この発明の第1の実施の形態について説明する。図1は、第1の実施の形態としての画像表示装置100の構成を示している。この画像表示装置100は、例えば液晶表示器(LCD: Liquid Crystal Display)等からなる画像表示素子101と、結像光学素子102と、プリズム103と、偏光選択性透過型ホログラフィック光学素子104,105とで構成されている。画像表示素子101が液晶表示器からなる場合、光源としては、例えば発光ダイオード(LED: Liquid Crystal Display)が用いられる。
プリズム103は、断面三角形状とされており、3つの面103a〜103cを有している。結像光学素子102は、画像表示素子101とプリズム103の面103aとの間に配置されている。プリズム103の面103aのうち、画像表示素子101からの射出光が入射される部位に、ホログラフィック光学素子104が被着されている。このホログラフィック光学素子104は、第2の透過型回折光学素子を構成している。プリズム103の面103aのうち、プリズム103からの射出光が射出される部位に、ホログラフィック光学素子105が被着されている。このホログラフィック光学素子105は、第1の透過型回折光学素子を構成している。
プリズム103の面103bは、当該プリズム103の面103aから入射光として入射される画像表示素子101からの射出光を反射する反射面を構成している。この面103bの面103aに対する傾斜角は、当該面103bへの上述の入射光の入射角度が全反射の条件を満たし、かつこの面103bからの反射光の面103aへの入射角度が全反射の条件を満たすように、設定されている。また、プリズム103の面103cの面103aに対する傾斜角は、面103aからの反射光の面103cへの入射角度が全反射の条件を満たすように、設定されている。
プリズム103の面103bおよび面103cの少なくとも一方は曲面とされ、レンズ効果を持つようにされている。画像表示装置100は、ユーザの瞳106の位置における光線、例えば平行光線を逆光線追跡したとき、画像表示素子101の表示面上に結像される光学系で構成されている。上述したようにプリズム103の面103bおよび面103cの少なくとも一方を曲面として、レンズ効果を持たせることで、光線束の広がりを抑制でき、プリズム103を薄く小さくでき、また結像光学素子102の負担を軽減できる。
本実施の形態において、画像表示素子101からの射出光は直線偏光であるp偏光とされており、またホログラフィック光学素子104,105はこのp偏光に対して回折効率を有するものとされている。なお、画像表示素子101からの射出光をp偏光と直交した偏光面を持つ直線偏光であるs偏光とし、またホログラフィック光学素子104,105をs偏光に対して回折効率を有するものとしてもよい。
また、上述した逆光線追跡を考えた場合、ホログラフィック光学素子105における回折によって生じる波長分散と逆の波長分散が、ホログラフィック光学素子104における回折によって発生され、色分散した光線が結像位置に集光されるように、ホログラフィック光学素子104の回折パワー等が設定されている。
また、上述した逆光線追跡を考えた場合、プリズム103から射出されてホログラフィック光学素子104に入射される射出光が全画角において略平行となるように、プリズム103の面103b,103cの曲面形状などが最適化されている。これにより、ホログラフィック光学素子104の回折効率の向上が図られている。
また、ホログラフィック光学素子104,105は、それぞれ、可視領域における、赤色の波長帯域と、緑色の波長帯域と、青色の波長帯域とに対して、回折効率を有するものとされている。また、ホログラフィック光学素子104,105は、それぞれ、異なる効果を備えている。
本実施の形態においては、これらホログラフィック光学素子104,105は、赤色光回折用ホログラフィック光学素子110R、緑色光回折用ホログラフィック光学素子110Gおよび青色光回折用ホログラフィック光学素子110Bが積層された3層構造とされる。ホログラフィック光学素子110R,110Gおよび110Bは、それぞれ、可視領域における、赤色の波長帯域(例えば620nm〜640nm)、緑色の波長帯域(例えば520nm〜540nm)および青色の波長帯域(例えば450nm〜500nm)に対して、回折効率を有する。
この場合、ホログラフィック光学素子104,105は、図2に示すように、プリズム103側から、ホログラフィック光学素子110R、ホログラフィック光学素子110Bおよびホログラフィック光学素子110Gの順に配置されている。なお、プリズム103側から、ホログラフィック光学素子110B、ホログラフィック光学素子110Rおよびホログラフィック光学素子110Gの順に配置されていてもよい。
人間の眼は緑色の光に最も感度がよく、赤色がこれに次ぎ青色が最も低い。上述したように、ホログラフィック光学素子104において、プリズム103側とは逆側に、緑色の波長帯域に対して回折効率を有するホログラフィック光学素子110Gが配置される。そのため、ホログラフィック光学素子104で回折すべき画像表示素子101からの射出光は最初にホログラフィック光学素子110Gに入射され、緑色の光線束は、他のホログラフィック光学素子110B,110Rの影響を受けることなく、当該ホログラフィック光学素子110Gで回折される。したがって、ホログラフィック光学素子104で、視感度の高い緑色の光線束を精度よく回折でき、ユーザは解像度のよい画像を知覚できるようなる。
本実施の形態においては、ホログラフィック光学素子104,105をそれぞれ構成するホログラフィック光学素子110G,110B,110Rは物理的に連続したものとして構成され、後述する製造プロセスにおける露光条件を変化させてそれぞれの部位で異なるパワーを備えるようにされる。そのため、ホログラフィック光学素子105においても、プリズム103側から、ホログラフィック光学素子110R、ホログラフィック光学素子110Bおよびホログラフィック光学素子110Gの順に配置された状態となっている。
しかし、このホログラフィック光学素子105においては、本来、プリズム103側から、ホログラフィック光学素子110G、ホログラフィック光学素子110Bおよびホログラフィック光学素子110Rの順、またはホログラフィック光学素子110G、ホログラフィック光学素子110Rおよびホログラフィック光学素子110Bの順に配置することが好ましい。このように、プリズム103側に、ホログラフィック光学素子110Gが配置されることで、プリズム103から射出された射出光は最初に当該ホログラフィック光学素子110Gに入射されるため、緑色の光線束は、他のホログラフィック光学素子110B,110Rの影響を受けることなく、当該ホログラフィック光学素子110Gで回折される。そのため、ホログラフィック光学素子105で、視感度の高い緑色の光線束を精度よく回折でき、ユーザは解像度のよい画像を知覚できるようになる。
ここで、図3、図4を参照して、上述したホログラフィック光学素子110R,110G,110Bをそれぞれ構成する偏光選択性透過型ホログラフィック光学素子110の構造および製造プロセスを説明する。このホログラフィック光学素子110は、例えば特開2002−221710号公報に記載されている。
このホログラフィック光学素子110は、高分子分散液晶(以下、「PDLC」という)を材料とした液晶パネルに、レーザ光線による干渉縞を露光して、ホログラムを形成したものである。
すなわち、まず、光重合を起こす前の高分子(以下、「プレポリマ」という)、ネマチック液晶、開始剤、色素などが混合されたPDLC1を、それぞれに透明電極2が形成された一対のガラス基板3,3間に挟み込み、PDLCパネルを形成する。このとき、ネマチック液晶の重量割合は全体の30%程度とする。また、このPDLC1の層厚(以下、「セルギャップ」という)は、2μm乃至15μm程度の範囲で、偏光選択性透過型ホログラフィック光学素子の仕様、例えば回折効率を持たせる波長帯域などに合わせて最適値が選ばれる。
次に、このPDLCパネルに干渉縞を記録するため、図示しないレーザ光源からの物体光4および参照光5を当該PDLCパネルに照射し、これらの干渉による光の強弱(A)を発生させる。このとき、干渉縞の明るいところ、つまり光子のエネルギーが大きい場所では、そのエネルギーにより、PDLC中のプレポリマが光重合を起こし、ポリマ化する。このため、プレポリマが周辺部から次々に供給され、結果的に、ポリマ化したプレポリマが密な領域と疎の領域とに分かれる。プレポリマが疎の領域では、ネマチック液晶の濃度が高くなる。これにより、高分子領域6と液晶領域7の2つの領域が形成される。
ところで、上述のPDLCパネルの高分子領域6は、屈折率に関し等方的で、その値は、例えば1.5となされている。一方、PDLCパネルの液晶領域7では、ネマチック液晶分子8がその光軸を高分子領域6との境界面に対して略垂直として並んでいる。そのため、この液晶領域7では、屈折率が、入射偏光方位依存性を有しており、この場合常光線となるのは、PDLCパネルの光線入射面9に入射する入射光について考えた場合、s偏光成分である。
そして、この液晶領域7の常光線屈折率nloを高分子領域6の屈折率npに略等しい状態、例えば、屈折率差が0.01未満である状態とすれば、入射s偏光成分に対する屈折率の変調は極めて小さく、回折効率をほとんど有しない。一般に、ネマチック液晶の常光線屈折率nloと異常光線屈折率nleとの差Δnは、0.1乃至0.2程度であるため、s偏光成分と入射方向が等しいp偏光成分の場合は、高分子領域6と液晶領域7との間に屈折率差を生じ、位相変調型ホログラムとして機能し、回折効率を有する。これが、PDLCパネルを用いた偏光選択性透過型ホログラフィック光学素子(H−PDLCパネル)110の透明電極2,2間に電圧を印加しない場合の動作原理である(図3参照)。
次に、図4に示すように、このH−PDLCパネル110の透明電極2,2間に電圧を印加した場合の動作について説明する。透明電極2,2間には、スイッチ10を介して、電源11が接続されている。スイッチ10を閉成することにより、透明電極2,2間には、電源11による電圧が印加される。これにより、H−PDLCパネル110の内部の材料に電界が加わると、誘電率異方性を有する液晶分子8は、その電圧に応じた角度だけ、光軸を電界方向に揃えるように方向が変えられる。そして、入射光の偏光方向に関わらず、回折を起こさないように制御することが可能となる。
上述のような原理により、ホログラフィック光学素子(H−PDLCパネル)110は、入射光のうちのp偏光成分のみを回折する状態および入射光の全方向の偏光成分を回折しない状態の、2つの状態に切り替える動作が可能となる。
画像表示素子101は、例えば赤色画像、緑色画像および青色画像を所定の周期、例えば1/180秒の周期をもって順次表示する。そして、この画像表示素子101からは、赤色画像、緑色画像および青色画像が表示されているとき、それぞれ赤色光、緑色光および青色光が射出される。図示しない制御部は、ホログラフィック光学素子104,105を構成する光学素子110R,110Gおよび110Bを、それぞれ、画像表示素子101に赤色画像、緑色画像および青色画像が表示されているときp偏光成分のみを回折する状態とし、その他のとき全方向の偏光成分を回折しない状態とする。
この画像表示装置100において、画像表示素子101から射出される射出光(p偏光)は、結像光学素子102を透過して透過型ホログラフィック光学素子104に入射されて回折される。この透過型ホログラフィック光学素子104からの回折光は、プリズム103に、面103aから入射光として入射される。
プリズム103に入射された入射光は、面103bで全反射され、また面103aで全反射され、さらに面103cで全反射されて、プリズム103の面103aから射出される。このプリズム103からの射出光は、透過型ホログラフィック光学素子105に入射されて回折される。そして、この透過型ホログラフィック光学素子105からの回折光は、ユーザの瞳106に入射される。これにより、ユーザは、画像表示素子101に表示される画像を虚像として認識できるようになる。
ここで、実際の光線の進行方向とは逆向きの光線追跡を考える。
瞳106から所定の画角を持った光線束が射出光として射出されたとする。この射出光は、ホログラフィック光学素子105に入射される。このホログラフィック光学素子105では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。
ホログラフィック光学素子105からの回折光は、プリズム103に、その面103aから入射光として入射される。この入射光は、面103cで全反射された後、面103aに入射されて全反射される。ここで、面103cで反射された反射光が入射される面103aにはホログラフィック光学素子104,105が被着されており、反射光はホログラフィック光学素子104,105に入射される。
しかしこの場合、面103cで反射された反射光は、図5に示すように、当該ホログラフィック光学素子104,105に大きな入射角をもって入射されるので、当該ホログラフィック光学素子104,105で回折効果は発生せず、面103cで反射された反射光は全反射される。なお、図5は、ホログラフィック光学素子105の部分のみを示している。
面103aで反射された反射光は、面103bに入射されて全反射される。そして、面103bで反射された反射光は面103aから射出される。このプリズム103からの射出光はホログラフィック光学素子104に入射される。このホログラフィック光学素子104では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。そして、このホログラフィック光学素子104からの回折光は、結像光学素子102により、画像表示素子101の表示面上に集光される。この場合、瞳106の位置における光線、例えば平行光線は、画像表示素子101の表示面上に結像される。
図1に示す画像表示装置100においては、画像表示素子101からの射出光がプリズム103および透過型ホログラフィック光学素子105を介してユーザの瞳106に入射されるものであり、従来のようにハーフミラーを用いるものと比べて、光利用効率を高くでき、ユーザは明るい像を見ることができる。換言すれば、光利用効率を高くできることから、ユーザに明るい像を知覚させるための消費電力を低く抑えることができる。
すなわち、図1に示す画像表示装置100においては、プリズム103に入射された入射光が反射される面103b、面103aおよび面103cが全反射条件を満たすようにされている。そのため、画像表示素子101からの射出光の光量の劣化または減衰は、偏光選択性透過型ホログラフィック光学素子104,105の回折効率、プリズム103の内部および結像光学素子102の内部および透過型ホログラフィック光学素子104,105の内部での吸収、および各光学部品における表面反射でのみ発生する。しかも、偏光選択性透過型ホログラフィック光学素子104,105の回折効率は90%以上と高い。したがって、画像表示素子101からの射出光の光量の劣化または減衰は少なく、ユーザの瞳106で観察される光量が多くなる。
また、図1に示す画像表示装置100においては、面103cにカウンタープリズムを設けることでユーザの瞳106の前方に存在するプリズム103の向こう側からの光は、プリズム103および透過型ホログラフィック光学素子105を介して、ユーザの瞳106に入射される。すなわち、図1に示す画像表示装置100においては、従来のように向こう側からの光がハーフミラーを介してユーザの瞳106に入射されるものではなく、明るく歪みのない像のシースルー構造を提供できる。
また、図1に示す画像表示装置100においては、プリズム103の面103cで最終的に反射されて射出された射出光が透過型ホログラフィック光学素子105でさらに回折され、その回折光がユーザの瞳106に入射されるものである。プリズム103の面103cと透過型ホログラフィック光学素子105とでプリズム103の面103aでの全反射条件を満たすための効果を分担しており、透過型ホログラフィック光学素子105に大きな回折能力は要求されない。したがって、この図1に示す画像表示装置100によれば、従来の反射型ホログラフィック光学素子を用いるものと比べて、画角θを大きくでき、倍率を高くできる。
また、図1に示す画像表示装置100においては、プリズム103からの射出光を回折する透過型ホログラフィック光学素子105の他に、画像表示素子101からの射出光を回折する透過型ホログラフィック光学素子104が備えられ、瞳106の位置における光線、例えば平行光線を逆光線追跡したとき画像表示素子101の表示面上に結像される光学系で構成されるものとした場合、透過型ホログラフィック光学素子105における回折によって生じる波長分散と逆の波長分散が、透過型ホログラフィック光学素子104における回折よって発生され、色分散した光線が結像位置に集光される。したがって、図1に示す画像表示装置100によれば、回折によって発生する色収差を相殺でき、画質の向上を図ることができる。この効果は、特に、画像表示素子101の光源として、3原色の各色光の波長帯域に広がりがある、発光ダイオードを用いている場合に、有効となる。
なお、図1に示す画像表示装置100では、ホログラフィック光学素子104,105を、ホログラフィック光学素子110R,110G,110Bの3層構造としたものであるが、これらホログラフィック光学素子104,105を、赤色光回折用ホログラフィック光学素子110Rおよび緑・青色光回折用ホログラフィック光学素子110GBが積層された2層構造とすることもできる。この場合、ホログラフィック光学素子110Rは、可視領域における赤色の波長帯域に対して回折効率を有するものとされるが、ホログラフィック光学素子110GBは、可視領域における緑色から青色の波長帯域に対して回折効率を有するものとされる。
この場合、ホログラフィック光学素子104,105は、図6に示すように、プリズム103側から、ホログラフィック光学素子110Rおよびホログラフィック光学素子110GBの順に配置されている。これにより、ホログラフィック光学素子104において、プリズム103側とは逆側に、緑色から青色の波長帯域に対して回折効率を有するホログラフィック光学素子110GBが配置される。
そのため、ホログラフィック光学素子104で回折すべき画像表示素子101からの射出光は最初にホログラフィック光学素子110GBに入射され、緑色の光線束は、他のホログラフィック光学素子110Rの影響を受けることなく、当該ホログラフィック光学素子110GBで回折される。したがって、ホログラフィック光学素子104で、視感度の高い緑色の光線束を精度よく回折でき、ユーザは解像度のよい画像を知覚できるようなる。
この場合、ホログラフィック光学素子104,105をそれぞれ構成するホログラフィック光学素子110GB,110Rは物理的に連続したものとして構成され、後述する製造プロセスにおける露光条件を変化させてそれぞれの部位で異なるパワーを備えるようにされる。そのため、ホログラフィック光学素子105においても、プリズム103側から、ホログラフィック光学素子110Rおよびホログラフィック光学素子110GBの順に配置された状態となっている。
しかし、このホログラフィック光学素子105においては、本来、プリズム103側から、ホログラフィック光学素子110GBおよびホログラフィック光学素子110Rの順に配置することが好ましい。このように、プリズム103側に、ホログラフィック光学素子110GBが配置されることで、プリズム103から射出された射出光は最初に当該ホログラフィック光学素子110GBに入射されるため、緑色の光線束は、他のホログラフィック光学素子110Rの影響を受けることなく、当該ホログラフィック光学素子110GBで回折される。そのため、ホログラフィック光学素子105で、視感度の高い緑色の光線束を精度よく回折でき、ユーザは解像度のよい画像を知覚できるようになる。
また、ホログラフィック光学素子104,105を、図示せずも、赤・緑・青色光回折用ホログラフィック光学素子110RGBの1層構造とすることもできる。この場合、ホログラフィック光学素子110RGBは、可視領域における赤色から青色の波長帯域に対して回折効率を有するものとされる。
次に、この発明の第2の実施の形態について説明する。図7は、第2の実施の形態としての画像表示装置100Aの構成を示している。この図7において、図1と対応する部分には同一符号を付し、適宜その説明を省略する。
この画像表示装置100Aは、例えば液晶表示器等からなる画像表示素子101と、結像光学素子102と、プリズム103Aと、偏光選択性透過型ホログラフィック光学素子104,105とで構成されている。
プリズム103Aは、断面平行四辺形状とされており、4つの面103Aa〜103Adを有している。結像光学素子102は、画像表示素子101とプリズム103Aの面103Aaとの間に配置されている。プリズム103Aの面103Aaに、ホログラフィック光学素子104が被着されている。プリズム103Aの面103Acに、ホログラフィック光学素子105が被着されている。
プリズム103Aの面103Abは、当該プリズム103Aの面103Aaから入射光として入射される、画像表示素子101からの射出光を反射する反射面を構成している。この面103Abの面103Aaに対する傾斜角は、当該面103Abへの上述の入射光の入射角度が全反射の条件を満たし、かつこの面103Abからの反射光の、面103Acへの入射角度が全反射の条件を満たすように、設定されている。また、プリズム103Aの面103Adの面103Acに対する傾斜角は、面103Acからの反射光の面103Adへの入射角度が全反射の条件を満たすように、設定されている。
プリズム103Aの面103Adは曲面とされ、レンズ効果を持つようにされている。画像表示装置100Aは、ユーザの瞳106の位置における光線、例えば平行光線を逆光線追跡したとき、画像表示素子101の表示面上に結像される光学系で構成されている。上述したようにプリズム103Aの面103Adを曲面として、レンズ効果を持たせることで、光線束の広がりを抑制でき、プリズム103Aを薄く小さくでき、また結像光学素子102の負担を軽減できる。また、プリズム103Aの面103Abおよび面103Acは、互いに平行とされている。このように、プリズム103Aが互いに平行な面103Ab,103Acを有する構成とすることで、当該プリズム103Aの製造が容易となる。
また、上述した逆光線追跡を考えた場合、ホログラフィック光学素子105における回折によって生じる波長分散と逆の波長分散が、ホログラフィック光学素子104における回折によって発生され、色分散した光線が結像位置に集光されるように、ホログラフィック光学素子104の回折パワー等が設定されている。
また、上述した逆光線追跡を考えた場合、プリズム103Aから射出されてホログラフィック光学素子104に入射される射出光が全画角において略平行となるように、プリズム103Aの面103Adの曲面形状などが最適化されている。これにより、ホログラフィック光学素子104の回折効率の向上が図られている。
この画像表示装置100Aにおいて、画像表示素子101からの射出光は、直線偏光であるp偏光とされている。ホログラフィック光学素子104,105は、このp偏光に対して回折効率を有するものとされる。また、ホログラフィック光学素子104,105は、それぞれ、可視領域における、赤色の波長帯域と、緑色の波長帯域と、青色の波長帯域とに対して、回折効率を有するものとされる。
これらホログラフィック光学素子104,105は、例えば、赤色光回折用ホログラフィック光学素子110R、緑色光回折用ホログラフィック光学素子110Gおよび青色光回折用ホログラフィック光学素子110Bが積層された3層構造とされる。この場合、ホログラフィック光学素子104は、プリズム103A側から、光学素子110R、光学素子110Bおよび光学素子110Gの順、または光学素子110B、光学素子110Rおよび光学素子110Gの順に配置されている。また、ホログラフィック光学素子105は、プリズム103A側から、光学素子110G、光学素子110Bおよび光学素子110Rの順、または光学素子110G、光学素子110Rおよび光学素子110Bの順に配置されている。
これにより、ホログラフィック光学素子104,105において、入射される光線束は最初にホログラフィック光学素子110Gに入力され、そのため緑色の光線束は、他のホログラフィック光学素子110B,110Rの影響を受けることなく、当該ホログラフィック光学素子110Gで回折される。したがって、ホログラフィック光学素子104,105で、視感度の高い緑色の光線束を精度よく回折でき、ユーザは解像度のよい画像を知覚できるようなる。
画像表示素子101から射出される射出光(p偏光)は、結像光学素子102を透過して透過型ホログラフィック光学素子104に入射されて回折される。この透過型ホログラフィック光学素子104からの回折光は、プリズム103Aに、面103Aaから入射光として入射される。
プリズム103Aに入射された入射光は、面103Abで全反射され、また面103Acで全反射され、さらに面103Adで全反射されて、プリズム103Aの面103Acから射出される。このプリズム103Aからの射出光は、透過型ホログラフィック光学素子105に入射されて回折される。そして、この透過型ホログラフィック光学素子105からの回折光は、ユーザの瞳106に入射される。これにより、ユーザは、画像表示素子101に表示される画像を、虚像として認識できる。
ここで、実際の光線の進行方向とは逆向きの光線追跡を考える。
瞳106から所定の画角を持った光線束が射出光として射出されたとする。この射出光は、ホログラフィック光学素子105に入射される。このホログラフィック光学素子105では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。
ホログラフィック光学素子105からの回折光は、プリズム103Aに、その面103Acから入射光として入射される。この入射光は、面103Adで全反射された後、面103Acに入射されて全反射される。この面103Acで反射された反射光は、面103Abに入射されて全反射される。そして、面103Abで反射された反射光は面103Aaから射出される。
このプリズム103Aからの射出光はホログラフィック光学素子104に入射される。このホログラフィック光学素子104では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。そして、このホログラフィック光学素子104からの回折光は、結像光学素子102により、画像表示素子101の表示面上に集光される。この場合、瞳106の位置における光線、例えば平行光線は、画像表示素子101の表示面上に結像される。
図7に示す画像表示装置100Aにおいては、図1に示す画像表示装置100と同様に、画像表示素子101からの射出光がプリズム103Aおよび透過型ホログラフィック光学素子105を介してユーザの瞳106に入射されるものであり、従来のようにハーフミラーを用いるものと比べて、光利用効率を高くでき、ユーザは明るい像を見ることができる。換言すれば、光利用効率を高くできることから、ユーザに明るい像を知覚させるための消費電力を低く抑えることができる。
また、図7に示す画像表示装置100Aにおいては、面103Adにカウンタープリズムを設けることで、図1に示す画像表示装置100と同様に、ユーザの瞳106の前方に存在するプリズム103Aの向こう側からの光は、プリズム103Aおよび透過型ホログラフィック光学素子105を介して、ユーザの瞳106に入射され、従来のように向こう側からの光がハーフミラーを介してユーザの瞳106に入射されるものではなく、明るく歪みのない像のいシースルー構造を提供できる。
また、図7に示す画像表示装置100Aにおいては、図1に示す画像表示装置100と同様に、プリズム103Aの面103Adで最終的に反射されて射出された射出光が透過型ホログラフィック光学素子105でさらに回折され、その回折光がユーザの瞳106に入射されるものである。プリズム103Aの面103Adと透過型ホログラフィック光学素子105とでプリズム103Aの面103Acでの全反射条件を満たすための効果を分担しており、透過型ホログラフィック光学素子105に大きな回折能力は要求されない。したがって、この図7に示す画像表示装置100Aによれば、従来の反射型ホログラフィック光学素子を用いるものと比べて、画角θ(図1参照)を大きくでき、倍率を高くできる。
また、図7に示す画像表示装置100Aにおいては、図1に示す画像表示装置100と同様に、プリズム103Aからの射出光を回折する透過型ホログラフィック光学素子105の他に、画像表示素子101からの射出光を回折する透過型ホログラフィック光学素子104を備えるものであり、回折によって発生する色収差を相殺でき、画質の向上を図ることができる。
なお、図7に示す画像表示装置100Aでは、ホログラフィック光学素子104,105を、ホログラフィック光学素子110R,110G,110Bの3層構造としたものであるが、図1に示す画像表示装置100と同様に、2層構造あるいは1層構造とすることもできる。
また、図7に示す画像表示装置100Aにおいて、プリズム103Aに入射された入射光を反射する、面103Abおよび面103Acの少なくとも一方に、反射型回折光学素子としての反射型ホログラフィック光学素子を設けてもよい。この反射型ホログラフィック光学素子はフォトポリマーをホログラム感光剤としている。
上述したように、プリズム103Aの面103Ab,103Acに反射型ホログラフィック光学素子を設けることで、これらの面103Ab,103Acに、それを曲面とすることなく、レンズ効果を付与でき、光線束の広がりを抑制でき、プリズム103Aを薄く小さくでき、また結像光学素子102の負担を軽減できる。
次に、この発明の第3の実施の形態について説明する。図8は、第3の実施の形態としての画像表示装置100Bの構成を示している。この図8において、図1と対応する部分には同一符号を付し、適宜その説明を省略する。
この画像表示装置100Bは、例えば液晶表示器等からなる画像表示素子101と、結像光学素子102と、プリズム103Bと、偏光選択性透過型ホログラフィック光学素子104,105とで構成されている。
プリズム103Bは、断面台形状とされており、4つの面103Ba〜103Bdを有している。結像光学素子102は、画像表示素子101とプリズム103Bの面103Baとの間に配置されている。プリズム103Bの面103Baに、ホログラフィック光学素子104が被着されている。プリズム103Bの面103Bbに、ホログラフィック光学素子105が被着されている。
プリズム103Bの面103Bbは、当該プリズム103Bの面103Baから入射光として入射される、画像表示素子101からの射出光を反射する反射面を構成している。この面103Bbの面103Baに対する傾斜角は、当該面103Bbへの上述の入射光の入射角度が全反射の条件を満たし、かつこの面103Bbからの反射光の、面103Bcへの入射角度が全反射の条件を満たすように、設定されている。
プリズム103Bの面103Bcは曲面とされ、レンズ効果を持つようにされている。画像表示装置100Bは、ユーザの瞳106の位置における光線、例えば平行光線を逆光線追跡したとき、画像表示素子101の表示面上に結像される光学系で構成されている。上述したようにプリズム103Bの面103Bcを曲面として、レンズ効果を持たせることで、光線束の広がりを抑制でき、プリズム103Bを薄く小さくでき、また結像光学素子102の負担を軽減できる。また、プリズム103Bの面103Bbおよび面103Bdは、互いに平行とされている。このように、プリズム103Bが互いに平行な面103Bb,103Bdを有する構成とすることで、当該プリズム103Bの製造が容易となる。
また、上述した逆光線追跡を考えた場合、ホログラフィック光学素子105における回折によって生じる波長分散と逆の波長分散が、ホログラフィック光学素子104における回折によって発生され、色分散した光線が結像位置に集光されるように、ホログラフィック光学素子104の回折パワー等が設定されている。
また、上述した逆光線追跡を考えた場合、プリズム103Bから射出されてホログラフィック光学素子104に入射される射出光が全画角において略平行となるように、プリズム103Bの面103Bcの曲面形状などが最適化されている。これにより、ホログラフィック光学素子104の回折効率の向上が図られている。
この画像表示装置100Bにおいて、画像表示素子101からの射出光は、直線偏光であるp偏光とされている。ホログラフィック光学素子104,105は、このp偏光に対して回折効率を有するものとされる。また、ホログラフィック光学素子104,105は、それぞれ、可視領域における、赤色の波長帯域と、緑色の波長帯域と、青色の波長帯域とに対して、回折効率を有するものとされる。
これらホログラフィック光学素子104,105は、例えば、赤色光回折用ホログラフィック光学素子110R、緑色光回折用ホログラフィック光学素子110Gおよび青色光回折用ホログラフィック光学素子110Bが積層された3層構造とされる。この場合、ホログラフィック光学素子104は、プリズム103B側から、光学素子110R、光学素子110Bおよび光学素子110Gの順、または光学素子110B、光学素子110Rおよび光学素子110Gの順に配置されている。また、ホログラフィック光学素子105は、プリズム103B側から、光学素子110G、光学素子110Bおよび光学素子110Rの順、または光学素子110G、光学素子110Rおよび光学素子110Bの順に配置されている。
これにより、ホログラフィック光学素子104,105において、入射される光線束は最初にホログラフィック光学素子110Gに入力され、そのため緑色の光線束は、他のホログラフィック光学素子110B,110Rの影響を受けることなく、当該ホログラフィック光学素子110Gで回折される。したがって、ホログラフィック光学素子104,105で、視感度の高い緑色の光線束を精度よく回折でき、ユーザは解像度のよい画像を知覚できるようなる。
画像表示素子101から射出される射出光(p偏光)は、結像光学素子102を透過して透過型ホログラフィック光学素子104に入射されて回折される。この透過型ホログラフィック光学素子104からの回折光は、プリズム103Bに、面103Baから入射光として入射される。
プリズム103Bに入射された入射光は、面103Bbで全反射され、また面103Bcで全反射されて、プリズム103Bの面103Bbから射出される。このプリズム103Bからの射出光は、透過型ホログラフィック光学素子105に入射されて回折される。そして、この透過型ホログラフィック光学素子105からの回折光は、ユーザの瞳106に入射される。これにより、ユーザは、画像表示素子101に表示される画像を、虚像として認識できる。
ここで、実際の光線の進行方向とは逆向きの光線追跡を考える。
瞳106から所定の画角を持った光線束が射出光として射出されたとする。この射出光は、ホログラフィック光学素子105に入射される。このホログラフィック光学素子105では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。
ホログラフィック光学素子105からの回折光は、プリズム103Bに、その面103Bbから入射光として入射される。この入射光は、面103Bcで全反射された後、面103Bbに入射されて全反射される。この面103Bbで反射された反射光は、面103Baから射出される。
このプリズム103Bからの射出光はホログラフィック光学素子104に入射される。このホログラフィック光学素子104では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。そして、このホログラフィック光学素子104からの回折光は、結像光学素子102により、画像表示素子101の表示面上に集光される。この場合、瞳106の位置における光線、例えば平行光線は、画像表示素子101の表示面上に結像される。
図8に示す画像表示装置100Bにおいては、図1に示す画像表示装置100と同様に、画像表示素子101からの射出光がプリズム103Bおよび透過型ホログラフィック光学素子105を介してユーザの瞳106に入射されるものであり、従来のようにハーフミラーを用いるものと比べて、光利用効率を高くでき、ユーザは明るい像を見ることができる。換言すれば、光利用効率を高くできることから、ユーザに明るい像を知覚させるための消費電力を低く抑えることができる。
また、図8に示す画像表示装置100Bにおいては、面103Bcにカウンタープリズムを設けることで、図1に示す画像表示装置100と同様に、ユーザの瞳106の前方に存在するプリズム103Bの向こう側からの光は、プリズム103Bおよび透過型ホログラフィック光学素子105を介して、ユーザの瞳106に入射され、従来のように向こう側からの光がハーフミラーを介してユーザの瞳106に入射されるものではなく、明るく歪みのない像のシースルー構造を提供できる。
また、図8に示す画像表示装置100Bにおいては、図1に示す画像表示装置100と同様に、プリズム103Bの面103Bcで最終的に反射されて射出された射出光が透過型ホログラフィック光学素子105でさらに回折され、その回折光がユーザの瞳106に入射されるものである。プリズム103Bの面103Bcと透過型ホログラフィック光学素子105とでプリズム103Bの面103Bbでの全反射条件を満たすための効果を分担しており、透過型ホログラフィック光学素子105に大きな回折能力は要求されない。したがって、この図8に示す画像表示装置100Bによれば、従来の反射型ホログラフィック光学素子を用いるものと比べて、画角θ(図1参照)を大きくでき、倍率を高くできる。
また、図8に示す画像表示装置100Bにおいては、図1に示す画像表示装置100と同様に、プリズム103Bからの射出光を回折する透過型ホログラフィック光学素子105の他に、画像表示素子101からの射出光を回折する透過型ホログラフィック光学素子104を備えるものであり、回折によって発生する色収差を相殺でき、画質の向上を図ることができる。
なお、図8に示す画像表示装置100Bでは、ホログラフィック光学素子104,105を、ホログラフィック光学素子110R,110G,110Bの3層構造としたものであるが、図1に示す画像表示装置100と同様に、2層構造あるいは1層構造とすることもできる。
また、図8に示す画像表示装置100Bにおいて、プリズム103Bに入射された入射光を反射する、面103Bbに、反射型回折光学素子としての反射型ホログラフィック光学素子を設けてもよい。これにより、この面103Bbに、それを曲面とすることなく、レンズ効果を付与でき、光線束の広がりを抑制でき、プリズム103Bを薄く小さくでき、また結像光学素子102の負担を軽減できる。
次に、この発明の第4の実施の形態について説明する。図9は、第4の実施の形態としての画像表示装置100Cの構成を示している。この図9において、図7と対応する部分には同一符号を付し、適宜その説明を省略する。
この画像表示装置100Cは、画像表示素子101と、結像光学素子102と、プリズム103Aと、偏光選択性透過型ホログラフィック光学素子104,105と、1/4波長板107と、反射面108aを持ち、反射手段を構成するプリズム108とで構成されている。
プリズム103Aは、断面平行四辺形状とされており、4つの面103Aa〜103Adを有している。結像光学素子102は、画像表示素子101とプリズム103Aの面103Abとの間に配置されている。プリズム103Aの面103Aaに、ホログラフィック光学素子104が被着されている。さらに、このホログラフィック光学素子104には、1/4波長板107およびプリズム108がこの順に被着されている。プリズム103Aの面103Acに、ホログラフィック光学素子105が被着されている。
画像表示素子101からの射出光は、第1の偏光面を有する直線偏光であるs偏光とされている。ホログラフィック光学素子104,105は、上述の第1の偏光面とは直交する第2の偏光面を有する直線偏光であるp偏光に対して回折効率を有するものとされる。
この画像表示装置100Cのその他の構成は、図7に示す画像表示装置100Aと同様とされている。
この画像表示装置100Cにおいて、画像表示素子101から射出される射出光(s偏光)は、結像光学素子102、およびプリズム103Aを透過して、透過型ホログラフィック光学素子104に入射される。この透過型ホログラフィック光学素子104はp偏光に対して回折効率を有していることから、入射された射出光(s偏光)は回折されずにそのまま透過して、1/4波長板107に入射される。
この1/4波長板107からは、入射光(s偏光)が円偏光とされて射出される。この1/4波長板107からの射出光(円偏光)はプリズム108に入射され、反射面108aで反射された後、当該プリズム108から射出される。このプリズム108からの射出光(円偏光)は、再び1/4波長板107に入射される。
この1/4波長板107からは、入射光(円偏光)がp偏光とされて射出される。この1/4波長板107からの射出光(p偏光)は、透過型ホログラフィック光学素子104に入射されて回折される。この透過型ホログラフィック光学素子104からの回折光は、プリズム103Aに、面103Aaから入射光として入射される。
プリズム103Aに入射された入射光は、面103Abで全反射され、また面103Acで全反射され、さらに面103Adで全反射されて、プリズム103Aの面103Acから射出される。このプリズム103Aからの射出光は、透過型ホログラフィック光学素子105に入射されて回折される。そして、この透過型ホログラフィック光学素子105からの回折光は、ユーザの瞳106に入射される。これにより、ユーザは、画像表示素子101に表示される画像を、虚像として認識できる。
ここで、実際の光線の進行方向とは逆向きの光線追跡を考える。
瞳106から所定の画角を持った光線束が射出光として射出されたとする。この射出光は、ホログラフィック光学素子105に入射される。このホログラフィック光学素子105では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。
ホログラフィック光学素子105からの回折光は、プリズム103Aに、その面103Acから入射光として入射される。この入射光は、面103Adで全反射された後、面103Acに入射されて全反射される。この面103Acで反射された反射光は、面103Abに入射されて全反射される。そして、面103Abで反射された反射光は面103Aaから射出される。
このプリズム103Aからの射出光はホログラフィック光学素子104に入射される。このホログラフィック光学素子104では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。そして、このホログラフィック光学素子104からの回折光は、1/4波長板107に入射される。
この1/4波長板107からは、入射光(p偏光)が円偏光とされて射出される。この1/4波長板107からの射出光(円偏光)はプリズム108に入射され、反射面108aで反射された後、当該プリズム108から射出される。このプリズム108からの射出光(円偏光)は、再び1/4波長板107に入射される。
この1/4波長板107からは、入射光(円偏光)がs偏光とされて射出される。この1/4波長板107からの射出光(s偏光)は、ホログラフィック光学素子104をそのまま回折されずに透過し、さらにプリズム103Aを透過し、結像光学素子102により、画像表示素子101の表示面上に集光される。この場合、瞳106の位置における光線、例えば平行光線は、画像表示素子101の表示面上に結像される。
図9に示す画像表示装置100Cにおいては、面103Adにカウンタープリズムを設けることで、図7に示す画像表示装置100Aと同様の効果を得ることができる。また、この図9に示す画像表示装置100Cにおいては、画像表示素子101からの射出光は、プリズム103Aを透過した後に、プリズム108の反射面108aで反射されて透過型ホログラフィック光学素子104で回折されてプリズム103Aに入射されるため、画像表示素子101をプリズム103Aに近接して配置でき、装置の小型化を図ることができる。
次に、この発明の第5の実施の形態について説明する。図10は、第5の実施の形態としての画像表示装置100Dの構成を示している。この図10において、図8と対応する部分には同一符号を付し、適宜その説明を省略する。
この画像表示装置100Dは、画像表示素子101と、結像光学素子102と、プリズム103Bと、偏光選択性透過型ホログラフィック光学素子104,105と、1/4波長板107と、反射面108aを持ち、反射手段を構成するプリズム108とで構成されている。
プリズム103Bは、断面台形状とされており、4つの面103Ba〜103Bdを有している。結像光学素子102は、画像表示素子101とプリズム103Bの面103Bbとの間に配置されている。プリズム103Bの面103Baに、ホログラフィック光学素子104が被着されている。さらに、このホログラフィック光学素子104には、1/4波長板107およびプリズム108がこの順に被着されている。プリズム103Bの面103Bbに、ホログラフィック光学素子105が被着されている。
画像表示素子101からの射出光は、第1の偏光面を有する直線偏光であるs偏光とされている。ホログラフィック光学素子104,105は、上述の第1の偏光面とは直交する第2の偏光面を有する直線偏光であるp偏光に対して回折効率を有するものとされる。
この画像表示装置100Dのその他の構成は、図8に示す画像表示装置100Bと同様とされている。
この画像表示装置100Dにおいて、画像表示素子101から射出される射出光(s偏光)は、結像光学素子102、およびプリズム103Bを透過して、透過型ホログラフィック光学素子104に入射される。この透過型ホログラフィック光学素子104はp偏光に対して回折効率を有していることから、入射光(s偏光)は回折されずにそのまま透過して、1/4波長板107に入射される。
この1/4波長板107からは、入射光(s偏光)が円偏光とされて射出される。この1/4波長板107からの射出光(円偏光)はプリズム108に入射され、反射面108aで反射された後、当該プリズム108から射出される。このプリズム108からの射出光(円偏光)は、再び1/4波長板107に入射される。
この1/4波長板107からは。入射光(円偏光)がp偏光とされて射出される。この1/4波長板107からの射出光(p偏光)は、結像光学素子102を透過して透過型ホログラフィック光学素子104に入射されて回折される。この透過型ホログラフィック光学素子104からの回折光は、プリズム103Bに、面103Baから入射光として入射される。
プリズム103Bに入射された入射光は、面103Bbで全反射され、また面103Bcで全反射されて、プリズム103Bの面103Bbから射出される。このプリズム103Bからの射出光は、透過型ホログラフィック光学素子105に入射されて回折される。そして、この透過型ホログラフィック光学素子105からの回折光は、ユーザの瞳106に入射される。これにより、ユーザは、画像表示素子101に表示される画像を、虚像として認識できる。
ここで、実際の光線の進行方向とは逆向きの光線追跡を考える。
瞳106から所定の画角を持った光線束が射出光として射出されたとする。この射出光は、ホログラフィック光学素子105に入射される。このホログラフィック光学素子105では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。
ホログラフィック光学素子105からの回折光は、プリズム103Bに、その面103Bbから入射光として入射される。この入射光は、面103Bcで全反射された後、面103Bbに入射されて全反射される。この面103Bbで反射された反射光は、面103Baから射出される。
このプリズム103Bからの射出光はホログラフィック光学素子104に入射される。このホログラフィック光学素子104では、可視領域の、赤色の波長帯域、緑色の波長帯域および青色の波長帯域のp偏光成分が、任意のパワーをもって回折される。そして、このホログラフィック光学素子104からの回折光は、1/4波長板107に入射される。
この1/4波長板107からは、入射光(p偏光)が円偏光とされて射出される。この1/4波長板107からの射出光(円偏光)はプリズム108に入射され、反射面108aで反射された後、当該プリズム108から射出される。このプリズム108からの射出光(円偏光)は、再び1/4波長板107に入射される。
この1/4波長板107からは、入射光(円偏光)がs偏光とされて射出される。この1/4波長板107からの射出光(s偏光)は、ホログラフィック光学素子104をそのまま回折されずに透過し、さらにプリズム103Bを透過し、結像光学素子102により、画像表示素子101の表示面上に集光される。この場合、瞳106の位置における光線、例えば平行光線は、画像表示素子101の表示面上に結像される。
図10に示す画像表示装置100Dにおいては、面103Bcにカウンタープリズムを設けることで、図8に示す画像表示装置100Bと同様の効果を得ることができる。また、この図10に示す画像表示装置100Dにおいては、画像表示素子101からの射出光は、プリズム103Bを透過した後に、プリズム108の反射面108aで反射されて透過型ホログラフィック光学素子104で回折されてプリズム103Bに入射されるため、画像表示素子101をプリズム103Bに近接して配置でき、装置の小型化を図ることができる。
なお、上述実施の形態においては、プリズム103,103A,103Bからの射出光を回折する透過型ホログラフィック光学素子105の他に、画像表示素子101からの射出光を回折してプリズム103,103A,103Bに入射する透過型ホログラフィック光学素子104を備えており、回折による色収差を相殺できるようにしている。しかし、画像表示素子101からの射出光(赤色光、緑色光、青色光)の波長帯域が比較的狭い場合には、色収差が問題とならなくなるため、透過型ホログラフィック光学素子104を備えない構成も考えることができる。
また、上述実施の形態においては、プリズム103,103A,103Bに入射された入射光は、その内面で3回または2回だけ反射されて外部に射出されるものを示したが、プリズム内面で反射される回数はこれに限定されるものではない。要は、この発明は、プリズムで最終的に反射されて射出される射出光が透過型回折光学素子で回折されてユーザの瞳に入射される構成となっていればよい。
100,100A〜100D・・・画像表示装置、101・・・画像表示素子、102・・・結像光学素子、103,103A,103B・・・プリズム、104,105・・・偏光選択性透過型ホログラフィック光学素子、106・・・ユーザの瞳、107・・・1/4波長板、108・・・プリズム、110・・・偏光選択性透過型ホログラフィック光学素子