[go: up one dir, main page]

JP4630256B2 - Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus - Google Patents

Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus Download PDF

Info

Publication number
JP4630256B2
JP4630256B2 JP2006281973A JP2006281973A JP4630256B2 JP 4630256 B2 JP4630256 B2 JP 4630256B2 JP 2006281973 A JP2006281973 A JP 2006281973A JP 2006281973 A JP2006281973 A JP 2006281973A JP 4630256 B2 JP4630256 B2 JP 4630256B2
Authority
JP
Japan
Prior art keywords
optical
transmission line
optical transmission
gain
output power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006281973A
Other languages
Japanese (ja)
Other versions
JP2007028673A (en
Inventor
建作 関谷
信行 加木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2006281973A priority Critical patent/JP4630256B2/en
Publication of JP2007028673A publication Critical patent/JP2007028673A/en
Application granted granted Critical
Publication of JP4630256B2 publication Critical patent/JP4630256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

この発明は、光信号の利得や出力を波長によらず一定にするために光可変減衰器の減衰量の調整を行う光増幅方法、その装置およびその装置を用いた光増幅中継システムに関するものである。   The present invention relates to an optical amplification method for adjusting the attenuation of an optical variable attenuator in order to make the gain and output of an optical signal constant regardless of the wavelength, an apparatus thereof, and an optical amplification repeater system using the apparatus. is there.

従来の光増幅中継システムでは、伝送距離の長距離化、伝送容量の増大に伴い、データトラヒックが急増している。このデータトラヒックの増加は、通信パフォーマンスの低下を招くこととなる。そこで、この通信パフォーマンスの低下を防止するため、波長多重伝送(WDM)システムが普及しつつある。   In the conventional optical amplifying and relaying system, data traffic is rapidly increasing as the transmission distance is increased and the transmission capacity is increased. This increase in data traffic causes a decrease in communication performance. Therefore, in order to prevent this deterioration in communication performance, wavelength division multiplexing (WDM) systems are becoming widespread.

このようなWDMシステムは、例えば図12に示すように、送信端局装置10と、受信端局装置20と、この送信端局装置10と受信端局装置20を接続させる光ファイバ伝送路(以下、「光伝送路」という)30と、この光ファイバ伝送路30上に数段設けられた光増幅装置40とから構成され、1心の光伝送路30に波長の異なる複数の光信号を同時に伝送するものがある。   As shown in FIG. 12, for example, such a WDM system includes a transmission terminal station device 10, a reception terminal station device 20, and an optical fiber transmission line (hereinafter referred to as an optical fiber transmission line) that connects the transmission terminal station device 10 and the reception terminal station device 20. And an optical amplifying device 40 provided in several stages on the optical fiber transmission line 30, a plurality of optical signals having different wavelengths are simultaneously transmitted to a single optical transmission line 30. There is something to transmit.

すなわち、このシステムでは、送信端局装置10の各光送信器111〜11n(nは任意の整数)がそれぞれ異なる波長λ1〜λnで送信された複数の光信号を、光カプラやWDMカプラやアレイ導波路型光分波器(AWG)等からなる光合波器12で波長多重して、光増幅装置13で光増幅した後に、シングルモード光ファイバ(SMF)や分散シフト光ファイバ(DSF)からなる1心の伝送路30に送信している。この多重された光信号は、例えばエルビウム添加ファイバ増幅器(EDFA)やツリウム添加ファイバ増幅器(TDFA)や半導体光増幅器(SOA)等からなる数段の光増幅装置40を経て、受信端局装置20へ伝送することで、ハイパワーの光信号伝送を行い、長距離および大容量伝送を実現していた。   That is, in this system, each of the optical transmitters 111 to 11n (n is an arbitrary integer) of the transmitting terminal device 10 transmits a plurality of optical signals transmitted at different wavelengths λ1 to λn, to an optical coupler, a WDM coupler, or an array. After being wavelength-multiplexed by an optical multiplexer 12 composed of a waveguide type optical demultiplexer (AWG) or the like and optically amplified by an optical amplifying device 13, it is composed of a single mode optical fiber (SMF) or a dispersion shifted optical fiber (DSF). It is transmitted to a single transmission line 30. The multiplexed optical signal passes through several stages of optical amplifying devices 40 such as an erbium-doped fiber amplifier (EDFA), a thulium-doped fiber amplifier (TDFA), a semiconductor optical amplifier (SOA), etc. By transmitting, high-power optical signal transmission was performed, and long-distance and large-capacity transmission was realized.

受信端局装置20では、光増幅装置21を介し光分波器22によって、この多重された光信号を分波し、波長λ1〜λn毎に光受信器231〜23nへ送出するものがあった。   In the receiving terminal device 20, there is a device in which the multiplexed optical signal is demultiplexed by the optical demultiplexer 22 via the optical amplifying device 21, and sent to the optical receivers 231 to 23n for each of the wavelengths λ1 to λn. .

このシステムに用いられる光増幅装置40は、例えば図13に示すように、光ファイバ増幅部(以下、「光増幅部」という)41,42を備えている。この光増幅部41,42は、自動利得制御回路(以下、「AGC」という)43や自動光出力制御回路(以下、「ALC」という)44によって制御され、多重された光信号を一括して増幅することで、光伝送路30の伝送損失を補償している。   The optical amplifying device 40 used in this system includes optical fiber amplifying units (hereinafter referred to as “optical amplifying units”) 41 and 42 as shown in FIG. The optical amplifiers 41 and 42 are controlled by an automatic gain control circuit (hereinafter referred to as “AGC”) 43 and an automatic optical output control circuit (hereinafter referred to as “ALC”) 44, and the multiplexed optical signals are collectively displayed. By amplifying, the transmission loss of the optical transmission line 30 is compensated.

この光増幅装置40では、光増幅部41,42間に光可変減衰器45が接続されている。そして、この光増幅装置40では、光分波器46,47で分波された光信号における光増幅器の光入力パワーP1と光出力パワーP4を、光パワー検出回路48,49で検出しており、制御回路50は、光増幅部41の利得G1と光増幅部42の利得G2の総和が一定になるように、この光可変減衰器45の減衰量Aを制御している。   In this optical amplifying apparatus 40, an optical variable attenuator 45 is connected between the optical amplifying units 41 and 42. In this optical amplifying apparatus 40, the optical power detection circuits 48 and 49 detect the optical input power P1 and the optical output power P4 of the optical amplifier in the optical signals demultiplexed by the optical demultiplexers 46 and 47, respectively. The control circuit 50 controls the attenuation amount A of the optical variable attenuator 45 so that the sum of the gain G1 of the optical amplifier 41 and the gain G2 of the optical amplifier 42 is constant.

すなわち、光可変減衰器45の減衰量Aは、光増幅部41の光出力パワーP2と光増幅部42の光入力パワーP3の差
A=P2−P3 …(1)
で求まり、光増幅部41の利得G1は、光増幅部41の光出力パワーP2と光増幅部41の光入力パワーP1の差
G1=P2−P1 …(2)
で求まり、また、光増幅部42の利得G2は、光増幅部42の光出力パワーP4と光増幅部42の光入力パワーP3の差
G2=P4−P3 …(3)
で求まる。
That is, the attenuation amount A of the optical variable attenuator 45 is the difference between the optical output power P2 of the optical amplifying unit 41 and the optical input power P3 of the optical amplifying unit A = P2-P3 (1)
The gain G1 of the optical amplifying unit 41 is the difference between the optical output power P2 of the optical amplifying unit 41 and the optical input power P1 of the optical amplifying unit G1 = P2−P1 (2)
The gain G2 of the optical amplifying unit 42 is the difference between the optical output power P4 of the optical amplifying unit 42 and the optical input power P3 of the optical amplifying unit G2 = P4-P3 (3)
It is obtained by

次に、光増幅部41と42の利得は、一定になるように制御されるので、
G1+G2=C(一定) …(4)
となる。ここで(4)式に(2)式と(3)式を代入して、光可変減衰器45の減衰量Aを求めると、
(P2−P1)+(P4−P3)=C
(P2−P3)+(P4−P1)=C
(P2−P3)=C−(P4−P1)
となる。したがって、(1)式からAは、
A=C−(P4−P1) …(5)
で求まる。
Next, since the gains of the optical amplification units 41 and 42 are controlled to be constant,
G1 + G2 = C (constant) (4)
It becomes. Here, by substituting the equations (2) and (3) into the equation (4) to obtain the attenuation amount A of the optical variable attenuator 45,
(P2-P1) + (P4-P3) = C
(P2-P3) + (P4-P1) = C
(P2-P3) = C- (P4-P1)
It becomes. Therefore, from equation (1), A is
A = C- (P4-P1) (5)
It is obtained by

ここで、例えば利得の総和G1+G2=20[dB]、光入力パワーP1=+2[dBm]、光出力パワーP4=+18[dBm]とし、これらの値を(5)式に代入して、光可変減衰器45の減衰量Aを求めると、
A=20−(18−2)
=4[dB]
となる。
Here, for example, the sum of gains G1 + G2 = 20 [dB], the optical input power P1 = + 2 [dBm], and the optical output power P4 = + 18 [dBm], and these values are substituted into the equation (5) to change the light. When the attenuation amount A of the attenuator 45 is obtained,
A = 20- (18-2)
= 4 [dB]
It becomes.

この従来例における利得波長特性とレベルダイヤグラムは、図14(a)〜(c)、図15のように表される。すなわち図14(a)は、光増幅部41の利得波長特性を示し、図14(b)は、光増幅部42の利得波長特性を示し、図14(c)は、光増幅部41,42を多段接続した場合の利得波長特性を示す特性図であり、図15は、各部の光パワーを示すレベルダイヤグラムを示す図である。   The gain wavelength characteristic and level diagram in this conventional example are expressed as shown in FIGS. 14 (a) to 14 (c) and FIG. 14A shows the gain wavelength characteristic of the optical amplifier 41, FIG. 14B shows the gain wavelength characteristic of the optical amplifier 42, and FIG. 14C shows the optical amplifiers 41 and 42. FIG. 15 is a characteristic diagram showing the gain wavelength characteristic when the two are connected in multiple stages, and FIG. 15 is a diagram showing a level diagram showing the optical power of each part.

これら図から明らかなように、光増幅部41では、光パワーP1をP2に増幅する時に、右下がりの利得の波長特性を得られるように設計されており、光増幅部42では、光パワーP3をP4に増幅する時に、右上がりの利得の波長特性を得られるように設計されており、出力端では、これらを合わせて利得波長特性がほぼ平坦になるように設計されていた。また、光可変減衰器は、利得波長特性を持たず、全波長を一様に光パワーP2からP3に減衰させている。   As is apparent from these drawings, the optical amplifying unit 41 is designed so as to obtain a wavelength characteristic of a downward-sloping gain when the optical power P1 is amplified to P2. In the optical amplifying unit 42, the optical power P3 is obtained. Is designed to obtain a wavelength characteristic of a gain that rises to the right when the signal is amplified to P4, and at the output end, the gain wavelength characteristic is designed to be almost flat when combined. The optical variable attenuator does not have gain wavelength characteristics and attenuates all wavelengths uniformly from optical power P2 to P3.

しかしながら、上記従来例では、図14(c)の利得波長特性に示すように、光増幅部41で増幅された光信号の利得波長はほぼ平坦になるように設計されているが、この光信号が光ファイバ伝送路30に伝送されると、非線形光学現象の1つであるSRS(Stimulated Raman Scattering:誘導ラマン散乱)の影響を受けてしまう。   However, in the above conventional example, as shown in the gain wavelength characteristic of FIG. 14C, the gain wavelength of the optical signal amplified by the optical amplifying unit 41 is designed to be substantially flat. Is transmitted to the optical fiber transmission line 30, it is affected by SRS (Stimulated Raman Scattering) which is one of nonlinear optical phenomena.

すなわち、SRSは、光ファイバ伝送路中の光学フォノンとの相互作用によって短波長側の光パワーを長波長側に移行させることから、光ファイバ伝送路に入射されたWDM光信号は、このSRSの影響によって長波長側の光信号が短波長側の光信号から利得を受けてしまう。このため、光ファイバ伝送路を伝送した後のWDM光信号の光パワーは、長波長側の光信号が大きくなり、その光スペクトラムは、右上がりの波長特性を持つようになる。   That is, since the SRS shifts the optical power on the short wavelength side to the long wavelength side due to the interaction with the optical phonon in the optical fiber transmission line, the WDM optical signal incident on the optical fiber transmission line is Due to the influence, the optical signal on the long wavelength side receives a gain from the optical signal on the short wavelength side. For this reason, the optical power of the WDM optical signal after being transmitted through the optical fiber transmission line is increased in the optical signal on the long wavelength side, and the optical spectrum has a wavelength characteristic rising to the right.

従って、光増幅器を多段接続した光増幅中継システムでは、多段接続数の増加に伴って短波長側と長波長側の光パワーの差が大きくなり、短波長側の光信号のS/Nが劣化してしまい、伝送効率が低下して光信号の伝送距離が制限されるという問題点があった。   Therefore, in an optical amplification repeater system in which optical amplifiers are connected in multiple stages, the difference in optical power between the short wavelength side and the long wavelength side increases as the number of multistage connections increases, and the S / N of the optical signal on the short wavelength side deteriorates. Therefore, there is a problem that the transmission efficiency is lowered and the transmission distance of the optical signal is limited.

また、図16の光出力パワーとWDM光信号の光スペクトラムの傾きとの関係に示すように、この光出力パワー(光ファイバ伝送路へ入射するトータル光パワー)が大きいほど、WDM光信号の光スペクトラムの傾きは大きくなっていた。   Further, as shown in the relationship between the optical output power of FIG. 16 and the inclination of the optical spectrum of the WDM optical signal, the light of the WDM optical signal increases as the optical output power (total optical power incident on the optical fiber transmission line) increases. The slope of the spectrum was large.

この発明は、上記問題点に鑑みなされたもので、光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせるように光可変減衰器の減衰量を制御して、各波長における利得の平坦化を図り、伝送効率を向上できる光増幅方法、その装置およびその装置を用いた光増幅中継システムを提供することを目的とする。   The present invention has been made in view of the above problems, and controls the attenuation amount of the optical variable attenuator so as to give a slope opposite to the slope of the gain generated by the SRS from the optical power detection result. It is an object of the present invention to provide an optical amplification method, an apparatus thereof, and an optical amplification repeater system using the apparatus that can improve the transmission efficiency by flattening the gain.

上記目的を達成するため、この発明では、少なくとも2つの光増幅器と少なくとも1つの減衰器とが接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーを検出し、該検出した光パワーに応じて前記減衰量を制御する光増幅方法において、前記各光増幅器の利得の和が前記光伝送路へのトータル光入力パワーに依存する目標値になるように、前記減衰器の減衰量を制御する制御工程を含むことを特徴とする光増幅方法が提供される。   In order to achieve the above object, in the present invention, at least two optical amplifiers and at least one attenuator are connected, an optical signal input via an optical transmission line is amplified by the optical amplifier, and the optical signal In an optical amplification method for detecting optical power and controlling the amount of attenuation according to the detected optical power, a sum of gains of the optical amplifiers is set to a target value that depends on a total optical input power to the optical transmission line. Thus, there is provided an optical amplification method comprising a control step of controlling the attenuation amount of the attenuator.

この発明によれば、各光増幅器の利得をG1,G2とし、この利得G1は光増幅器の光出力パワーP2と光入力パワーP1の差G1=P2−P1となり、この利得G2は光増幅器の光出力パワーP4と光入力パワーP3の差G2=P4−P3となり、この和(P2−P1)+(P4−P3)が、光伝送路へのトータル光入力パワーに依存する目標値C+ΔLになる(P2−P1)+(P4−P3)=C+ΔLのようにして(後述する(6)式参照)、減衰器の減衰量A=C+ΔL−(P4−P1)を制御することで、SRSによって発生する利得の傾きと逆の傾きを持たせ、各波長における利得を平坦にする。   According to the present invention, the gain of each optical amplifier is G1, G2, and this gain G1 is the difference G1 = P2-P1 between the optical output power P2 of the optical amplifier and the optical input power P1, and this gain G2 is the optical power of the optical amplifier. The difference G2 between the output power P4 and the optical input power P3 = P4−P3, and this sum (P2−P1) + (P4−P3) becomes the target value C + ΔL depending on the total optical input power to the optical transmission line ( P2-P1) + (P4-P3) = C + ΔL (refer to equation (6) described later), and the attenuation amount A = C + ΔL− (P4-P1) of the attenuator is controlled to be generated by SRS. The gain at each wavelength is flattened by giving a slope opposite to that of the gain.

この発明では、上記発明において、前記制御工程では、前記光信号を入力させる上流側前記光伝送路への当該光信号のトータル光入力パワーと、前記光信号を伝搬させる下流側前記光伝送路への当該光信号のトータル光入力パワーのうち、少なくとも一方のトータル光入力パワーに依存する目標値になるように、前記減衰器の減衰量を制御することを特徴とする。   In the present invention, in the above invention, in the control step, the total optical input power of the optical signal to the upstream optical transmission path to which the optical signal is input and the downstream optical transmission path to propagate the optical signal The attenuation amount of the attenuator is controlled so that the target value depends on at least one of the total optical input powers of the optical signal.

この発明によれば、減衰量を上流側の光伝送路への光信号の各波長のトータル光入力パワーまたは/および下流側の光伝送路への光信号の各波長のトータル光入力パワーに依存する目標値に制御することにより、利得を均一にし、安定した光伝送を行う。   According to the present invention, the amount of attenuation depends on the total optical input power of each wavelength of the optical signal to the upstream optical transmission path or / and the total optical input power of each wavelength of the optical signal to the downstream optical transmission path. By controlling to the target value, the gain is made uniform and stable optical transmission is performed.

この発明では、少なくとも2つの光増幅器と少なくとも1つの減衰器と分散補償型光伝送路とが接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーを検出し、該検出した光パワーに応じて前記減衰量を制御する光増幅方法において、前記各光増幅器の利得の和が前記光伝送路へのトータル光入力パワーおよび前記分散補償型光伝送路へのトータル光入力パワーに依存する目標値になるように、前記減衰器の減衰量を制御する制御工程を含むことを特徴とする光増幅方法が提供される。   In the present invention, at least two optical amplifiers, at least one attenuator, and a dispersion-compensating optical transmission line are connected, an optical signal input through the optical transmission line is amplified by the optical amplifier, and the optical signal In an optical amplification method for detecting optical power and controlling the amount of attenuation according to the detected optical power, a sum of gains of the optical amplifiers is a total optical input power to the optical transmission line and the dispersion compensation type light There is provided an optical amplification method characterized by including a control step of controlling the attenuation amount of the attenuator so that the target value depends on the total optical input power to the transmission line.

この発明によれば、各光増幅器の利得の和が光伝送路へのトータル光入力パワーの他に、分散補償型光伝送路へのトータル光入力パワーに依存する目標値になるようにすることで、SRSによって発生する利得の傾きと逆の傾きを持たせ、各波長における利得を平坦にする。   According to the present invention, the sum of the gains of the optical amplifiers is set to a target value that depends on the total optical input power to the dispersion compensating optical transmission line in addition to the total optical input power to the optical transmission line. Therefore, the gain at each wavelength is flattened by giving a slope opposite to that of the gain generated by the SRS.

この発明では、上記発明において、前記制御工程では、前記光信号を入力させる上流側の前記光伝送路への当該光信号のトータル光入力パワーと、前記光信号を伝搬させる下流側の前記光伝送路への当該光信号のトータル光入力パワーのうち、少なくとも一方のトータル光入力パワーおよび前記分散補償型光伝送路へのトータル光入力パワーに依存する目標値になるように、前記減衰器の減衰量を制御することを特徴とする。   In the present invention, in the above invention, in the control step, the total optical input power of the optical signal to the upstream optical transmission path through which the optical signal is input and the downstream optical transmission through which the optical signal is propagated The attenuation of the attenuator so that the target value depends on at least one of the total optical input power of the optical signal to the path and the total optical input power to the dispersion-compensating optical transmission path. It is characterized by controlling the amount.

この発明によれば、減衰量を上流側光伝送路への光信号の各波長のトータル光入力パワーまたは/および下流側光伝送路への光信号の各波長のトータル光入力パワーと分散補償型光伝送路へのトータル光入力パワーに依存する目標値に制御することにより、利得を均一にし、安定した光伝送を行う。   According to the present invention, the amount of attenuation is determined based on the total optical input power of each wavelength of the optical signal to the upstream optical transmission path or / and the total optical input power of each wavelength of the optical signal to the downstream optical transmission path and the dispersion compensation type. By controlling the target value depending on the total optical input power to the optical transmission line, the gain is made uniform and stable optical transmission is performed.

この発明では、少なくとも2つの光増幅器と少なくとも1つの減衰器とが接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーに応じて前記減衰量を制御する光増幅装置において、前記光信号の光パワーを検出する検出手段と、前記検出された光パワーに基づいた所定の前記減衰器の減衰量の補正値を求める補正手段と、前記求めた補正値に基づき、前記減衰器の減衰量を制御する制御手段とを備えたことを特徴とする光増幅装置が提供される。   In the present invention, at least two optical amplifiers and at least one attenuator are connected, an optical signal input via an optical transmission line is amplified by the optical amplifier, and the attenuation is performed according to the optical power of the optical signal. In the optical amplifying apparatus for controlling the amount, a detecting means for detecting the optical power of the optical signal, a correcting means for obtaining a correction value for the attenuation amount of the predetermined attenuator based on the detected optical power, and the obtaining There is provided an optical amplifying device comprising control means for controlling the attenuation amount of the attenuator based on the correction value.

この発明によれば、SRSの影響によって発生する利得の傾きを補正するために、光パワーを検出し、この光パワーの検出結果から光可変減衰器の減衰量の補正値を求めて、この利得の傾きを打ち消すように光可変減衰器の減衰量を制御する。   According to the present invention, in order to correct the slope of the gain caused by the influence of SRS, optical power is detected, and a correction value for the attenuation of the optical variable attenuator is obtained from the detection result of the optical power. The amount of attenuation of the optical variable attenuator is controlled so as to cancel the inclination of the light.

この発明では、上記発明において、前記検出手段は、自装置に前記光信号を入力させる上流側の光伝送路への当該光信号のトータル光入力パワーと、前記自装置からの前記光信号を伝搬させる下流側の光伝送路への当該光信号のトータル光入力パワーのうち、少なくとも一方のトータル光入力パワーを検出することを特徴とする。   In this invention, in the above invention, the detection means propagates the total optical input power of the optical signal to the upstream optical transmission line for inputting the optical signal to the own device and the optical signal from the own device. It is characterized in that at least one of the total optical input powers of the optical signal to the downstream optical transmission line to be detected is detected.

この発明によれば、制御対象を上流側の光伝送路または下流側の光伝送路によるSRSの影響によって発生する利得の傾きにするか、その両者にするかによって、検出する検出する光伝送路を決めてトータル光入力パワーを検出する。   According to the present invention, the detected optical transmission path is detected depending on whether the control target is the slope of the gain generated by the influence of the SRS by the upstream optical transmission path or the downstream optical transmission path, or both. To detect the total optical input power.

この発明では、上記発明において、前記補正手段は、前記検出されたトータル光入力パワーに基づいて、前記光増幅器の利得の傾きを誘導ラマン散乱によって発生する利得の傾きと逆の傾きを持たせるように、前記減衰器の減衰量の補正値を求めることを特徴とする。   According to the present invention, in the above invention, the correction means is configured so that the gain inclination of the optical amplifier has a slope opposite to the slope of the gain generated by stimulated Raman scattering based on the detected total optical input power. In addition, a correction value of the attenuation amount of the attenuator is obtained.

この発明によれば、光増幅器の利得の傾きをSRSによって発生する利得の傾きと逆の傾きを持たせる補正値を求めて、傾きを互いに打ち消しあうようにして、各波長における利得波長特性の平坦化を図る。   According to the present invention, the correction value for obtaining the slope of the gain of the optical amplifier having a slope opposite to that of the gain generated by the SRS is obtained, and the slopes cancel each other so that the gain wavelength characteristic at each wavelength is flattened. Plan

この発明では、少なくとも3つの光増幅器と少なくとも1つの減衰器と分散補償型光伝送路とが接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーに応じて前記減衰量を制御する光増幅装置において、前記光伝送路への前記光信号の光パワーを検出する第1の検出手段と、前記分散補償型光伝送路への前記光信号の光パワーを検出する第2の検出手段と、前記検出された各光パワーに基づいた所定の前記減衰器の減衰量の補正値を求める補正手段と、前記求めた補正値に基づき、前記減衰器の減衰量を制御する制御手段とを備えたことを特徴とする光増幅装置が提供される。   In the present invention, at least three optical amplifiers, at least one attenuator, and a dispersion-compensating optical transmission line are connected, and an optical signal input via the optical transmission line is amplified by the optical amplifier, and the optical signal In an optical amplifying apparatus that controls the attenuation amount according to optical power, first detection means for detecting optical power of the optical signal to the optical transmission line, and the optical signal to the dispersion-compensating optical transmission line Second detection means for detecting the optical power of the light, correction means for obtaining a correction value of the attenuation amount of the predetermined attenuator based on each detected optical power, and the attenuation based on the obtained correction value And a control means for controlling the attenuation of the optical device.

この発明によれば、光増幅部分散補償型光伝送路が接続されている場合には、光伝送路の他に分散補償型光伝送路への前記光信号の光パワーも検出して、減衰器の減衰量の補正値を求め、光伝送路のSRSの影響による伝送損失を補償している。   According to the present invention, when the optical amplifying unit dispersion compensation type optical transmission line is connected, the optical power of the optical signal to the dispersion compensation type optical transmission line in addition to the optical transmission line is also detected and attenuated. A correction value for the attenuation of the optical device is obtained to compensate for transmission loss due to the influence of SRS in the optical transmission line.

この発明では、上記発明において、前記第1の検出手段は、自装置に前記光信号を入力させる上流側光伝送路への当該光信号のトータル光入力パワーと、前記自装置からの前記光信号を伝搬させる下流側光伝送路への当該光信号のトータル光入力パワーのうち、少なくとも一方のトータル光入力パワーを検出することを特徴とする。   In this invention, in the above invention, the first detection means includes a total optical input power of the optical signal to the upstream optical transmission line that inputs the optical signal to the own device, and the optical signal from the own device. It is characterized in that at least one total optical input power is detected from the total optical input power of the optical signal to the downstream optical transmission line for propagating the optical signal.

この発明によれば、制御対象を上流側の光伝送路または下流側の光伝送路によるSRSの影響によって発生する利得波長特性の傾きにするか、その両者にするかによって、検出する光伝送路を決めてトータル光入力パワーを検出する。   According to the present invention, the optical transmission line to be detected is determined depending on whether the control target is the slope of the gain wavelength characteristic generated by the influence of the SRS by the upstream optical transmission line or the downstream optical transmission line, or both. To detect the total optical input power.

この発明では、上記発明において、前記第2の検出手段は、前記分散補償型光伝送路への前記光信号のトータル光入力パワーを検出することを特徴とする。   According to the present invention, in the above invention, the second detection means detects a total optical input power of the optical signal to the dispersion-compensating optical transmission line.

この発明によれば、光増幅装置内に分散補償型光伝送路が接続されている場合には、この分散補償型光伝送路への前記光信号のトータル光入力パワーを検出して補償対象とする。   According to the present invention, when a dispersion-compensating optical transmission line is connected in the optical amplifying device, the total optical input power of the optical signal to the dispersion-compensating optical transmission line is detected and compensated for. To do.

この発明では、上記発明において、前記補正手段は、前記検出された各トータル光入力パワーに基づいて、前記光増幅器の利得の傾きを誘導ラマン散乱によって発生する利得の傾きと逆の傾きを持たせるように、前記減衰器の減衰量の補正値を求めることを特徴とする。   According to the present invention, in the above invention, the correcting means causes the gain gradient of the optical amplifier to have a gradient opposite to the gain gradient generated by stimulated Raman scattering based on each detected total light input power. Thus, the correction value of the attenuation amount of the attenuator is obtained.

この発明によれば、検出された各トータル光入力パワーに基づいて、光増幅器の利得の傾きをSRSによって発生する利得の傾きと逆の傾きを持たせる補正値を求めて、互いの傾きを打ち消すようにする。   According to the present invention, based on each detected total optical input power, a correction value that makes the slope of the gain of the optical amplifier have a slope opposite to the slope of the gain generated by the SRS is obtained, and the slopes of each other are canceled out. Like that.

この発明では、上記発明において、前記光増幅装置は、前記検出された光パワーの情報を送信する送信手段と、前記検出された光パワーの情報を受信する受信手段とをさらに備えたことを特徴とする。   According to the present invention, in the above invention, the optical amplifying device further includes a transmission unit that transmits the information on the detected optical power and a reception unit that receives the information on the detected optical power. And

この発明によれば、検出された光パワーの情報を送受信する送信器と受信器を備え、他の光増幅装置での減衰量の制御を可能にするとともに、複数段の光増幅装置から光出力パワーの検出結果を得て減衰量の制御を可能にする。   According to the present invention, a transmitter and a receiver that transmit and receive information on detected optical power are provided, and it is possible to control the amount of attenuation in another optical amplifying device, and the optical output from a plurality of stages of optical amplifying devices. The power detection result is obtained and the attenuation can be controlled.

この発明では、光伝送路に多段接続された光増幅装置で、前記光伝送路に伝搬される光信号を増幅して中継する光増幅中継システムにおいて、上記の発明に記載の光増幅装置を少なくとも1つ備えたことを特徴とする光増幅中継システムが提供される。   According to the present invention, in an optical amplification repeater system that amplifies and repeats an optical signal propagated to the optical transmission line with an optical amplification apparatus connected in multiple stages to the optical transmission line, the optical amplification apparatus according to the invention described above is at least There is provided an optical amplification repeater system including one.

この発明によれば、光増幅中継システムに上記の発明に記載の光増幅装置を少なくとも1つ接続させて、各光増幅装置における光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせて互いに打ち消し合うようにして利得波長特性の平坦化を図る。   According to this invention, at least one optical amplifying device described in the above invention is connected to the optical amplifying relay system, and the slope opposite to the slope of the gain generated by the SRS from the optical power detection result in each optical amplifying device. The gain wavelength characteristics are flattened so as to cancel each other.

この発明では、上り用と下り用の少なくとも2本の光伝送路に多段接続された光増幅装置で、前記光伝送路に伝搬される光信号を増幅して双方向の光中継を行う光増幅中継システムにおいて、上記の発明に記載の光増幅装置を少なくとも1つ備えたことを特徴とする。   According to the present invention, an optical amplification apparatus that amplifies an optical signal propagated to the optical transmission line and performs bidirectional optical relaying in an optical amplification device that is connected in multiple stages to at least two optical transmission lines for uplink and downlink The relay system includes at least one optical amplifying device according to the invention described above.

この発明によれば、上記の発明に記載の光増幅装置を少なくとも1つ接続させた上り用および下り用の光伝送路を用いて双方向伝送を行う光増幅中継システムを構築することで、上流側の光パワーとともに、下流側の光パワーの検出結果も受信が可能となる。   According to this invention, by constructing an optical amplification repeater system that performs bidirectional transmission using an upstream and downstream optical transmission line to which at least one optical amplification device according to the above invention is connected, The detection result of the downstream optical power as well as the optical power on the downstream side can be received.

この発明では、上記発明において、上記の発明に記載の光増幅装置を備えた光増幅中継システムでは、前記光伝送路に接続された他の光増幅装置から前記検出された光パワーの情報を受信すると、該光パワーに基づいた所定の前記減衰器の減衰量の補正値を求め、該求めた補正値に基づき、前記減衰器の減衰量を制御する。   According to the present invention, in the above invention, in the optical amplification repeater system including the optical amplifying device according to the above invention, the detected optical power information is received from another optical amplifying device connected to the optical transmission line. Then, a predetermined correction value for the attenuation amount of the attenuator based on the optical power is obtained, and the attenuation amount of the attenuator is controlled based on the obtained correction value.

この発明によれば、上流、下流に関わりなく他の光増幅装置における光出力パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせるように減衰器の減衰量の制御を行い、目標とする段の光増幅器での各波長における利得が均一となる。   According to the present invention, the attenuation amount of the attenuator is controlled so that the slope of the gain generated by the SRS is opposite to the slope of the gain generated by the SRS from the detection result of the optical output power in the other optical amplifying apparatus regardless of whether it is upstream or downstream. The gain at each wavelength in the target stage optical amplifier is uniform.

以上説明したように、この発明では、少なくとも2つの光増幅器と少なくとも1つの減衰器とが接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーを検出し、該検出した光パワーに応じて前記減衰量を制御する光増幅方法において、前記各光増幅器の利得の和が、光伝送路へのトータル光入力パワーに依存する目標値になるように、前記減衰器の減衰量を制御するので、光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせるように光可変減衰器の減衰量を制御でき、各波長における利得の平坦化が図られ、伝送効率を向上できる。   As described above, according to the present invention, at least two optical amplifiers and at least one attenuator are connected, an optical signal input via an optical transmission line is amplified by the optical amplifier, and the optical signal of the optical signal is amplified. In the optical amplification method for detecting power and controlling the attenuation amount according to the detected optical power, the sum of gains of the optical amplifiers becomes a target value depending on the total optical input power to the optical transmission line. Thus, since the attenuation amount of the attenuator is controlled, the attenuation amount of the optical variable attenuator can be controlled so as to have a slope opposite to the slope of the gain generated by the SRS from the detection result of the optical power. The gain is flattened and the transmission efficiency can be improved.

また、この発明では、光可変減衰器の減衰量を上流側光伝送路への光信号の各波長のトータル光入力パワーまたは/および下流側光伝送路への光信号の各波長のトータル光入力パワーに依存する目標値に制御するので、利得を均一にし、安定した光伝送を行うことができる。   In the present invention, the attenuation amount of the optical variable attenuator is used to determine the total optical input power of each wavelength of the optical signal to the upstream optical transmission path or / and the total optical input of each wavelength of the optical signal to the downstream optical transmission path. Since the target value depending on the power is controlled, the gain can be made uniform and stable optical transmission can be performed.

また、この発明では、少なくとも2つの光増幅器と少なくとも1つの減衰器と分散補償型光伝送路とが接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーを検出し、該検出した光パワーに応じて前記減衰量を制御する光増幅方法において、各光増幅器の利得の和が、上流側または/および下流側の光伝送路へのトータル光入力パワーの他に、分散補償型光伝送路へのトータル光入力パワーに依存する目標値になるようにするので、光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせることができ、各波長における光パワーを平坦にすることができる。   In the present invention, at least two optical amplifiers, at least one attenuator, and a dispersion-compensating optical transmission line are connected, and an optical signal input through the optical transmission line is amplified by the optical amplifier, and the optical amplifier In an optical amplification method for detecting optical power of a signal and controlling the attenuation amount according to the detected optical power, a sum of gains of the optical amplifiers is a total to an upstream or / and downstream optical transmission line. In addition to the optical input power, the target value depends on the total optical input power to the dispersion-compensating optical transmission line, and therefore has a slope opposite to the slope of the gain generated by the SRS from the optical power detection result. The optical power at each wavelength can be flattened.

また、この発明では、少なくとも2つの光増幅器と少なくとも1つの減衰器とが接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーに応じて前記減衰量を制御する光増幅装置において、上流側または/および下流側の光パワーを検出し、この光パワーの検出結果から光可変減衰器の減衰量の補正値を求めて、光可変減衰器の減衰量を制御するので、光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせるように光可変減衰器の減衰量を制御して、各波長における利得の平坦化を図り、伝送効率を向上できる。   In the present invention, at least two optical amplifiers and at least one attenuator are connected, and an optical signal input via an optical transmission line is amplified by the optical amplifier, and according to the optical power of the optical signal. In the optical amplifying apparatus for controlling the attenuation amount, optical power on the upstream side and / or downstream side is detected, a correction value for the attenuation amount of the optical variable attenuator is obtained from the detection result of the optical power, and the optical variable attenuator is obtained. Since the attenuation of the optical variable attenuator is controlled so as to have a slope opposite to the slope of the gain generated by the SRS from the optical power detection result, the gain at each wavelength is flattened. And transmission efficiency can be improved.

また、この発明では、補正手段がトータル光入力パワーに基づいて、光増幅器の利得の傾きを誘導ラマン散乱によって発生する利得の傾きと逆の傾きを持たせるように、減衰器の減衰量の補正値を求めるので、この利得波長特性の傾きを互いに打ち消しあうようになり、各波長における利得波長特性の平坦化が図られ、伝送効率を向上できる。   Further, according to the present invention, the correction means corrects the attenuation amount of the attenuator based on the total optical input power so that the gain inclination of the optical amplifier has a slope opposite to that of the gain generated by stimulated Raman scattering. Since the value is obtained, the slopes of the gain wavelength characteristics cancel each other, the gain wavelength characteristics at each wavelength are flattened, and the transmission efficiency can be improved.

また、この発明では、分散補償型光伝送路が接続され、光伝送路を介して入力する光信号を前記光増幅器で増幅するとともに、前記光信号の光パワーに応じて前記減衰量を制御する光増幅装置において、上流側または/および下流側の光伝送路への光信号のトータル光入力パワーと、分散補償型光伝送路への前記光信号のトータル光入力パワーを検出し、該検出された各トータル光入力パワーに基づいて、光増幅器の利得の傾きを誘導ラマン散乱によって発生する利得の傾きと逆の傾きを持たせるように、補正値を求めて、互いの傾きを打ち消すようにするので、光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせるように光可変減衰器の減衰量を制御して、各波長における利得の平坦化を図り、伝送効率を向上できる。   In the present invention, a dispersion compensation type optical transmission line is connected, and an optical signal input through the optical transmission line is amplified by the optical amplifier, and the attenuation is controlled according to the optical power of the optical signal. In the optical amplifying device, the total optical input power of the optical signal to the upstream or / and downstream optical transmission line and the total optical input power of the optical signal to the dispersion compensation type optical transmission line are detected and detected. Based on each total optical input power, a correction value is obtained so that the slope of the gain of the optical amplifier has a slope opposite to the slope of the gain generated by stimulated Raman scattering, and the slopes of each other are canceled out. Therefore, the attenuation of the optical variable attenuator is controlled so that the slope of the gain generated by the SRS is opposite from the detection result of the optical power, thereby flattening the gain at each wavelength and improving the transmission efficiency. Kill.

また、この発明では、検出された光パワーの情報を送信する送信手段と、検出された光パワーの情報を受信する受信手段とを備えたので、他の光増幅装置での減衰量の制御を可能にするとともに、複数段の光増幅装置から光出力パワーの検出結果を得て目標の段の光増幅装置での減衰量の制御を可能にする。   In addition, since the present invention includes a transmission means for transmitting the detected optical power information and a reception means for receiving the detected optical power information, the attenuation amount in other optical amplifiers can be controlled. In addition, the detection result of the optical output power is obtained from a plurality of stages of optical amplifying apparatuses, and the attenuation amount can be controlled in the target stage of the optical amplifying apparatus.

また、この発明では、光伝送路に多段接続された光増幅装置で、前記光伝送路に伝搬される光信号を増幅して中継する光増幅中継システムにおいて、上記の発明に記載の光増幅装置を少なくとも1つ接続させて、各光増幅装置における光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせて互いに打ち消し合うようにして利得波長特性の平坦化を図り、伝送効率を向上できる。   According to the present invention, there is provided an optical amplifying apparatus according to the above invention in an optical amplifying and relaying system for amplifying and relaying an optical signal propagated to the optical transmission path with an optical amplifying apparatus connected in multiple stages to the optical transmission path. Are connected to each other, and the gain wavelength characteristics are flattened so as to cancel each other with a slope opposite to the gain slope generated by the SRS from the detection result of the optical power in each optical amplifying device. Efficiency can be improved.

また、この発明では、上り用と下り用の少なくとも2本の光伝送路に多段接続された光増幅装置で、前記光伝送路に伝搬される光信号を増幅して双方向の光中継を行う光増幅中継システムにおいて、上記の発明に記載の光増幅装置を少なくとも1つ接続させた上り用および下り用の光伝送路を用いて双方向伝送を行う光増幅中継システムを構築することで、上流側の光パワーとともに、下流側の光パワーの検出結果も受信が可能となり、他の光増幅装置における光出力パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせて互いに打ち消し合うようにして利得波長特性の平坦化を図り、伝送効率を向上できる。   In the present invention, the optical signal propagated to the optical transmission line is amplified and bidirectionally relayed by an optical amplifying apparatus connected in multiple stages to at least two optical transmission lines for upstream and downstream. In the optical amplification repeater system, by constructing an optical amplification repeater system that performs bidirectional transmission using the upstream and downstream optical transmission lines to which at least one optical amplification device according to the above invention is connected, In addition to the optical power on the side, the downstream optical power detection result can also be received, and the optical output power detection results in other optical amplifying devices cancel each other with a slope opposite to that of the gain generated by the SRS. As a result, the gain wavelength characteristic can be flattened to improve the transmission efficiency.

以下に添付図面を参照して、この発明にかかる光増幅方法、その装置およびその装置を用いた光増幅中継システムの好適な実施の形態を説明する。なお、以下の図において、図12、図13と同様の構成部分に関しては、説明の都合上、同一符号を付記するものとする。   Exemplary embodiments of an optical amplification method, an apparatus thereof, and an optical amplification repeater system using the apparatus according to the present invention will be described below with reference to the accompanying drawings. In the following drawings, the same components as those in FIGS. 12 and 13 are denoted by the same reference numerals for convenience of explanation.

(実施例1)
図1は、この発明にかかる光増幅装置の実施例1の構成を示す構成図である。この図において、図13の従来例と異なる点は、SRSの影響によって発生する利得波長特性の傾きを補正するために、光可変減衰器45の減衰量の補正値が設定されている補正回路51を設けた点である。補正回路51は、この利得波長特性の傾きを打ち消すために、光増幅部42からの光出力パワーに基づいて、この利得波長特性の傾きと逆の傾きを有する利得波長特性となる減衰量の補正値ΔLを求め、制御回路50に出力している。制御回路50は、この補正値ΔLと、光伝送路30からの光入力パワーと、光伝送路30への光出力パワーとに基づいて減衰量を求めて光可変減衰器45の減衰量Aを制御している。
Example 1
1 is a configuration diagram showing the configuration of a first embodiment of an optical amplifying device according to the present invention. In this figure, the difference from the conventional example of FIG. 13 is that a correction circuit 51 in which a correction value of the attenuation amount of the optical variable attenuator 45 is set in order to correct the slope of the gain wavelength characteristic caused by the influence of SRS. This is the point. In order to cancel the slope of the gain wavelength characteristic, the correction circuit 51 corrects the attenuation amount that becomes the gain wavelength characteristic having a slope opposite to the slope of the gain wavelength characteristic based on the optical output power from the optical amplifying unit 42. A value ΔL is obtained and output to the control circuit 50. The control circuit 50 obtains an attenuation amount based on the correction value ΔL, the optical input power from the optical transmission line 30, and the optical output power to the optical transmission line 30, and determines the attenuation amount A of the optical variable attenuator 45. I have control.

すなわち、この実施例において、光可変減衰器45の減衰量Aは、従来例と同様に、(1)式で求まり、光増幅部41の利得G1は、(2)式で求まり、また光増幅部42の利得G2は、(3)式で求まる。   That is, in this embodiment, the attenuation amount A of the optical variable attenuator 45 is obtained by the equation (1), and the gain G1 of the optical amplifying unit 41 is obtained by the equation (2). The gain G2 of the unit 42 is obtained by the equation (3).

また、光増幅部41と42の利得は、
G1+G2=C+ΔL …(6)
となる。ここで、(6)式に(2)式と(3)式を代入して、光可変減衰器45の減衰量Aを求めると、
(P2−P1)+(P4−P3)=C+ΔL
(P2−P3)+(P4−P1)=C+ΔL
(P2−P3)=C+ΔL−(P4−P1)
したがって、(1)式からAは、
A=C+ΔL−(P4−P1)…(7)
で求まる。
The gains of the optical amplifying units 41 and 42 are
G1 + G2 = C + ΔL (6)
It becomes. Here, by substituting the equations (2) and (3) into the equation (6) and obtaining the attenuation amount A of the optical variable attenuator 45,
(P2-P1) + (P4-P3) = C + ΔL
(P2-P3) + (P4-P1) = C + ΔL
(P2−P3) = C + ΔL− (P4−P1)
Therefore, from equation (1), A is
A = C + ΔL− (P4−P1) (7)
It is obtained by

次に、ΔLを求める。ここで、まずSRSの影響によって発生する利得波長特性の傾きSRS(dG/dλ)は、
SRS(dG/dλ)=4.34・(β・P0・Leff)[dB/nm]
…(8)
ここで、P0:光伝送路30へ入射される光信号のトータル光パワー[W]
(図1では、P4に相当)
β:このトータル光パワーが入射される光伝送路30(種類)に依
存する係数[1/W・km・nm]
Leff:このトータル光パワーが入射される光伝送路の実効長[km]
となる。
Next, ΔL is obtained. Here, the slope SRS (dG / dλ) of the gain wavelength characteristic generated by the influence of SRS is
SRS (dG / dλ) = 4.34 · (β · P0 · Leff) [dB / nm]
(8)
Here, P0: Total optical power [W] of the optical signal incident on the optical transmission line 30
(Equivalent to P4 in FIG. 1)
β: Depends on the optical transmission line 30 (type) on which this total optical power is incident
Existing coefficient [1 / W · km · nm]
Leff: Effective length [km] of the optical transmission line on which this total optical power is incident
It becomes.

なお、この(8)式は、ELECTRONICS LETTERS,16th April 1998,Vol.34,No.8,M.Zirngiblの文献に記載されている。 Incidentally, the expression (8), ELECTRONICS LETTERS, 16 th April 1998 , Vol. 34, no. 8, M.M. It is described in the Zirngib literature.

次に、SRSの影響によって発生する利得波長特性の傾きを打ち消すために、光増幅器で発生させる利得波長特性の傾きOFA(dG/dλ)は、このSRSの影響によって発生する利得波長特性の傾きとは逆の傾きとなるので、
OFA(dG/dλ)=−a・ΔL[dB/nm]…(9)
ここで、a:光増幅器の設計に依存する比例係数[1/nm]
ΔL:光可変減衰器の減衰量の補正値[dB]
となる。
Next, in order to cancel the slope of the gain wavelength characteristic generated by the influence of the SRS, the slope OFA (dG / dλ) of the gain wavelength characteristic generated by the optical amplifier is equal to the slope of the gain wavelength characteristic generated by the influence of the SRS. Is the opposite slope,
OFA (dG / dλ) = − a · ΔL [dB / nm] (9)
Where, a: proportional coefficient [1 / nm] depending on the design of the optical amplifier
ΔL: Correction value [dB] of attenuation of the optical variable attenuator
It becomes.

この(8)式と(9)式の和がゼロになる時、光伝送路を伝送した後の各波長の利得が均一となって、利得波長特性は平坦になるので、この条件におけるΔLを求めると、まず、(8)式と(9)式の和は、
SRS(dG/dλ)+OFA(dG/dλ)=4.34・(β・P0・Leff)−a・ΔL=0 …(10)
となる。
When the sum of the equations (8) and (9) becomes zero, the gain of each wavelength after transmission through the optical transmission line becomes uniform and the gain wavelength characteristic becomes flat. First, the sum of Eqs. (8) and (9) is
SRS (dG / dλ) + OFA (dG / dλ) = 4.34 · (β · P0 · Leff) −a · ΔL = 0 (10)
It becomes.

次に、ΔLは、
ΔL=4.34・(β・P0・Leff)/a …(11)
で求まる。すなわち、ΔLは、光伝送路へ入射される光信号のトータル光パワーP0と、このトータル光パワーP0が入射される光伝送路の種類に依存する係数βと、このトータル光パワーが入射される光伝送路の実効長とから求まる値である。
Next, ΔL is
ΔL = 4.34 · (β · P0 · Leff) / a (11)
It is obtained by That is, ΔL is the total optical power P0 of the optical signal incident on the optical transmission path, the coefficient β depending on the type of the optical transmission path on which the total optical power P0 is incident, and the total optical power. This value is obtained from the effective length of the optical transmission line.

ここで、例えばa=0.02[1/nm]、β=3.5×10-3[1/W・km・nm]、P0=P4=+18[dBm]=0.063[W]、Leff=21[km]とすると、これら数値を(11)式に代入し、光可変減衰器の減衰量の補正値ΔLを求めると、
ΔL={4.34・(3.5×10-3・0.063・21)}/0.02=1[dB]
となる。
Here, for example, a = 0.02 [1 / nm], β = 3.5 × 10 −3 [1 / W · km · nm], P0 = P4 = + 18 [dBm] = 0.063 [W], When Leff = 21 [km], these numerical values are substituted into the equation (11), and the attenuation value correction value ΔL of the optical variable attenuator is obtained.
ΔL = {4.34 · (3.5 × 10 −3 · 0.063 · 21)} / 0.02 = 1 [dB]
It becomes.

また、従来例で示した条件、すなわち利得の総和G1+G2=20[dB]、光入力パワーP1=+2[dBm]、光出力パワーP4=+18[dBm]とし、これらの値を(7)式に代入して、光可変減衰器の減衰量Aを求めると、
A=C+ΔL−(P4−P1)
=20+1−(18−2)
=5[dB]
となる。
Further, the conditions shown in the conventional example, that is, the total gain G1 + G2 = 20 [dBm], the optical input power P1 = + 2 [dBm], and the optical output power P4 = + 18 [dBm], and these values are expressed by the equation (7). Substituting and obtaining the attenuation amount A of the optical variable attenuator,
A = C + ΔL− (P4−P1)
= 20 + 1- (18-2)
= 5 [dB]
It becomes.

この実施例の場合の利得波長特性は、図2(a)〜(c)に示すようになり、またレベルダイヤグラムは、図3に示すようになる。この実施例では、補正値の減衰量だけP3の光パワーが減少するので、光増幅部42の利得は、従来例(図3の点線部分)に比べて大きくなる。   The gain wavelength characteristics in this embodiment are as shown in FIGS. 2A to 2C, and the level diagram is as shown in FIG. In this embodiment, since the optical power of P3 is reduced by the attenuation amount of the correction value, the gain of the optical amplifying unit 42 becomes larger than that of the conventional example (dotted line portion in FIG. 3).

また、利得波長特性の傾きは、図4に示すように、利得の大きさによって変化している。すなわち、図から解るように利得が大きくなると、その傾きは右下がりの方に大きくなり、この利得が小さくなると、その傾きが右上がりの方に大きくなる。   In addition, the slope of the gain wavelength characteristic varies depending on the magnitude of the gain, as shown in FIG. That is, as shown in the figure, when the gain increases, the slope increases toward the lower right, and when the gain decreases, the slope increases toward the upper right.

ここで、例えば図3に示したように、光増幅部42の利得が大きくなると、その利得の波長特性の傾きは、右下がりの方に大きくなる。従って、この実施例の利得波長特性は、図2(c)に示すように、従来例における利得波長特性よりも、右下がりの傾きになる。   Here, for example, as shown in FIG. 3, when the gain of the optical amplifying unit 42 increases, the slope of the wavelength characteristic of the gain increases toward the lower right. Therefore, as shown in FIG. 2C, the gain wavelength characteristic of this embodiment has a lower slope than the gain wavelength characteristic of the conventional example.

このように、この実施例では、SRSの影響によって発生する利得波長特性の傾きを補正するために、トータルの光出力パワーの検出結果から光可変減衰器の減衰量の補正値を求めて、この利得波長特性の傾きを打ち消すように光可変減衰器の減衰量を制御するので、図2(d)に示すように、光伝送路30を介した次段の光増幅装置40の入力端での各波長における利得波長特性の平坦化が図られ、伝送効率を向上させることができる。   As described above, in this embodiment, in order to correct the slope of the gain wavelength characteristic caused by the influence of SRS, the correction value of the attenuation amount of the optical variable attenuator is obtained from the detection result of the total optical output power. Since the amount of attenuation of the optical variable attenuator is controlled so as to cancel the slope of the gain wavelength characteristic, as shown in FIG. 2D, at the input end of the optical amplifying apparatus 40 of the next stage via the optical transmission line 30 The gain wavelength characteristic at each wavelength is flattened, and the transmission efficiency can be improved.

このため、この実施例では、チャネル数の増減などによって光伝送路へ入射される光パワーが変動しても、SRSの影響によって発生する波長多重信号の利得の傾きを自動的に一括補正して、この波長多重信号の利得の偏差を最小にすることができ、これにより各波長での光パワーが均一になり、短波長側の光信号におけるS/Nの劣化を防ぎ、安定した光伝送を行える。   For this reason, in this embodiment, even if the optical power incident on the optical transmission line fluctuates due to an increase or decrease in the number of channels, the slope of the gain of the wavelength multiplexed signal generated by the influence of SRS is automatically corrected collectively. The deviation of the gain of this wavelength division multiplexed signal can be minimized, so that the optical power at each wavelength becomes uniform, the S / N deterioration in the optical signal on the short wavelength side is prevented, and stable optical transmission is achieved. Yes.

(実施例2)
図5は、この発明にかかる光増幅装置の実施例2の構成を示す構成図である。図において、この実施例の光増幅装置40では、前段の光増幅装置40から光伝送路30を介して制御・監視信号を受信する制御・監視信号受信回路52と、次段の光増幅装置40へ制御・監視信号を送信する制御・監視信号送信回路53とを備えている。
(Example 2)
FIG. 5 is a block diagram showing the configuration of the optical amplifying apparatus according to Embodiment 2 of the present invention. In the figure, in the optical amplifying apparatus 40 of this embodiment, a control / monitoring signal receiving circuit 52 that receives a control / monitoring signal from the preceding stage optical amplifying apparatus 40 via the optical transmission line 30, and a next stage optical amplifying apparatus 40 And a control / monitoring signal transmission circuit 53 for transmitting a control / monitoring signal.

この制御・監視信号受信回路52は、上流側の光伝送路に入射された光出力パワーの情報を、光分波器54を介して制御・監視信号として受信し、前段の光増幅装置40と自装置間の光伝送路30で発生したSRSの影響による利得の傾きと逆の傾きを持たせるように、制御回路50によって光可変減衰器45の減衰量を制御している。また、この制御・監視信号送信回路53は、光合波器55を介して光伝送路30に入射された光出力パワーを、図示しない次段の光増幅装置へ伝送している。   The control / monitoring signal receiving circuit 52 receives information on the optical output power incident on the upstream optical transmission line as a control / monitoring signal via the optical demultiplexer 54, and The amount of attenuation of the optical variable attenuator 45 is controlled by the control circuit 50 so as to have a slope opposite to that of the gain due to the influence of the SRS generated in the optical transmission line 30 between the own apparatuses. Further, the control / monitor signal transmission circuit 53 transmits the optical output power incident on the optical transmission line 30 via the optical multiplexer 55 to an optical amplification device at the next stage (not shown).

この実施例でも、実施例1と同様に、この利得の波長特性と逆の傾きを有する利得波長特性となる減衰量の補正値ΔLと、光伝送路30からの光入力パワーと、光伝送路30への光出力パワーとに基づいて減衰量を求めて光可変減衰器45の減衰量Aを制御している。この実施例において、実施例1と異なる点は、光パワーP01が前段の光増幅装置の光出力パワーであり、(11)式のP0がこの光出力パワーP01に相当し、補正値ΔLは、この光出力パワーP01とこのP01の光信号が伝送される上流側の光伝送路の種類と実効長とから導き出される。   In this embodiment as well, as in the first embodiment, the attenuation correction value ΔL having a gain wavelength characteristic having a slope opposite to that of the gain wavelength characteristic, the optical input power from the optical transmission line 30, and the optical transmission line The attenuation amount A of the optical variable attenuator 45 is controlled by obtaining the attenuation amount based on the optical output power to 30. In this embodiment, the difference from the first embodiment is that the optical power P01 is the optical output power of the optical amplifying apparatus in the previous stage, P0 in the equation (11) corresponds to the optical output power P01, and the correction value ΔL is This is derived from the optical output power P01 and the type and effective length of the upstream optical transmission line through which the optical signal of P01 is transmitted.

この実施例の場合の利得波長特性は、図6(a),(b)に示すようになる。この実施例では、光増幅装置40に入力する光信号の利得波長特性の傾きが、図6(a)に示すように、右上がりに大きくなるので、この利得波長特性を打ち消すように光可変減衰器の減衰量を制御する。   The gain wavelength characteristics in this embodiment are as shown in FIGS. 6 (a) and 6 (b). In this embodiment, since the slope of the gain wavelength characteristic of the optical signal input to the optical amplifying device 40 increases to the right as shown in FIG. 6A, the optical variable attenuation is performed so as to cancel the gain wavelength characteristic. Control the attenuation of the instrument.

これにより、この実施例では、図6(b)に示すように、光増幅装置40の出力端での各波長における利得が均一となり、利得波長特性の平坦化が図られ、伝送効率を向上させることができ、実施例1と同様の効果を得ることができるとともに、上流側の光伝送路でのSRSの影響を防ぐことができ、さらに伝送効率を向上できる。   As a result, in this embodiment, as shown in FIG. 6B, the gain at each wavelength at the output end of the optical amplifying device 40 becomes uniform, the gain wavelength characteristic is flattened, and the transmission efficiency is improved. Thus, the same effects as in the first embodiment can be obtained, the influence of the SRS in the upstream optical transmission line can be prevented, and the transmission efficiency can be further improved.

(実施例3)
図7は、光増幅装置40内に3つの光増幅部41,42,60を備えた場合の一実施例を示す構成図である。この光増幅部41は、自動電流制御回路(以下、「ACC」という)によって制御され、光増幅部42,60は、ALC44,61によって制御され、多重された光信号を一括して増幅することで、光伝送路30の伝送損失を補償している。
(Example 3)
FIG. 7 is a configuration diagram showing an embodiment in the case where three optical amplifying units 41, 42, 60 are provided in the optical amplifying device 40. The optical amplifying unit 41 is controlled by an automatic current control circuit (hereinafter referred to as “ACC”), and the optical amplifying units 42 and 60 are controlled by the ALCs 44 and 61 to amplify the multiplexed optical signals at once. Thus, the transmission loss of the optical transmission line 30 is compensated.

また、この光増幅装置40では、光増幅部42,60間にDCF66が接続されている。そして、この光増幅装置40では、光分波器56,57,62,63で分波された光信号における光増幅部41の光出力パワーP2と、光増幅部42の光入力パワーP3と、光増幅部60の光入力パワーP5と光出力パワーP6を光パワー検出回路58,59,64,65で検出しており、制御回路50は、光増幅部41の利得G1と光増幅部42の利得G2と光増幅部60の利得G3の総和がC+ΔLになるように、この光可変減衰器45の減衰量Aを制御している。   In this optical amplifying device 40, a DCF 66 is connected between the optical amplifying units 42 and 60. In this optical amplifying device 40, the optical output power P2 of the optical amplifying unit 41 in the optical signal demultiplexed by the optical demultiplexers 56, 57, 62, 63, the optical input power P3 of the optical amplifying unit 42, The optical input power P5 and the optical output power P6 of the optical amplifying unit 60 are detected by the optical power detection circuits 58, 59, 64 and 65, and the control circuit 50 detects the gain G1 of the optical amplifying unit 41 and the optical amplifying unit 42. The attenuation amount A of the optical variable attenuator 45 is controlled so that the sum of the gain G2 and the gain G3 of the optical amplifying unit 60 becomes C + ΔL.

なお、この場合には、ΔLは、次段の光増幅装置に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値であるΔL1と、DCF66に対する光可変減衰器の減衰量の補正値であるΔL2とを合わせたΔL=ΔL1+ΔL2の値からなる。   In this case, ΔL is ΔL1, which is a correction value of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplifier of the next stage, and a correction value of the attenuation amount of the optical variable attenuator with respect to the DCF 66. It is composed of a value of ΔL = ΔL1 + ΔL2 that is combined with ΔL2.

すなわち、光増幅部41と42と60の利得は、
G1+G2+G3=C+ΔL …(12)
となる。また、光増幅部41の利得G1は、(2)式で、光増幅部42の利得G2は、(3)式でそれぞれも求まっており、光増幅部60の利得G3は、光増幅部60の光出力パワーP6と光増幅部60の光入力パワーP5の差
G3=P6−P5 …(13)
で求まる。
That is, the gains of the optical amplifiers 41, 42, and 60 are
G1 + G2 + G3 = C + ΔL (12)
It becomes. Further, the gain G1 of the optical amplifying unit 41 is obtained by equation (2), the gain G2 of the optical amplifying unit 42 is also obtained by equation (3), and the gain G3 of the optical amplifying unit 60 is obtained by the optical amplifying unit 60. Difference between the optical output power P6 of the optical amplifier and the optical input power P5 of the optical amplifying unit 60 G3 = P6-P5 (13)
It is obtained by

ここで、(12)式に(2)式と(3)式と(13)式を代入すると、
(P2−P1)+(P4−P3)+(P6−P5)=C+ΔL
となる。そして、上記の式から光可変減衰器45の減衰量(P2−P3)は、
(P2−P3)=C+ΔL−(P4−P1)−(P6−P5)…(14)
で求まる。従って、(1)からAは、
A=C+ΔL−(P4−P1)−(P6−P5)…(15)
Here, substituting (2), (3), and (13) into (12),
(P2-P1) + (P4-P3) + (P6-P5) = C + ΔL
It becomes. From the above equation, the attenuation amount (P2-P3) of the optical variable attenuator 45 is
(P2−P3) = C + ΔL− (P4−P1) − (P6−P5) (14)
It is obtained by Therefore, from (1) to A,
A = C + ΔL− (P4−P1) − (P6−P5) (15)

また、この実施例では、上述した(8)式〜(11)式に基づいて光可変減衰器の減衰量の補正値ΔL(実際にはΔL1とΔL2を求めて加算する)を求めることができる。すなわち、この次段の光増幅装置に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値ΔL1は、
ΔL1=4.34・(β1・P6・Leff1)/a
ここで、P6:次段の伝送路へ入射される光信号のトータル光パワー[W]
β1:このトータル光パワーが入射される光伝送路に依存する係数[1
/(W・km・nm)]
Leff1:このトータル光パワーが入射される光伝送路の実効長[km]
a:自装置の光増幅器の設計に依存する比例係数
(単位:[1/nm])
となり、また、このDCF66に対する光可変減衰器の減衰量の補正値ΔL2は、
ΔL2=4.34・(β2・P4・Leff2)/a
ここで、P4:DCFへ入射される光信号のトータル光パワー[W]
β2:このトータル光パワーが入射されるDCFに依存する係数[1/
(W・km・nm)]
Leff2:このトータル光パワーが入射されるDCFの実効長[km]
となる。従って、この実施例における光可変減衰器の減衰量の補正値ΔLは、
ΔL=ΔL1+ΔL2
=4.34・(β1・P6・Leff1)/a+4.34・(β2・P4・Leff2)/a
=4.34・{(β1・P6・Leff1)+(β2・P4・Leff2)}/a
となる。
Further, in this embodiment, the correction value ΔL (actually, ΔL1 and ΔL2 are obtained and added) of the attenuation amount of the optical variable attenuator can be obtained based on the above-described equations (8) to (11). . That is, the correction value ΔL1 of the attenuation amount of the optical variable attenuator with respect to the optical transmission line 30 connected to the optical amplifier of the next stage is
ΔL1 = 4.34 · (β1 · P6 · Leff1) / a
Here, P6: Total optical power [W] of the optical signal incident on the transmission path of the next stage
β1: Coefficient [1 depending on the optical transmission line on which this total optical power is incident
/ (W · km · nm)]
Leff1: Effective length [km] of an optical transmission line on which this total optical power is incident
a: Proportional coefficient depending on the design of its own optical amplifier
(Unit: [1 / nm])
Further, the correction value ΔL2 of the attenuation amount of the optical variable attenuator for the DCF 66 is
ΔL2 = 4.34 · (β2 · P4 · Leff2) / a
Here, P4: Total optical power [W] of the optical signal incident on the DCF
β2: Coefficient [1 / of the total optical power depending on the incident DCF
(W / km / nm)]
Leff2: Effective length [km] of DCF to which this total optical power is incident
It becomes. Therefore, the correction value ΔL of the attenuation of the optical variable attenuator in this embodiment is
ΔL = ΔL1 + ΔL2
= 4.34 · (β1 · P6 · Leff1) /a+4.34· (β2 · P4 · Leff2) / a
= 4.34 · {(β1 · P6 · Leff1) + (β2 · P4 · Leff2)} / a
It becomes.

このように、この実施例では、DCFおよび光伝送路でのSRSの影響によって発生する利得波長特性の傾きを補正するために、光出力パワーの検出結果から光可変減衰器の減衰量の補正値を求めて、この利得波長特性の傾きを打ち消すように光可変減衰器の減衰量を制御するので、光伝送路30を介した次段の光増幅装置40の入力端での各波長における利得が均一となり、利得波長特性の平坦化が図られ、伝送効率を向上させることができ、図1の実施例1と同様の効果を得ることができるとともに、DCFでのSRSの影響を防ぐことができ、さらに伝送効率を向上できる。   As described above, in this embodiment, in order to correct the slope of the gain wavelength characteristic generated by the influence of the DCS and the SRS in the optical transmission line, the correction value of the attenuation amount of the optical variable attenuator from the detection result of the optical output power. Therefore, the attenuation amount of the optical variable attenuator is controlled so as to cancel the slope of the gain wavelength characteristic, so that the gain at each wavelength at the input end of the optical amplifier 40 at the next stage via the optical transmission line 30 is It becomes uniform, flattening the gain wavelength characteristics, improving the transmission efficiency, obtaining the same effect as the first embodiment of FIG. 1, and preventing the influence of SRS in the DCF. Further, transmission efficiency can be improved.

(実施例4)
図8は、光増幅装置40内に3つの光増幅部41,42,60を備え、かつ上流側の光伝送路に入射された光出力パワーの情報に基づいて光可変減衰器45の減衰量を制御する場合の一実施例を示す構成図である。この光増幅装置40では、実施例2と同様に、制御・監視信号受信回路52は、上流側の光伝送路に入射された光出力パワーP06の情報を、光分波器54を介して制御・監視信号として受信し、前段の光増幅装置40と自装置間の光伝送路30で発生したSRSの影響による利得の傾きと逆の傾きを持たせるように、制御回路50によって光可変減衰器45の減衰量を制御している。また、この制御・監視信号送信回路53は、次段の光伝送路30に入射された光出力パワーを、図示しない次段の光増幅装置へ伝送している。なお、光出力パワーP06は、図5の実施例2で示した光出力パワーP01に相当する。
Example 4
FIG. 8 shows the amount of attenuation of the optical variable attenuator 45 based on the information of the optical output power that is provided with three optical amplifying units 41, 42, and 60 in the optical amplifying device 40 and is incident on the upstream optical transmission line. It is a block diagram which shows one Example in the case of controlling. In this optical amplifying apparatus 40, as in the second embodiment, the control / monitor signal receiving circuit 52 controls the information of the optical output power P06 incident on the upstream optical transmission line via the optical demultiplexer 54. An optical variable attenuator is received by the control circuit 50 so as to have a slope opposite to that of the gain due to the influence of the SRS generated in the optical transmission line 30 between the preceding optical amplifying apparatus 40 and the own apparatus. The amount of attenuation of 45 is controlled. Further, the control / monitoring signal transmission circuit 53 transmits the optical output power incident on the optical transmission line 30 at the next stage to an optical amplification apparatus at the next stage (not shown). The optical output power P06 corresponds to the optical output power P01 shown in Example 2 in FIG.

制御回路50は、光増幅部41の利得G1と光増幅部42の利得G2と光増幅部60の利得G3の総和がC+ΔLになるように、この光可変減衰器45の減衰量Aを制御している。なお、この場合には、ΔLは、前段の光増幅装置に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値であるΔL1と、DCF66に対する光可変減衰器の減衰量の補正値であるΔL2とを合わせたΔL=ΔL1+ΔL2の値からなる。   The control circuit 50 controls the attenuation amount A of the optical variable attenuator 45 so that the sum of the gain G1 of the optical amplifier 41, the gain G2 of the optical amplifier 42, and the gain G3 of the optical amplifier 60 becomes C + ΔL. ing. In this case, ΔL is a correction value of the attenuation amount of the optical variable attenuator with respect to the optical transmission line 30 connected to the optical amplifier of the previous stage, and a correction value of the attenuation amount of the optical variable attenuator with respect to the DCF 66. It consists of a value of ΔL = ΔL1 + ΔL2 that is combined with a certain ΔL2.

すなわち、光増幅部41と42と60の利得は、
G1+G2+G3=C+ΔL …(16)
となる。また、光増幅部41の利得G1は、(2)式で、光増幅部42の利得G2は、(3)式で、光増幅部60の利得G3は、(13)式でそれぞれ求まっている。
That is, the gains of the optical amplifiers 41, 42, and 60 are
G1 + G2 + G3 = C + ΔL (16)
It becomes. Further, the gain G1 of the optical amplifying unit 41 is obtained by equation (2), the gain G2 of the optical amplifying unit 42 is obtained by equation (3), and the gain G3 of the optical amplifying unit 60 is obtained by equation (13). .

ここで、(16)式に(2)式と(3)式と(13)式を代入すると、
(P2−P1)+(P4−P3)+(P6−P5)=C+ΔL
となる。そして、上記の式から光可変減衰器45の減衰量(P2−P3)は、
(P2−P3)=C+ΔL−(P4−P1)−(P6−P5)…(17)
で求まる。従って、(1)式から減衰量Aは、
A=C+ΔL−(P4−P1)−(P6−P5)…(18)
で求まる。
Here, substituting (2), (3), and (13) into (16),
(P2-P1) + (P4-P3) + (P6-P5) = C + ΔL
It becomes. From the above equation, the attenuation amount (P2-P3) of the optical variable attenuator 45 is
(P2−P3) = C + ΔL− (P4−P1) − (P6−P5) (17)
It is obtained by Therefore, the attenuation amount A from the equation (1) is
A = C + ΔL− (P4−P1) − (P6−P5) (18)
It is obtained by

また、この実施例でも、上述した(8)式〜(11)式に基づいて光可変減衰器の減衰量の補正値ΔL(実際にはΔL1とΔL2を求めて加算する)を求めることができる。すなわち、この次段の光増幅装置に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値ΔL1は、
ΔL1=4.34・(β1・P06・Leff1)/a
ここで、P06:前段の伝送路へ入射される光信号のトータル光パワー[W]
β1:このトータル光パワーが入射される光伝送路に依存する係数
[1/(W・km・nm)]
Leff1:このトータル光パワーが入射される光伝送路の実効長[km]
a:自装置の光増幅器の設計に依存する比例係数
(単位:[1/nm])
となり、また、このDCF66に対する光可変減衰器の減衰量の補正値ΔL2は、
ΔL2=4.34・(β2・P4・Leff2)/a
ここで、P4:DCFへ入射される光信号のトータル光パワー[W]
β2:このトータル光パワーが入射されるDCFに依存する係数[1/
(W・km・nm)]
Leff2:このトータル光パワーが入射されるDCFの実効長[km]
となる。従って、この実施例における光可変減衰器の減衰量の補正値ΔLは、
ΔL=ΔL1+ΔL2
=4.34・(β1・P06・Leff1)/a+4.34・(β2・P4・Leff2)/a
=4.34・{(β1・P06・Leff1)+(β2・P4・Leff2)}/a
となる。
Also in this embodiment, the correction value ΔL (actually, ΔL1 and ΔL2 are obtained and added) of the attenuation amount of the optical variable attenuator can be obtained based on the above-described equations (8) to (11). . That is, the correction value ΔL1 of the attenuation amount of the optical variable attenuator with respect to the optical transmission line 30 connected to the optical amplifier of the next stage is
ΔL1 = 4.34 · (β1 · P06 · Leff1) / a
Here, P06: Total optical power [W] of the optical signal incident on the previous transmission line
β1: Coefficient depending on the optical transmission line on which this total optical power is incident
[1 / (W · km · nm)]
Leff1: Effective length [km] of an optical transmission line on which this total optical power is incident
a: Proportional coefficient depending on the design of its own optical amplifier
(Unit: [1 / nm])
Further, the correction value ΔL2 of the attenuation amount of the optical variable attenuator for the DCF 66 is
ΔL2 = 4.34 · (β2 · P4 · Leff2) / a
Here, P4: Total optical power [W] of the optical signal incident on the DCF
β2: Coefficient [1 / of the total optical power depending on the incident DCF
(W / km / nm)]
Leff2: Effective length [km] of DCF to which this total optical power is incident
It becomes. Therefore, the correction value ΔL of the attenuation of the optical variable attenuator in this embodiment is
ΔL = ΔL1 + ΔL2
= 4.34 · (β1 · P06 · Leff1) /a+4.34· (β2 · P4 · Leff2) / a
= 4.34 · {(β1 · P06 · Leff1) + (β2 · P4 · Leff2)} / a
It becomes.

このように、この実施例では、DCFおよび光伝送路でのSRSの影響によって発生する利得波長特性の傾きを補正するために、上流側の光伝送路の光出力パワーの検出結果から光可変減衰器の減衰量の補正値を求めて、この利得波長特性の傾きを打ち消すように光可変減衰器の減衰量を制御するので、図5の実施例2と同様の効果を得ることができるとともに、DCFでのSRSの影響を防ぐことができ、さらに伝送効率を向上できる。   As described above, in this embodiment, in order to correct the slope of the gain wavelength characteristic generated by the influence of the DCS and the SRS in the optical transmission line, the optical variable attenuation is obtained from the detection result of the optical output power of the upstream optical transmission line. Since the attenuation value of the optical variable attenuator is controlled so as to cancel the inclination of the gain wavelength characteristic by obtaining a correction value of the attenuation amount of the attenuator, it is possible to obtain the same effect as in the second embodiment of FIG. The influence of SRS in DCF can be prevented, and transmission efficiency can be further improved.

(実施例5)
次に、図9において、前段の光増幅装置に光可変減衰器が内蔵されていない場合について説明する。光可変減衰器を用いた制御機能は、製作コストが高くなるので、通常では、いくつか置きに光可変減衰器を備えた光増幅装置を設け、製作コストの低減を図る場合がある。
(Example 5)
Next, the case where the optical variable attenuator is not built in the preceding stage optical amplifying device in FIG. 9 will be described. Since a control function using an optical variable attenuator increases the manufacturing cost, an optical amplifying device provided with several optical variable attenuators is usually provided to reduce the manufacturing cost.

そこで、この実施例では、制御・監視信号受信回路52が上流側の光増幅装置70から送信されるDCF71に入射された中間光出力パワーP04と、光伝送路30に入射された光出力パワーP06の情報を、光分波器54を介して制御・監視信号として受信し、前段の光増幅装置70のDCF71およびこの光増幅装置70と自装置40間の光伝送路30で発生したSRSの影響による利得の傾きと逆の傾きを持たせるように、制御回路50によって光可変減衰器45の減衰量を制御している。ここで、P04は、前段の光増幅装置の中間光出力パワーであり、P06は、前段の光増幅装置の光出力パワーである。   Therefore, in this embodiment, the control / monitoring signal receiving circuit 52 receives the intermediate optical output power P04 incident on the DCF 71 transmitted from the upstream optical amplifying device 70 and the optical output power P06 incident on the optical transmission line 30. Is received as a control / monitoring signal via the optical demultiplexer 54, and the influence of the SRS generated in the optical transmission line 30 between the DCF 71 of the optical amplification device 70 in the previous stage and the optical amplification device 70 and its own device 40 is received. The amount of attenuation of the optical variable attenuator 45 is controlled by the control circuit 50 so as to have a slope opposite to the slope of the gain due to. Here, P04 is the intermediate optical output power of the preceding optical amplifying device, and P06 is the optical output power of the preceding optical amplifying device.

この制御回路50は、光増幅部41の利得G1と光増幅部42の利得G2と光増幅部60の利得G3の総和がC+ΔLになるように、この光可変減衰器45の減衰量Aを制御している。なお、この場合には、ΔLは、次段の光増幅装置に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値であるΔL1と、DCF66に対する光可変減衰器の減衰量の補正値であるΔL2と、前段の光増幅装置70に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値であるΔL3と、前段の光増幅装置70のDCF71に対する光可変減衰器の減衰量の補正値であるΔL4とを合わせたΔL=ΔL1+ΔL2+ΔL3+ΔL4の値からなる。   The control circuit 50 controls the attenuation amount A of the optical variable attenuator 45 so that the sum of the gain G1 of the optical amplifier 41, the gain G2 of the optical amplifier 42, and the gain G3 of the optical amplifier 60 becomes C + ΔL. is doing. In this case, ΔL is ΔL1, which is a correction value of the attenuation amount of the optical variable attenuator for the optical transmission line 30 connected to the optical amplifier of the next stage, and a correction value of the attenuation amount of the optical variable attenuator with respect to the DCF 66. ΔL2, which is a correction value of the attenuation amount of the optical variable attenuator with respect to the optical transmission line 30 connected to the optical amplifier 70 in the previous stage, and the attenuation amount of the optical variable attenuator with respect to the DCF 71 of the optical amplifier 70 in the previous stage. It consists of a value of ΔL = ΔL1 + ΔL2 + ΔL3 + ΔL4, which is a sum of correction value ΔL4.

この実施例では、光増幅部41と42と60の利得は、
G1+G2+G3=C+ΔL …(19)
となる。
In this embodiment, the gains of the optical amplifiers 41, 42 and 60 are
G1 + G2 + G3 = C + ΔL (19)
It becomes.

ここで、(19)式に(2)式と(3)式と(13)式を代入すると、
(P2−P1)+(P4−P3)+(P6−P5)=C+ΔL
となる。そして、上記の式から光可変減衰器45の減衰量(P2−P3)は、
(P2−P3)=C+ΔL−(P4−P1)−(P6−P5)…(20)
で求まる。
Here, substituting (2), (3), and (13) into (19),
(P2-P1) + (P4-P3) + (P6-P5) = C + ΔL
It becomes. From the above equation, the attenuation amount (P2-P3) of the optical variable attenuator 45 is
(P2−P3) = C + ΔL− (P4−P1) − (P6−P5) (20)
It is obtained by

また、この実施例でも、上述した(8)式〜(11)式に基づいて光可変減衰器の減衰量の補正値ΔL(実際にはΔL1〜ΔL4を求めて加算する)を求めることができる。すなわち、この次段の光増幅装置に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値ΔL1は、
ΔL1=4.34・(β1・P6・Leff1)/a
ここで、P6:次段の伝送路へ入射される光信号のトータル光パワー[W]
β1:このトータル光パワーが入射される光伝送路に依存する係数[1
/(W・km・nm)]
Leff1:このトータル光パワーが入射される光伝送路の実効長[km]
a:自装置の光増幅器の設計に依存する比例係数
(単位:[1/nm])
となり、また、この自装置のDCF66に対する光可変減衰器の減衰量の補正値ΔL2は、
ΔL2=4.34・(β2・P4・Leff2)/a
ここで、P4:自装置のDCFへ入射される光信号のトータル光パワー[W]
β2:このトータル光パワーが入射されるDCFに依存する係数[1/
(W・km・nm)]
Leff2:このトータル光パワーが入射されるDCFの実効長[km]
となる。
Also in this embodiment, the correction value ΔL (actually, ΔL1 to ΔL4 is obtained and added) of the attenuation amount of the optical variable attenuator can be obtained based on the above-described equations (8) to (11). . That is, the correction value ΔL1 of the attenuation amount of the optical variable attenuator with respect to the optical transmission line 30 connected to the optical amplifier of the next stage is
ΔL1 = 4.34 · (β1 · P6 · Leff1) / a
Here, P6: Total optical power [W] of the optical signal incident on the transmission path of the next stage
β1: Coefficient [1 depending on the optical transmission line on which this total optical power is incident
/ (W · km · nm)]
Leff1: Effective length [km] of an optical transmission line on which this total optical power is incident
a: Proportional coefficient depending on the design of its own optical amplifier
(Unit: [1 / nm])
In addition, the correction value ΔL2 of the attenuation amount of the optical variable attenuator with respect to the DCF 66 of this apparatus is
ΔL2 = 4.34 · (β2 · P4 · Leff2) / a
Here, P4: Total optical power [W] of the optical signal incident on the DCF of its own device
β2: Coefficient [1 / of the total optical power depending on the incident DCF
(W / km / nm)]
Leff2: Effective length [km] of DCF to which this total optical power is incident
It becomes.

また、前段の光増幅装置70に繋がる光伝送路30に対する光可変減衰器の減衰量の補正値であるΔL3は、
ΔL3=4.34・(β3・P06・Leff3)/a
ここで、P06:前段の伝送路へ入射される光信号のトータル光パワー[W]
β3:このトータル光パワーが入射される光伝送路に依存する係数[1
/(W・km・nm)]
Leff3:このトータル光パワーが入射される光伝送路の実効長[km]
となり、前段の光増幅装置70のDCF71に対する光可変減衰器の減衰量の補正値であるΔL4は、
ΔL4=4.34・(β4・P04・Leff4)/a
ここで、P04:前段の光増幅装置のDCFへ入射される光信号のトータル光パワー[W]
β4:このトータル光パワーが入射されるDCFに依存する係数[1/
(W・km・nm)]
Leff4:このトータル光パワーが入射されるDCFの実効長[km]
となる。
Further, ΔL3, which is a correction value of the attenuation amount of the optical variable attenuator with respect to the optical transmission line 30 connected to the optical amplifier 70 in the previous stage,
ΔL3 = 4.34 · (β3 · P06 · Leff3) / a
Here, P06: Total optical power [W] of the optical signal incident on the previous transmission line
β3: Coefficient [1 depending on the optical transmission line on which the total optical power is incident
/ (W · km · nm)]
Leff3: Effective length [km] of the optical transmission line on which this total optical power is incident
ΔL4, which is a correction value of the attenuation amount of the optical variable attenuator with respect to the DCF 71 of the optical amplifier 70 in the previous stage,
ΔL4 = 4.34 · (β4 · P04 · Leff4) / a
Here, P04: Total optical power [W] of the optical signal incident on the DCF of the preceding stage optical amplifying device
β4: Coefficient [1 / of the total optical power depending on the incident DCF
(W / km / nm)]
Leff4: Effective length [km] of DCF to which this total optical power is incident
It becomes.

従って、この実施例における光可変減衰器の減衰量の補正値ΔLは、
ΔL=ΔL1+ΔL2+ΔL3+ΔL4
=4.34・(β1・P6・Leff1)/a+4.34・(β2・P4・Leff2)/a+4.34・(β3・P06・Leff3)/a+4.34・(β4・P04・Leff4)/a
=4.34・{(β1・P6・Leff1)+(β2・P4・Leff2)+(β3・P06・Leff3)+(β4・P04・Leff4)}/a
となる。
Therefore, the correction value ΔL of the attenuation of the optical variable attenuator in this embodiment is
ΔL = ΔL1 + ΔL2 + ΔL3 + ΔL4
= 4.34 · (β1 · P6 · Leff1) /a+4.34· (β2 · P4 · Leff2) /a+4.34· (β3 · P06 · Leff3) /a+4.34· (β4 · P04 · Leff4) / a
= 4.34 · {(β1 · P6 · Leff1) + (β2 · P4 · Leff2) + (β3 · P06 · Leff3) + (β4 · P04 · Leff4)} / a
It becomes.

このように、この実施例では、前段の制御機能のない光増幅装置及び後段のプリアンプにおけるDCFおよび光伝送路でのSRSの影響によって発生する利得波長特性の傾きを補正するために、上流側の光伝送路の光出力パワーの検出結果から光可変減衰器の減衰量の補正値を求めて、この利得波長特性の傾きを打ち消すように、多段での光可変減衰器の減衰量を制御するので、上記の実施例と同様の効果を得ることができるとともに、複数段の光増幅装置での各波長における利得が均一となり、利得波長特性の平坦化が可能となり、さらに伝送効率を向上させることができる。   As described above, in this embodiment, in order to correct the slope of the gain wavelength characteristic generated by the influence of the DCS and the SRS in the optical transmission line in the optical amplifier having no control function in the front stage and the preamplifier in the rear stage, Since the attenuation value of the optical variable attenuator is calculated from the detection result of the optical output power of the optical transmission line, the attenuation amount of the optical variable attenuator in multiple stages is controlled so as to cancel the slope of the gain wavelength characteristic. In addition to obtaining the same effects as in the above embodiments, the gain at each wavelength in the multi-stage optical amplifying device is uniform, the gain wavelength characteristic can be flattened, and the transmission efficiency can be further improved. it can.

(実施例6)
次に、上述したこの発明にかかる光増幅装置を用いた光増幅中継システムの一実施例を図10に示す。なお、この実施例では、この発明にかかる光可変減衰器が内蔵されていない光増幅装置70,71とこの発明にかかる光増幅装置40が1本の光伝送路30上に接続されているシステムが示されている。
(Example 6)
Next, FIG. 10 shows an embodiment of an optical amplification repeater system using the above-described optical amplification apparatus according to the present invention. In this embodiment, the optical amplifying devices 70 and 71 not including the variable optical attenuator according to the present invention and the optical amplifying device 40 according to the present invention are connected on one optical transmission line 30. It is shown.

このシステムでは、光増幅装置70,71は、利得の波長特性の傾きを制御することができないので、そこで発生した利得の傾きも光増幅装置40で制御している。光増幅装置70,71の光出力パワーP1a,P1b,P2a,P2bの情報は、監視・制御信号として各光増幅装置70,71の制御・監視信号送信回路から光増幅装置40へ伝送される。なお、この光出力パワーP1a,P2aは、図9に示した中間光出力パワーP04に相当し、この光出力パワーP1b,P2bは、図9に示した光出力パワーP06に相当する。   In this system, since the optical amplifying devices 70 and 71 cannot control the slope of the wavelength characteristic of the gain, the optical amplifier 40 also controls the slope of the gain generated there. Information on the optical output powers P1a, P1b, P2a, and P2b of the optical amplifying devices 70 and 71 is transmitted from the control / monitoring signal transmission circuit of each of the optical amplifying devices 70 and 71 to the optical amplifying device 40 as a monitoring / control signal. The optical output powers P1a and P2a correspond to the intermediate optical output power P04 shown in FIG. 9, and the optical output powers P1b and P2b correspond to the optical output power P06 shown in FIG.

このシステムに用いられる光増幅装置40は、光出力パワーの情報を伝送できる装置である必要があるので、図5、図8、図9に示した制御・監視信号の送信回路と受信回路を備えたものが、構成上必須となる。   Since the optical amplifying device 40 used in this system needs to be a device capable of transmitting optical output power information, the optical amplifying device 40 includes the control / monitoring signal transmission circuit and the reception circuit shown in FIGS. Is essential for the configuration.

光増幅装置40の制御・監視信号送信回路は、例えばポーリング要求などによって光増幅装置70,71から光出力パワーの情報を得ることができる。他の光増幅装置から光伝送路30を介して光増幅装置40宛の制御・監視信号を取り込んだ光可変減衰器を有さない光増幅装置では、光増幅部を経由した後、再び光伝送路30に上記制御・監視信号を送出している。なお、制御・監視信号は、主信号と別の波長の光信号であって、かつ光増幅装置の増幅波長帯域外でも、またはこの帯域内でも良く、例えば光増幅装置の増幅波長帯域内の場合には、光増幅装置によって光増幅された後に送出される。   The control / monitor signal transmission circuit of the optical amplifying device 40 can obtain information on the optical output power from the optical amplifying devices 70 and 71 by, for example, a polling request. In an optical amplifying apparatus that does not have an optical variable attenuator that takes in a control / monitoring signal addressed to the optical amplifying apparatus 40 from another optical amplifying apparatus via the optical transmission line 30, the optical transmission is performed again after passing through the optical amplifying unit. The control / monitoring signal is sent to the path 30. The control / monitoring signal is an optical signal having a wavelength different from that of the main signal, and may be outside or within the amplification wavelength band of the optical amplification device. For example, the control / monitoring signal is within the amplification wavelength band of the optical amplification device. Is transmitted after being optically amplified by the optical amplifier.

このように、この実施例では、この発明にかかる光増幅装置を少なくとも1つ接続させて光増幅中継システムを構築するので、各光増幅装置における光パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせるように光可変減衰器の減衰量を制御でき、これにより各波長における利得の平坦化を図り、伝送効率を向上できる。   Thus, in this embodiment, since an optical amplification repeater system is constructed by connecting at least one optical amplification device according to the present invention, the slope of the gain generated by the SRS from the detection result of the optical power in each optical amplification device. The amount of attenuation of the optical variable attenuator can be controlled so as to have a slope opposite to the above, thereby flattening the gain at each wavelength and improving the transmission efficiency.

(実施例7)
図11は、上述したこの発明にかかる光増幅装置を用いた光増幅中継システムの他の実施例の構成を示すシステム構成図である。図において、このシステムでは、上り用および下り用の2本の光伝送路1,2を設け、各光伝送路1,2に複数の光増幅装置40,70〜73,80〜84をそれぞれ多段接続させた場合を示しており、これら光増幅装置の少なくとも1つにこの発明にかかる光増幅装置40が設けられている。
(Example 7)
FIG. 11 is a system configuration diagram showing the configuration of another embodiment of the optical amplification repeater system using the above-described optical amplification apparatus according to the present invention. In the figure, in this system, two optical transmission paths 1 and 2 for upstream and downstream are provided, and a plurality of optical amplifying devices 40, 70 to 73 and 80 to 84 are provided in each of the optical transmission paths 1 and 2, respectively. The case where it connects is shown, The optical amplifier 40 concerning this invention is provided in at least one of these optical amplifiers.

そして、光増幅装置40の上流側にも、下流側にも光可変減衰器を内蔵していない複数の光増幅装置70〜73が存在する場合には、これら光増幅装置70〜73で発生した光出力パワーP1a〜P5a,P1b〜P5bの情報が光増幅装置40へ伝送されている。なお、下流側の光増幅装置72,73の光出力パワーP4a,P4b,P5a,P5bの情報は、監視用モジュールSVおよび光増幅装置82〜84を介して光増幅装置40へ伝送されている。   When there are a plurality of optical amplifying devices 70 to 73 that do not have an optical variable attenuator on either the upstream side or the downstream side of the optical amplifying device 40, the optical amplifying devices 70 to 73 are generated. Information of the optical output powers P1a to P5a and P1b to P5b is transmitted to the optical amplifying device 40. Information on the optical output powers P4a, P4b, P5a, and P5b of the downstream optical amplifying devices 72 and 73 is transmitted to the optical amplifying device 40 via the monitoring module SV and the optical amplifying devices 82 to 84.

この光増幅装置40は、これら光増幅装置における光出力パワーの検出結果からSRSによって発生する利得の傾きと逆の傾きを持たせるように光可変減衰器の減衰量を制御する。   The optical amplifying apparatus 40 controls the attenuation amount of the optical variable attenuator so as to have a slope opposite to the slope of the gain generated by the SRS from the detection result of the optical output power in the optical amplifying apparatus.

このように、この実施例では、この発明にかかる光増幅装置を少なくとも1つ接続させた上り用および下り用の光伝送路を有し、双方向伝送を行う光増幅中継システムを構築するので、図10の実施例6と同様の効果を得ることができるとともに、下流側の光パワーの検出結果も受信できて、上下流に関わりなくSRSによって発生する利得の傾きと逆の傾きを持たせるように光可変減衰器の減衰量を制御でき、目標とする段の光増幅装置での各波長における利得が均一となり、利得波長特性の平坦化が可能となり、さらに伝送効率を向上させることができる。   As described above, in this embodiment, since an optical amplification relay system that performs bidirectional transmission has been constructed having an optical transmission path for upstream and downstream to which at least one optical amplification device according to the present invention is connected, The effect similar to that of the sixth embodiment of FIG. 10 can be obtained, and the downstream optical power detection result can be received, so that the slope of the gain generated by the SRS is opposite to that of the upstream and downstream. In addition, the attenuation of the optical variable attenuator can be controlled, the gain at each wavelength in the target stage optical amplifying device becomes uniform, the gain wavelength characteristic can be flattened, and the transmission efficiency can be further improved.

この発明は、これら実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々の変形実施が可能である。   The present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention.

この発明にかかる光増幅装置の実施例1の構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of Example 1 of the optical amplifier concerning this invention. 図1に示した各部の利得波長特性を示す特性図である。It is a characteristic view which shows the gain wavelength characteristic of each part shown in FIG. 同じく、各部における光パワーを示すレベルダイヤグラムを示す図である。Similarly, it is a figure which shows the level diagram which shows the optical power in each part. 利得の大きさによって、利得波長特性の傾きが変化することを説明するための利得波長特性を示す特性図である。It is a characteristic view showing a gain wavelength characteristic for explaining that the slope of the gain wavelength characteristic changes depending on the magnitude of the gain. この発明にかかる光増幅装置の実施例2の構成を示す構成図である。It is a block diagram which shows the structure of Example 2 of the optical amplifier concerning this invention. 図5に示した各部の利得波長特性を示す特性図である。It is a characteristic view which shows the gain wavelength characteristic of each part shown in FIG. この発明にかかる光増幅装置の実施例3の構成を示す構成図である。It is a block diagram which shows the structure of Example 3 of the optical amplifier concerning this invention. この発明にかかる光増幅装置の実施例4の構成を示す構成図である。It is a block diagram which shows the structure of Example 4 of the optical amplifier concerning this invention. この発明にかかる光増幅装置の実施例5の構成を示す構成図である。It is a block diagram which shows the structure of Example 5 of the optical amplifier concerning this invention. この発明にかかる光増幅装置を用いた光増幅中継システムの一実施例の構成を示すシステム構成図である。1 is a system configuration diagram showing the configuration of an embodiment of an optical amplification repeater system using an optical amplification apparatus according to the present invention. この発明にかかる光増幅装置を用いた光増幅中継システムの他の実施例の構成を示すシステム構成図である。It is a system block diagram which shows the structure of the other Example of the optical amplification relay system using the optical amplifier concerning this invention. 従来のWDMシステムの構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the conventional WDM system. 図12に示される光増幅装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the optical amplification apparatus shown by FIG. 図13に示した各部の利得波長特性を示す特性図である。It is a characteristic view which shows the gain wavelength characteristic of each part shown in FIG. 同じく、各部における光パワーを示すレベルダイヤグラムを示す図である。Similarly, it is a figure which shows the level diagram which shows the optical power in each part. 光出力パワーとWDM信号の光スペクトラムの傾きの関係を示す図である。It is a figure which shows the relationship between the optical output power and the inclination of the optical spectrum of a WDM signal.

符号の説明Explanation of symbols

1,2,30 光ファイバ伝送路(光伝送路)
10 送信端局装置
12,55 光合波器
13 光増幅装置
20 受信端局装置
21,40,70〜73,80〜84 光ファイバ増幅装置(光増幅装置)
22,46,47,54,56,57,62,63 光分波器
41,42,60 光増幅部
45 光可変減衰器
48,49 光パワー検出回路
50 制御回路
51 補正回路
52 制御・監視信号受信回路
53 制御・監視信号送信回路
58,59,64,65 光パワー検出回路
111〜11n 各光送信器
231〜23n 光受信器
1, 2, 30 Optical fiber transmission line (optical transmission line)
DESCRIPTION OF SYMBOLS 10 Transmission terminal station apparatus 12,55 Optical multiplexer 13 Optical amplification apparatus 20 Reception terminal station apparatus 21,40,70-73,80-84 Optical fiber amplification apparatus (optical amplification apparatus)
22, 46, 47, 54, 56, 57, 62, 63 Optical demultiplexer 41, 42, 60 Optical amplifier 45 Optical variable attenuator 48, 49 Optical power detection circuit 50 Control circuit 51 Correction circuit 52 Control / monitoring signal Reception circuit 53 Control / monitoring signal transmission circuit 58, 59, 64, 65 Optical power detection circuit 111-11n Each optical transmitter 231-23n Optical receiver

Claims (3)

光伝送路に多段接続された光増幅装置で、前記光伝送路に伝搬される波長多重光信号を増幅して中継する光増幅中継システムにおいて、
各光増幅装置は、
少なくとも下段側に接続される光伝送路に出力する光出力パワーを、該光伝送路を介して下段側の光増幅装置に制御監視信号として送信する制御監視信号送信回路を備え、
前記光増幅装置のうちの少なくとも1つの光増幅装置は、
前記光伝送路を介して入力する波長多重光信号を増幅する少なくとも2つの光増幅部と、
前記2つの光増幅部の間に接続された少なくとも1つの可変減衰器と、
前記2つの光増幅部の間に接続された分散補償型光伝送路と、
前記制御監視信号送信回路から送信された制御監視信号が示す光出力パワーである他装置光の出力パワーと前記分散補償型光伝送路に出力する分散補償型光伝送路光出力パワーと当該少なくとも1つの光増幅装置の後段側に接続される光伝送路に出力する自装置の光出力パワーとを検出する検出手段と、
前記光出力パワーと、該光出力パワーが入力される光伝送路に発生する誘導ラマン散乱によって発生する利得の傾きを示す係数と、該光出力パワーが入力される光伝送路の実効長と、設計段階における前記光増幅部の利得変動時の利得の傾きの大きさを示す係数と、前記分散補償型光伝送路光出力パワーと、該分散補償型光伝送路光出力パワーが出力される前記分散補償型光伝送路に発生する誘導ラマン散乱によって発生する利得の傾きを示す係数と、前記分散補償型光伝送路の実効長と、に基づいて前記光伝送路及び前記分散補償型光伝送路の両方によって発生する誘導ラマン散乱による利得波長特性の傾きを打ち消すための前記可変減衰器の減衰量の補正値ΔLを求め、該ΔLを用いて前記可変減衰量を制御する制御手段と、を備え、当該少なくとも1つの光増幅装置の後段側に接続される光伝送路から出力する光パワーが一定に保たれることを特徴とする光増幅中継システム。
In an optical amplifying and relaying system that amplifies and repeats a wavelength multiplexed optical signal propagated to the optical transmission line in an optical amplifying apparatus connected in multiple stages to the optical transmission line,
Each optical amplifier is
A control monitoring signal transmission circuit for transmitting at least the optical output power output to the optical transmission line connected to the lower stage side as a control monitoring signal to the lower stage optical amplification device via the optical transmission line;
At least one of the light amplifying devices is:
At least two optical amplifying units for amplifying a wavelength multiplexed optical signal input via the optical transmission line;
At least one variable attenuator connected between the two optical amplification units;
A dispersion-compensating optical transmission line connected between the two optical amplification units;
The output power of the other device light that is the optical output power indicated by the control monitoring signal transmitted from the control monitoring signal transmission circuit, the dispersion-compensating optical transmission line optical output power to be output to the dispersion-compensating optical transmission line, and at least one of them Detecting means for detecting the optical output power of the own device to be output to the optical transmission line connected to the latter stage side of the two optical amplifying devices;
The optical output power, a coefficient indicating a slope of a gain generated by stimulated Raman scattering generated in the optical transmission path to which the optical output power is input, an effective length of the optical transmission path to which the optical output power is input, The coefficient indicating the magnitude of the gain gradient when the gain of the optical amplification unit is varied in the design stage, the dispersion-compensated optical transmission line optical output power, and the dispersion-compensated optical transmission line optical output power are output. The optical transmission line and the dispersion-compensating optical transmission line based on a coefficient indicating a slope of gain generated by stimulated Raman scattering generated in the dispersion-compensating optical transmission line and the effective length of the dispersion-compensating optical transmission line And a control means for obtaining a correction value ΔL of the attenuation amount of the variable attenuator for canceling the slope of the gain wavelength characteristic due to stimulated Raman scattering generated by both , and controlling the variable attenuation amount using the ΔL. The concerned An optical amplification repeater system characterized in that an optical power output from an optical transmission line connected to a rear stage side of at least one optical amplification device is kept constant.
上り用と下り用の少なくとも2本の光伝送路に多段接続された光増幅装置で、前記光伝送路に伝搬される波長多重光信号を増幅して双方向の光中継を行う光増幅中継システムにおいて、
各光増幅装置は、
前記光伝送路に出力する光出力パワーを、該光伝送路を介して下段側の光増幅装置に制御監視信号として送信する制御監視信号送信回路を備え、
前記2本の光伝送路上の各光増幅装置の各段間は、少なくとも前記制御監視信号を双方向に伝達する監視用モジュールを備え、
前記光増幅装置のうち、前記2つの各光伝送路上に設けられた少なくとも1つの光増幅装置は、
前記光伝送路を介して入力する波長多重光信号を増幅する少なくとも2つの光増幅部と、
前記2つの光増幅部の間に接続された少なくとも1つの可変減衰器と、
前記2つの光増幅部の間に接続された分散補償型光伝送路と、
前記制御監視信号送信回路から送信され前記監視用モジュールを介して受信された制御監視信号が示す光出力パワーである他装置の光出力パワーと前記分散補償型光伝送路に出力する分散補償型光伝送路光出力パワーと当該少なくとも1つの光増幅装置の後段側に接続される光伝送路に出力する自装置の光出力パワーとを検出する検出手段と、
前記光出力パワーと、該光出力パワーが入力される光伝送路に発生する誘導ラマン散乱によって発生する利得の傾きを示す係数と、該光出力パワーが入力される光伝送路の実効長と、設計段階における前記光増幅部の利得変動時の利得の傾きの大きさを示す係数と、前記分散補償型光伝送路光出力パワーと、該分散補償型光伝送路光出力パワーが出力される前記分散補償型光伝送路に発生する誘導ラマン散乱によって発生する利得傾きを示す係数と、前記分散補償型光伝送路の実効長と、に基づいて前記光伝送路及び前記分散補償型光伝送路の両方によって発生する誘導ラマン散乱による利得波長特性の傾きを打ち消すための前記可変減衰器の減衰量の補正値ΔLを求め、該ΔLを用いて前記可変減衰量を制御する制御手段と、を備え、前記2本の光伝送路の最終出力端から出力する光パワーが一定に保たれることを特徴とする光増幅中継システム。
An optical amplification repeater system that amplifies a wavelength-multiplexed optical signal propagated to the optical transmission line and performs bidirectional optical relay in an optical amplification device connected in multiple stages to at least two optical transmission lines for upstream and downstream In
Each optical amplifier is
A control monitoring signal transmission circuit for transmitting the optical output power to be output to the optical transmission line as a control monitoring signal to the lower-stage optical amplifying device via the optical transmission line;
Between each stage of each optical amplifying device on the two optical transmission lines, a monitoring module that transmits at least the control monitoring signal in both directions is provided,
Among the optical amplification devices, at least one optical amplification device provided on each of the two optical transmission lines is:
At least two optical amplifying units for amplifying a wavelength multiplexed optical signal input via the optical transmission line;
At least one variable attenuator connected between the two optical amplification units;
A dispersion-compensating optical transmission line connected between the two optical amplification units;
The optical output power of the other device, which is the optical output power indicated by the control monitoring signal transmitted from the control monitoring signal transmission circuit and received via the monitoring module, and the dispersion compensated light output to the dispersion compensated optical transmission line Detecting means for detecting the optical output power of the transmission line and the optical output power of the own apparatus output to the optical transmission line connected to the rear stage side of the at least one optical amplifying device;
The optical output power, a coefficient indicating a slope of a gain generated by stimulated Raman scattering generated in the optical transmission path to which the optical output power is input, an effective length of the optical transmission path to which the optical output power is input, The coefficient indicating the magnitude of the gain gradient when the gain of the optical amplification unit is varied in the design stage, the dispersion-compensated optical transmission line optical output power, and the dispersion-compensated optical transmission line optical output power are output. Based on the coefficient indicating the gain gradient generated by stimulated Raman scattering generated in the dispersion-compensating optical transmission line and the effective length of the dispersion-compensating optical transmission line , the optical transmission line and the dispersion-compensating optical transmission line A control means for obtaining a correction value ΔL of the attenuation amount of the variable attenuator for canceling the slope of the gain wavelength characteristic due to stimulated Raman scattering generated by both , and controlling the variable attenuation amount using the ΔL; 2 above An optical amplification repeater system characterized in that the optical power output from the final output end of the optical transmission line is kept constant.
前記少なくとも1つの光増幅装置以外の他の光増幅装置の少なくとも1つは、分散補償型光伝送路を有し、
前記他の光増幅装置の前記制御監視信号送信回路は、該他の光増幅装置内の前記分散補償型光伝送路に出力する分散補償型光伝送路光出力パワーを含めて前記制御監視信号として送信し、
前記制御手段は、前記他の光増幅装置内の分散補償型光伝送路に発生する誘導ラマン散乱によって発生する利得の傾きを加味して前記可変減衰量を制御することを特徴とする請求項1または2に記載の光増幅中継システム。
At least one of the other optical amplifying devices other than the at least one optical amplifying device has a dispersion-compensating optical transmission line,
The control monitoring signal transmission circuit of the other optical amplifying device includes the dispersion-compensating optical transmission line optical output power output to the dispersion-compensating optical transmission line in the other optical amplifying device as the control monitoring signal. Send
2. The control unit according to claim 1, wherein the control unit controls the variable attenuation amount in consideration of a slope of a gain generated by stimulated Raman scattering generated in a dispersion compensation type optical transmission line in the other optical amplifying device. Or the optical amplification repeater system of 2.
JP2006281973A 2006-10-16 2006-10-16 Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus Expired - Lifetime JP4630256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281973A JP4630256B2 (en) 2006-10-16 2006-10-16 Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281973A JP4630256B2 (en) 2006-10-16 2006-10-16 Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002062669A Division JP3923342B2 (en) 2002-03-07 2002-03-07 Optical amplification method and optical amplification device

Publications (2)

Publication Number Publication Date
JP2007028673A JP2007028673A (en) 2007-02-01
JP4630256B2 true JP4630256B2 (en) 2011-02-09

Family

ID=37788719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281973A Expired - Lifetime JP4630256B2 (en) 2006-10-16 2006-10-16 Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus

Country Status (1)

Country Link
JP (1) JP4630256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649416A (en) * 2018-06-27 2018-10-12 武汉光迅科技股份有限公司 Fiber lengths are to maximum gain impact factor acquisition methods and device in a kind of distributed Raman fiber amplifier

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223638B2 (en) * 2008-12-05 2013-06-26 住友電気工業株式会社 Control method of optical receiver module
JP5251661B2 (en) * 2009-03-26 2013-07-31 日本電気株式会社 Optical amplifier device, control method therefor, and optical transmission system
JP7073867B2 (en) * 2018-04-09 2022-05-24 富士通株式会社 Optical wavelength division multiplexing transmission device and optical wavelength division multiplexing transmission method
CN108964753B (en) * 2018-06-27 2021-02-26 武汉光迅科技股份有限公司 Maximum gain obtaining method and device of Raman fiber amplifier
JP7064139B2 (en) * 2018-07-12 2022-05-10 日本電信電話株式会社 Optical amplification relay system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201111A (en) * 1996-05-02 2000-07-18 Fujitsu Ltd Control method of WDM optical transmission system
JP2001053686A (en) * 1999-08-12 2001-02-23 Fujitsu Ltd Composite optical amplifier, n-wavelength band WDM optical signal transmitter, optical transmission system, and optical amplification method
JP2001103013A (en) * 1999-09-28 2001-04-13 Fujitsu Ltd Monitoring method of optical power deviation between wavelengths, and optical equalizer and optical amplifier using the same
JP2001144352A (en) * 1999-11-17 2001-05-25 Sumitomo Electric Ind Ltd Optical amplifier
JP2001244528A (en) * 2000-02-28 2001-09-07 Fujitsu Ltd Optical amplifier, composite optical amplifier, and optical communication system
JP2003298529A (en) * 2002-04-05 2003-10-17 Hitachi Ltd Gain compensation device and transmission system using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201111A (en) * 1996-05-02 2000-07-18 Fujitsu Ltd Control method of WDM optical transmission system
JP2001053686A (en) * 1999-08-12 2001-02-23 Fujitsu Ltd Composite optical amplifier, n-wavelength band WDM optical signal transmitter, optical transmission system, and optical amplification method
JP2001103013A (en) * 1999-09-28 2001-04-13 Fujitsu Ltd Monitoring method of optical power deviation between wavelengths, and optical equalizer and optical amplifier using the same
JP2001144352A (en) * 1999-11-17 2001-05-25 Sumitomo Electric Ind Ltd Optical amplifier
JP2001244528A (en) * 2000-02-28 2001-09-07 Fujitsu Ltd Optical amplifier, composite optical amplifier, and optical communication system
JP2003298529A (en) * 2002-04-05 2003-10-17 Hitachi Ltd Gain compensation device and transmission system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649416A (en) * 2018-06-27 2018-10-12 武汉光迅科技股份有限公司 Fiber lengths are to maximum gain impact factor acquisition methods and device in a kind of distributed Raman fiber amplifier
CN108649416B (en) * 2018-06-27 2019-09-13 武汉光迅科技股份有限公司 Fiber lengths are to maximum gain impact factor acquisition methods and device in a kind of distributed Raman fiber amplifier

Also Published As

Publication number Publication date
JP2007028673A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US6359726B1 (en) Wavelength division multiplexing optical amplifier with function of gain-equalizing and optical communication system
US6462861B2 (en) Optical amplifying apparatus and optical communication system
EP1215527B1 (en) Light amplifier using raman amplification and control method thereof
US6292289B1 (en) Method, device, and system for transmitting a supervisory optical signal
JP4665344B2 (en) Optical transmission device that compensates for inter-wavelength level deviation and optical SN deviation
JP4686906B2 (en) Wavelength multiplexing optical transmission equipment
JP3969807B2 (en) Dispersion compensation device
JP4046602B2 (en) Raman amplifier and optical repeater transmission system
JP4630256B2 (en) Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus
EP1478109A1 (en) Optical amplifier, communication system and method for control tilt of a communication system
US7145718B2 (en) Control method of optical fiber amplifier and optical transmission system
EP1298764B1 (en) Device and method for optical amplification
US7075709B2 (en) Optical transmission system, optical repeater, and optical transmission method
JP3923342B2 (en) Optical amplification method and optical amplification device
JP4234382B2 (en) Optical amplification method, apparatus thereof, and optical amplification repeater system using the apparatus
JP2001168841A (en) Wavelength multiplex optical amplifier
EP1427118A1 (en) Optical fiber amplifier having automatic power control function and automatic power control method
JP2006287979A (en) Method for light amplification, apparatus therefor, and optical-amplification relay system using the apparatus
JP2003152645A (en) Noise light elimination method using stimulated Brillouin scattering, noise light elimination device, and optical transmission system
JP2003258346A (en) Optical amplifier and attenuation adjustment method
JP2012043934A (en) Amplification device, communication system and amplification method
JP2008153558A (en) Light transmission system and its signal spectrum correction method
JP3609968B2 (en) Optical amplifier
US8385743B2 (en) Channel allocation method for multi-channel optical transmission and optical transmission system utilizing the method
JP2004296581A (en) Optical amplifier and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4630256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term