[go: up one dir, main page]

JP4634578B2 - Endoscope objective variable magnification optical system - Google Patents

Endoscope objective variable magnification optical system Download PDF

Info

Publication number
JP4634578B2
JP4634578B2 JP2000195942A JP2000195942A JP4634578B2 JP 4634578 B2 JP4634578 B2 JP 4634578B2 JP 2000195942 A JP2000195942 A JP 2000195942A JP 2000195942 A JP2000195942 A JP 2000195942A JP 4634578 B2 JP4634578 B2 JP 4634578B2
Authority
JP
Japan
Prior art keywords
group
lens group
lens
negative
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000195942A
Other languages
Japanese (ja)
Other versions
JP2002014282A (en
JP2002014282A5 (en
Inventor
守康 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2000195942A priority Critical patent/JP4634578B2/en
Publication of JP2002014282A publication Critical patent/JP2002014282A/en
Publication of JP2002014282A5 publication Critical patent/JP2002014282A5/ja
Application granted granted Critical
Publication of JP4634578B2 publication Critical patent/JP4634578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Description

【0001】
【技術分野】
本発明は、内視鏡に使用する対物変倍光学系に関する。
【0002】
【従来技術及びその問題点】
近年、内視鏡において拡大観察のニーズが増加傾向にあり、そのニーズに応えるための対物変倍光学系を有する内視鏡が登場してきている。従来のこのような内視鏡の対物変倍光学系としては、例えば、特開平1−279219号公報、特開平4−218012号公報、特開平3−145614号公報に記載のものがあるが、これらの内視鏡の対物変倍光学系は、いずれも低倍率端の入射角2ωが100°程度と広角化が不十分である。また、特開平6−317744号公報に記載の対物変倍光学系はレンズ枚数が多く構成が複雑である。
【0003】
【発明の目的】
本発明は、簡単な構成で低倍率端の入射角2ωが130°以上の内視鏡に使用する対物変倍光学系を得ることを目的とする。
【0004】
【発明の概要】
本発明は、内視鏡に使用する対物変倍光学系であって、物体側から順に、負のパワーの第1レンズ群と、正のパワーの第2レンズ群とからなり、変倍に際し、第1レンズ群は不動で、第2レンズ群は可動であり、第1レンズ群は、少なくとも2枚の負レンズを含み、第2レンズ群は、ともに正の第2a群と第2b群からなり、低倍率端から高倍率端への変倍に際し、この第2a群は物体側に移動し、第2b群は第2a群の移動に伴う像面位置の移動を補正するように移動して、物像間距離を一定に保持しながら変倍し、次の条件式(1)及び(3)を満足することを特徴としている。
(1)(ν1/f1a+ν2/f1b)・f1>50
(3)0.1<|f2a/f2b|≦0.33
但し、
ν1:第1レンズ群の最も物体側の負レンズのアッベ数、
ν2:第1レンズ群の最も像側の負レンズのアッベ数、
f1a:第1レンズ群の最も物体側の負レンズの焦点距離、
f1b:第1レンズ群の最も像側の負レンズの焦点距離、
f1:第1レンズ群の焦点距離、
f2a:第2a群の焦点距離、
f2b:第2b群の焦点距離、
である。
【0005】
本発明は、別の態様によると、内視鏡に使用する対物変倍光学系であって、物体側から順に、負のパワーの第1レンズ群と、正のパワーの第2レンズ群とからなり、変倍に際し、第1レンズ群は不動で、第2レンズ群は可動であり、第1レンズ群は、少なくとも2枚の負レンズを含み、第2レンズ群は、物体側から順に、正の第2a群と負の第2b群からなり、低倍率端から高倍率端への変倍に際し、この第2a群は物体側に移動し、第2b群は第2a群の移動に伴う像面位置の移動を補正するように移動して、物像間距離を一定に保持しながら変倍し、次の条件式(1)及び(3)を満足することを特徴としている。
(1)(ν1/f1a+ν2/f1b)・f1>50
(3)0.1<|f2a/f2b|≦0.33
但し、
ν1:第1レンズ群の最も物体側の負レンズのアッベ数、
ν2:第1レンズ群の最も像側の負レンズのアッベ数、
f1a:第1レンズ群の最も物体側の負レンズの焦点距離、
f1b:第1レンズ群の最も像側の負レンズの焦点距離、
f1:第1レンズ群の焦点距離、
f2a:第2a群の焦点距離、
f2b:第2b群の焦点距離。
【0006】
第1レンズ群の物体側の負レンズは最も物体側に位置し、該負レンズの物体側の面は平面からなり、次の条件式(2)を満足することが好ましい。
(2)0.05<|f1a/f1b|<1.2
【0008】
【発明の実施形態】
本発明の内視鏡対物変倍光学系は、図9及び図10の簡易移動図に示すように、物体側から順に、負のパワーの第1レンズ群10と、正のパワーの第2レンズ群20とからなり、物像間距離が変化しない(物像間距離を一定に保持する)。負のパワーの第1レンズ群10は、図9及び図10のいずれの態様でも、変倍に際し不動である。一方、正のパワーの第2レンズ群は、図9の態様では、ともに正の第2a群20aと第2b群20bからなっており、図10の態様では、正の第2a群と負の第2b群とからなっている。図9の態様、図10の態様ともに、低倍率端から高倍率端への変倍に際し、第2a群20aと第2b群20bはともに物体側に移動するが、第2b群20bは、図9の態様では一旦第1レンズ群10との距離を縮めた後広げ、図10の態様では一旦第1レンズ群10との距離を広げた後縮める。明るさ絞りSは、いずれの態様でも、第1レンズ群10と第2レンズ群20の間に配置され第2レンズ群20と一緒に移動する。
【0011】
本発明の内視鏡対物変倍光学系は、第1レンズ群10を負のパワー、第2レンズ群20を正のパワーとすることで、いわゆるレトロフォーカスタイプを構成し、低倍率端における第1レンズ群10への周辺光束の入射高さを小さく保ち、レンズ径の増大を押さえ、バックフォーカスを十分に確保している。ここで、広い入射角で高い変倍比を得ようとすると、低倍率端と高倍率端とで負の第1レンズ群を通る周辺光束の入射高さに大きな差が生じてしまう。一方、この負の第1レンズ群10を単レンズで構成しようとすると、広い入射角でも諸収差、特にコマ収差、非点隔差を良好に保つため、屈折率が1.8を越える高屈折率ガラスを使用せざるを得ない。しかしながら、このような高屈折率ガラスでは分散が小さいものはなく、特に低倍率端の倍率色収差が大きくなってしまう。そこで、この負の第1レンズ群10を2枚に分割して分散の小さい低屈折率ガラスを使用することで倍率色収差を低減するとともに、コマ収差、非点隔差を良好に保つことを可能にしている。また、低屈折率のガラスを負のパワーの第1レンズ群10に使用することで、ペッツバール和を改善し像面を平坦化することができる。
【0012】
条件式(1)は、第1レンズ群に含まれる2枚の負レンズのアッベ数に関する条件である。
条件式(1)の下限を越えて分散の大きなガラスを使用すると、低倍率時の倍率色収差が補正不足となる。
【0013】
内視鏡では、使用後の洗浄が極めて重要である。この洗浄のしやすさを考慮すると、外部に露出する第1レンズ群の最も物体側のレンズ面は平面であることが好ましい。
条件式(2)は、第1レンズ群の最も物体側のレンズ面を平面とした場合のコマ収差、非点隔差を良好に保つ条件である。
条件式(2)の下限を越えると、第1レンズ群の物体側のレンズの像側の面のパワーが強くなりすぎ、コマ収差、非点隔差が増大する。条件式(2)の上限を越えて第1レンズ群の像側のレンズのパワーが大きくなると、コマ収差は小さくなるが、物体側のレンズの入射高さが大きくなり、レンズ径の大型化を招く。
【0014】
本実施形態では、上述のように、変倍に際し、物像間距離を一定に保つため、第2レンズ群を第2a群と第2b群に分割し、それぞれ独立に移動させる。条件式(3)は、このように物像間距離を一定に保つとき、第2a群と第2b群のパワーを適切に保つ条件である。条件式(3)の下限を越えて第2a群のパワーが大きくなると、第2b群の移動量が大きくなり大型化を招く。条件式(3)の上限を越えて第2b群のパワーが大きくなると、第2a群の移動量が大きくなり大型化を招く。
【0015】
次に具体的な実施例を示す。諸収差図中、球面収差で表される色収差図及び倍率色収差図中のd線、g線、C線、F線、e線はそれぞれの波長に対する収差であり、Sはサジタル、Mはメリディオナル、Yは像高である。また、表中のFNOは実効Fナンバー、fは全系の焦点距離、Mは横倍率、2ωは全画角(゜)、rは曲率半径、dはレンズ厚またはレンズ間隔、Ndはd線の屈折率、νはアッベ数を示す。
【0018】
[実施例
図1ないし図4は、本発明の内視鏡対物変倍光学系の実施例1を示す。この実施例1は、図9のタイプ、すなわち、変倍に際し、結像位置を一定に保つようにともに正の第2a群20aと第2b群20bがそれぞれ独立して移動するタイプ(物像間距離一定タイプ)についての実施例である。図1、図3はそれぞれ、最低倍率、最高倍率におけるレンズ構成図であり、第1レンズ群10は、2枚の負レンズで構成され、第2レンズ群20は、物体側から順に、正レンズ、負レンズと正レンズの接合レンズからなる正のパワーの第2a群20aと、正単レンズからなる第2b群20bとで構成されている。第1レンズ群10の物体側の負レンズは最も物体側に位置し、該負レンズの物体側の面は平面である。第2レンズ群20の像側の平行平面板は、撮像素子の撮像面の前に置かれたフィルター類Gである。図2、図4はそれぞれ、図1、図3のレンズ構成の諸収差図、表1はその数値データである。明るさ絞りSは面No.5の物体側0.1mmの位置にある。
【0019】
[表1]
最低倍率 最高倍率
FNO=1: 4.6 − 7.0
f= 1.40 − 3.45
M= -0.12 − -0.35(変倍比;2.9)
入射角2ω= 137.6 − 42.6(°)
物体距離=10(mm)
面No. r d Nd ν
1 ∞ 0.300 1.51633 64.1
2 1.884 1.122 - -
3 547.264 0.300 1.51633 64.1
4 7.078 3.550-0.366 - -
5 2.844 0.547 1.88300 40.8
6 -24.257 0.572 - -
7 5.154 0.474 1.84666 23.8
8 1.390 1.524 1.49700 81.6
9 -5.677 0.200-0.223 - -
10 7.061 0.525 1.77250 49.6
11 ∞ 1.004-4.165 - -
12 ∞ 1.300 1.51633 64.1
13 ∞ - - -
【0020】
[実施例
図5ないし図8は、本発明の内視鏡対物変倍光学系の実施例2を示す。この実施例2は、図10のタイプ、すなわち、変倍に際し、結像位置を一定に保つように正の第2a群20aと負の第2b群20bがそれぞれ独立して移動するタイプ(物像間距離一定タイプ)についての実施例である。図5、図7はそれぞれ、最低倍率、最高倍率におけるレンズ構成図であり、基本的なレンズ構成は、第2b群20bが負単レンズからなる点を除いて実施例1と同様である。図6、図8はそれぞれ、図5、図7のレンズ構成の諸収差図、表2はその数値データである。明るさ絞りSは面No.5の物体側0.105mmの位置にある。
【0021】
[表2]
最低倍率 最高倍率
FNO=1: 4.7 − 7.0
f= 1.41 − 3.15
M= -0.13 − -0.35(変倍比;2.9)
入射角2ω= 138.5 − 42.5(°)
物体距離=10(mm)
面No. r d Nd ν
1 ∞ 0.300 1.58913 61.2
2 1.587 1.070 - -
3 -17.754 0.300 1.51633 64.1
4 18.360 3.280-0.429 - -
5 3.383 0.711 1.88300 40.8
6 -5.693 0.464 - -
7 5.399 0.400 1.84666 23.8
8 1.270 2.124 1.51633 64.1
9 -2.890 0.586-3.199 - -
10 -6.300 0.378 1.78472 25.7
11 ∞ 0.418-0.656 - -
12 ∞ 1.300 1.51633 64.1
13 ∞ - - -
【0022】
各実施例の各条件式に対する値を表3に示す。
表3
実施例1 実施例2
条件式(1) 59.6 58.2
条件式(2) 0.26 0.15
条件式(3) 0.28 0.33
実施例1及び2は各条件式を満足しており、諸収差も比較的よく補正されている。
【0023】
【発明の効果】
本発明によれば、簡単な構成で低倍率端の入射角が広い内視鏡対物変倍光学系が得られる。
【図面の簡単な説明】
【図1】本発明による内視鏡対物変倍光学系の実施例1の最低倍率におけるレンズ構成図である。
【図2】図1のレンズ構成の諸収差図である。
【図3】本発明による内視鏡対物変倍光学系の実施例1の最高倍率におけるレンズ構成図である。
【図4】図3のレンズ構成の諸収差図である。
【図5】本発明による内視鏡対物変倍光学系の実施例2の最低倍率におけるレンズ構成図である。
【図6】図5のレンズ構成の諸収差図である。
【図7】本発明による内視鏡対物変倍光学系の実施例2の最高倍率におけるレンズ構成図である。
【図8】図7のレンズ構成の諸収差図である。
【図9】本発明の実施例1の内視鏡対物変倍光学系の簡易移動図である。
【図10】本発明の実施例2の内視鏡対物変倍光学系の簡易移動図である。
[0001]
【Technical field】
The present invention relates to an objective variable magnification optical system used for an endoscope.
[0002]
[Prior art and its problems]
In recent years, the need for magnification observation has been increasing in endoscopes, and endoscopes having an objective variable magnification optical system to meet the needs have appeared. Examples of conventional objective variable magnification optical systems for such endoscopes include those described in JP-A-1-279219, JP-A-4-21812, and JP-A-3-145614. These objective variable magnification optical systems of these endoscopes are not sufficiently widened because the incident angle 2ω at the low magnification end is about 100 °. Further, the objective variable magnification optical system described in JP-A-6-317744 has a large number of lenses and a complicated structure.
[0003]
OBJECT OF THE INVENTION
An object of the present invention is to obtain an objective variable magnification optical system used in an endoscope having a simple configuration and an incident angle 2ω at a low magnification end of 130 ° or more.
[0004]
Summary of the Invention
The present invention is an objective variable magnification optical system used for an endoscope, and is composed of a first lens group having a negative power and a second lens group having a positive power in order from the object side. The first lens group is stationary, the second lens group is movable, the first lens group includes at least two negative lenses, and the second lens group is composed of a positive second group a and a second group b. In zooming from the low magnification end to the high magnification end, the second group a moves to the object side, and the second group b moves to correct the movement of the image plane position accompanying the movement of the second group a. The zoom lens is zoomed while maintaining the distance between the object images constant, and satisfies the following conditional expressions (1) and (3) .
(1) (ν1 / f1a + ν2 / f1b) · f1> 50
(3) 0.1 <| f2a / f2b | ≦ 0.33
However,
ν1: Abbe number of the negative lens closest to the object side in the first lens group,
ν2: Abbe number of the negative lens closest to the image side in the first lens group,
f1a: focal length of the negative lens closest to the object side in the first lens group,
f1b: the focal length of the negative lens closest to the image side in the first lens group,
f1: the focal length of the first lens group,
f2a: focal length of group 2a,
f2b: focal length of group 2b,
It is.
[0005]
According to another aspect of the present invention, there is provided an objective variable magnification optical system used for an endoscope, which includes, in order from the object side, a first lens group having a negative power and a second lens group having a positive power. In zooming, the first lens group is stationary, the second lens group is movable, the first lens group includes at least two negative lenses, and the second lens group is sequentially positive from the object side. 2a group and negative 2b group, and when zooming from the low magnification end to the high magnification end, the 2a group moves to the object side, and the 2b group moves to the image plane accompanying the movement of the 2a group. It is characterized by moving so as to correct the movement of the position, and scaling while maintaining a constant distance between the object images, and satisfying the following conditional expressions (1) and (3).
(1) (ν1 / f1a + ν2 / f1b) · f1> 50
(3) 0.1 <| f2a / f2b | ≦ 0.33
However,
ν1: Abbe number of the negative lens closest to the object side in the first lens group,
ν2: Abbe number of the negative lens closest to the image side in the first lens group,
f1a: focal length of the negative lens closest to the object side in the first lens group,
f1b: the focal length of the negative lens closest to the image side in the first lens group,
f1: the focal length of the first lens group,
f2a: focal length of group 2a,
f2b: the focal length of the second group b.
[0006]
It is preferable that the object side negative lens of the first lens group is located closest to the object side, and the object side surface of the negative lens is a flat surface, and satisfies the following conditional expression (2).
(2) 0.05 <| f1a / f1b | <1.2
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As shown in the simplified movement diagrams of FIGS. 9 and 10 , the endoscope objective variable magnification optical system according to the present invention includes, in order from the object side, a first lens group 10 having a negative power and a second lens having a positive power. The distance between the object images does not change (the distance between the object images is kept constant). The first lens group 10 having a negative power does not move during zooming in any of the modes shown in FIGS. On the other hand, the second lens group having a positive power consists of a positive second group a 20a and a second group 20b in the embodiment of FIG. 9, and in the embodiment of FIG. 10, the positive second group a and the negative second lens group. It consists of 2b group. In both the mode of FIG. 9 and the mode of FIG. 10, the second a group 20a and the second b group 20b both move to the object side upon zooming from the low magnification end to the high magnification end. In the aspect of FIG. 10, the distance from the first lens group 10 is once reduced and then expanded, and in the aspect of FIG. 10, the distance from the first lens group 10 is once increased and then reduced. In any aspect, the aperture stop S is disposed between the first lens group 10 and the second lens group 20 and moves together with the second lens group 20.
[0011]
The endoscope objective variable magnification optical system according to the present invention constitutes a so-called retrofocus type by setting the first lens group 10 to a negative power and the second lens group 20 to a positive power. The incident height of the peripheral luminous flux to one lens group 10 is kept small, the increase in the lens diameter is suppressed, and the back focus is sufficiently secured. Here, when trying to obtain a high zoom ratio with a wide incident angle, a large difference occurs in the incident height of the peripheral luminous flux passing through the negative first lens group at the low magnification end and the high magnification end. On the other hand, if the negative first lens group 10 is configured by a single lens, various refractive indexes, particularly coma and astigmatism, are kept high even at a wide incident angle. I have to use glass. However, no such high refractive index glass has a small dispersion, and the chromatic aberration of magnification at the low magnification end is particularly large. Therefore, the negative first lens group 10 is divided into two pieces and a low refractive index glass having a small dispersion is used to reduce lateral chromatic aberration and to keep coma and astigmatism good. ing. Further, by using low refractive index glass for the first lens group 10 having a negative power, the Petzval sum can be improved and the image plane can be flattened.
[0012]
Conditional expression (1) is a condition regarding the Abbe number of two negative lenses included in the first lens group.
If glass having a large dispersion exceeding the lower limit of conditional expression (1) is used, lateral chromatic aberration at low magnification becomes insufficiently corrected.
[0013]
In an endoscope, cleaning after use is extremely important. Considering the ease of cleaning, it is preferable that the most object side lens surface of the first lens group exposed to the outside is a flat surface.
Conditional expression (2) is a condition for maintaining good coma and astigmatism when the most object side lens surface of the first lens unit is a flat surface.
When the lower limit of conditional expression (2) is exceeded, the power of the image side surface of the object side lens in the first lens group becomes too strong, increasing coma and astigmatism. If the power of the lens on the image side of the first lens group increases beyond the upper limit of conditional expression (2), the coma aberration decreases, but the incident height of the lens on the object side increases, and the lens diameter increases. Invite.
[0014]
In the present embodiment, as described above , the second lens group is divided into the second a group and the second b group and moved independently in order to keep the object-image distance constant during zooming. Conditional expression (3) is a condition for appropriately maintaining the powers of the second group a and the second group b when the distance between the object images is kept constant. If the power of the second group a increases beyond the lower limit of conditional expression (3), the amount of movement of the second group b increases, leading to an increase in size. If the power of the second group b increases beyond the upper limit of conditional expression (3), the amount of movement of the second group a increases, leading to an increase in size.
[0015]
Next, specific examples will be described. In the various aberration diagrams, the d-line, g-line, C-line, F-line, and e-line in the chromatic aberration diagram and magnification chromatic aberration diagram represented by spherical aberration are aberrations for each wavelength, S is sagittal, M is meridional, Y is the image height. Further, F NO is the effective F-number in the table, f is the focal length of the entire system, M is the transverse magnification, 2 [omega is full angle of view (DEG), r is the radius of curvature, d is the lens thickness or distance between lens, Nd is d The refractive index of the line, ν, indicates the Abbe number.
[0018]
[Example 1 ]
1 to 4 show a first embodiment of an endoscope objective variable magnification optical system according to the present invention. The first embodiment is of the type shown in FIG. 9 , that is, the type in which the positive second a group 20a and the second b group 20b are independently moved so as to keep the imaging position constant during zooming (between object images). This is an example of a constant distance type). 1 and 3 are lens configuration diagrams at the minimum magnification and the maximum magnification, respectively. The first lens group 10 includes two negative lenses, and the second lens group 20 includes a positive lens in order from the object side. The positive power second a group 20a composed of a cemented lens of a negative lens and a positive lens and the second b group 20b composed of a positive single lens. The negative lens on the object side of the first lens group 10 is located closest to the object side, and the object side surface of the negative lens is a flat surface. The parallel plane plate on the image side of the second lens group 20 is a filter group G placed in front of the imaging surface of the imaging device. 2 and 4 are diagrams showing various aberrations of the lens configuration shown in FIGS. 1 and 3, respectively, and Table 1 shows numerical data thereof. The aperture stop S is at a position of 0.1 mm on the object side of surface No. 5.
[0019]
[Table 1]
Minimum magnification Maximum magnification
FNO = 1: 4.6 − 7.0
f = 1.40 − 3.45
M = -0.12--0.35 (magnification ratio; 2.9)
Incident angle 2ω = 137.6-42.6 (°)
Object distance = 10 (mm)
Surface No. r d Nd ν
1 ∞ 0.300 1.51633 64.1
2 1.884 1.122--
3 547.264 0.300 1.51633 64.1
4 7.078 3.550-0.366--
5 2.844 0.547 1.88300 40.8
6 -24.257 0.572--
7 5.154 0.474 1.84666 23.8
8 1.390 1.524 1.49700 81.6
9 -5.677 0.200-0.223--
10 7.061 0.525 1.77250 49.6
11 ∞ 1.004-4.165--
12 ∞ 1.300 1.51633 64.1
13 ∞---
[0020]
[Example 2 ]
5 through 8 show a second embodiment of the endoscope objective variable power optical system of the present invention. The second embodiment is the type of Fig. 10, i.e., during zooming, a positive of the 2a group 20a and the negative of the 2b group 20b are moved independently to keep the imaging position to a constant type (object-image This is an example of a constant distance type. 5 and 7 are lens configuration diagrams at the lowest magnification and the highest magnification, respectively. The basic lens configuration is the same as that of the first embodiment except that the second b group 20b is composed of a negative single lens. FIGS. 6 and 8 are graphs showing various aberrations of the lens configuration shown in FIGS. 5 and 7 , and Table 2 shows numerical data thereof. The aperture stop S is at a position of 0.105 mm on the object side of the surface No.5.
[0021]
[Table 2]
Minimum magnification Maximum magnification
FNO = 1: 4.7 − 7.0
f = 1.41 − 3.15
M = -0.13--0.35 (magnification ratio; 2.9)
Incident angle 2ω = 138.5-42.5 (°)
Object distance = 10 (mm)
Surface No. r d Nd ν
1 ∞ 0.300 1.58913 61.2
2 1.587 1.070--
3 -17.754 0.300 1.51633 64.1
4 18.360 3.280-0.429--
5 3.383 0.711 1.88300 40.8
6 -5.693 0.464--
7 5.399 0.400 1.84666 23.8
8 1.270 2.124 1.51633 64.1
9 -2.890 0.586-3.199--
10 -6.300 0.378 1.78472 25.7
11 ∞ 0.418-0.656--
12 ∞ 1.300 1.51633 64.1
13 ∞---
[0022]
Table 3 shows values for each conditional expression in each example.
[ Table 3 ]
Example 1 Example 2
Conditional expression (1) 59.6 58.2
Conditional expression (2) 0.26 0.15
Conditional expression (3) 0.28 0.33
In Examples 1 and 2, each conditional expression is satisfied, and various aberrations are corrected relatively well.
[0023]
【The invention's effect】
According to the present invention, an endoscope objective variable magnification optical system having a simple configuration and a wide incident angle at a low magnification end can be obtained.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram at a minimum magnification in Example 1 of an endoscope objective variable magnification optical system according to the present invention.
2 is a diagram illustrating various aberrations of the lens configuration in FIG. 1. FIG.
FIG. 3 is a lens configuration diagram at the maximum magnification of Example 1 of the endoscope objective variable magnification optical system according to the present invention.
4 is a diagram illustrating various aberrations of the lens configuration in FIG. 3; FIG.
FIG. 5 is a lens configuration diagram at the minimum magnification of Example 2 of the endoscope objective variable magnification optical system according to the present invention.
6 is a diagram illustrating various aberrations of the lens configuration in FIG. 5. FIG.
FIG. 7 is a lens configuration diagram at the maximum magnification of Example 2 of the endoscope objective variable magnification optical system according to the present invention.
8 is a diagram illustrating various aberrations of the lens configuration in FIG. 7;
FIG. 9 is a simple movement diagram of the endoscope objective variable magnification optical system according to the first embodiment of the present invention.
FIG. 10 is a simple movement diagram of the endoscope objective variable magnification optical system according to the second embodiment of the present invention.

Claims (3)

内視鏡に使用する対物変倍光学系であって、物体側から順に、負のパワーの第1レンズ群と、正のパワーの第2レンズ群とからなり、
変倍に際し、第1レンズ群は不動で、第2レンズ群は可動であり、
第1レンズ群は、少なくとも2枚の負レンズを含み、
第2レンズ群は、ともに正の第2a群と第2b群からなり、低倍率端から高倍率端への変倍に際し、この第2a群は物体側に移動し、第2b群は第2a群の移動に伴う像面位置の移動を補正するように移動して、物像間距離を一定に保持しながら変倍し、
次の条件式(1)及び(3)を満足することを特徴とする内視鏡対物変倍光学系。
(1)(ν1/f1a+ν2/f1b)・f1>50
(3)0.1<|f2a/f2b|≦0.33
但し、
ν1:第1レンズ群の最も物体側の負レンズのアッベ数、
ν2:第1レンズ群の最も像側の負レンズのアッベ数、
f1a:第1レンズ群の最も物体側の負レンズの焦点距離、
f1b:第1レンズ群の最も像側の負レンズの焦点距離、
f1:第1レンズ群の焦点距離、
f2a:第2a群の焦点距離、
f2b:第2b群の焦点距離。
An objective variable magnification optical system used for an endoscope, comprising, in order from the object side, a first lens group having a negative power and a second lens group having a positive power,
During zooming, the first lens group is stationary and the second lens group is movable,
The first lens group includes at least two negative lenses,
The second lens group is composed of both a positive 2a group and a 2b group, and when zooming from the low magnification end to the high magnification end, the 2a group moves to the object side, and the 2b group is the 2a group. Move so as to correct the movement of the image plane position accompanying the movement of, and scale while keeping the distance between the object images constant,
An endoscope objective variable magnification optical system characterized by satisfying the following conditional expressions (1) and (3):
(1) (ν1 / f1a + ν2 / f1b) · f1> 50
(3) 0.1 <| f2a / f2b | ≦ 0.33
However,
ν1: Abbe number of the negative lens closest to the object side in the first lens group,
ν2: Abbe number of the negative lens closest to the image side in the first lens group,
f1a: focal length of the negative lens closest to the object side in the first lens group,
f1b: the focal length of the negative lens closest to the image side in the first lens group,
f1: the focal length of the first lens group,
f2a: focal length of group 2a,
f2b: the focal length of the second group b.
内視鏡に使用する対物変倍光学系であって、物体側から順に、負のパワーの第1レンズ群と、正のパワーの第2レンズ群とからなり、An objective variable magnification optical system used for an endoscope, comprising, in order from the object side, a first lens group having a negative power and a second lens group having a positive power,
変倍に際し、第1レンズ群は不動で、第2レンズ群は可動であり、  During zooming, the first lens group is stationary and the second lens group is movable,
第1レンズ群は、少なくとも2枚の負レンズを含み、  The first lens group includes at least two negative lenses,
第2レンズ群は、物体側から順に、正の第2a群と負の第2b群からなり、低倍率端から高倍率端への変倍に際し、この第2a群は物体側に移動し、第2b群は第2a群の移動に伴う像面位置の移動を補正するように移動して、物像間距離を一定に保持しながら変倍し、  The second lens group includes, in order from the object side, a positive second group a and a negative second group b. Upon zooming from the low magnification end to the high magnification end, the second lens group moves to the object side, The 2b group moves so as to correct the movement of the image plane position accompanying the movement of the 2a group, and scales while keeping the distance between the object images constant,
次の条件式(1)及び(3)を満足することを特徴とする内視鏡対物変倍光学系。  An endoscope objective variable magnification optical system characterized by satisfying the following conditional expressions (1) and (3):
(1)(ν1/f1a+ν2/f1b)・f1>50(1) (ν1 / f1a + ν2 / f1b) · f1> 50
(3)0.1<|f2a/f2b|≦0.33(3) 0.1 <| f2a / f2b | ≦ 0.33
但し、However,
ν1:第1レンズ群の最も物体側の負レンズのアッベ数、ν1: Abbe number of the negative lens closest to the object side in the first lens group,
ν2:第1レンズ群の最も像側の負レンズのアッベ数、ν2: Abbe number of the negative lens closest to the image side in the first lens group,
f1a:第1レンズ群の最も物体側の負レンズの焦点距離、f1a: focal length of the negative lens closest to the object side in the first lens group,
f1b:第1レンズ群の最も像側の負レンズの焦点距離、f1b: the focal length of the negative lens closest to the image side in the first lens group,
f1:第1レンズ群の焦点距離、f1: the focal length of the first lens group,
f2a:第2a群の焦点距離、f2a: focal length of group 2a,
f2b:第2b群の焦点距離。f2b: the focal length of the second group b.
請求項1または2記載の内視鏡対物変倍光学系において、第1レンズ群の物体側の負レンズは最も物体側に位置し、該負レンズの物体側の面は平面からなり、次の条件式(2)を満足する内視鏡対物変倍光学系。
(2)0.05<|f1a/f1b|<1.2
3. The endoscope objective variable magnification optical system according to claim 1, wherein the object side negative lens of the first lens group is located closest to the object side, and the object side surface of the negative lens is a flat surface. An endoscope objective variable magnification optical system that satisfies conditional expression (2).
(2) 0.05 <| f1a / f1b | <1.2
JP2000195942A 2000-06-29 2000-06-29 Endoscope objective variable magnification optical system Expired - Fee Related JP4634578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195942A JP4634578B2 (en) 2000-06-29 2000-06-29 Endoscope objective variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195942A JP4634578B2 (en) 2000-06-29 2000-06-29 Endoscope objective variable magnification optical system

Publications (3)

Publication Number Publication Date
JP2002014282A JP2002014282A (en) 2002-01-18
JP2002014282A5 JP2002014282A5 (en) 2007-07-26
JP4634578B2 true JP4634578B2 (en) 2011-02-16

Family

ID=18694525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195942A Expired - Fee Related JP4634578B2 (en) 2000-06-29 2000-06-29 Endoscope objective variable magnification optical system

Country Status (1)

Country Link
JP (1) JP4634578B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450733B1 (en) * 2002-04-05 2013-06-05 Olympus Corporation Electronic imaging system comprising a zoom lens
JP4633847B2 (en) * 2002-04-05 2011-02-16 オリンパス株式会社 Zoom lens and electronic imaging device using the same
WO2003085439A1 (en) * 2002-04-09 2003-10-16 Olympus Corporation Zoom lens and electronic imaging apparatus using it
JP5082604B2 (en) * 2007-06-08 2012-11-28 コニカミノルタアドバンストレイヤー株式会社 Variable-magnification optical system, imaging device, and digital device
JP5031880B2 (en) * 2010-10-29 2012-09-26 オリンパスメディカルシステムズ株式会社 Endoscope objective lens
JP5895718B2 (en) * 2012-06-04 2016-03-30 株式会社リコー Imaging lens, camera, and portable information terminal
JP6064105B1 (en) 2015-05-28 2017-01-18 オリンパス株式会社 Endoscope objective optical system
JP6619969B2 (en) * 2015-08-24 2019-12-11 ナンチャン オー−フィルム オプティカル−エレクトロニック テック カンパニー リミテッド Imaging lens and imaging apparatus
JP6619968B2 (en) * 2015-08-24 2019-12-11 ナンチャン オー−フィルム オプティカル−エレクトロニック テック カンパニー リミテッド Imaging lens and imaging apparatus
JP6619970B2 (en) * 2015-08-24 2019-12-11 ナンチャン オー−フィルム オプティカル−エレクトロニック テック カンパニー リミテッド Imaging lens and imaging apparatus
WO2017145208A1 (en) * 2016-02-24 2017-08-31 パナソニックIpマネジメント株式会社 Zoom lens system, image pickup device having zoom lens system, and vehicle having image pickup device
WO2019163744A1 (en) * 2018-02-23 2019-08-29 Hoya株式会社 Variable power optical system for endoscope and endoscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116615A (en) * 1987-10-30 1989-05-09 Canon Inc Variable power range variable zoom lens
JPH02136811A (en) * 1988-11-18 1990-05-25 Canon Inc Small-sized zoom lens
JPH03145614A (en) * 1989-11-01 1991-06-20 Olympus Optical Co Ltd Endoscope objective
JPH04328707A (en) * 1991-04-30 1992-11-17 Minolta Camera Co Ltd Finite conjugate distance zoom lens system
JP4317928B2 (en) * 1998-10-30 2009-08-19 株式会社ニコン Zoom lens

Also Published As

Publication number Publication date
JP2002014282A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
JP2804267B2 (en) Endoscope objective lens
JP4890090B2 (en) Zoom lens system
JP2876252B2 (en) Endoscope objective lens
JP3728680B2 (en) Compact wide-angle zoom lens
JPH0990214A (en) Wide-angle image forming lens
JP2004085600A (en) Wide-angle zoom lens system
JPH1020193A (en) Zoom lens
JP4634578B2 (en) Endoscope objective variable magnification optical system
JPH10246854A (en) Compact wide-angle lens
JPH05150161A (en) Variable power lens
JP5506535B2 (en) Imaging lens and inspection apparatus equipped with the imaging lens
JP4406112B2 (en) Endoscope objective variable magnification optical system
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
JP3758801B2 (en) Endoscope objective lens system
JP3140841B2 (en) Objective optical system for endoscope
JP3441958B2 (en) 3-group zoom lens
JP4817551B2 (en) Zoom lens
JP3426378B2 (en) Endoscope objective lens
JPH0359511A (en) Eyepiece
JPH11242157A (en) Zoom lens
JPH07120673A (en) Compact zoom lens
JP3689356B2 (en) Medium telephoto lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JPH052134A (en) Keplerian type zoom finder optical system
JP3415765B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees