[go: up one dir, main page]

JP4627002B2 - Manufacturing method of hermetic compressor - Google Patents

Manufacturing method of hermetic compressor Download PDF

Info

Publication number
JP4627002B2
JP4627002B2 JP2005121814A JP2005121814A JP4627002B2 JP 4627002 B2 JP4627002 B2 JP 4627002B2 JP 2005121814 A JP2005121814 A JP 2005121814A JP 2005121814 A JP2005121814 A JP 2005121814A JP 4627002 B2 JP4627002 B2 JP 4627002B2
Authority
JP
Japan
Prior art keywords
rotor
insertion hole
shaft insertion
shaft
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005121814A
Other languages
Japanese (ja)
Other versions
JP2006304467A (en
Inventor
庸賀 田島
智明 及川
修 風間
貴弘 堤
智博 白畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005121814A priority Critical patent/JP4627002B2/en
Publication of JP2006304467A publication Critical patent/JP2006304467A/en
Application granted granted Critical
Publication of JP4627002B2 publication Critical patent/JP4627002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

この発明は、空気調和機等に使用される密閉型圧縮機の製造方法に関するものである。   The present invention relates to a method for manufacturing a hermetic compressor used in an air conditioner or the like.

近年、空気調和機等に使用される圧縮機用電動機には、高効率化のため回転子に永久磁石を用いた永久磁石型電動機が主流となっている。このような圧縮機の組立方法として、回転子の永久磁石が未着磁の状態にて、回転子とシャフトを固着するとともに、回転子を固定子の内部に組み込み、その後に固定子の巻線に電流を流すことにより回転子の永久磁石を着磁するものがある。   2. Description of the Related Art In recent years, a permanent magnet type motor using a permanent magnet as a rotor has become the mainstream of compressor motors used in air conditioners and the like for high efficiency. As a method of assembling such a compressor, the rotor and the shaft are fixed while the rotor's permanent magnet is not magnetized, and the rotor is incorporated into the stator, and then the stator winding Some magnetize the permanent magnet of the rotor by passing an electric current through the rotor.

しかし、この方法では固定子の巻線に高電圧の着磁電圧が印加されるとともに、大きな着磁電流が流れるため、巻線の信頼性が低下する恐れがあった。特に、最近では回転子に組み込まれる永久磁石には、高磁力である希土類磁石が主流となっている。しかし、この希土類磁石は保持力が高いため、着磁に必要な着磁電圧、着磁電流も大きくなってしまい、着磁による固定子巻線の信頼性が低下する恐れがより高いものとなっていた。   However, in this method, since a high magnetizing voltage is applied to the stator winding and a large magnetizing current flows, the reliability of the winding may be reduced. In particular, rare-earth magnets having a high magnetic force have become mainstream recently for permanent magnets incorporated in rotors. However, since this rare earth magnet has a high coercive force, the magnetizing voltage and magnetizing current necessary for magnetizing also increase, and there is a higher possibility that the reliability of the stator winding due to magnetization will be reduced. It was.

また、固定子の巻線方式が集中巻方式の場合、不均等な磁束が発生するため、着磁電流や着磁回数を増やす必要があり、さらに巻線の信頼性が低下する恐れがあった。   In addition, when the winding method of the stator is a concentrated winding method, uneven magnetic flux is generated, so it is necessary to increase the magnetizing current and the number of times of magnetization, and there is a risk that the reliability of the winding may be reduced. .

この対策として、専用着磁ヨークにより回転子の永久磁石を着磁した後に、回転子を圧縮機に組み込むものがある(例えば、特許文献1参照)。
特開2003−70215号公報
As a countermeasure against this, there is a method in which a permanent magnet of a rotor is magnetized by a dedicated magnetizing yoke and then the rotor is incorporated into a compressor (for example, see Patent Document 1).
JP 2003-70215 A

回転子をシャフトに固着する方法として、回転子を加熱することにより回転子の中心部に設けられたシャフト挿入孔の径を膨張させ、そこにシャフトを挿入するものがある。この場合の加熱手段としては、電気炉等の高温槽に回転子を投入するのが主に知られている。この加熱方法では、回転子の温度は、シャフト挿入孔から永久磁石までほぼ均一に加熱される。しかし、希土類磁石は高温になるほど保持力が低下してしまうという特性があるため、着磁後に加熱した場合に、永久磁石がある温度以上に上がると減磁してしまうといった問題があった。回転子の永久磁石が減磁すると、性能の低下や制御性の悪化につながってしまうため、減磁を許容することはできない。この対策として、永久磁石が減磁しないように回転子の加熱温度を低く設定すると、シャフト挿入孔が十分に膨張しきれず、シャフトの挿入不良となってしまう課題がある。   As a method of fixing the rotor to the shaft, there is a method of expanding the diameter of a shaft insertion hole provided in the center portion of the rotor by heating the rotor and inserting the shaft there. As a heating means in this case, it is mainly known to put a rotor in a high temperature bath such as an electric furnace. In this heating method, the temperature of the rotor is heated almost uniformly from the shaft insertion hole to the permanent magnet. However, since the rare earth magnet has a characteristic that the holding power decreases as the temperature increases, there is a problem that when the magnet is heated after magnetization, the permanent magnet is demagnetized when the temperature rises above a certain temperature. When the permanent magnet of the rotor is demagnetized, the performance is deteriorated and the controllability is deteriorated. Therefore, demagnetization cannot be allowed. As a countermeasure, if the heating temperature of the rotor is set low so that the permanent magnet is not demagnetized, there is a problem that the shaft insertion hole cannot be sufficiently expanded and the shaft is poorly inserted.

また、回転子とシャフトの固着手段として、回転子を加熱せずに圧入するという方法もある。しかしながら、この方法では、シャフトと一体化されている圧縮要素部や、圧縮要素部と密閉容器とを固着している溶接部等に過大な負荷がかかり、これにより歪みを生じ、性能が低下したり、信頼性を損なう恐れがあった。   As a means for fixing the rotor and the shaft, there is a method in which the rotor is press-fitted without heating. However, in this method, an excessive load is applied to the compression element portion integrated with the shaft, the welded portion where the compression element portion and the sealed container are fixed, and this causes distortion, resulting in reduced performance. Or there was a risk of losing reliability.

この発明は、上記のよう課題を解決するためになされたもので、性能や信頼性を損なうことのない密閉型圧縮機の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a method for manufacturing a hermetic compressor that does not impair performance and reliability.

この発明に係る密閉型圧縮機の製造方法は、巻線が施される固定子と、希土類永久磁石を使用し、中心部にシャフト挿入孔が設けられた回転子とを有する電動要素部と、冷媒を圧縮し、電動要素部とシャフトで連結された圧縮要素部とを密閉容器内に収容した密閉型圧縮機の製造方法において、回転子の希土類永久磁石を着磁し、回転子のシャフト挿入孔に加熱用コイルを挿入し誘導加熱により回転子を加熱し、圧縮要素部のシャフトを加熱されて拡径した回転子のシャフト挿入孔に挿入し固着することを特徴とする。   A method for manufacturing a hermetic compressor according to the present invention includes an electric element unit including a stator on which windings are provided, and a rotor using a rare earth permanent magnet and having a shaft insertion hole at the center, In a manufacturing method of a hermetic compressor in which a refrigerant is compressed and an electric element part and a compression element part connected by a shaft are accommodated in a hermetic container, the rotor rare earth permanent magnet is magnetized and the rotor shaft is inserted. A heating coil is inserted into the hole, the rotor is heated by induction heating, and the shaft of the compression element is inserted into the shaft insertion hole of the rotor whose diameter has been increased by heating, and is fixed.

この発明の密閉型圧縮機の製造方法は、上記構成により、回転子のシャフト挿入孔を、シャフトが挿入可能な温度まで加熱しても、永久磁石の温度はそれよりも低い温度となるので減磁することが無く、性能や制御性の悪化を防止するという効果を有する。
また、回転子とシャフトの固着方法が、圧入ではなく焼嵌めなので、圧縮要素部等に歪みが生じることが無く、性能や信頼性の低下を防止することができる。
According to the method for manufacturing a hermetic compressor of the present invention, even if the shaft insertion hole of the rotor is heated to a temperature at which the shaft can be inserted, the temperature of the permanent magnet becomes lower than that even if the shaft insertion hole of the rotor is heated. There is no magnetism, and it has the effect of preventing deterioration in performance and controllability.
In addition, since the fixing method between the rotor and the shaft is not press-fitting but shrink fitting, there is no distortion in the compression element portion and the like, and performance and reliability can be prevented from being lowered.

実施の形態1.
図1〜6は実施の形態1を示す図で、図1は密閉型圧縮機の縦断面図、図2は電動要素部の軸直交方向の断面図、図3は密閉型圧縮機の組立工程を示す図、図4は加熱用コイルを示す図、図5は密閉型圧縮機の組立工程を示すフローチャート、図6は加熱工程における回転子の温度推移を示す図である。
図1において、密閉型圧縮機は、密閉容器1内に、電動要素部2と圧縮要素部3を収容している。電動要素部2は、巻線方式が集中巻方式の固定子4(但し、集中巻方式に限定されない。他の巻線方式でもよい。)と回転子5とを有する、永久磁石型電動機である。回転子5は、永久磁石挿入用のスリット(磁石収容穴)を設けた電磁鋼板を積層してなる回転子鉄心6と、スリットに挿入される希土類永久磁石7とから構成される。また、電動要素部2と圧縮要素部3とはシャフト8により連結されている。なお、冷媒は吸入管9より圧縮要素部3に導入され、圧縮要素部3にて圧縮された高温高圧の冷媒ガスは密閉容器1の上部に設けられた吐出管10から密閉容器1の外へ吐出される。
Embodiment 1 FIG.
1 to 6 are diagrams showing Embodiment 1, FIG. 1 is a longitudinal sectional view of a hermetic compressor, FIG. 2 is a sectional view of an electric element section in an axis orthogonal direction, and FIG. 3 is an assembly process of the hermetic compressor. FIG. 4 is a diagram showing the heating coil, FIG. 5 is a flowchart showing the assembly process of the hermetic compressor, and FIG. 6 is a diagram showing the temperature transition of the rotor in the heating process.
In FIG. 1, the hermetic compressor accommodates an electric element part 2 and a compression element part 3 in a hermetic container 1. The electric element section 2 is a permanent magnet type electric motor having a stator 4 whose winding method is a concentrated winding method (however, it is not limited to the concentrated winding method, and may be another winding method) and a rotor 5. . The rotor 5 includes a rotor core 6 formed by laminating electromagnetic steel sheets provided with slits (magnet housing holes) for inserting permanent magnets, and a rare earth permanent magnet 7 inserted into the slits. The electric element portion 2 and the compression element portion 3 are connected by a shaft 8. The refrigerant is introduced from the suction pipe 9 into the compression element section 3, and the high-temperature and high-pressure refrigerant gas compressed by the compression element section 3 is discharged from the discharge pipe 10 provided at the upper part of the sealed container 1 to the outside of the sealed container 1. Discharged.

図2により、電動要素部2を構成する永久磁石型電動機の一例の構造を簡単に説明する。永久磁石型電動機は、固定子4と、シャフト8に固定される回転子5とを有する。固定子4は、固定子鉄心4aに径方向に複数のティース4cが形成され(図2の例では、ティース4cが9個)、各ティース4cには巻線方式が集中巻方式の巻線4bが施されている。   With reference to FIG. 2, the structure of an example of a permanent magnet type electric motor constituting the electric element portion 2 will be briefly described. The permanent magnet motor has a stator 4 and a rotor 5 fixed to the shaft 8. In the stator 4, a plurality of teeth 4 c are formed in the radial direction on the stator core 4 a (in the example of FIG. 2, nine teeth 4 c), and each tooth 4 c has a concentrated winding winding 4 b. Is given.

回転子5は、回転子鉄心6の外周に近い位置に磁石収納穴6aが極数分形成され、各磁石収納穴6aに希土類永久磁石7が収納されている。回転子5の中心部には、シャフト8が固定される。   In the rotor 5, magnet housing holes 6a are formed for the number of poles at positions close to the outer periphery of the rotor core 6, and rare earth permanent magnets 7 are housed in the respective magnet housing holes 6a. A shaft 8 is fixed to the center of the rotor 5.

次に図3〜6を参照しながら密閉型圧縮機の製造方法について説明する。
まず、図3(a)に示すように、搬送用パレット20に回転子5を位置決めして置く(図5のS1)。なお、搬送用パレット20に対する回転子5の位置決めは、図示しないが、例えば搬送用パレット20の芯出し部21に設けた突起部と、回転子5のシャフト挿入孔11に設けた切り欠き部とを合わせる等により行う。
Next, a method for manufacturing a hermetic compressor will be described with reference to FIGS.
First, as shown in FIG. 3A, the rotor 5 is positioned and placed on the conveying pallet 20 (S1 in FIG. 5). Although positioning of the rotor 5 with respect to the transport pallet 20 is not shown, for example, a protrusion provided on the centering portion 21 of the transport pallet 20 and a notch provided in the shaft insertion hole 11 of the rotor 5. And so on.

次に、図3(b)に示すように、回転子5の外周に着磁専用ヨーク22を配置し(S2)、図示しない着磁電源により専用着磁ヨーク22に着磁電流を流して、回転子5の希土類永久磁石7を着磁する(S3)。   Next, as shown in FIG. 3B, a magnetizing dedicated yoke 22 is disposed on the outer periphery of the rotor 5 (S2), and a magnetizing current is passed through the dedicated magnetizing yoke 22 by a magnetizing power source (not shown), The rare earth permanent magnet 7 of the rotor 5 is magnetized (S3).

次いで、図3(c)に示すように、回転子5のシャフト挿入孔11に加熱用コイル23を挿入し(S4)、図示しない電源により加熱用コイル23に高周波電流を流すことにより回転子5を加熱し(S5)、これにより拡径したシャフト挿入孔11に、図3(d)に示すように上方から密閉容器1に固定子4と共に固定された圧縮要素部3のシャフト8を挿入する(S6)。その後、回転子5が冷えるとシャフト挿入孔11が縮径し、シャフト8と回転子5とが固着される(S7)。   Next, as shown in FIG. 3 (c), the heating coil 23 is inserted into the shaft insertion hole 11 of the rotor 5 (S4), and a high frequency current is passed through the heating coil 23 by a power source (not shown) to thereby rotate the rotor 5. Is heated (S5), and the shaft 8 of the compression element portion 3 fixed together with the stator 4 is inserted into the sealed container 1 from above as shown in FIG. (S6). Thereafter, when the rotor 5 is cooled, the shaft insertion hole 11 is reduced in diameter, and the shaft 8 and the rotor 5 are fixed (S7).

図4により、加熱用コイル23の構造を簡単に説明する。図4は回転子5のシャフト挿入孔11に挿入される部分を示しており、例えばテフロン(登録商標)製のカバー23bの内部にコイル23aが収納されている。加熱用コイル23のコイル23aに高周波電流を流すと、コイル23aには回転子5のシャフト挿入孔11の方向に磁界が発生し、この磁界が回転子5の回転子鉄心6と軸方向に鎖交して回転子鉄心6に渦電流が流れ回転子鉄心6が加熱する(これを誘導加熱という)。   The structure of the heating coil 23 will be briefly described with reference to FIG. FIG. 4 shows a portion to be inserted into the shaft insertion hole 11 of the rotor 5. For example, a coil 23 a is accommodated in a cover 23 b made of Teflon (registered trademark). When a high-frequency current is passed through the coil 23a of the heating coil 23, a magnetic field is generated in the coil 23a in the direction of the shaft insertion hole 11 of the rotor 5, and this magnetic field is chained with the rotor core 6 of the rotor 5 in the axial direction. In exchange, an eddy current flows through the rotor core 6 and the rotor core 6 is heated (this is called induction heating).

図6は、加熱工程における回転子5の温度推移を示す図であり、横軸は時間、縦軸は温度となっている。まず、加熱用コイル23に電流を流すと回転子5のシャフト挿入孔11の温度は誘導加熱により急激に上昇する。シャフト挿入孔11の温度がある温度に達したら通電を止め、次工程に搬送されシャフト8が挿入されるが、この間にシャフト挿入孔11の温度は低下していくため、加熱用コイル23による加熱はシャフト8挿入時の必要温度よりも高めに設定される。   FIG. 6 is a diagram showing the temperature transition of the rotor 5 in the heating process, with the horizontal axis representing time and the vertical axis representing temperature. First, when an electric current is passed through the heating coil 23, the temperature of the shaft insertion hole 11 of the rotor 5 is rapidly increased by induction heating. When the temperature of the shaft insertion hole 11 reaches a certain temperature, the energization is stopped and the shaft 8 is inserted into the next process, and the temperature of the shaft insertion hole 11 decreases during this time. Is set higher than the required temperature when the shaft 8 is inserted.

一方、加熱用コイル23に流す電流は高周波電流であるため、加熱用コイル23より距離のある希土類永久磁石7には渦電流は発生しない。このため希土類永久磁石7が直接発熱することはなく、シャフト挿入孔11からの熱伝導により昇温していくので、図6に示すように徐々に温度が上がっていく。その後、シャフト挿入孔11の温度と希土類永久磁石7の温度が吊り合うところで温度は飽和する。したがって、希土類永久磁石7の最高温度は、シャフト挿入孔11のシャフト8挿入時に必要な温度(シャフト8を挿入するために拡径しなければならない温度)よりも低くなる。   On the other hand, since the current passed through the heating coil 23 is a high-frequency current, no eddy current is generated in the rare earth permanent magnet 7 that is farther from the heating coil 23. For this reason, the rare earth permanent magnet 7 does not generate heat directly, and the temperature rises due to heat conduction from the shaft insertion hole 11, so that the temperature gradually rises as shown in FIG. Thereafter, the temperature is saturated where the temperature of the shaft insertion hole 11 and the temperature of the rare earth permanent magnet 7 are suspended. Therefore, the maximum temperature of the rare earth permanent magnet 7 is lower than the temperature required when the shaft 8 is inserted into the shaft insertion hole 11 (the temperature at which the diameter of the shaft 8 must be expanded to insert the shaft 8).

以上の組立方式によれば、専用着磁ヨーク22により希土類永久磁石7を着磁した後に、回転子5をシャフト8に固着させる方式としたので、固定子4の巻線4bに大電圧、大電流を印加することがなくなり、集中巻方式の巻線4bの信頼性低下を防止することができる。   According to the above assembling method, since the rare earth permanent magnet 7 is magnetized by the dedicated magnetizing yoke 22, and the rotor 5 is fixed to the shaft 8, a large voltage and a large voltage are applied to the winding 4b of the stator 4. No current is applied, and a decrease in reliability of the concentrated winding type winding 4b can be prevented.

また、回転子5の中心部に設けられたシャフト挿入孔11に加熱用コイル23を挿入し、誘導加熱により回転子5を加熱する方式としたので、希土類永久磁石7の温度を減磁させるまで上昇させることなくシャフト8と回転子5の固着を実施することが可能となり、電動機の性能や制御性の悪化を防止することができる。   Further, since the heating coil 23 is inserted into the shaft insertion hole 11 provided in the center of the rotor 5 and the rotor 5 is heated by induction heating, the temperature of the rare earth permanent magnet 7 is demagnetized. The shaft 8 and the rotor 5 can be fixed without being raised, and the performance and controllability of the motor can be prevented from deteriorating.

実施の形態2.
以上の実施の形態1では、回転子5の加熱を1回のみとしたものであるが、次に、回転子5の加熱工程を予備加熱工程と本加熱工程との2回とした実施の形態2を説明する。
図7〜9は実施の形態2を示す図で、図7は従来の加熱方式による加熱工程での回転子の温度推移を示す図、図8は密閉型圧縮機の組立工程を示すフローチャート、図9は加熱工程での回転子の温度推移を示す図である。
Embodiment 2. FIG.
In the first embodiment, the rotor 5 is heated only once. Next, the rotor 5 is heated twice, that is, the preliminary heating step and the main heating step. 2 will be described.
FIGS. 7 to 9 are diagrams showing the second embodiment, FIG. 7 is a diagram showing the temperature transition of the rotor in the heating process by the conventional heating method, and FIG. 8 is a flowchart showing the assembly process of the hermetic compressor, FIG. 9 is a diagram showing the temperature transition of the rotor in the heating process.

例えば、シャフト8と回転子5との固着力を上げるために両者の嵌め合い代を大きくする必要がある場合、シャフト8挿入時の回転子5のシャフト挿入孔11の温度を高くしなければならず、それに伴って、図7に示すように、シャフト挿入孔11の最高温度も高くする必要がある。しかし、回転子鉄心6に使用される電磁鋼板は、変態点である500℃付近を超えて昇温した場合に機械特性が変わってしまうため、温度を上げすぎると信頼性を損なう恐れがあった。   For example, when it is necessary to increase the fitting allowance between the shaft 8 and the rotor 5 to increase the fixing force between them, the temperature of the shaft insertion hole 11 of the rotor 5 when the shaft 8 is inserted must be increased. Accordingly, it is necessary to increase the maximum temperature of the shaft insertion hole 11 as shown in FIG. However, the electrical steel sheet used for the rotor core 6 changes its mechanical characteristics when the temperature rises above 500 ° C., which is the transformation point. Therefore, if the temperature is raised too much, the reliability may be impaired. .

そこで、本実施の形態では、本加熱工程の前に予備加熱工程を導入するようにした。図8、9を参照しながら密閉型圧縮機の製造方法について説明する。
まず、実施の形態1と同様に、回転子5の希土類永久磁石7を着磁し(図8のS10)、予備加熱工程にてシャフト挿入孔11に挿入した加熱用コイル23により回転子5を加熱し(S11)、シャフト挿入孔11温度と希土類永久磁石7温度が飽和するまで放置する(S12)。この予備加熱工程により、回転子5全体の温度が、加熱前温度よりも高い状態に維持される。次いで、この状態で本加熱工程を実施する(S13)。この時、シャフト挿入孔11の最高温度は、電磁鋼板の変態点を超えない値に設定する。拡径したシャフト挿入孔11に密閉容器1に固定子4と共に固定された圧縮要素部3のシャフト8を挿入する(S14)。その後、回転子5が冷えるとシャフト挿入孔11が縮径し、シャフト8と回転子5とが固着される(S15)。
Therefore, in the present embodiment, the preheating step is introduced before the main heating step. A method for manufacturing a hermetic compressor will be described with reference to FIGS.
First, as in the first embodiment, the rare earth permanent magnet 7 of the rotor 5 is magnetized (S10 in FIG. 8), and the rotor 5 is moved by the heating coil 23 inserted into the shaft insertion hole 11 in the preheating step. It is heated (S11) and left until the temperature of the shaft insertion hole 11 and the temperature of the rare earth permanent magnet 7 are saturated (S12). By this preliminary heating step, the temperature of the entire rotor 5 is maintained at a higher temperature than the pre-heating temperature. Next, the main heating step is performed in this state (S13). At this time, the maximum temperature of the shaft insertion hole 11 is set to a value not exceeding the transformation point of the electrical steel sheet. The shaft 8 of the compression element portion 3 fixed together with the stator 4 in the sealed container 1 is inserted into the expanded shaft insertion hole 11 (S14). Thereafter, when the rotor 5 is cooled, the shaft insertion hole 11 is reduced in diameter, and the shaft 8 and the rotor 5 are fixed (S15).

これにより、1回加熱のみに対し、予備加熱にて回転子5全体の温度が高くなっているため、シャフト挿入孔11の最高温度は変わらないが、次工程への搬送中の温度低下スピードが遅くなり(奪われる熱量が減るので)、シャフト8挿入時のシャフト挿入孔11温度は、1回加熱のみの場合と比べて高くできる。   As a result, the temperature of the entire rotor 5 is increased by preheating as compared to heating only once, so the maximum temperature of the shaft insertion hole 11 does not change, but the temperature decrease speed during conveyance to the next process is reduced. Slowly (because the amount of heat taken away decreases), the temperature of the shaft insertion hole 11 when the shaft 8 is inserted can be made higher than in the case of heating only once.

以上のように、回転子5の加熱工程を予備加熱工程と本加熱工程との2回行うようにすることにより、シャフト挿入孔11の最高温度を上げることなく、シャフト8挿入時のシャフト挿入孔11温度を上げることができるので、回転子5とシャフト8との嵌め合い代を大きくしなければならない場合にも、圧縮機の組立において、電磁鋼板の機械特性を損なうことがなく、圧縮機の信頼性低下を防止することができる。   As described above, by performing the heating process of the rotor 5 twice, that is, the preliminary heating process and the main heating process, the shaft insertion hole when the shaft 8 is inserted without increasing the maximum temperature of the shaft insertion hole 11. 11 Since the temperature can be raised, even when the fitting allowance between the rotor 5 and the shaft 8 has to be increased, the mechanical properties of the electromagnetic steel sheet are not impaired in the assembly of the compressor. Reliability degradation can be prevented.

なお、本実施の形態では、予備加熱回数を1回としたが、2回以上に分けてもよい。   In this embodiment, the number of times of preliminary heating is set to one, but it may be divided into two or more times.

また、本実施の形態では、予備加熱方式として回転子5のシャフト挿入孔11に加熱用コイル23を挿入して回転子5を加熱している方法としたが、予備加熱の目的は回転子5全体の温度を若干上げることが目的なので、電気炉等の高温槽に入れて加熱する方式や、回転子5の外周に加熱コイルを配置して加熱する方式でもよい。   In the present embodiment, as a preheating method, the heating coil 23 is inserted into the shaft insertion hole 11 of the rotor 5 to heat the rotor 5. However, the purpose of the preheating is the rotor 5. Since the purpose is to raise the entire temperature slightly, a method of heating in a high temperature bath such as an electric furnace or a method of heating by arranging a heating coil on the outer periphery of the rotor 5 may be used.

実施の形態3.
図10,11は実施の形態3を示す図で、図10は回転子の縦断面図、図11は回転子と加熱コイルとを示す図である。
以上の実施の形態1,2では、回転子5のシャフト挿入孔11の径は全て同じものであったが、本実施の形態では、図10に示すように、シャフト挿入孔11の少なくとも片方の軸方向端部の径を軸方向中央の径よりも大きくした大径部11aを設けたものである。
Embodiment 3 FIG.
10 and 11 are diagrams showing Embodiment 3, FIG. 10 is a longitudinal sectional view of a rotor, and FIG. 11 is a diagram showing a rotor and a heating coil.
In the first and second embodiments, the diameters of the shaft insertion holes 11 of the rotor 5 are all the same. However, in the present embodiment, as shown in FIG. A large-diameter portion 11a in which the diameter of the end portion in the axial direction is larger than the diameter in the center in the axial direction is provided.

回転子5の軸方向長さが複数ある場合においても、同じ設備を用いて製造し、かつ治具交換などの段取り変えを極力なくすようにすることにより組立ラインの稼働率を向上させることが重要である。このため、加熱用コイル23も共通化することが必要になってくる。この時、加熱用コイル23の大きさは回転子5の軸方向長さが大きいものに合わせることになる(図11(a)参照)。   Even when there are multiple axial lengths of the rotor 5, it is important to improve the operation rate of the assembly line by manufacturing using the same equipment and minimizing setup changes such as jig replacement. It is. For this reason, it is necessary to share the heating coil 23 as well. At this time, the size of the heating coil 23 is matched with that of the rotor 5 having a large axial length (see FIG. 11A).

この加熱用コイル23を用いて軸方向長さが小さい回転子5を加熱する場合、図11(b)に示すように加熱コイル23が軸方向に突出することになる。この状態にて回転子5を加熱した場合、加熱用コイル23が突出した側の回転子5端部(図中イ)に加熱用コイル23の出力が集中し、この部分の温度が異常に高くなってしまうという課題がある。これにより、希土類永久磁石7が減磁したり、回転子鉄心6の機械特性を損なう恐れがあった。   When the rotor 5 having a small axial length is heated using the heating coil 23, the heating coil 23 protrudes in the axial direction as shown in FIG. When the rotor 5 is heated in this state, the output of the heating coil 23 is concentrated at the end of the rotor 5 on the side from which the heating coil 23 protrudes (a in the figure), and the temperature of this portion is abnormally high. There is a problem of becoming. As a result, the rare earth permanent magnet 7 may be demagnetized or the mechanical characteristics of the rotor core 6 may be impaired.

ところが、本実施の形態に示すように、加熱用コイル23が突出する側のシャフト挿入孔11に大径部11aを設けることにより、図11(c)に示すように加熱用コイル23とシャフト挿入孔11の大径部11aとの距離が大きくなるため、シャフト挿入孔11の大径部11aにはほとんど渦電流が流れず温度は上昇しない。この時、シャフト挿入孔11の細径部の軸方向端部(図中ロ)には、加熱用コイル23の出力が集中するが、その上部に加熱されない部分が存在し、熱を吸収してくれるので、ロ部の温度が異常に上昇することはない。   However, as shown in the present embodiment, by providing the large-diameter portion 11a in the shaft insertion hole 11 on the side from which the heating coil 23 protrudes, the heating coil 23 and the shaft are inserted as shown in FIG. Since the distance from the large-diameter portion 11a of the hole 11 is increased, eddy current hardly flows through the large-diameter portion 11a of the shaft insertion hole 11 and the temperature does not increase. At this time, the output of the heating coil 23 is concentrated at the axial end portion (b) in the narrow diameter portion of the shaft insertion hole 11, but there is a portion that is not heated at the upper portion, and absorbs heat. The temperature in the b section will not rise abnormally.

以上のように、本実施の形態によれば、軸方向長さの異なる回転子5を組み立てる際に、加熱用コイル23を共通化しても希土類永久磁石7を減磁させることがないので、段取り変えを省略することができ、加工費の増加を抑制することができる。   As described above, according to the present embodiment, when the rotor 5 having different axial lengths is assembled, the rare earth permanent magnet 7 is not demagnetized even if the heating coil 23 is shared. The change can be omitted, and an increase in processing cost can be suppressed.

実施の形態1を示す図で、密閉型圧縮機の縦断面図である。It is a figure which shows Embodiment 1, and is a longitudinal cross-sectional view of a hermetic compressor. 実施の形態1を示す図で、電動要素部の軸直交方向の断面図である。FIG. 5 shows the first embodiment, and is a cross-sectional view of the electric element portion in the direction perpendicular to the axis. 実施の形態1を示す図で、密閉型圧縮機の組立工程を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the assembly process of a hermetic compressor. 実施の形態1を示す図で、加熱用コイルを示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the coil for a heating. 実施の形態1を示す図で、密閉型圧縮機の組立工程を示すフローチャート図である。FIG. 5 is a diagram showing the first embodiment and is a flowchart showing an assembly process of the hermetic compressor. 実施の形態1を示す図で、加熱工程における回転子の温度推移を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the temperature transition of the rotor in a heating process. 実施の形態2を示す図で、従来の加熱方式による加熱工程での回転子の温度推移を示す図である。It is a figure which shows Embodiment 2, and is a figure which shows the temperature transition of the rotor in the heating process by the conventional heating system. 実施の形態2を示す図で、密閉型圧縮機の組立工程を示すフローチャート図である。It is a figure which shows Embodiment 2, and is a flowchart figure which shows the assembly process of a hermetic compressor. 実施の形態2を示す図で、加熱工程での回転子の温度推移を示す図である。It is a figure which shows Embodiment 2, and is a figure which shows the temperature transition of the rotor in a heating process. 実施の形態3を示す図で、回転子の縦断面図である。It is a figure which shows Embodiment 3, and is a longitudinal cross-sectional view of a rotor. 実施の形態3を示す図で、回転子と加熱コイルとを示す図である。It is a figure which shows Embodiment 3, and is a figure which shows a rotor and a heating coil.

符号の説明Explanation of symbols

1 密閉容器、2 電動要素部、3 圧縮要素部、4 固定子、4a 固定子鉄心、4b 巻線、4c ティース、5 回転子、6 回転子鉄心、6a 磁石収納穴、7 希土類永久磁石、
8 シャフト、9 吸入管、10 吐出管、11 シャフト挿入孔、11a 大径部、20 搬送用パレット、21 芯出し部、22 専用着磁ヨーク、23 加熱用コイル、23a コイル、23b カバー。
DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric element part, 3 Compression element part, 4 Stator, 4a Stator iron core, 4b Winding, 4c Teeth, 5 Rotor, 6 Rotor iron core, 6a Magnet accommodation hole, 7 Rare earth permanent magnet,
8 Shaft, 9 Suction pipe, 10 Discharge pipe, 11 Shaft insertion hole, 11a Large diameter part, 20 Transport pallet, 21 Centering part, 22 Dedicated magnetizing yoke, 23 Heating coil, 23a coil, 23b Cover.

Claims (3)

巻線が施される固定子と、希土類永久磁石を使用し、中心部にシャフト挿入孔が設けられた回転子とを有する電動要素部と、冷媒を圧縮し、前記電動要素部とシャフトで連結された圧縮要素部とを密閉容器内に収容した密閉型圧縮機の製造方法において、
前記回転子の希土類永久磁石を着磁し、
予備加熱工程として、前記回転子のシャフト挿入孔に加熱用コイルを挿入し誘導加熱により該回転子を加熱し、前記回転子のシャフト挿入孔及び前記永久磁石の温度が飽和するまで放置し、
本加熱工程として、前記回転子のシャフト挿入孔に加熱用コイルを挿入し誘導加熱により該回転子を再加熱し、
前記圧縮要素部のシャフトを加熱されて拡径した前記回転子のシャフト挿入孔に挿入して固着し、
前記予備加熱工程を少なくとも1回行うことを特徴とする密閉型圧縮機の製造方法。
An electric element portion having a stator to which winding is applied and a rotor using a rare earth permanent magnet and having a shaft insertion hole in the center portion, and compressing the refrigerant and connecting the electric element portion and the shaft In the manufacturing method of the hermetic compressor in which the compressed element part is housed in a hermetic container
Magnetizing the rare earth permanent magnet of the rotor,
As a preheating step, a heating coil is inserted into the shaft insertion hole of the rotor and the rotor is heated by induction heating, and left until the temperature of the shaft insertion hole of the rotor and the permanent magnet is saturated,
As the main heating step, a heating coil is inserted into the shaft insertion hole of the rotor, and the rotor is reheated by induction heating,
The shaft of the compression element portion is heated and expanded and inserted into the shaft insertion hole of the rotor to be fixed,
A method for manufacturing a hermetic compressor, wherein the preliminary heating step is performed at least once.
前記回転子のシャフト挿入孔の少なくとも一方の端部が中央部よりも拡径され、軸方向長さの異なる前記回転子を組立てる際に、1種類の加熱用コイルを用い、この1種類の加熱用コイルを前記拡径された端部から前記回転子のシャフト挿入孔に挿入して該回転子を加熱することを特徴とする請求項1記載の密閉型圧縮機の製造方法。 When assembling the rotor having at least one end of the shaft insertion hole of the rotor having a diameter larger than that of the central portion and having different axial lengths, one type of heating coil is used. claim 1 Symbol mounting method of manufacturing a hermetic compressor, characterized in that by inserting a use coil from said radially enlarged to end the shaft insertion hole of the rotor to heat the rotor. 前記固定子の巻線方式を集中巻方式としたことを特徴とする請求項1又は請求項2記載の密閉型圧縮機の製造方法。 The method of manufacturing a hermetic compressor according to claim 1 or 2, wherein the stator winding method is a concentrated winding method.
JP2005121814A 2005-04-20 2005-04-20 Manufacturing method of hermetic compressor Expired - Fee Related JP4627002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121814A JP4627002B2 (en) 2005-04-20 2005-04-20 Manufacturing method of hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121814A JP4627002B2 (en) 2005-04-20 2005-04-20 Manufacturing method of hermetic compressor

Publications (2)

Publication Number Publication Date
JP2006304467A JP2006304467A (en) 2006-11-02
JP4627002B2 true JP4627002B2 (en) 2011-02-09

Family

ID=37472111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121814A Expired - Fee Related JP4627002B2 (en) 2005-04-20 2005-04-20 Manufacturing method of hermetic compressor

Country Status (1)

Country Link
JP (1) JP4627002B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117630B (en) * 2012-12-05 2014-12-17 杭州富生电器股份有限公司 Heating method and heating device of motor rotor iron core
CN104184274B (en) * 2014-09-12 2016-06-08 苏州石丸英合精密机械有限公司 The armature spindle of rotor automatic assembling machine press-fits cooling body
CN110431725A (en) 2017-03-22 2019-11-08 三菱电机株式会社 Motor and the compressor for having the motor
CN110601472A (en) * 2019-09-19 2019-12-20 中车株洲电机有限公司 Rotor core heating equipment and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319243A (en) * 1993-04-30 1994-11-15 Sanyo Electric Co Ltd Heating apparatus for shrinkage-fitting rotor in electric rotary machine
JP2000092762A (en) * 1998-09-09 2000-03-31 Toshiba Corp Rotor for motor
JP2001346348A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Rotor of compressor and assembly method of compressor components
JP2003244903A (en) * 2002-02-20 2003-08-29 Mitsubishi Electric Corp Manufacturing method for permanent magnet motor, compressor, refrigeration cycle device, manufacturing device for permanent magnet motor, heat demagnetization supressing tool, pressure arm, coil protective cover, and heating device for rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319243A (en) * 1993-04-30 1994-11-15 Sanyo Electric Co Ltd Heating apparatus for shrinkage-fitting rotor in electric rotary machine
JP2000092762A (en) * 1998-09-09 2000-03-31 Toshiba Corp Rotor for motor
JP2001346348A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Rotor of compressor and assembly method of compressor components
JP2003244903A (en) * 2002-02-20 2003-08-29 Mitsubishi Electric Corp Manufacturing method for permanent magnet motor, compressor, refrigeration cycle device, manufacturing device for permanent magnet motor, heat demagnetization supressing tool, pressure arm, coil protective cover, and heating device for rotor

Also Published As

Publication number Publication date
JP2006304467A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
CN110622393A (en) Stator, motor, compressor, refrigeration and air-conditioning device, and method for manufacturing stator
JPH11215748A (en) Permanent magnet type rotating machine
CN108475971B (en) Magnetizing method, rotor, motor and scroll compressor
JP2008193778A (en) Stator and enclosed compressor and rotating machine
CN109565191B (en) Motor, compressor and refrigeration air conditioner
CN104350666A (en) Rotary electric machine
CN111903038B (en) Motor, compressor and air conditioning device
JP3741653B2 (en) MANUFACTURING METHOD FOR PERMANENT MAGNET TYPE MOTOR, COMPRESSOR, REFRIGERATION CYCLE APPARATUS, MANUFACTURING APPARATUS FOR PERMANENT MAGNET TYPE ELECTRIC MOTOR
CN112075011B (en) Rotor, motor, compressor and air conditioner
JP5381139B2 (en) Electric motor
JP4627002B2 (en) Manufacturing method of hermetic compressor
US11962192B2 (en) Electric motor, compressor, and air conditioner
JP5084899B2 (en) Permanent magnet type motor
AU2023208167A1 (en) Rotor, electric motor, compressor, and air conditioner
CN112913118B (en) Rotor, motor, compressor, air conditioner, and method for manufacturing rotor
JP2006353100A (en) Air conditioner
US11916438B2 (en) Magnetization ring, magnetization method, magnetization apparatus, rotor, motor, compressor, and air conditioner
JP2003274618A (en) Permanent magnet rotor and manufacturing method thereof
CN115298929A (en) Rotor, motor, compressor, refrigeration cycle device, and air conditioning device
US20240154504A1 (en) Motor, compressor, refrigeration cycle apparatus, magnetizing method, and magnetizing apparatus
US20230283128A1 (en) Rotating electric machine and method of manufacturing field magneton thereof
US20240348115A1 (en) Rotor, motor, compressor, and refrigeration cycle apparatus
WO2021009792A1 (en) Stator, electric motor, compressor, air conditioner, stator mnufacturing method, and magnetization method
JP2004293336A (en) Sealed type compressor
WO2021205527A1 (en) Magnetization method, method for producing electric motor, electric motor, compressor, and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees