値δ(λ0)とを演算した上で、(δ(λ0)/ν(λ0))・ν(λ)を新たに紫外線スペクトルδ(λ)とするようになっていてもよい。この場合、紫外線スペクトルδ(λ)の更新、すなわちブランク校正が極めて容易となる。
【0016】
上記溶存オゾン濃度測定装置においては、ブランク試料液は、例えば次のような手法で調製することができる。
(1)試料液の温度を上げてオゾンを除去する。
(2)試料液を白金触媒と接触させてオゾンを除去する。
(3)試料液に超音波振動を印加してオゾンを除去する。
(4)試料液を自然放置してオゾンが大気中に放散するのを待つ。
(5)試料液を撹拌機で撹拌してオゾンを除去する。
なお、(1)〜(5)中の複数の手法を組み合わせて用いてもよい。
【0017】
上記溶存オゾン濃度測定装置において、紫外線スペクトルとしては、例えば、180nmから300nmまでの波長域内における連続スペクトルを用いることができる。また、紫外線スペクトルは、180nmから300nmまでの波長域内における数点〜数十点の離散的な吸光度データで構成されていてもよい。
【0018】
上記溶存オゾン濃度測定装置において、光学分析手段としては、例えば、ポンプ又はアスピレータを用いて試料セル内に供給された試料の紫外線吸光度を測定することにより該試料の紫外線スペクトルを測定するようになっている紫外線吸光度測定装置を用いることができる。また、光学測定プローブを試料中に浸漬させて該試料の紫外線吸光度を測定することにより該試料の紫外線スペクトルを測定するようになっている紫外線吸光度測定装置も用いることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を具体的に説明する。
図1に示すように、オゾンと有機物(オゾンに対する妨害成分)とが溶解している試料液中のオゾン濃度及び有機物濃度を連続的に又は間欠的に測定する溶存オゾン濃度測定装置は、実質的に、任意の試料(液体)の紫外線スペクトルを測定することができる紫外線スペクトル測定部S1(紫外線吸光度測定装置)と、紫外線スペクトル測定部S1から出力された紫外線スペクトルデータに対して後記の各種演算処理を施して、オゾン濃度及び有機物濃度を演算するとともに適宜ブランク校正を行うデータ演算処理部S2とで構成されている。
【0020】
紫外線スペクトル測定部S1では、光源1から放射された紫外線(連続光)が、集光レンズ2を経由して干渉フィルタ3に導入される。この干渉フィルタ3は、光源1から放射された紫外線中の特定波長の紫外線(単色光)のみを取り出す(通過させる)ことができる光学フィルタであり、取り出される紫外線の波長を連続的又は段階的に変化させることができるようになっている。
【0021】
干渉フィルタ3で取り出された特定波長の紫外線は、第1レンズ4を経由して試料セル5に照射される。この試料セル5内には、紫外線スペクトルを測定すべき試料(試料液、ブランク試料液等)が保持されている。なお、試料は、例えばポンプ、アスピレータ等を用いて試料セル5内に供給される。このため、試料セル5に照射された特定波長の紫外線の一部は試料によって吸収される。そして、試料セル5(試料)を透過した特定波長の紫外線は、第2レンズ6を経由して受光センサ7に導入され、該紫外線の強度ひいては試料の紫外線吸光度に対応する電気信号に変換される。この電気信号はデータ演算処理部S2に導入される。
【0022】
つまり、紫外線スペクトル測定部S1では、試料セル5(試料)に照射される紫外線の波長を干渉フィルタ3により連続的に又は段階的に変化させつつ、試料液あるいはブランク試料液等の試料の紫外線吸光度が検出され、試料の紫外線吸光度と紫外線の波長λとの対応関係、すなわち試料の紫外線スペクトル(紫外線吸光度スペクトル)が測定される。
図2〜図4に、それぞれ、純水にオゾンが溶存している試料と、オゾンが溶存していない河川水と、オゾンが溶存している河川水とについて、上記手法により測定された紫外線スペクトルの一例を示す。
【0023】
ここで、紫外線スペクトルの波長域は、オゾンの最大吸収帯(おおむね、250〜260nm)と有機物の最大吸収帯(おおむね、250〜260nm)とを含むように設定され、例えば180〜300nmに設定される。また、紫外線スペクトルは上記波長域内における連続スペクトル、又は数点〜数十点の離散的な紫外線吸光度データからなるものが用いられる。なお、紫外線スペクトルを連続スペクトルとする場合は取り出すべき紫外線の波長を連続的に変化させることができる干渉フィルタ3を用い、離散的なスペクトルとする場合は取り出すべき紫外線の波長を段階的に変化させることができる干渉フィルタ3を用いればよい。
【0024】
なお、図1に示す紫外線スペクトル測定部S1では、試料セル5内に保持された試料の紫外線吸光度を測定するようにしているが、このようにせず、光学測定プローブを試料中に浸漬させて該試料の紫外線吸光度を測定することにより該試料の紫外線スペクトルを測定するようにしてもよい。
【0025】
データ演算処理部S2には、詳しくは図示していないが、基準スペクトル記憶部と、濃度演算部と、基準スペクトル更新部とが設けられている。
データ演算処理部S2の基準スペクトル記憶部(メモリ)は、基準オゾンスペクトルω(λ)と基準有機物スペクトルδ(λ)とを記憶している。ここで、基準オゾンスペクトルω(λ)は、オゾン濃度が一定値Coでありかつ有機物を含まない基準試料液の紫外線スペクトルを意味する。また、基準有機物スペクトルδ(λ)は、有機物濃度が一定値Cdでありかつオゾンを含まない基準試料液の紫外線スペクトルを意味する。なお、基準オゾンスペクトルω(λ)は試料液の種類、性状等にかかわりなく不変である。これに対して、基準有機物スペクトルδ(λ)は、例えば河川水等の場合、試料液ないしは有機物の種類、性状等の変化に伴って経時的に緩やかに変化する。
【0026】
データ演算処理部S2の濃度演算部は、まず、紫外線スペクトル測定部S1によって測定された任意の試料液の紫外線スペクトルμ(λ)と、[p・ω(λ)+q・δ(λ)]とが最もよく近似(一致、符合)する数値p、qを、最小2乗法を用いて演算する。例えば、複数の波長点(あるいは波長域)λ1、λ2、λ3、……λnについて、それぞれ、μ(λ)の値と[p・ω(λ)+q・δ(λ)]の値との偏差を演算し、各偏差の2乗値の総和が最小となるような数値p、qを演算する。つまり、次の式1に最も合致するp、qを演算する。
μ(λ)=p・ω(λ)+q・δ(λ)…………………………式1
そして、p・Coを該試料液のオゾン濃度とし、q・Cdを該試料液の有機物濃度とする。
【0027】
データ演算処理部S2の基準スペクトル更新部は、まず、試料液からオゾンが除去されたブランク試料液の紫外線スペクトルν(λ)と、q’・δ(λ)とが最もよく近似(一致、符合)する数値q’を、最小2乗法を用いて演算する。なお、ここで用いられる最小2乗法は、基本的には、濃度演算部で用いられる最小2乗法と同様のものである。そして、ν(λ)/q’を新たに紫外線スペクトルδ(λ)とし、紫外線スペクトルδ(λ)を更新する。すなわち、ブランク校正を行う。
【0028】
なお、基準スペクトル更新部で、ブランク試料液の紫外線スペクトルν(λ)の所定波長λ0に対応する数値ν(λ0)と、紫外線スペクトルδ(λ)の所定波長λ0に対応する数値δ(λ0)とを演算し、[δ(λ0)/ν(λ0)]・ν(λ)を新たに紫外線スペクトルδ(λ)とするようにしてもよい。この場合、紫外線スペクトルδ(λ)の更新、すなわちブランク校正が極めて容易となる。
【0029】
ブランク試料液は、ブランク校正を行う際に、試料液の温度を上昇させて溶存オゾンを分解させて除去することにより調製される。すなわち、水中に溶存しているオゾンは化学的に不安定であり、比較的容易に分解するが、この分解速度は温度が高いときほど大きくなる。そこで、試料液の温度を上昇させて溶存オゾンを迅速に分解させ、短時間でブランク試料液を調製するようにしている。
例えば、図5に示すように、溶存オゾン濃度が約6.7ppmである河川水の場合、溶存オゾンの分解に要する時間は、水温が25℃であれば約1800秒であるが、水温が80℃であれば約250秒である。
【0030】
なお、次のような手法を用いて試料液からオゾンを除去し、ブランク試料液を調製するようにしてもよい。
(a)試料液を白金触媒と接触させてオゾンを分解・除去する。
(b)試料液に超音波振動を印加してオゾンを分解・除去する。
(c)試料液を自然放置してオゾンが大気中に放散するのを待つ。
(d)試料液を撹拌機で撹拌してオゾンを分解・除去する。
なお、上記各手法を組み合わせて用いてもよい。
【0031】
この溶存オゾン濃度測定装置によれば、試料液の紫外線スペクトルを1回測定するだけで、オゾン濃度と有機物濃度とを正確に測定することができる。また、試料の紫外線吸光度を測定するための紫外線スペクトル測定部S1は1つ設けるだけでよいので、該溶存オゾン濃度測定装置の構造が簡素化されるとともに、誤差要因が低減され、その測定精度が高められる。
【0032】
また、ブランク校正は、試料液の紫外線スペクトルを測定するたびに行う必要はなく、適宜、例えば1日数回程度行うだけでよい。このため、オゾン濃度と有機物濃度とを測定するのに必要な時間が従来に比べて大幅に短縮される。つまり、簡素な構造でもって、オゾンと有機物とを含む試料液中のオゾン濃度及び有機物濃度を迅速かつ正確に測定することができる。
【0033】
なお、この実施の形態では妨害成分が有機物である場合を例にとって説明しているが、妨害成分がその他の物質、例えば過酸化水素である場合でも、同様にオゾン濃度及び妨害成分濃度を迅速かつ正確に測定することができるのはもちろんである。
【図面の簡単な説明】
【図1】 本発明の実施の形態にかかる溶存オゾン濃度測定装置のシステム構成を示す模式図である。
【図2】 純水にオゾンが溶存している試料の紫外線スペクトルの一例を示す図である。
【図3】 オゾンが溶存していない河川水の紫外線スペクトルの一例を示す図である。
【図4】 オゾンが溶存している河川水の紫外線スペクトルの一例を示す図である。
【図5】 河川水中の溶存オゾンを分解するのに必要な時間の水温に対する依存性を示すグラフである。
【符号の説明】
S1…紫外線スペクトル測定部、S2…データ演算処理部、1…光源、2…集光レンズ、3…干渉フィルタ、4…第1レンズ、5…試料セル、6…第2レンズ、7…受光センサ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for measuring dissolved ozone concentration, and in particular, continuously measures the dissolved ozone concentration and organic matter concentration in a sample liquid containing ozone in an advanced water purification system or the like where ozone treatment is performed. The present invention relates to a device for measuring dissolved ozone concentration.
[0002]
[Prior art]
Ozone has a very strong oxidizing power or sterilizing power and can be easily generated, so that it is widely used for purification of raw water taken from rivers, for example. However, the amount of dissolved ozone varies greatly depending on the amount of ozone gas supplied into water (or the amount of ozone gas generated) and the water temperature. In addition, ozone in water is in a chemically unstable state and easily decomposes. For this reason, when ozone is used for purification of raw water or the like, it is necessary to constantly measure or monitor the dissolved ozone concentration.
[0003]
The ozone concentration in water is measured, for example, by ultraviolet absorption analysis. In such ultraviolet absorption analysis, first, the ultraviolet absorbance of a sample solution containing ozone is measured. The ozone concentration is calculated from the ultraviolet absorbance of the sample liquid by utilizing the fact that there is a substantially proportional relationship between the ozone concentration and the ultraviolet absorbance in the ozone absorption band.
[0004]
By the way, when the ozone concentration is measured by ultraviolet absorption analysis, if the sample liquid contains a component (interfering component) whose absorption band approximates that of ozone, the measured ultraviolet absorbance is attributed to ozone. The absorption component and the absorption component due to the disturbing component are included. For this reason, it is impossible to accurately calculate the ozone concentration from the actually measured ultraviolet absorbance using the proportional relationship.
[0005]
Specifically, the maximum absorption band of ozone exists in the wavelength range of about 250 to 260 nm, but the maximum absorption band of organic matter also exists in the wavelength range of about 250 to 260 nm. Therefore, if organic matter is contained in the sample liquid whose ozone concentration is to be measured, the measured UV absorbance will be the absorption due to dissolved ozone plus the absorption due to organic matter. The measured value of becomes higher than the true value, and an accurate ozone concentration cannot be obtained.
[0006]
Thus, for example, in JP-A-8-136526, two absorbance measuring units are provided, one absorbance measuring unit measures the ultraviolet absorbance of a sample solution containing ozone and organic matter, and the other absorbance measuring unit measures the sample. Disclosed is a dissolved ozone concentration measurement device that measures the ultraviolet absorbance of a solution from which ozone is removed (blank sample solution) and calculates the ozone concentration from the difference between both ultraviolet absorbances, that is, performs blank calibration. Has been.
[0007]
[Problems to be solved by the invention]
However, for example, in the conventional dissolved ozone concentration measuring device disclosed in Japanese Patent Application Laid-Open No. 8-136526, two absorbance measuring units comprising a sample solution or a cell for storing a blank sample solution, a photodetector, etc. must be provided. Therefore, there is a problem that the structure becomes complicated or large. There is also a problem that measurement errors may occur due to individual differences in the characteristics of cells or detectors between the two absorbance measuring units. Furthermore, each time the ozone concentration of the sample solution is measured, a blank sample solution must be prepared and its UV absorbance measured, and blank calibration must be performed. Therefore, there is a problem that it takes a long time to measure the ozone concentration each time. is there.
[0008]
In JP-A-7-12720, only one absorbance measurement unit is provided, and a sample solution and a blank sample solution are measured by switching a sample solution supply system to the absorbance measurement unit. An ozone concentration measuring device is disclosed. However, even with this dissolved ozone concentration measuring device, every time the ozone concentration of the sample solution is measured, it is necessary to prepare a blank sample solution and perform a blank calibration, so it takes a long time to measure the ozone concentration each time. There is a problem.
[0009]
The present invention has been made in order to solve the above-mentioned conventional problems, and has a simple structure capable of quickly and accurately measuring the ozone concentration in a sample liquid containing ozone and the interfering component, and further the interfering component concentration. It is a problem to be solved to provide a device for measuring dissolved ozone concentration.
[0010]
[Means for Solving the Problems]
The dissolved ozone concentration measuring apparatus according to the present invention, which has been made to solve the above-mentioned problems, includes: (i) ozone concentration and interfering components in a sample solution in which ozone and interfering components that interfere with ozone concentration measurement are dissolved. It is a dissolved ozone concentration measuring device that measures the concentration (or one of them), and the interference component in the sample changes its type, composition or properties over time, and its ultraviolet maximum absorption band is an ultraviolet ray of ozone. It is similar to the maximum absorption band, and the dissolved ozone concentration measuring device can measure (ii) the ultraviolet spectrum indicating the relationship (correlation, correspondence) between the ultraviolet absorbance and the ultraviolet wavelength λ for any sample solution. Optical analysis means (for example, an ultraviolet absorbance measuring device) capable of performing, and (iii) an ultraviolet spectrum of a reference sample solution having an ozone concentration of a constant value Co and no interfering components. A reference spectrum recording means for recording (or holding or setting) an ultraviolet spectrum δ (λ) of a reference sample solution having a constant concentration Cd and containing no ozone, and ω (λ). (Iv) The ultraviolet spectrum μ (λ) of an arbitrary sample solution measured by the optical analysis means and (p · ω (λ) + q · δ (λ)) are best approximated (or matched or matched). After calculating numerical values p and q, concentration calculation means for setting p · Co as the ozone concentration of the sample solution and q · Cd as the disturbing component concentration of the sample solution, and (v) measuring the ultraviolet spectrum of the sample solution After calculating the numerical value q ′ that best approximates the ultraviolet spectrum ν (λ) and q ′ · δ (λ) of the blank sample solution from which ozone has been removed from the sample solution less frequently, ν ( Interference component with λ) / q ′ as the new ultraviolet spectrum δ (λ) It is characterized in that the quasi-spectrum updating means.
[0011]
Here, the calculations of the numerical values p and q are performed using, for example, the least square method. That is, numerical values p and q that minimize the sum of the squares of the deviations of the values of μ (λ) and (p · ω (λ) + q · δ (λ)) at a plurality of wavelength points. Is calculated.
Typically, the interfering component is an organic substance .
[0012]
According to the dissolved ozone concentration measuring apparatus, the UV spectrum of the sample liquid only measured once, can be the ozone concentration, accurately calculated and the concentration of interfering components in the organic material such as (measurement). When only the ozone concentration is required, the dissolved ozone concentration can be accurately measured without being affected by the disturbing components. When only the disturbing component concentration is required, the disturbing component concentration can be accurately measured without being affected by the dissolved ozone.
[0013]
Moreover, in this dissolved ozone concentration measuring apparatus, since only one optical analysis means such as an ultraviolet absorbance measuring apparatus is required, the structure is simplified, the error factor is reduced, and the measurement accuracy is increased. Further, the blank calibration need not be performed every time the ultraviolet spectrum of the sample solution is measured, and may be performed as appropriate, for example, several times a day. For this reason, the time required to measure the ozone concentration and the disturbing component concentration is greatly shortened.
[0014]
Furthermore, in this dissolved ozone concentration measuring apparatus, the ultraviolet spectrum ν (λ) of the blank sample solution from which ozone has been removed from the sample solution and q ′ · δ (λ) are the closest approximation (or coincidence or agreement). Nu (λ) / q ′ is newly set as the ultraviolet spectrum δ (λ) (that is, the ultraviolet spectrum δ (λ) is updated, that is, blank calibration is performed). than spectrum updating means is provided, if interference component is an organic substance, the type of the organic substance or the sample solution, the composition, in accordance with the change in the nature or the like, ultraviolet spectrum [delta] (lambda) is updated to be optimal The That is, blank calibration can be easily performed.
[0015]
Further, the interference component reference spectrum updating means includes a numerical value ν (λ 0 ) corresponding to a predetermined wavelength λ 0 of the ultraviolet spectrum ν (λ) of the blank sample liquid from which ozone has been removed from the sample liquid, and an ultraviolet spectrum δ (λ). After calculating a numerical value δ (λ 0 ) corresponding to the predetermined wavelength λ 0 , (δ (λ 0 ) / ν (λ 0 )) · ν (λ) is newly set as an ultraviolet spectrum δ (λ). You may come to do. In this case, it is very easy to update the ultraviolet spectrum δ (λ), that is, blank calibration.
[0016]
In the dissolved ozone concentration measuring apparatus, the blank sample solution can be prepared, for example, by the following method.
(1) The temperature of the sample solution is raised to remove ozone.
(2) Contact the sample solution with a platinum catalyst to remove ozone.
(3) Apply ultrasonic vibration to the sample solution to remove ozone.
(4) Let the sample solution stand naturally and wait for ozone to diffuse into the atmosphere.
(5) Stir the sample solution with a stirrer to remove ozone.
In addition, you may use combining the several method in (1)-(5).
[0017]
In the dissolved ozone concentration measuring apparatus, as the ultraviolet spectrum, for example, a continuous spectrum in a wavelength range from 180 nm to 300 nm can be used. Further, the ultraviolet spectrum may be composed of discrete absorbance data of several to several tens of points in the wavelength range from 180 nm to 300 nm.
[0018]
In the dissolved ozone concentration measuring apparatus, as the optical analysis means, for example, the ultraviolet spectrum of the sample is measured by measuring the ultraviolet absorbance of the sample supplied into the sample cell using a pump or an aspirator. An ultraviolet absorbance measuring device can be used. Further, an ultraviolet absorbance measuring apparatus that measures the ultraviolet spectrum of the sample by immersing the optical measurement probe in the sample and measuring the ultraviolet absorbance of the sample can also be used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
As shown in FIG. 1, a dissolved ozone concentration measuring device that continuously or intermittently measures ozone concentration and organic matter concentration in a sample solution in which ozone and organic matter (a component that interferes with ozone) are dissolved is substantially In addition, an ultraviolet spectrum measuring unit S1 (ultraviolet light absorbance measuring device) capable of measuring the ultraviolet spectrum of an arbitrary sample (liquid), and various calculation processes described later on the ultraviolet spectrum data output from the ultraviolet spectrum measuring unit S1. To calculate the ozone concentration and the organic matter concentration, and appropriately perform a blank calibration and a data calculation processing unit S2.
[0020]
In the ultraviolet spectrum measuring unit S <b> 1, ultraviolet rays (continuous light) emitted from the
[0021]
Ultraviolet light having a specific wavelength extracted by the interference filter 3 is irradiated to the
[0022]
That is, in the ultraviolet spectrum measuring unit S1, the ultraviolet absorbance of the sample such as the sample liquid or the blank sample liquid is changed continuously or stepwise by the interference filter 3 with the wavelength of the ultraviolet light applied to the sample cell 5 (sample). Is detected, and the correspondence between the ultraviolet absorbance of the sample and the wavelength λ of the ultraviolet rays, that is, the ultraviolet spectrum (ultraviolet absorbance spectrum) of the sample is measured.
FIGS. 2 to 4 show ultraviolet spectra measured by the above method for samples in which ozone is dissolved in pure water, river water in which ozone is not dissolved, and river water in which ozone is dissolved, respectively. An example is shown.
[0023]
Here, the wavelength range of the ultraviolet spectrum is set to include the maximum absorption band of ozone (generally, 250 to 260 nm) and the maximum absorption band of organic matter (generally, 250 to 260 nm), for example, set to 180 to 300 nm. The The ultraviolet spectrum may be a continuous spectrum in the above wavelength range or a discrete ultraviolet absorbance data of several to several tens of points. When the ultraviolet spectrum is a continuous spectrum, the interference filter 3 that can continuously change the wavelength of the ultraviolet light to be extracted is used, and when the discrete spectrum is used, the wavelength of the ultraviolet light to be extracted is changed stepwise. What is necessary is just to use the interference filter 3 which can be used.
[0024]
In the ultraviolet spectrum measuring unit S1 shown in FIG. 1, the ultraviolet absorbance of the sample held in the
[0025]
Although not shown in detail in the data calculation processing unit S2, a reference spectrum storage unit, a concentration calculation unit, and a reference spectrum update unit are provided.
The reference spectrum storage unit (memory) of the data calculation processing unit S2 stores a reference ozone spectrum ω (λ) and a reference organic matter spectrum δ (λ). Here, the reference ozone spectrum ω (λ) means an ultraviolet spectrum of a reference sample solution having an ozone concentration of a constant value Co and containing no organic matter. Further, the reference organic matter spectrum δ (λ) means an ultraviolet spectrum of a reference sample solution having a constant organic substance concentration Cd and not containing ozone. The reference ozone spectrum ω (λ) remains unchanged regardless of the type and properties of the sample liquid. On the other hand, in the case of river water, for example, the reference organic matter spectrum δ (λ) changes gradually with time according to changes in the type and properties of the sample liquid or organic matter.
[0026]
The concentration calculation unit of the data calculation processing unit S2 firstly has an ultraviolet spectrum μ (λ) of an arbitrary sample solution measured by the ultraviolet spectrum measurement unit S1, and [p · ω (λ) + q · δ (λ)]. The numerical values p and q that are the most approximate (match, sign) are calculated using the method of least squares. For example, for a plurality of wavelength points (or wavelength ranges) λ 1 , λ 2 , λ 3 ,..., Λn, the value of μ (λ) and the value of [p · ω (λ) + q · δ (λ)], respectively. Are calculated, and numerical values p and q are calculated such that the sum of the squares of the deviations is minimized. That is, p and q that best match the
μ (λ) = p · ω (λ) + q · δ (λ) …………………………
Then, p · Co is the ozone concentration of the sample solution, and q · Cd is the organic matter concentration of the sample solution.
[0027]
First, the reference spectrum updating unit of the data calculation processing unit S2 best approximates (matches and matches) the ultraviolet spectrum ν (λ) of the blank sample solution from which ozone has been removed from the sample solution and q ′ · δ (λ). The numerical value q ′ to be calculated is calculated using the method of least squares. The least square method used here is basically the same as the least square method used in the density calculation unit. Then, ν (λ) / q ′ is newly set as the ultraviolet spectrum δ (λ), and the ultraviolet spectrum δ (λ) is updated. That is, blank calibration is performed.
[0028]
In the reference spectrum updating unit, a numerical value ν (λ 0 ) corresponding to the predetermined wavelength λ 0 of the ultraviolet spectrum ν (λ) of the blank sample solution and a numerical value δ corresponding to the predetermined wavelength λ 0 of the ultraviolet spectrum δ (λ). (Λ 0 ) may be calculated, and [δ (λ 0 ) / ν (λ 0 )] · ν (λ) may be newly set as the ultraviolet spectrum δ (λ). In this case, it is very easy to update the ultraviolet spectrum δ (λ), that is, blank calibration.
[0029]
The blank sample solution is prepared by decomposing and removing dissolved ozone by raising the temperature of the sample solution when performing blank calibration. That is, ozone dissolved in water is chemically unstable and decomposes relatively easily, but this decomposition rate increases as the temperature increases. Therefore, the temperature of the sample solution is raised to quickly decompose the dissolved ozone, and the blank sample solution is prepared in a short time.
For example, as shown in FIG. 5, in the case of river water having a dissolved ozone concentration of about 6.7 ppm, the time required for decomposition of dissolved ozone is about 1800 seconds if the water temperature is 25 ° C., but the water temperature is 80 If it is ℃, it is about 250 seconds.
[0030]
Note that a blank sample solution may be prepared by removing ozone from the sample solution using the following method.
(A) The sample solution is contacted with a platinum catalyst to decompose and remove ozone.
(B) Applying ultrasonic vibration to the sample solution to decompose and remove ozone.
(C) Let the sample solution stand naturally and wait for ozone to diffuse into the atmosphere.
(D) Stir the sample solution with a stirrer to decompose and remove ozone.
In addition, you may use combining said each method.
[0031]
According to this dissolved ozone concentration measuring apparatus, the ozone concentration and the organic matter concentration can be accurately measured only by measuring the ultraviolet spectrum of the sample solution once. Further, since only one ultraviolet spectrum measuring unit S1 for measuring the ultraviolet absorbance of the sample is required, the structure of the dissolved ozone concentration measuring device is simplified, the error factor is reduced, and the measurement accuracy is improved. Enhanced.
[0032]
Further, the blank calibration need not be performed every time the ultraviolet spectrum of the sample solution is measured, and may be performed as appropriate, for example, several times a day. For this reason, the time required to measure the ozone concentration and the organic matter concentration is significantly shortened compared to the conventional case. That is, with a simple structure, the ozone concentration and the organic matter concentration in the sample liquid containing ozone and the organic matter can be measured quickly and accurately.
[0033]
In this embodiment, the case where the interfering component is an organic substance is described as an example. However, even when the interfering component is another substance, for example, hydrogen peroxide, the ozone concentration and the interfering component concentration can be rapidly and similarly reduced. Of course, it can be measured accurately.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a system configuration of a dissolved ozone concentration measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example of an ultraviolet spectrum of a sample in which ozone is dissolved in pure water.
FIG. 3 is a diagram showing an example of an ultraviolet spectrum of river water in which ozone is not dissolved.
FIG. 4 is a diagram showing an example of an ultraviolet spectrum of river water in which ozone is dissolved.
FIG. 5 is a graph showing the dependence of the time required to decompose dissolved ozone in river water on the water temperature.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS S1 ... Ultraviolet spectrum measurement part, S2 ... Data operation processing part, 1 ... Light source, 2 ... Condensing lens, 3 ... Interference filter, 4 ... 1st lens, 5 ... Sample cell, 6 ... 2nd lens, 7 ... Light receiving sensor .
Claims (13)
試料中の妨害成分は、その種類、組成又は性状が経時的に変化するとともに、その紫外線最大吸収帯がオゾンの紫外線最大吸収帯と近似するものであり、
該溶存オゾン濃度測定装置に、
任意の試料液について、紫外線吸光度と紫外線の波長λとの関係を示す紫外線スペクトルを測定することができる光学分析手段と、
オゾン濃度が一定値Coでありかつ妨害成分を含まない基準試料液の紫外線スペクトルω(λ)と、妨害成分濃度が一定値Cdでありかつオゾンを含まない基準試料液の紫外線スペクトルδ(λ)とを記録している基準スペクトル記録手段と、
上記光学分析手段によって測定された任意の試料液の紫外線スペクトルμ(λ)と、(p・ω(λ)+q・δ(λ))とが最もよく近似する数値p、qを演算した上で、p・Coを上記試料液のオゾン濃度とし、q・Cdを上記試料液の妨害成分濃度とする濃度演算手段と、
上記試料液の紫外線スペクトルの測定頻度より少ない頻度で、上記試料液からオゾンが除去されたブランク試料液の紫外線スペクトルν(λ)と、q’・δ(λ)とが最もよく近似する数値q’を演算した上で、ν(λ)/q’を新たに紫外線スペクトルδ(λ)とする妨害成分基準スペクトル更新手段とが設けられていることを特徴とする溶存オゾン濃度測定装置。A dissolved ozone concentration measurement device for measuring ozone concentration and interference component concentration in a sample solution in which ozone and interference components that interfere with ozone concentration measurement are dissolved,
Interfering components in the sample are those whose type, composition or properties change over time, and whose ultraviolet absorption maximum band approximates the ultraviolet absorption maximum absorption band of ozone,
In the dissolved ozone concentration measuring device,
Optical analysis means capable of measuring an ultraviolet spectrum indicating the relationship between ultraviolet absorbance and ultraviolet wavelength λ for any sample solution ;
The ultraviolet spectrum ω (λ) of the reference sample liquid having a constant ozone concentration Co and not containing interference components, and the ultraviolet spectrum δ (λ) of the reference sample solution having a constant interference concentration Cd and not containing ozone. A reference spectrum recording means for recording
After calculating the numerical values p and q that best approximate the ultraviolet spectrum μ (λ) of an arbitrary sample solution measured by the optical analysis means and (p · ω (λ) + q · δ (λ)) , P · Co is an ozone concentration of the sample solution, and q · Cd is an interference component concentration of the sample solution ;
A numerical value q that best approximates the ultraviolet spectrum ν (λ) and q ′ · δ (λ) of the blank sample solution from which ozone has been removed from the sample solution less frequently than the frequency of measuring the ultraviolet spectrum of the sample solution. Dissolved ozone concentration measuring apparatus characterized by comprising interference component reference spectrum updating means that calculates ν (λ) / q ′ as a new ultraviolet spectrum δ (λ) after calculating ' .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000337362A JP4634596B2 (en) | 2000-11-06 | 2000-11-06 | Dissolved ozone concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000337362A JP4634596B2 (en) | 2000-11-06 | 2000-11-06 | Dissolved ozone concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002139429A JP2002139429A (en) | 2002-05-17 |
JP4634596B2 true JP4634596B2 (en) | 2011-02-16 |
Family
ID=18812761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000337362A Expired - Fee Related JP4634596B2 (en) | 2000-11-06 | 2000-11-06 | Dissolved ozone concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4634596B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7502114B2 (en) | 2004-03-12 | 2009-03-10 | Mks Instruments, Inc. | Ozone concentration sensor |
JP2007139465A (en) * | 2005-11-15 | 2007-06-07 | Yanmar Co Ltd | Residual agricultural chemical judging apparatus |
JP2009244283A (en) * | 2009-07-28 | 2009-10-22 | Kurabo Ind Ltd | Method of measuring water and aqueous solution with ultraviolet ray |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01244341A (en) * | 1988-03-25 | 1989-09-28 | Seki Electron Kk | Light absorbing type ozone concentration measuring device |
JPH0416749A (en) * | 1990-05-11 | 1992-01-21 | Japan Steel Works Ltd:The | Ozone concentration measurement method and device |
JPH04148830A (en) * | 1990-10-13 | 1992-05-21 | Horiba Ltd | Multiple-component determining method in spectrochemical analysis |
JPH06221998A (en) * | 1993-01-28 | 1994-08-12 | Meidensha Corp | Measuring apparatus for ultraviolet ray absorbance |
JPH06308027A (en) * | 1993-04-27 | 1994-11-04 | Japan Steel Works Ltd:The | Light measuring apparatus and ozone water concentration meter |
JPH07218428A (en) * | 1994-01-28 | 1995-08-18 | Meidensha Corp | Ultraviolet-ray absorbancy-measuring instrument |
JPH08136526A (en) * | 1994-11-04 | 1996-05-31 | Meidensha Corp | Continuous measuring apparatus for concentration of dissolved ozone |
JPH08297119A (en) * | 1995-04-27 | 1996-11-12 | Meidensha Corp | Method and device for measuring ultraviolet-ray absorbance of process |
JPH08304378A (en) * | 1995-05-11 | 1996-11-22 | Dkk Corp | Ozone decomposer and ultraviolet absorption type ozone meter using the same |
JP2000171394A (en) * | 1998-12-01 | 2000-06-23 | Tetra Laval Holdings & Finance Sa | Method and apparatus for determining the concentration of a substance in a sample in which interfering materials are present |
-
2000
- 2000-11-06 JP JP2000337362A patent/JP4634596B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01244341A (en) * | 1988-03-25 | 1989-09-28 | Seki Electron Kk | Light absorbing type ozone concentration measuring device |
JPH0416749A (en) * | 1990-05-11 | 1992-01-21 | Japan Steel Works Ltd:The | Ozone concentration measurement method and device |
JPH04148830A (en) * | 1990-10-13 | 1992-05-21 | Horiba Ltd | Multiple-component determining method in spectrochemical analysis |
JPH06221998A (en) * | 1993-01-28 | 1994-08-12 | Meidensha Corp | Measuring apparatus for ultraviolet ray absorbance |
JPH06308027A (en) * | 1993-04-27 | 1994-11-04 | Japan Steel Works Ltd:The | Light measuring apparatus and ozone water concentration meter |
JPH07218428A (en) * | 1994-01-28 | 1995-08-18 | Meidensha Corp | Ultraviolet-ray absorbancy-measuring instrument |
JPH08136526A (en) * | 1994-11-04 | 1996-05-31 | Meidensha Corp | Continuous measuring apparatus for concentration of dissolved ozone |
JPH08297119A (en) * | 1995-04-27 | 1996-11-12 | Meidensha Corp | Method and device for measuring ultraviolet-ray absorbance of process |
JPH08304378A (en) * | 1995-05-11 | 1996-11-22 | Dkk Corp | Ozone decomposer and ultraviolet absorption type ozone meter using the same |
JP2000171394A (en) * | 1998-12-01 | 2000-06-23 | Tetra Laval Holdings & Finance Sa | Method and apparatus for determining the concentration of a substance in a sample in which interfering materials are present |
Also Published As
Publication number | Publication date |
---|---|
JP2002139429A (en) | 2002-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1077284A (en) | Isotopic analysis methods and equipment | |
KR970011839A (en) | Optical measurement of components in expiration | |
CN112326565A (en) | Correction method for turbidity effect in the detection of COD in water quality by UV-Vis spectroscopy | |
JP6086524B2 (en) | Method and apparatus for measuring concentration of accelerated oxidation active species | |
US5922609A (en) | Method for infrared-optical determination of the concentration of at least one chemical analyte in a liquid sample | |
CN112161959B (en) | Chlorophyll concentration measuring method based on fluorescence spectrum global reconstruction | |
US7304733B2 (en) | Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light | |
JP4048139B2 (en) | Concentration measuring device | |
JP4634596B2 (en) | Dissolved ozone concentration measuring device | |
JPH01244341A (en) | Light absorbing type ozone concentration measuring device | |
JP2005187844A (en) | Apparatus and method for regeneration and concentration measurement of acid solutions | |
JP4722513B2 (en) | Apparatus and method for measuring the concentration of an acid solution containing peracetic acid | |
Booth et al. | Quantitative Laser-Induced Fluorescence Spectroscopy of the CF A2Σ+− X2Π Transition: Electronic Transition Dipole Moment Function and Predissociation | |
JP4642211B2 (en) | Measuring method of measured component concentration | |
US5729342A (en) | Method of analyzing the concentration of components in a solution | |
JP2744221B2 (en) | Liquid crystal element evaluation method and evaluation apparatus | |
JPS6212842A (en) | Fluorescent analysis instrument | |
AU2006218103A1 (en) | Method and device for determining the concentration of organically bound halogens | |
JP2002333401A (en) | Method and apparatus for measuring photocatalytic activity on thin film material | |
US20210018460A1 (en) | Sp3 substituted carbon electrode analysis | |
JPH0797079B2 (en) | Total nitrogen measurement method by UV method | |
CN106226251A (en) | Dynamic optical spectroscopy instrument and chemical kinetics determination method | |
JPS63218842A (en) | Method and apparatus for measuring concentration of ozone | |
Belorus et al. | Investigation the absorption spectra of dialysate output line in the hemodialysis process to create biosensors | |
Herndon et al. | Kinetics of the Reaction of SH and SD with NO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071018 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20071018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101119 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |